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ABSTRACT
Link spamming intends to mislead search engines and trig-
ger an artificially high link-based ranking of specific target
web pages. This paper introduces the concept of spam mass,
a measure of the impact of link spamming on a page’s rank-
ing. We discuss how to estimate spam mass and how the es-
timates can help identifying pages that benefit significantly
from link spamming. In our experiments on the host-level
Yahoo! web graph we use spam mass estimates to success-
fully identify tens of thousands of instances of heavy-weight
link spamming.

1. INTRODUCTION
In an era of search-based web access, many attempt to mis-
chievously influence the page rankings produced by search
engines. This phenomenon, called web spamming, represents
a major problem to search engines [14, 11] and has nega-
tive economic and social impact on the whole web commu-
nity. Initially, spammers focused on enriching the contents
of spam pages with specific words that would match query
terms. With the advent of link-based ranking techniques,
such as PageRank [13], spammers started to construct spam
farms, collections of interlinked spam pages. This latter
form of spamming is referred to as link spamming as op-
posed to the former term spamming.

The plummeting cost of web publishing has rendered a boom
in link spamming. The size of many spam farms has in-
creased dramatically, and many farms span tens, hundreds,
or even thousands of different domain names, rendering naive
countermeasures ineffective. Skilled spammers, whose ac-
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tivity remains largely undetected by search engines, often
manage to obtain very high rankings for their spam pages.

This paper proposes a novel method for identifying the largest
and most sophisticated spam farms, by turning the spam-
mers’ ingenuity against themselves. Our focus is on spam-
ming attempts that target PageRank. We introduce the
concept of spam mass, a measure of how much PageRank a
page accumulates through being linked to by spam pages.
The target pages of spam farms, whose PageRank is boosted
by many spam pages, are expected to have a large spam
mass. At the same time, popular reputable pages, which
have high PageRank because other reputable pages point to
them, have a small spam mass.

We estimate the spam mass of all web pages by computing
and combining two PageRank scores: the regular PageRank
of each page and a biased one, in which a large group of
known reputable pages receives more weight. Mass esti-
mates can then be used to identify pages that are significant
beneficiaries of link spamming with high probability.

The strength of our approach is that we can identify any
major case of link spamming, not only farms with regu-
lar interconnection structures or cliques, which represent
the main focus of previous research (see Section 5). The
proposed method also complements our previous work on
TrustRank [10] in that it detects spam as opposed to “de-
tecting” reputable pages (see Sections 3.4 and 5).

This paper is organized as follows. We start with some
background material on PageRank and link spamming. The
first part of Section 3 introduces the concept of spam mass
through a transition from simple examples to formal defini-
tions. Then, the second part of Section 3 presents an efficient
way of estimating spam mass and a practical spam detection
algorithm based on mass estimation. In Section 4 we discuss
our experiments on the Yahoo! search engine index and offer
evidence that spam mass estimation is helpful in identifying
heavy-weight link spam. Finally, Section 5 places our results
into the larger picture of link spam detection research and
PageRank analysis.



2. PRELIMINARIES
2.1 Web Graph Model
Information on the web can be viewed at different levels of
granularity. For instance, one could think of the web of in-
dividual HTML pages, the web of hosts, or the web of sites.
Our discussion will abstract from the actual level of gran-
ularity, and see the web as an interconnected structure of
nodes, where nodes may be pages, hosts, or sites, respec-
tively.

We adopt the usual graph model of the web, and use G =
(V, E) to denote the web graph that consists of a set V of
nodes (vertices) and a set E of directed links (edges) that
connect nodes. We disregard the exact definition of a link,
although it will usually represent one or a group of hyper-
links between corresponding pages, hosts, or sites. We use
unweighted links and disallow self-links.

Each node has some incoming links, or inlinks, and some
outgoing links, or outlinks. The number of outlinks of a
node x is its outdegree, whereas the number of inlinks is its
indegree. The nodes pointed to by a node x are the out-
neighbors of x. Similarly, the nodes pointing to x are its
in-neighbors.

2.2 Linear PageRank
A popular discussion and research topic, PageRank as intro-
duced in [13] is more of a concept that allows for different
mathematical formulations, rather than a single clear-cut
algorithm. From among the available approaches (for an
overview, see [3], [4], and [5]), we adopt the linear system
formulation of PageRank, which is briefly introduced next.
The extended version of this paper [8] offers a more detailed
presentation of linear PageRank and, most importantly, dis-
cusses its equivalence to the probabilistic formulation based
on the random surfer model.

Given a damping factor c ∈ (0, 1) (usually around 0.85), the
PageRank score px of a page x is defined as the solution
of the following equation, involving the PageRank scores of
pages y pointing to x:

px = c
X

(y,x)∈E

py

out(y)
+

1− c

n
, (1)

where out(y) is the outdegree of node y and n = |V| is the
number of nodes of the web graph. The second additive term
on the right side of the equation, (1− c)/n, is traditionally
referred to as the random jump component or teleportation
component and corresponds to a fixed, minimal amount of
PageRank that every node gets by default.

Consider the transition matrix T corresponding to the web
graph G, defined as

Txy =

(
1/out(x), if (x, y) ∈ E ,
0, otherwise

and the random jump distribution vector v = ( 1
n
)n with

norm ‖v‖ = ‖v‖1 = 1. Then, the PageRank equations (1)
for all nodes can be written as the linear system

(I− cTT )p = (1− c)v, (2)

where I is the identity matrix.

We adopt the notation p = PR(v) to indicate that p is the
(unique) vector of PageRank scores satisfying (2) for a given
v. In general, we will allow for non-uniform random jump
distributions. We even allow v to be unnormalized, that is
0 < ‖v‖ ≤ 1, and leave the PageRank vector unnormalized
as well. The linear system (2) can be solved, for instance,
by using the Jacobi method, shown as Algorithm 1.

input : transition matrix T, random jump vector v,
damping factor c, error bound ε

output: PageRank score vector p

i← 0
p[0] ← v
repeat

i← i + 1
p[i] ← cTT p[i−1] + (1− c)v

until ‖p[i] − p[i−1]‖ < ε

p← p[i]

Algorithm 1: Linear PageRank.

A major advantage of the adopted formulation is that the
PageRank scores are linear in v: for p = PR(v) and v =
v1 + v2 we have p = p1 + p2 where p1 = PR(v1) and p2 =
PR(v2). Further details on linear PageRank are provided
in [3].

2.3 Link Spamming
In this paper we focus on link spamming that targets the
PageRank algorithm. PageRank is fairly robust to spam-
ming: a significant increase in score requires a large num-
ber of links from low-PageRank nodes and/or some hard-
to-obtain links from popular nodes, such as The New York
Times site www.nytimes.com. Spammers usually try to blend
these two strategies, though the former is more prevalent.

In order to better understand the modus operandi of link
spamming, we introduce the model of a link spam farm, a
group of interconnected nodes involved in link spamming.
A spam farm has a single target node, whose ranking the
spammer intends to boost by creating the whole structure.
A farm also contains boosting nodes, controlled by the spam-
mer and connected so that they would influence the Page-
Rank of the target. Boosting nodes are owned either by
the author of the target, or by some other spammer (finan-
cially or otherwise) interested in collaborating with him/her.
Commonly, boosting nodes have little value by themselves;
they only exist to improve the ranking of the target. Their
PageRank tends to be small, so serious spammers employ a
large number of boosting nodes (occasionally, thousands of
them) to trigger high target ranking.

In addition to the links within the farm, spammers may
gather some external links from reputable nodes. While the
author of a reputable node y is not voluntarily involved in
spamming (according to our model, if he/she were, the page
would be part of the farm), “stray” links may exist for a
number of reason:

• Node y is a blog or message board or guestbook and



the spammer manages to post a comment that includes
a spam link, which then slips under the editorial radar.

• The spammer creates a honey pot, a spam page that
offers valuable information, but behind the scenes is
still part of the farm. Unassuming users might then
point to the honey pot, without realizing that their
link is harvested for spamming purposes.

• The spammer purchases domain names that recently
expired but had previously been reputable and popu-
lar. This way he/she can profit of the old links that
are still out there.

Actual link spam structures may contain several target pages,
and can be thought of as alliances of simple spam farms [9].

In this paper, we focus on identifying target nodes x that
benefit mainly from boosting: spam nodes linking to x in-
crease x’s PageRank more than reputable nodes do. Subse-
quent sections discuss our proposed approach and the sup-
porting experimental results.

3. SPAM MASS
3.1 Naive Approach
In order to start formalizing our problem, let us conceptually
partition the web into a set of reputable nodes V+ and a set
of spam nodes V−, with V+ ∪ V− = V and V+ ∩ V− = ∅.1
Given this partitioning, we wish to detect web nodes x that
gain most of their PageRank through spam nodes in V− that
link to them. We will conclude that such nodes x are spam
farm target nodes.

A very simple approach would be that, given a node x, we
look only at its immediate in-neighbors. For the moment,
let us assume that it is known whether in-neighbors of x
are reputable, good nodes or spam. (We will remove this
unrealistic assumption in Section 3.4.) Now we wish to in-
fer whether x is good or spam, based on the in-neighbor
information.

In a first approximation, we can simply look at the num-
ber of inlinks. If the majority of x’s links comes from spam
nodes, x is labeled a spam target node, otherwise it is la-
beled good. We call this approach our first labeling scheme.
It is easy to see that this scheme often mislabels spam. To
illustrate, consider the web graph in Figure 1. (Our conven-
tion is to show known good nodes filled white, known spam
nodes filled black, and to-be-labeled nodes hashed gray.) As
x has two links from good nodes g0 and g1 and a single
link from spam node s0, it will be labeled good. At the
same time, solving the system of equations (1) for all nodes
reveals that the PageRank of x is

px = (1 + 3c + kc2)(1− c)/n,

out of which (c + kc2)(1 − c)/n is due to spamming. (It is
straightforward to verify that in the absence of spam nodes
1In practice, such perfect knowledge is clearly unavailable.
Also, what constitutes spam is often a matter of subjec-
tive judgment; hence, the real web includes a voluminous
gray area of nodes that some call spam while others argue
against that label. Nevertheless, our simple dichotomy will
be helpful in constructing the theory of the proposed spam
detection method.
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Figure 1: A scenario in which the first naive labeling
scheme fails, but the second succeeds.
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Figure 2: Another scenario in which both naive la-
beling schemes fails.

s0, . . . , sk the PageRank of x would decrease by this much.)
For c = 0.85, as long as k ≥ d1/ce = 2 the largest part
of x’s PageRank comes from spam nodes, so it would be
reasonable to label x as spam. As our first scheme fails to
do so, let us come up with something better.

A natural alternative is to look not only at the number of
links, but also at what amount of PageRank each link con-
tributes. The contribution of a link amounts to the change
in PageRank induced by the removal of the link. For Fig-
ure 1, links from g0 and g1 both contribute c(1− c)/n while
the link from s0 contributes (c+kc2)(1−c)/n. As the largest
part of x’s PageRank comes from a spam node, we correctly
label x as spam.

However, there are cases when even our second scheme is
not quite good enough. For example, consider the graph in
Figure 2. The links from g0 and g2 contribute (2c+4c2)(1−
c)/n to the PageRank of x, while the link from s0 contributes
(c + 4c2)(1 − c)/n only. Hence, the second scheme labels x
as good. It is important, however, to realize that spam
nodes s5 and s6 influence the PageRank scores of g0 and
g2, respectively, and so they also have an indirect influence
on the PageRank of x. Overall, the 7 spam nodes of the
graph have a stronger influence on x’s PageRank than the 4
reputable ones do. Our second scheme fails to recognize this
because it never looks beyond the immediate in-neighbors of
x.

Therefore, it is appropriate to devise a third scheme that
labels node x considering all the PageRank contributions of
other nodes that are directly or indirectly connected to x.



The next section will show how to compute such contribu-
tions, both direct and indirect (e.g., that of s5 to x). Then,
in Section 3.3 the contributions of spam nodes will be added
to determine what we call the spam mass of nodes.

3.2 PageRank Contribution
In this section we adapt the formalism and results intro-
duced for inverse P-distances in [12].

The connection between the nodes x and y is captured by the
concept of a walk. A walk W from x to y in a directed graph
is defined as a finite sequence of nodes x = x0, x1, . . . , xk =
y, where there is a directed edge (xi, xi+1) ∈ E between
every pair of adjacent nodes xi and xi+1, i = 0, . . . , k − 1.
The length |W | of a walk W is the number k ≥ 1 of edges.
A walk with x = y is called a circuit.

Acyclic graphs contain a finite number of walks while cyclic
graph have an infinite number of walks. The (possibly infi-
nite) set of all walks from x to y is denoted by Wxy.

We define the PageRank contribution of x to y over the walk
W as

qW
y = ckπ(W )(1− c)vx,

where vx is the probability of a random jump to x, as intro-
duced in Section 2.2, and π(W ) is the weight of the walk:

π(W ) =

k−1Y
i=0

1

out(xi)
.

This weight can be interpreted as the probability that a
Markov chain of length k starting in x reaches y through
the sequence of nodes x1, . . . , xk−1.

In a similar manner, we define the total PageRank contribu-
tion of x to y, x 6= y, over all walks from x to y (or simply:
the PageRank contribution of x to y) as

qx
y =

X
W∈Wxy

qW
y .

For a node’s contribution to itself, we also consider an addi-
tional virtual circuit Zx that has length zero and weight 1,
so that

qx
x =

X
W∈Wxx

qW
x = qZx

x +
X

V ∈Wxx,|V |≥1

qV
x

= (1− c)vx +
X

V ∈Wxx,|V |≥1

qV
x .

Note that if a node x does not participate in circuits, x’s
contribution to itself is qx

x = (1 − c)vx, which corresponds
to the random jump component.

For convenience, we extend our notion of contribution even
to those nodes that are unconnected. If there is no walk
from node x to node y then the PageRank contribution qx

y

is zero.

The following theorem reveals the connection between the
PageRank contributions and the PageRank scores of nodes.
(The proofs of the theorems are presented in the extended
version of the paper [8].)

Theorem 1. The PageRank score of a node y is the sum
of the contributions of all other nodes to y:

py =
X
x∈V

qx
y .

It is possible to compute the PageRank contribution of a
node to all nodes in a convenient way, as stated next.

Theorem 2. Under a given random jump distribution v,
the vector qx of contributions of a node x to all nodes is the
solution of the linear PageRank system for the core-based
random jump vector vx:

vx
y =

(
vx, if x = y,

0, otherwise,

that is,

qx = PR(vx) .

Remember that the PageRank equation system is linear in
the random jump vector. Hence, we can easily determine
the PageRank contribution qU of any subset of nodes U ⊆ V
by computing PageRank using the random jump vector vU

defined as

vUy =

(
vy, if y ∈ U ,

0, otherwise.

To verify the correctness of this last statement, note that
qx = PR(vx) for all x ∈ U and vU =

P
x∈U vx, therefore

qU = PR(vU ) =
P

x∈U qx.

3.3 Definition of Spam Mass
Returning to the example in Figure 2, let us check whether
PageRank contributions could indeed help in labeling x. We
calculate and add the contributions of known good and spam
nodes to the PageRank of x:

q{g0,...,g3}
x = (2c + 2c2)(1− c)/n

and

q{s0,...,s6}
x = (c + 6c2)(1− c)/n .

Then, we can decide whether x is spam based on the compar-

ison of q
{s0,...,s6}
x to q

{g0,...,g3}
x . For instance, for c = 0.85,

q
{s0,...,s6}
x = 1.65q

{g0,...,g3}
x . Therefore, spam nodes have

more impact on the PageRank of x than good nodes do,
and it might be wise to conclude that x is in fact spam. We
formalize our intuition as follows.

For a given partitioning {V+,V−} of V and for any node x,

it is the case that px = qV
+

x + qV
−

x , that is, x’s PageRank is
the sum of the contributions of good nodes and that of spam
nodes. (The formula includes x’s contribution to itself, as
we assume that we are given information about all nodes.)

Definition 1. The absolute spam mass of x, denoted by
Mx, is the PageRank contribution that x receives from spam

nodes, that is, Mx = qV
−

x .



Hence, the spam mass is a measure of how much direct or
indirect in-neighbor spam nodes increase the PageRank of a
node. Our experimental results indicate that it is suggestive
to take a look at the spam mass of nodes in comparison to
their total PageRank:

Definition 2. The relative spam mass of x, denoted by
mx, is the fraction of x’s PageRank due to contributing spam

nodes, that is, mx = qV
−

x /px.

3.4 Estimating Spam Mass
The assumption that we have accurate a priori knowledge
of whether nodes are good (i.e., in V+) or spam (i.e., in
V−) is of course unrealistic. Not only is such information
currently unavailable for the actual web, but it would also
be impractical to produce and would quickly get outdated.
In practice, the best we can hope for is some approximation
to (subset of) the good nodes (say Ṽ+) or spam nodes (say

Ṽ−). Accordingly, we expect that search engines have some
reliable white-list and/or black-list, comprising a subset of
the nodes, compiled manually by editors and/or generated
by algorithmic means.

Depending on which of these two sets is available (either
or both), the spam mass of nodes can be approximated by
estimating good and spam PageRank contributions.

In this paper we assume that only a subset of the good
nodes Ṽ+ is provided. We call this set Ṽ+ the good core. A
suitable good core is not very hard to construct, as discussed
in Section 4.2. Note that one can expect the good core to
be more stable over time than Ṽ−, as spam nodes come and
go on the web. For instance, spammers frequently abandon
their pages once there is some indication that search engines
adopted anti-spam measures against them.

Given Ṽ+, we compute two sets of PageRank scores:

1. p = PR(v), the PageRank of nodes based on the uni-
form random jump distribution v = ( 1

n
)n, and

2. p′ = PR(vṼ
+
), a core-based PageRank with a random

jump distribution vṼ
+
,

vṼ
+

x =

(
1/n, if x ∈ Ṽ+,

0, otherwise.

Note that p′ approximates the PageRank contribu-
tions that nodes receive from the good nodes on the
web. The core-based PageRank is closely related to
TrustRank in that both rely on a random jump dis-
tribution biased to good nodes. However, the random
jump in TrustRank is biased to a small and highly
selective seed of superior quality nodes, whereas Ṽ+

• should be as large as possible, orders of magnitude
larger than the TrustRank seed, and

• should include as many known good nodes as pos-
sible, not only the highest quality ones.

In Section 4.5 we discuss how major differences in
core size have significant impact on the performance
of mass-based spam detection.

The PageRank vectors p and p′ can be used to estimate
spam mass as follows:

Definition 3. Given PageRank scores px and p′x, the es-
timated absolute spam mass of node x is

M̃x = px − p′x

and the estimated relative spam mass of x is

m̃x = (px − p′x)/px = 1− p′x/px.

As a simple example of how spam mass estimation works,
consider again the graph in Figure 2 and assume that the
good core is Ṽ+ = {g0, g1, g3}. For c = 0.85 and n = 12, the
PageRank score, actual absolute mass, estimated absolute
mass, and corresponding relative counterparts are shown for
each of the nodes in Table 1. Note that here, as well as in
the rest of the paper, numeric PageRank scores and absolute
mass values are scaled by n/(1− c) for increased readability.
Accordingly, the scaled PageRank score of a node without
inlinks is 1.

For instance, the scaled PageRank score of g0 is 2.7. Of that,
Mg0 = 0.85 is contributed by spam pages, in particular by
s5. Hence, g0’s relative mass is mg0 = 0.85/2.7 = 0.31.

The difference between actual and estimated mass can be
observed in case of nodes x and g2. Although g2 is a good
node, it is not a member of Ṽ+. Hence, both its absolute
mass and relative mass are overestimated. The mass esti-
mates for node x are also larger than the actual values.

Note that the absolute and relative mass estimates of most
good nodes are small compared to the estimated mass of
spam nodes. While the example in Figure 2 is overly simple,
the relative separation of good and spam indicates that mass
estimates could be used for spam detection purposes.

In the alternate situation that Ṽ− is provided, the absolute

spam mass can be estimated by M̂ = PR(vṼ
−

). Finally,

when both Ṽ− and Ṽ+ are known, the spam mass estimates
could be derived, for instance, by simply computing the av-
erage (M̃ + M̂)/2. It is also possible to invent more sophis-
ticated combination schemes, e.g., a weighted average where
the weights depend on the relative sizes of Ṽ− and Ṽ+, with
respect to the estimated sizes of V− and V+.

3.5 Size of the Good Core
In a final step before devising a practical spam detection
algorithm based on mass estimation, we need to consider a
technical problem that arises for real web data.

Even with all good nodes included, one can expect for the
web that the core Ṽ+ will be significantly smaller than the
actual set of good nodes V+. That is, |Ṽ+| � |V+| and thus

‖vṼ
+
‖ � ‖v‖. Note that by the definition of p = PR(v)

from (2), ‖p‖ ≤ ‖v‖. Similarly, ‖p′‖ ≤ ‖vṼ
+
‖. It follows

that ‖p′‖ � ‖p‖, i.e., the total estimated good contribution
is much smaller than the total PageRank of nodes. In this
case, when estimating spam mass, we will have ‖p− p′‖ ≈



core-based absolute estimated relative estimated
PageRank PageRank mass abs. mass mass rel. mass

p = p′ = M = M̃ = m = m̃ =
x
g0

g1

g2

g3

s0

s1, . . . , s6

0
BBBBBBB@

9.33
2.7
1

2.7
1

4.4
1

1
CCCCCCCA

0
BBBBBBB@

2.295
1.85
1

0.85
1
0
0

1
CCCCCCCA

0
BBBBBBB@

6.185
0.85
0

0.85
0

4.4
1

1
CCCCCCCA

0
BBBBBBB@

7.035
0.85
0

1.85
0

4.4
1

1
CCCCCCCA

0
BBBBBBB@

0.66
0.31
0

0.31
0
1
1

1
CCCCCCCA

0
BBBBBBB@

0.75
0.31
0

0.69
0
1
1

1
CCCCCCCA

Table 1: Various features of nodes in Figure 2.

‖p‖ with only a few nodes that have absolute mass estimates
differing from their PageRank scores.

A simple remedy to this problem is as follows. We can con-
struct a (small) uniform random sample of nodes and man-
ually label each sample node as spam or good. This way it
is possible to roughly approximate the prevalence of spam
nodes on the whole web. We introduce γ to denote the
fraction of nodes that we estimate (based on our sample)
that are good, so γn ≈ |V+|. Then, we scale the core-based

random jump vector vṼ
+

to w, where

wx =

(
γ/|Ṽ+|, if x ∈ Ṽ+,

0, otherwise.

Note that ‖w‖ = γ ≈ ‖vV
+
‖, so the two random jump

vectors are of the same order of magnitude. Then, we can

compute p′ based on w and expect that ‖p′‖ ≈ ‖pV
+
‖, so

we get a reasonable estimate of the total good contribution.

Using w in computing the core-based PageRank leads to
an interesting situation. As Ṽ+ is small, the good nodes in
it will receive an unusually high random jump (γ/|Ṽ+| as
opposed to 1/n). Therefore, the good PageRank contribu-
tion of these known reputable nodes will be overestimated,
to the extent that occasionally for some node y, p′y will be

larger than py. Hence, when computing M̃, there will be
nodes with negative spam mass. In general, a negative mass
indicates that a node is known to be good in advance (is a

member of Ṽ+) or its PageRank is heavily influenced by the
contribution of nodes in the good core.

3.6 Spam Detection Algorithm
Section 3.3 introduced the concept of spam mass, Section 3.4
provided an efficient way of estimating it, while Section 3.5
eliminated some technical obstacles in our way. In this sec-
tion we put all pieces together and present our link spam
detection algorithm based on mass estimation.

While very similar in nature, our experiments (discussed in
Sections 4.4 and 4.6) indicate that relative mass estimates
are more useful in spam detection than their absolute coun-
terparts. Therefore, we build our algorithm around esti-
mating the relative mass of nodes. Details are presented as
Algorithm 2.

The first input of the algorithm is the good core Ṽ+. The

second input is a threshold τ to which relative mass esti-
mates are compared. If the estimated relative mass of a
node is equal to or above this threshold then the node is
labeled as a spam candidate.

The third input is a PageRank threshold ρ: we only verify
the relative mass estimates of nodes with PageRank scores
larger than or equal to ρ. Nodes with PageRank less than ρ
are never labeled as spam candidates.

input : good core Ṽ+, relative mass threshold τ ,
PageRank threshold ρ

output: set of spam candidates S
S ← ∅
compute PageRank scores p
construct w based on Ṽ+ and compute p′

m̃← (p− p′)/p
for each node x so that px ≥ ρ do

if mx ≥ τ then
S ← S ∪ {x}

end
end

Algorithm 2: Mass-based spam detection.

There are at least three reasons to apply a threshold on
PageRank. First, remember that we are interested in de-
tecting nodes that profit from significant link spamming.
Obviously, a node with a small PageRank is not a benefi-
ciary of considerable boosting, so it is of no interest to us.

Second, focusing on nodes x with large PageRank also means
that we have more evidence—a larger number of nodes con-
tributing to the PageRank of x. Therefore, no single node’s
contribution is critical alone, the decision whether a node
is spam or not is based upon data collected from multiple
sources.

Finally, for nodes x with low PageRank scores, even the
slightest error in approximating Mx by M̃x could yield huge
differences in the corresponding relative mass estimates. The
PageRank threshold helps us to avoid the complications
caused by this phenomenon.

As an example of how the algorithm operates, consider once
more the graph in Figure 2 with node features in Table 1.
Let us assume that Ṽ+ = {g0, g1, g3}, ρ = 1.5 (once again,

we use scaled PageRank scores), τ = 0.5 and w = vṼ
+
.

Then, the algorithm disregards nodes g1, g3 and s1, . . . , s6



because their low PageRank of 1 < ρ = 1.5. Again, such
nodes cannot possibly benefit from significant boosting by
link spamming.

Node x has PageRank px = 9.33 ≥ ρ = 1.5 and a large
estimated relative mass m̃x = 0.75 ≥ τ = 0.5, hence it is
added to the spam candidate set S. Similarly, node s0 is
labeled spam as well. A third node, g2 is a false positive: it
has a PageRank of pg2 = 2.7 and an estimated relative mass
of m̃g2 = 0.69, so it is labeled spam. This error is due to
the fact that our good core Ṽ+ is incomplete. Finally, the
other good node g0 is correctly excluded from S, because
m̃g0 = 0.31 < τ .

4. EXPERIMENTAL RESULTS
4.1 Data Set
To evaluate the proposed spam detection method we per-
formed a number of experiments on actual web data. The
data set that we used was based on the web index of the
Yahoo! search engine as of 2004.

From the complete index of several billion web pages we
extracted a list consisting of approximately 73.3 million in-
dividual web hosts.2

The web graph corresponding to hosts contained slightly
more than 979 million edges. These edges were obtained by
collapsing all hyperlinks between any pair of pages on two
different hosts into a single directed edge.

Out of the 73.3 million hosts, 25.6 million (35%) had no in-
links and 48.6 million (66.4%) had no outlinks. Reasonable
explanations for the large number of hosts without outlinks
are (1) the presence of URLs that never got visited by the
Yahoo! spider due to the crawling policy and (2) the pres-
ence of URLs that could not be crawled because they were
misspelled or the corresponding host was extinct. Some 18.9
million hosts (25.8%) were completely isolated, that is, had
neither inlinks nor outlinks.

4.2 Good Core
The construction of a good core Ṽ+ represented a first step
in producing spam mass estimates for the hosts. As we
were aiming for a large good core, we felt that the manual
selection of its members is unfeasible. Therefore, we devised
a way of assembling a substantially large good core with
minimal human intervention:

1. We included in Ṽ+ all hosts that appear in a small
web directory which we consider being virtually void of
spam. (We prefer not to disclose which directory this
is in order to protect it from infiltration attempts of
spammers who might read this paper.) After cleaning
the URLs (removing incorrect and broken ones), this
group consisted of 16,776 hosts.

2Web host names represent the part of the URL be-
tween the http:// prefix and the first / character. Host
names map to IP addresses through DNS. We did not per-
form alias detection, so for instance www-cs.stanford.edu
and cs.stanford.edu counted as two separate hosts, even
though the URLs map to the exact same content.

2. We included in Ṽ+ all US governmental (.gov) hosts
(55,320 hosts after URL cleaning). Though it would
have been nice to include other countries’ governmen-
tal hosts, as well as various international organizations,
the corresponding lists were not immediately avail-
able to us, and we could not devise a straightforward
scheme for their automatic generation.

3. Using web databases (e.g., univ.cc) of educational in-
stitutions worldwide, we distilled a list of 3,976 schools
from more than 150 countries. Based on the list, we
identified 434,045 individual hosts that belong to these
institutions, and included all these hosts in our good
core Ṽ+.

The resulting good core consisted of 504,150 unique hosts.

4.3 Experimental Procedure
First, we computed the regular PageRank vector p for the
host graph introduced in Section 4.1. We used an imple-
mentation of Algorithm 1 (Section 2.2).

Corroborating with earlier research reports, the produced
PageRank scores follow a power-law distribution. Accord-
ingly, most hosts have very small PageRank: slightly more
than 66.7 out of the 73.3 million (91.1%) have a scaled Page-
Rank less than 2, that is, less than the double of the mini-
mal PageRank score. At the other end of the spectrum, only
about 64,000 hosts have PageRank scores that are at least
100-times larger than the minimal. This means that the set
of hosts that we focus on, that is, the set of spam targets
with large PageRank, is by definition small compared to the
size of the web.

Second, we computed the core-based PageRank vector p′

using the same PageRank algorithm, but a different ran-
dom jump distribution. Initially we experimented with a
random jump of 1/n to each host in Ṽ+. However, the re-
sulting absolute mass estimates were virtually identical to
the PageRank scores for most hosts as ‖p′‖ � ‖p‖.

To circumvent this problems, we decided to adopt the alter-
native of scaling the random jump vector to w, as discussed
in Section 3.5. In order to construct w, we relied on the con-
servative estimate that at least 15% of the hosts are spam.3

Correspondingly, we set up w as a uniform distribution vec-
tor over the elements of Ṽ+, with ‖w‖ = 0.85.

Following the methodology introduced in Section 3.4, the
vectors p and p′ were used to produce the absolute and
relative mass estimates of hosts (M̃ and m̃, respectively).
We analyzed these estimates and tested the proposed spam
detection algorithm. Our findings are presented next.

4.4 Relative Mass
The main results of our experiments concern the perfor-
mance of Algorithm 2 presented in Section 3.6.

With relative mass values already available, only the filter-
ing and labeling steps of the algorithm were to be performed.
First, we proceeded with the PageRank filtering, using the

3In [10] we found that more than 18% of web sites are spam.



arbitrarily selected scaled PageRank threshold ρ = 10. This
step resulted in a set T of 883,328 hosts with scaled Page-
Rank scores greater than or equal to 10. The set T is what
we focus on in the rest of this section.

4.4.1 Evaluation Sample
In order to evaluate the effectiveness of Algorithm 2 we con-
structed and evaluated a sample T ′ of T . T ′ consisted of
892 hosts, or approximately 0.1% of T , selected uniformly
at random.

We performed a careful manual inspection of the sample
hosts, searching for traces of spamming in their contents,
links, and the contents of their in- and out-neighbors. As a
result of the inspection, we were able to categorize the 892
hosts as follows:

• 564 hosts (63.2% of the sample) were reputable, good
ones. The authors of the pages on these hosts refrained
from using spamming techniques.

• 229 hosts (25.7%) were spam, that is, had some content
or links added with the clear intention of manipulating
search engine ranking algorithms. The unexpectedly
large number of spam sample hosts indicates that the
prevalence of spam is considerable among hosts with
high PageRank scores. Given that earlier research re-
sults (e.g., [6], [10]) reported between 9% and 18% of
spam in actual web data, it is possible that we face a
growing trend in spamming.

• In case of 54 hosts (6.1%) we could not ascertain whether
they were spam or not, and accordingly labeled them
as unknown. This group consisted mainly of East
Asian hosts, which represented a cultural and lingustic
challenge to us. We excluded these hosts from subse-
quent steps of our experiments.

• 45 hosts (5%) were non-existent, that is, we could not
access their web pages. The lack of content made it im-
possible to accurately determine whether these hosts
were spam or not, so we excluded them from the ex-
perimental sample as well.

The first question we addressed is how good and spam hosts
are distributed over the range of relative mass values. Ac-
cordingly, we sorted the sample hosts by their estimated
relative mass. Then, we split the list into 20 groups, seeking
a compromise between approximately equal group sizes and
relevant thresholds. As shown in Table 2, the relative mass
estimates of sample hosts varied between -67.90 and 1.00,
and groups sizes spanned the interval 40 to 48.

Figure 3 shows the composition of each of the sample groups,
after discarding non-existent and unknown hosts. The size of
each group is shown on the vertical axis and is also indicated
on the top of each bar. Vertically stacked bars represent the
prevalence of good (white) and spam (black) sample hosts.

We decided to show separately (in gray) a specific group of
good hosts that have high relative mass. The relative mass
estimates of all these hosts were high because three very
specific, isolated anomalies in our data, particularly in the
good core Ṽ+:
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Figure 3: Sample composition.

• Five good hosts in groups 18, 19, and 20 belonged to
the Chinese e-commerce site Alibaba, which encom-
passes a very large number of hosts, all with URLs
ending in .alibaba.com. We believe that the reason
why Alibaba hosts received high relative mass is that
our good core Ṽ+ did not provide appropriate coverage
of this part of the Chinese web.

• Similarly, the remaining good hosts in the last 2 groups
were Brazilian blogs with URLs ending in .blogger

.com.br. Again, this is an exceptional case of a large
web community that appears to be relatively isolated
from our Ṽ+.

• Finally, groups 15 through 18 contained a dispropor-
tionately large number of good hosts from the Polish
web (URLs ending in .pl). It turns out that this is due

to the incomprehensiveness of our good core: Ṽ+ only
contained 12 Polish educational hosts. In comparison,
Ṽ+ contained 4020 Czech (.cz) educational hosts, even
though the Czech Republic (similar to Poland socially,
politically, and in geographical location) has only one
quarter of Poland’s population.

4.4.2 Elimination of Anomalies
It is important to emphasize that all hosts in the gray group
had high estimated relative mass due only to the three issues
mentioned above. Accordingly, one could make adjustments
to the good core in an attempt to eliminate certain anoma-
lies and increase the prevalence of spam in groups 15–20.
Some anomalies are easier to rectify, while others might re-
quire more effort.

For example, we were able to easily correct the problem with
the Alibaba hosts as follows. First, we identified 12 key hosts
in the alibaba.com domain, such as china.alibaba.com

and www.alibaba.com, and added them to the good core.
Then, using the new core of 504,162 hosts, we recomputed
the core-biased PageRank scores and relative mass estimates
of hosts. The relative mass estimates of all but the Alibaba
sample hosts remained virtually the same as before (the av-
erage absolute change in relative mass was of only 0.0298 for
hosts with a positive relative mass). In case of the Alibaba
hosts the change was more dramatic: the relative mass esti-
mates of the two hosts originally in group 20 decreased from
0.9989 and 0.9923 to 0.5298 and 0.3488, respectively. Sim-
ilarly, the other three hosts from groups 19 and 18 ended



Group 1 2 3 4 5 6 7 8 9 10

Smallest m̃ -67.90 -4.21 -2.08 -1.50 -0.98 -0.68 -0.43 -0.27 -0.15 0.00
Largest m̃ -4.47 -2.11 -1.53 -1.00 -0.69 -0.44 -0.28 -0.16 -0.01 0.09
Size 44 45 43 42 43 46 45 45 46 40

Group 11 12 13 14 15 16 17 18 19 20

Smallest m̃ 0.10 0.23 0.34 0.45 0.56 0.66 0.76 0.84 0.91 0.98
Largest m̃ 0.22 0.33 0.43 0.55 0.65 0.75 0.83 0.90 0.97 1.00
Size 45 48 45 42 47 46 45 47 46 42

Table 2: Relative mass thresholds for sample groups.

up with relative mass estimates below 0.3. Hence, a simple
expansion of the core set led to the elimination of one of the
three types of anomalies.

Dealing with the other two types of anomalies was more
challenging. Apparently, there are relatively few Polish ed-
ucational hosts, so we had difficulty expanding our list of
Polish core hosts significantly. However, an organization
with more resources and better knowledge of Poland may
very well be able to compile an adequately long list of Pol-
ish hosts for the good core.

The situation with Brazilian blogs was also challenging: The
blogger.com.br domain lacks a group of easily identifiable
reputable hosts that are at the center of the community.
Therefore, in order to assure a proper representation of the
domain in the core, one would need to analyze a fair fraction
of the individual blogs and assemble a list of good ones. We
believe that it would be possible for a search engine company
to perform this analysis, either automatically (e.g., using
statistical natural language processing) and/or by relying on
white-lists provided by vigilante groups, such as Technorati.

In general, one can fully expect web search companies to
gradually eliminate the few types of anomalies that may
arise. They could follow a procedure similar to ours:

• First, identify good nodes with large relative mass by
either sampling the results (as we did) or based on
editorial or user feedback on search results;

• Next, determine the anomalies in the core that cause
the large relative mass estimates of specific groups of
identified good nodes;

• Finally, devise and execute correction measures for
some of the anomalies, according to their relative pri-
orities.

Figure 3 shows that even without fixing the anomalies, hosts
in groups 18–20 are very likely to be spam. If the few anoma-
lies are eliminated, high spam mass can be an almost perfect
spam indicator. The key remaining issue is the selection of
the threshold τ that is used in identifying link spam candi-
dates.

4.4.3 Performance of the Detection Algorithm
We used the sample set T ′ to determine the effectiveness of
our algorithm, as given by the estimated precisions prec(τ),

for various threshold values τ , where

prec(τ) =
number of spam sample hosts x with m̃x ≥ τ

total number of sample hosts y with m̃y ≥ τ
.

Clearly, the closer the precision is to 1 the better. We com-
puted the precision both for the case when we accounted
for the anomalous sample hosts as false positives and when
we disregarded them. Figure 4 shows the two corresponding
curves for relative mass thresholds between 0.98 and 0.

The horizontal axis contains the (non-uniformly distributed)
threshold values that we derived from the sample group
boundaries. To give a sense of the number of hosts the
precision estimates apply to, the total number of hosts in T
above each threshold is also indicated at the top of the figure.
Note that because we used uniform random sampling, there
is a close connection between the size of a sample group and
the total number of hosts within the corresponding relative
mass range: each range corresponds to roughly 45,000 hosts
in T . For instance, there are 46,635 hosts in T within the
relative mass range 0.98 to 1, which corresponds to sample
group 20.

The vertical axis stands for the (interpolated) precision.
Note that precision never drops below 48%, corresponding
to the estimated prevalence of spam among hosts with pos-
itive relative mass.

If we disregard the anomalous hosts, the precision of the
algorithm is virtually 100% for a threshold τ = 0.98. Ac-
cordingly, we expect that almost all hosts with the highest
relative mass estimates are spam. The precision at τ = 0.91
is still 94% with around 100,000 qualifying hosts. Hence, we
argue that our spam detection method can identify with high
confidence tens of thousands of hosts that have high Page-
Rank as a result of significant boosting by link spamming.
This is a remarkably reassuring result, indicating that mass
estimates could become a valuable practical tool in combat-
ing link spamming.

Beyond our basic results, we can also make a number of
interesting observations about the sample composition:

1. Isolated cliques. Around 10% of the sample hosts
with positive mass were good ones belonging to cliques
only weakly connected to our good core Ṽ+. These
good hosts typically were either members of some on-
line gaming community (e.g., Warcraft fans) or be-
longed to a web design/hosting company. In the latter
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Figure 4: Precision of the mass-based spam detec-
tion algorithm for various thresholds.

event, usually it was the case that clients linked to the
web design/hosting company’s site, which linked back
to them, but very few or no external links pointed to
either.

2. Expired domains. Some spam hosts had large nega-
tive absolute/relative mass values because the adopted
technique of buying expired domains, already men-
tioned in Section 2.3. To reiterate, it is often the case
that when a web domain d expires, old links from ex-
ternal hosts pointing to hosts in d linger on for some
time. Spammers can then buy such expired domains,
populate them with spam, and take advantage of the
false importance conveyed by the pool of outdated
links. Note that because most of the PageRank of such
spam hosts is contributed by good hosts, our algorithm
is not expected to detect them.

3. Members of the good core. The hosts from our
good core received very large negative mass values
because of the inherent bias introduced by the scal-
ing of the random jump vector. Correspondingly, the
first and second sample groups included 29 educational
hosts and 5 governmental hosts from Ṽ+.

4.5 Impact of Core Size and Coverage on Per-
formance

It is important to understand how performance is influenced
by the size and coverage of the good core. In order to inves-
tigate this issue, we generated four additional relative mass
estimates for each host, in addition to the ones based on
the good core Ṽ+. Three of the new estimates were derived
using smaller cores: We created uniform random samples of
Ṽ+ of 10% (containing 50415 hosts), 1% (5042 hosts), and
0.1% (504 hosts). These three cores are expected to have
breadths of coverage similar to the original one. To under-
stand what happens when a core covers only some parts of
the entire web, for the fourth new set of estimates we arbi-
trarily chose to use a core containing only the 9747 Italian
(.it) educational hosts.
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Figure 5: Precision of the mass-based spam detec-
tion algorithm for various cores.

In order to compare the new relative mass estimates to the
original ones, we used the same evaluation sample T ′ as in
Section 4.4 and Algorithm 2. The produced precision curves,
shown in Figure 5, are generated in a way similar to the ones
in Figure 4. The horizontal axis represents different possible
relative mass thresholds between 1 and 0. The vertical axis
shows the precision of the algorithm, for each threshold,
as given by the fraction of spam among sample hosts with
relative mass above the threshold.

First, notice that the core made up of Italian hosts only
performs constantly worse than the original or any of the
uniform random subsets. In particular, the precision ob-
tained for the Italian core is less than that for the 0.1%
core, which contains 19 times fewer hosts. This negative re-
sult illustrates well that the core’s breadth of coverage is of
paramount importance, it could matter more than the sheer
size of the core.

Second, the curves corresponding to the 10%, 1%, and 0.1%
cores show a gradual decline in performance. It is notewor-
thy that the difference between the original core’s perfor-
mance and that of the 10% core is not a major one, despite
the change in the order of magnitude of the core size. How-
ever, the gap between Ṽ+ and the 0.1% core becomes more
accentuated. Note that some smaller cores perform better
at the threshold τ = 0.98 than the original one. This phe-
nomenon can be explained by the fact that the relative mass
estimates for some sample spam hosts increase as the core
size decreases, while the estimates for the anomalous hosts
remain the same. Thus, it is not the case that the relative
mass estimates for spam hosts become more accurate; on
the contrary, they become just as bad as of the anomalous
good hosts.

Our experimental results on the impact of the size and cov-
erage of the core convey a positive message: search engines
interested in deploying the proposed link spam detection
technique could start with relatively small cores and incre-
mentally expand them to achieve better and better perfor-
mance.



4.6 Absolute Mass
As mentioned earlier, our experiments with absolute mass
were less successful than those with relative mass. Never-
theless, it is instructive to discuss some of our findings.

Mass distribution. As spam mass is a novel feature of web
hosts, it is appropriate to check its value distribution. Fig-
ure 6 presents this distribution of estimated absolute mass
values on a log-log scale. The horizontal axes show the range
of mass values. We scaled absolute mass values by n/(1−c),
just as we did for PageRank scores. Hence, they fell into in
the interval from -268,099 to 132,332. We were forced to
split the whole range of mass estimates into two separate
plots, as a single log-scale could not properly span both
negative and positive values. The vertical axis shows the
percentage of hosts with estimated absolute mass equal to
a specific value on the horizontal axis.

We can draw two important conclusions from the figure.
On one hand, positive absolute mass estimates—along with
many other features of web hosts, such as indegree or Page-
Rank—follow a power-law distribution. (For our data, the
power-law exponent was -2.31.) On the other hand, the
plot for negative estimated mass exhibits a combination of
two superimposed curves. The right one is the “natural”
distribution, corresponding to the majority of hosts. The
left curve corresponds to the biased score distribution of
hosts from Ṽ+ plus of those hosts that receive a large fraction
of their PageRank from the good-core hosts.

Absolute mass in spam detection. A manual inspection
of the absolute mass values convinced us that alone they are
not appropriate for spam detection purposes. It was not a
surprise to find that the host with the lowest absolute mass
value was www.adobe.com, as its Adobe Acrobat Reader
download page is commonly pointed to by various hosts.
It is more intriguing, however, that www.macromedia.com

was the host with the 3rd largest spam mass! In general,
many hosts with high estimated mass were not spam, but
reputable and popular. Such hosts x had an extremely large
PageRank score px, so even a relatively small difference be-
tween px and p′x rendered an absolute mass that was large
with respect to the ones computed for other, less significant
hosts. Hence, in the list of hosts sorted by absolute mass,
good and spam hosts were intermixed without any specific
mass value that could be used as an appropriate separation
point.

5. RELATED WORK
In a broad sense, our work builds on the theoretical founda-
tions provided by analyses of PageRank (e.g., [4]). The ways
in which link spamming influences PageRank are explained
in [1] and [9].

A number of recent publications propose link spam detection
methods. For instance, Fetterly et al. [6] analyze the inde-
gree and outdegree distributions of web pages. Most web
pages have in- and outdegrees that follow a power-law dis-
tribution. Occasionally, however, search engines encounter
substantially more pages with the exact same in- or outde-
grees than what is predicted by the distribution formula.
The authors find that the vast majority of such outliers are
spam pages.

Similarly, Benczúr et al. [2] verify for each page x whether
the distribution of PageRank scores of pages pointing to x
conforms a power law. They claim that a major deviation
in PageRank distribution is an indicator of link spamming
that benefits x.

These methods are powerful at detecting large, automati-
cally generated link spam structures with “unnatural” link
patterns. However, they fail to recognize more sophisticated
forms of spam, when spammers mimic reputable web con-
tent.

Another group of work focuses on heavily interlinked groups
of pages. Collusion is an efficient way to improve PageRank
score, and it is indeed frequently used by spammers. Gibson
et al. [7], Zhang et al. [16] and Wu and Davison [15] present
efficient algorithms for collusion detection. However, certain
reputable pages are colluding as well, so it is expected that
the number of false positives returned by the proposed algo-
rithms is large. Therefore, collusion detection is best used
for penalizing all “suspicious” pages during ranking, as op-
posed to reliably pinpointing spam.

A common characteristic of the previously mentioned body
of work is that authors focus exclusively on the link patterns
between pages, that is, on how pages are interconnected. In
contrast, this paper looks for an answer to the question “with
whom are pages interconnected?” We investigate the Page-
Rank of web nodes both when computed in the usual way
and when determined exclusively by the links from a large
pool of known good nodes. Nodes with a large discrepancy
between the two scores turn out to be successfully boosted
by (possibly sophisticated) link spamming.

In that we combat spam using a priori qualitative informa-
tion about some nodes, the presented approach superficially
resembles TrustRank introduced in [10]. However, there are
differences between the two, which make them complemen-
tary rather than overlapping. Most importantly, TrustRank
helps cleansing top ranking results by identifying reputable
nodes. While spam is demoted, it is not detected—this is
a gap that we strive to fill in this paper. Also, the scope
of TrustRank is broader, demoting all forms of web spam,
whereas spam mass estimates are effective in detecting link
spamming only.

6. CONCLUSIONS
In this paper we introduced a new spam detection method
that can identify web nodes with PageRank scores signif-
icantly boosted through link spamming. Our approach is
built on the idea of estimating the spam mass of nodes,
which is a measure of the relative PageRank contribution
of connected spam pages. Spam mass estimates are easy
to compute using two sets of PageRank scores—a regular
one and another one with the random jump biased to some
known good nodes. Hence, we argue that the spam detection
arsenal of search engines could be easily augmented with our
method.

We have shown the effectiveness of mass estimation-based
spam detection through a set of experiments conducted on
the Yahoo! web graph. With minimal effort we were able to
identify several tens of thousands of link spam hosts. While
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Figure 6: Distribution of estimated absolute mass values in the host-level web graph.

the number of detected spam hosts might seem relatively
small with respect to the size of the entire web, it is im-
portant to emphasize that these are the most advanced in-
stances of spam, capable of accumulating large PageRank
scores and thus making to the top of web search result lists.

We believe that another strength of our method is that it
is robust even in the event that spammers learn about it.
While knowledgeable spammers could attempt to collect a
large number of links from good nodes, effective tampering
with the proposed spam detection method would require
non-obvious manipulations of the good graph. Such manip-
ulations are virtually impossible without knowing exactly
the actual set of good nodes used as input by a given imple-
mentation of the spam detection algorithm.

In comparison to other link spam detection methods, our
proposed approach excels in handling irregular link struc-
tures. It also differs from our previous work on TrustRank
in that we provide an algorithm for spam detection as op-
posed to spam demotion.

It would be interesting to see how our spam detection method
can be further improved by using additional pieces of infor-
mation. For instance, we conjecture that many false posi-
tives could be eliminated by complementary (textual) con-
tent analysis. This issues remains to be addressed in future
work. Also, we argue that the increasing number of (link)
spam detection algorithms calls for a comparative study.
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