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Abstract

The need for e�cient content-based image retrieval has increased tremendously in

many application areas such as biomedicine, military, commerce, education, and

Web image classi�cation and searching. In the biomedical domain, content-based

image retrieval can be used in patient digital libraries, clinical diagnosis, searching of

2-D electrophoresis gels, and pathology slides. In this thesis, we present a wavelet-

based approach for feature extraction, combined with integrated region matching. An

image in the database, or a portion of an image, is represented by a set of regions,

roughly corresponding to objects, which are characterized by color, texture, shape,

and location. A measure for the overall similarity between images is developed as a

region-matching scheme that integrates properties of all the regions in the images.

The advantage of using such a \soft matching" is that it makes the metric robust

to poor segmentation, an important property that previous work has not solved.

An experimental image retrieval system, SIMPLIcity (Semantics-sensitive Integrated

Matching for Picture LIbraries), has been built to validate these methods on various

image databases, including a database of about 200,000 general-purpose images and

a database of more than 70,000 pathology image fragments. We have shown that

our methods perform much better and much faster than existing methods. The sys-

tem is exceptionally robust to image alterations such as intensity variation, sharpness

variation, intentional distortions, cropping, shifting, and rotation. These features are

important to biomedical image databases because visual features in the query image

are not exactly the same as the visual features in the images in the database. The

work has also been applied to the classi�cation of on-line images and web sites.
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Chapter 1

Introduction

Make everything as simple as possible, but not simpler.

| Albert Einstein (1879-1955)

The need for e�cient content-based image retrieval has increased tremendously in

many application areas such as biomedicine, crime prevention, military, commerce,

culture, education, and entertainment. Content-based image retrieval is also crucial

to Web image classi�cation and searching.

With the steady growth of computer power, rapidly declining cost of storage, and

ever-increasing access to the Internet, digital acquisition of information has become

increasingly popular in recent years. Digital information is preferable to analog for-

mats because of convenient sharing and distribution properties. This trend has moti-

vated research in image databases, which were nearly ignored by traditional computer

systems because of the large amount of data required to represent images and the dif-

�culty of automatically analyzing images. Currently, storage is less of an issue since

huge storage capacities are available at low cost. However, e�ective indexing1 and

searching of large-scale image databases remain as challenges for computer systems.

1Here, the term indexing means the combination of both feature extraction and feature space
indexing.

1
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The automatic derivation of semantically-meaningful information from the content

of an image is the focus of interest for most research on image databases. The image

\semantics", i.e., the meanings of an image, has several levels. From the lowest to

the highest, these levels can be roughly categorized as follows:

1. Semantic types (e.g., MRI, X-ray, landscape photograph, clip art)

2. Object composition (e.g., a lesion in the left brain, a bike and a car parked on

a beach, a sunset scene)

3. Abstract semantics (e.g., people �ghting, happy person, objectionable photo-

graph)

4. Detailed semantics (e.g., a detailed description of a given picture)

Image retrieval is de�ned as the retrieval of semantically-relevant images from a

database of images. In the following sections (Section 1.1 and Section 1.2), we discuss

text-based image retrieval and content-based image retrieval.

1.1 Text-based image retrieval

In current commercial image databases, the prevalent retrieval techniques involve

human-supplied text annotations to describe image semantics. These text annota-

tions are then used as the basis for searching, using mature text search algorithms

developed in the database [37] community. It is often easier to design and implement

an image search engine based on keywords (e.g., classi�cation codes) or full-text de-

scriptions (e.g., surrounding text) than on the image content. The query processing

of such search engines is typically very fast due to the available e�cient database

management technology. The text-based image retrieval approach is accepted for

high-value pictures such as museum pictures.

Recently, researchers have proposed community-wide social entry of descriptive

text to facilitate subsequent retrieval. This approach is feasible with the widely-

available Internet. However, it is limited to image sets that are of wide interest and

stable.
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There are many problems in using text-based approach alone. For example, di�er-

ent people may supply di�erent textual annotations for the same image. This makes

it extremely di�cult to answer user queries reliably. Furthermore, entering textual

annotations manually is excessively expensive for large-scale image databases (e.g.,

space-based observations).

1.2 Content-based image retrieval

Content-based image retrieval (CBIR) is the set of techniques for retrieving relevant

images from an image database on the basis of automatically-derived image features.

CBIR functions di�erently from text-based image retrieval. Features describing

image content, such as color histogram, color layout, texture, shape and object com-

position, are computed for both images in the database and query images. These

features are then used to select the images that are most similar to the query. High-

level semantic features, such as the types of objects in the images and the purpose of

the images are extremely di�cult to extract. Deviation of semantically-meaningful

features remains a great challenge.

CBIR is also important for video indexing and retrieval. In a typical video retrieval

system, long video sequences are broken up into separate clips and key frames are

extracted to represent the content of the clips. Searching of relevant clips is done

by combining CBIR, speech recognition, and searching for speci�c movements of the

objects in the shots [106, 15]. In this dissertation, we focus on content-based image

retrieval.

1.3 Applications of CBIR

Content-based image retrieval (CBIR) has applications in various domains in many

areas of our society.
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1.3.1 Biomedical applications

CBIR is critical in developing patient care digital libraries. McKeown, Chang, Cimino,

and Hripcsak [45] of Columbia University plan2 to develop a personalized search and

summarization system over multimedia information within a healthcare setting. Both

patients and healthcare providers are targeted users of the system. E�cient CBIR

is the most important core technology within such systems. With the help of such

a mediator [132, 133], healthcare consumers and providers can quickly access a wide

range of online resources: patients and their families can �nd information about their

personal situation, and clinicians can �nd clinically relevant information for individual

patients. A similar research e�ort is the Stanford SHINE project [53].

Database of
Medical Images

with computer-labeled ROIs
related biomedical images Electronic Medical

Records

query biomedical images
with user-selected

Region-of-interest (ROI)

CBIR

Medical Record
System

related medical records

(text queries)

Figure 1.1: Future integrated medical image/record retrieval system.

2Recently funded by a joint National Science Foundation and National Institute of Health grant.
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CBIR can be applied to clinical diagnosis and decision making. Currently, more

and more hospitals and radiology departments are equipped with Picture Archive

and Communications Systems (PACS) [134]. Besides the traditional X-ray and mam-

mography, newer image modalities such as Magnetic Resonance Imaging (MRI) and

Computed Tomography (CT) can produce up to 512 slices per patient scan. Each

year, a typical hospital can produce several terabytes of digital and digitized medical

images. E�cient content-based image indexing and retrieval will allow physicians to

identify similar past cases. By studying the diagnoses and treatments of past cases,

physicians may be able to better understand new cases and make better treatment

decisions. Furthermore, learning-based computer classi�cation programs may be de-

veloped, based on the features of past cases. Figure 1.1 shows the architecture of a

future integrated medical image/record retrieval system.

Proton Density T2-weighted FLAIR T1-GdDTPA

Figure 1.2: Multiple sclerosis plaques under di�erent MR imaging methods. Two
axial slices are shown. The images were enhanced using non-linear histogrammapping
functions.

CBIR can also be applied to large-scale clinical trials. As brain MRI image

databases used in clinical research and clinical trials (e.g., for tackling multiple sclero-

sis, Figure 1.2) become larger and larger in size, it is increasingly important to design

an e�cient and consistent algorithms that are able to detect and track the growth of

lesions automatically.
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CBIR can be utilized to classify and screen objectionable multimedia contents.

Such systems are needed in hospitals, schools, libraries and businesses. As more

and more hospitals are equipped with Internet-capable terminals, there is a possible

concern that health care aids, technicians, and hospitalized children patients gain

access to objectionable contents on the World-Wide-Web (Web) when they are not

supposed to. For the healthy environment and the productivity of the hospitals, an

e�cient �ltering system is desired.

Within bioinformatics [2], CBIR can be used for managing large-scale protein im-

age databases obtained from 2-D electrophoresis gels. Presently, the screening process

on very large gel databases is done manually or semi-automatically at pharmaceu-

tical companies. With CBIR techniques, users may be able to �nd similar protein

signatures based on an automatically-generated index of the visual characteristics.

CBIR is important in medical image database security. Before digital medical

images in computer-based patient record systems can be distributed online, it is

necessary for con�dentiality reasons to eliminate patient identi�cation information

that appears in the images [124, 127]. The security managers of X-ray databases

are interested in queries such as \�nd images with imprinted patient identi�cation

information" and \�nd images with the faces of the patients". Proper content-based

indexing is necessary to process such queries.

And lastly, we can exploit CBIR in biomedical education. Medical education is

an area that has been revolutionized by the emergence of the Web and its related

technologies. The Web is a rich medium that can increase access to educational

materials and can allow new modes of interaction with these materials. We may

utilize CBIR to organize images of slides prepared for use in medical school pathology

courses [129].

1.3.2 Web-related applications

The World-Wide Web (WWW), established in the early 1990s, allows people all over

the world to access multimedia data from any place on earth. It has served as a

catalyst to the massive creation of on-line images.
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According to a report published by Inktomi Corporation and NEC Research in

January 2000 [55], there are about 5 million unique Web sites (� 3%) on the Inter-

net. Over one billion web pages (� 35%) can be down-loaded from these Web sites.

Approximately one billion images can be found on-line. Searching for information on

the Web is a serious problem [65, 66]. Moreover, the current growth rate of the Web

is exponential, at an amazing 50% annual rate.

Surrounding text has been shown to be useful in indexing images in the Web [106].

However, surrounding text alone is often not su�cient because text that appears in

the same page may not describe the images in that page.

There are several general-purpose image search engines. In the commercial do-

main, IBM QBIC [30, 32, 88] is one of the earliest developed systems. Recently,

additional systems have been developed at IBM T.J. Watson [107], VIRAGE [46]

(Alta Vista), NEC AMORA [85], Bell Laboratory [86], Interpix (Yahoo), Excalibur,

and Scour.net. In the academic domain, MIT Photobook [89, 91] is one of the earliest.

Berkeley Blobworld [11], Columbia VisualSEEK and WebSEEK [106], CMU Informe-

dia [110], UIUC MARS [83], UCSB NeTra [77], UCSD [59], Stanford (EMD [96],

WBIIS [118]) are some of the recent systems. None of them has the capability to

handle the vast amount of image data on the Web and allow users to search for

semantically-related images.

1.3.3 Other applications

Besides its potential exciting biomedical and Web-related applications, CBIR is crit-

ical in many other areas. The following is only a partial list.

� Crime prevention (�ngerprint, face recognition)

� Military (radar, aerial, satellite target recognition)

� Space observation (satellite observations of agriculture, deforestation, tra�c,

etc)

� Intellectual property (trademark, image copy detection [13, 14, 126])
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� Architectural and engineering design (CAD database)

� Commercial (fashion catalogue, journalism)

� Cultural (museums, art galleries)

� Educational and training (lecture slides, graphs)

� Entertainment (photo, video, movie)

� Image classi�cation (�ltering of adult-only objectionable images and Web sites)

� Image security �ltering (locate images with certain critical patterns [121])

1.4 Contributions

CBIR is a complex and challenging problem spanning diverse disciplines, including

computer vision, color perception, image processing, image classi�cation, statistical

clustering, psychology, human-computer interaction (HCI), and speci�c application

domain dependent criteria as found in radiology, pathology and biochemistry. Details

of the major challenges and related work are given in Chapter 2. While we are not

claiming to be able to solve all the problems related to CBIR, we have made some

advances towards the �nal goal, close to human-level automatic image understanding

and retrieval performance.

In this dissertation, we discuss issues related to the design and implementation of

a semantics-sensitive content-based image retrieval system for picture libraries and

biomedical image databases. An experimental system has been built to validate the

methods. We summarize the main contributions as follows:

1.4.1 Semantics-sensitive image retrieval

The capability of existing CBIR systems is essentially limited by the way they func-

tion, i.e., they rely on only primitive features of the image. None of them can search

for, say, a photo of a car near a tree, though some attempts have been made to specify



CHAPTER 1. INTRODUCTION 9

semantic queries as a combination of primitive queries. A zebra picture, for example,

can be described as having areas of green (as grass) as the background of the image,

and some zebra-like texture in the center. Specifying complex queries like this can

be very time-consuming (Figure 2.2). Experiments with the Blobworld system have

shown that it does not provide signi�cantly better searching results. Moreover, the

same low-level image features and image similarity measures are typically used for

images of all semantic types. However, di�erent image features are sensitive to dif-

ferent semantic types. For example, a color layout indexing method may be good for

outdoor pictures while a region-based indexing approach is much better for indoor

pictures. Similarly, global texture matching is suitable only for textured pictures.

We propose a semantics-sensitive approach to the problem of searching general-

purpose image databases. Semantic classi�cation methods are used to categorize

images so that semantically-adaptive searching methods applicable to each category

can be applied. At the same time, the system can narrow down the searching range to

a subset of the original database to facilitate fast retrieval. For example, automatic

classi�cation methods can be used to categorize a general-purpose picture library

into semantic classes including \graph", \photograph", \textured", \non-textured",

\benign", \objectionable", \indoor", \outdoor", \city", \landscape", \with people",

and \without people". A biomedical image database may be categorized into \X-ray",

\MRI", \pathology", \graphs", \micro-arrays", etc. We then apply a suitable feature

extraction method and a corresponding matching metric to each of the semantic

classes.

As part of the dissertation, we built an experimental SIMPLIcity (Semantics-

sensitive Integrated Matching for Picture LIbraries) system, targeted for applications

such as Web and biomedical image retrieval. We compare the SIMPLIcity system to

a system without high-level semantic classi�cation, two color histogram systems, and

the WBIIS system (Wavelet Based Image Indexing and Searching) [122, 118].
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1.4.2 Image classi�cation

For the purpose of searching picture libraries such as those on the Web or in a patient

digital library, we are initially focusing on techniques to classify images into the

classes \textured" vs. \non-textured", \graph" vs. \photograph", and \objectionable"

vs. \benign". Several other classi�cation methods have been previously developed

elsewhere, including \city" vs. \landscape" [115], and \with people" vs. \without

people" [16, 9]. As a part of this dissertation, we report on several classi�cation

methods we have developed and their performance.

(a) (b) (c) (d)

Figure 1.3: Sample textured images. (a) surface texture (b) fabric texture (c) arti�cial
texture (d) pattern of similarly-shaped objects

A textured image is de�ned as an image of a surface, a pattern of similarly-shaped

objects, or an essential element of an object. For example, the structure formed by

the threads of a fabric is a textured image. Figure 1.3 shows some sample textured

images. As textured images do not contain isolated objects or object clusters, the

perception of such images focuses on color and texture, but not shape, which is critical

for understanding non-textured images. Thus an e�cient retrieval system should use

di�erent features to depict these two types of images. To our knowledge, the problem

of distinguishing textured images and non-textured images has not been explored in

the image retrieval literature.

An image is a photograph if it is a continuous-tone image. A graph image is

an image containing mainly text, graph and overlays. We have developed a graph-

photograph classi�cation method. This method is important for retrieving general-

purpose picture libraries. For example, we may apply Optical Character Recognition

(OCR) techniques on graph images on the Web because they often contain textual

information. Image features are suitable to photographs.
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Details of our methods for objectionable-image classi�cation are given as an ap-

pendix in this dissertation. Di�erent people may have di�erent de�nitions of ob-

jectionable image. We call a photograph of nude people an objectionable image.

This automatic image classi�er is not only part of our CBIR architecture for general-

purpose images, but also a direct application of CBIR techniques we have developed.

The concepts and methods of image classi�cation we have developed can be ex-

tended by comparison to class databases to obtain additional class dichotomies. It

is possible to develop methods to categorize images into classes that are di�cult to

describe formally. For example, it is di�cult to describe the class of images containing

a dog, even though we can recognize such images base on our experiences. Similarly,

radiologists often �nd it di�cult to formally de�ne the set of images with certain

lesions, even though they are trained to recognize such images.

1.4.3 Integrated Region Matching (IRM) similarity measure

Besides using semantics classi�cation, another strategy of SIMPLIcity to better cap-

ture the image semantics is to de�ne a robust region-based similarity measure, the

Integrated Region Matching (IRM) metric. That is, IRM is a similarity measure

between images based on region representations. It incorporates the properties of

all the segmented regions so that information about an image can be fully used.

Region-based matching is a di�cult problem because of the problems of inaccurate

segmentation. Semantically-precise image segmentation is an extremely di�cult pro-

cess [69, 102, 78, 136] and is still an open problem in computer vision. For example,

an image segmentation algorithm may segment an image of a dog into two regions:

the dog and the background. The same algorithm may segment another image of a

dog into six regions: the body of the dog, the front leg(s) of the dog, the rear leg(s)

of the dog, the eye(s), the background grass, and the sky.

Traditionally, subsequent region-based matching is performed on individual re-

gions [11, 77]. The IRM metric we have developed has the following major advan-

tages:
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1. Compared with retrieval based on individual regions, the overall \soft simi-

larity" approach in IRM reduces the inuence of inaccurate segmentation, an

important property that previous work has not solved.

2. In many cases, knowing that one object usually appears with another object

helps to clarify the semantics of a particular region. For example, owers typi-

cally appear with green leaves, and boats usually appear with water.

3. By de�ning an overall image-to-image similarity measure, the SIMPLIcity sys-

tem provides users with a simple querying interface. To complete a query, a user

only needs to specify the query image. The image is then divided into segments

(or regions). The process is called segmentation. These regions and informa-

tion about the regions are used in the overall matching process. If desired, the

system can also be adjusted to allow users to query based on a speci�c region

or a few regions.

A 3-D feature space

Image 2

Image 1

Feature
points of

points of
Feature

A region-to-region
match

A 3-D feature space

Figure 1.4: Region-to-region matching results are incorporated in the Integrated Re-
gion Matching (IRM) metric. A 3-D feature space is shown to illustrate the concept.

Mathematically, de�ning a similarity measure is equivalent to de�ning a distance

between sets of points in a high-dimensional space, i.e., the feature space. Every point

in the space corresponds to the feature vector, or the descriptor, of a region. Although

distance between two points in feature space can be easily de�ned by various measures

such as the Euclidean distance, it is not obvious how to de�ne a distance between

two sets of feature points. The distance must correspond to a person's concept of

semantic \closeness" of two images.

We argue that a similarity measure based on region segmentation of images can be

tolerant of inaccurate image segmentation if it takes all the regions in an image into
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consideration. To de�ne the similarity measure, we �rst attempt to match regions in

two images. Being aware that segmentation process cannot be perfect, we \soften"

the matching by allowing one region of an image to be matched to several regions

of another image. Here, a region-to-region match is obtained when the regions are

signi�cantly similar to each other in terms of the features extracted.

The principle of matching is that the most similar region pair is matched �rst. We

call this matching scheme integrated region matching (IRM) to stress the incorporation

of regions in the retrieval process. After regions are matched, the similarity measure

is computed as a weighted sum of the similarity between region pairs, with weights

determined by the matching scheme. Figure 1.4 illustrates the concept of IRM in

a 3-D feature space. The features we extract on the segmented regions are of high

dimensions. The problem is more complex in a high-dimensional feature space.

1.4.4 Applications of the methods

We implemented the SIMPLIcity experimental system and applied it to several do-

mains including the screening of objectionable images and Web sites [119, 125], pic-

ture libraries [130, 71, 72, 73], and biomedical image databases [131, 129]. Promising

results have been reported in our papers and will be summarized in this dissertation.

1.5 Structure of dissertation

The remainder of the dissertation is organized as follows:

� Chapter 2. Related work

Both content-based image retrieval (CBIR) and semantic classi�cation of images

are active and interrelated research �elds within computer vision. CBIR is a

technique for retrieving relevant images from an image database on the basis

of automatically-derived image features. Semantic classi�cation of images is a

technique for classifying images based on their semantics. We review the related

work in content-based image retrieval and semantic classi�cation of images.

Examples of their biomedical applications are also given in this chapter.
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� Chapter 3. Wavelets

The accurate representation of a local region, i.e., the localization property in

the context of signal processing, is a prime consideration when processing signals

and images (a signal of two dimensions). Many mathematical transforms using

basis functions provide ways to gain insight of the fundamental properties of

the given signals or images. For example, the Fourier transform, based on the

sine functions and the cosine functions, is used to analyze signals in di�erent

frequency bands.

For the purpose of image retrieval, we seek a basis function that can e�ectively

represent the color variations in each local spatial region of the image. We

examine the various mathematical transforms and their properties to select a

transform (the wavelet transform) that has attractive properties for the image

retrieval problem.

� Chapter 4. Statistical clustering and classi�cation

Statistical clustering and classi�cation methods are tools that search for and

generalize concepts based on a large amount of high-dimensional numerical data.

In modern CBIR systems, statistically clustering and classi�cation methods are

often used to extract visual features, index the feature space, and classify images

into semantic categories. In our work, we apply statistical clustering to the

block-wise feature space to extract region features. For very large databases, we

use statistical clustering methods to index the high-dimensional feature space.

The semantic classi�cation process is a statistical classi�cation process.

We briey review the statistical clustering methods we have used, the k-means

algorithm and the Tree-Structured Vector Quantization (TSVQ) algorithm. We

also review the statistical classi�cation method in our semantic classi�cation

process, the Classi�cation and Regression Trees (CART) algorithm.

� Chapter 5. Wavelet-based image indexing and searching

In this chapter, we describe WBIIS (Wavelet-Based Image Indexing and Search-

ing), an image indexing and retrieval algorithm we developed in 1996 as a �rst
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step in image retrieval using wavelets. The indexing algorithm uses wavelet

coe�cients and their statistical properties to represent the content of an image.

Daubechies' advanced wavelet transforms are utilized. To speed up retrieval,

a two-step procedure is used that �rst does a crude selection based on the

statistics of the coe�cients, and then re�nes the search by performing a feature

vector match between the selected images and the query. For better accuracy

in searching, two-level multiresolution matching is used. Like traditional color

layout indexing, based only on color and texture, WBIIS has limitations and

weaknesses.

� Chapter 6. Semantics-sensitive integrated matching

In this chapter, we present the main ideas and algorithms of our recently de-

veloped SIMPLIcity (Semantics-sensitive Integrated Matching for Picture LI-

braries), an image database retrieval system which uses high-level semantic

classi�cation and integrated region matching (IRM) based upon image segmen-

tation. The SIMPLIcity system represents an image by a set of regions, roughly

corresponding to objects, which are characterized by color, texture, shape, and

location. Based on segmented regions, the system classi�es images into seman-

tically meaningful categories (e.g., graph, photograph, textured, non-textured,

objectionable, benign, indoor, outdoor). These high-level categories enhance

retrieval by narrowing down the searching range in a database and permitting

semantically-adaptive searching methods to be used. Details of the classi�cation

methods and the IRM metric are provided.

We then describe the Path�nder, a system we developed specially for retriev-

ing biomedical images of extremely high resolution, based on wavelet feature

extraction, progressive wavelet image indexing, and the IRM matching metric.

In Appendix A, we discuss image classi�cation by image database matching.

The idea of high-level image semantic classi�cation in our SIMPLIcity CBIR

system came from the Web image classi�cation project. We also developed

the idea of categorizing an image by comparing it to an exemplar category

database from the objectionable-image classi�cation application. The classi�er
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is useful not only for the problem of CBIR, but also in preventing children from

accessing objectionable documents. As hospitals are equipped with Internet-

capable terminals, proper screening of objectionable media on the Web becomes

necessary.

� Chapter 7. Evaluation

We introduce the experimental system we have developed, the SIMPLIcity sys-

tem, using the concepts we proposed in previous chapters. Due to the di�culty

of collecting a large number of radiology or pathology images, we provided

comprehensive evaluation on general-purpose images as well as evaluation on

relatively small medical image databases. We present the data sets we used for

the experiments, the functions of the query interfaces, the accuracy compar-

isons, the robustness to image alterations or feature variations, and the speed

of indexing and searching.

� Chapter 8. Conclusions and future work

We conclude the dissertation in this chapter. We summarize the main themes

of our research on semantics-sensitive integrated matching for picture libraries

and biomedical image databases. Then we examine limitations of our solution,

and discuss how our results might be a�ected when our work is applied to a

real-world image database. Areas of future work are indicated.

1.6 Summary

In summary, we discuss the aspects of designing a content-based image retrieval

(CBIR) system in this dissertation. Our contributions include the development of

a novel architecture, several speci�c image classi�cation methods, and an integrated

matching measure for region-based feature indexing. The methods are implemented

in an experimental system, the SIMPLIcity system, and has been applied to both

large-scale picture libraries and biomedical image databases.



Chapter 2

Related Work

It's kind of fun to do the impossible.

| Walter E. Disney (1901-1966)

2.1 Introduction

Content-based image retrieval (CBIR) and image semantic classi�cation are both

active research �elds. They are interrelated topics within computer vision. CBIR

is a technique for retrieving relevant images from an image database on the basis of

automatically-derived image features. Image semantic classi�cation is a technique for

classifying images based on their semantics. Semantically-adaptive searching methods

applicable to each category can then be applied. In this chapter, we review the

related work in content-based image retrieval and image semantic classi�cation, and

also provide examples of their biomedical applications.

We review related work in content-based image database retrieval in Section 2.2,

and related work in image semantic classi�cation in Section 2.3. In each of the

sections, we give examples of the biomedical applications.

17
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2.2 Content-based image retrieval

CBIR for general-purpose image databases is a highly challenging problem because of

the large size of the database, the di�culty of understanding images, both by people

and computers, the di�culty of formulating a query, and the problem of evaluating

the results. These challenges and related previous work are discussed below.

2.2.1 Major challenges

Data size

To build an image search engine for domains such as biomedical imaging and the

World-Wide Web, it is necessary to store and process millions of images e�ciently.

Without compression, a database of one million normal resolution images takes about

1000 giggabytes (GB) of space. Even with e�cient, lossy compression, 30 GB of space

is required. It is clearly not feasible to process all the image data for each query on-

line. O�-line feature-based indexing is necessary to reduce the computation for the

actual query processing.

Biomedical images are typically of high resolution. Pathology slides are scanned

at approximately 3600 � 2400 pixels. Each slide consists of 26 million bytes (MB) of

information. Some radiology images are even larger. A gray-scale 4-spectrum 100-

slice MRI scan consists of roughly 200 MB of data. Furthermore, a typical hospital

creates tens of thousands of scans per year.

Understandability and computer vision

It is said that a picture is worth a thousand words. Indeed, it often can require

a thousand words to describe the content of a picture. Moreover, the \meaning"

of a picture depends on the point-of-view and experience of the viewer. That is, the

description provided by one viewer may be very di�erent from the description provided

by another viewer of the same image. For example, a builder and an architect may

have a di�erent point-of-view on the same blueprint. In medicine, inter- and intra-

observer variabilities for identifying multiple sclerosis lesion regions in MRI are as
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high as 17-30% and 6%, respectively [56]. Computer vision remain as one of the

most challenging unsolved problems in computer science. It is extremely di�cult to

recognize objects in pictures and translate image content and structure into linguistic

terms.

Query formulation

A successful computerized information retrieval system must take the user into con-

sideration. After all, most information retrieval systems are developed to enhance

the ability of human in obtaining information. The interface between the human and

information has always been the focus of library science. The interface between the

human and technology is considered to be in the realm of psychology. Computer

scientists and informaticians work primarily in the interface between information and

technology or within the technology itself. We argue that a joint e�ort among library

science, psychology, and computer and information sciences is essential in building

practical information retrieval systems such as CBIR systems.

The indexing algorithm of a successful CBIR systemmust be tailored to real-world

applications. The requirements of image database users vary signi�cantly, based on

the domains of the users. For instance, a clinical trial database user is interested in

tracking the progression of lesions over time. A user of a satellite image database is

interested in images with regions having certain patterns. A visitor to a museumWeb

site may be interested in painting collections with styles similar to a given painting.

Consequently, it is necessary to understand the ways in which users of the system

search for images before attempting to design the indexing strategies and to build a

system to meet their needs.

At the current stage of development, computer-based image technology is not

mature enough to handle the disparate needs of people in a variety of �elds. Our work

focuses on improving computer-based CBIR technology with emphases on general-

purpose picture libraries and biomedical image databases.

Most existing systems index images by their primitive features, such as the color

histogram, and target on similarity search. That is, the system is designed to answer

queries (Figure 2.1) such as:
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Figure 2.1: Queries to be handled by CBIR systems using primitive feature indexing.
(a) histogram query (b) layout query (c) shape query (d) hand-drawn sketch query
(e) query by example

� Histogram query: �nd pictures with 50% red and 20% yellow (Figure 2.1(a))

� Layout query: �nd pictures with a blue object on the top part and a green

object on the bottom part (Figure 2.1(b))

� Shape query: �nd pictures with three yellow triangular stars arranged in a ring

(Figure 2.1(c))

� hand-drawn sketch query: �nd pictures that look like a given drawing (Fig-

ure 2.1(d))

� query by example: �nd pictures that look like a given picture (Figure 2.1(e))

However, most CBIR users are interested in queries involving high-level semantics.

Examples include:

� Object: contains a lesion

� Object relationship: contains a lesion near the cerebro-spinal uid (CSF)
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� Mood: a happy picture

� Time/Place: Yosemite evening

regions
1. Select up to two

2. Fill out this
form for each
region

Figure 2.2: Query interface of the Blobworld system developed at the University of
California, Berkeley.

Users are typically reluctant to use a computerized system unless the interaction

is simple and intuitive. In a recent study [60], Jansen et al. report that, over a sample

of 51,473 text queries submitted to a major search service (Excite.com), the average

length of query was less than three words and that more than 30% of the queries were

single-term queries. Clearly, complicated queries such as Boolean queries are not often

used in retrieval situations, even though provision for such queries is available to users

at major search sites and single terms in English are often overloaded.
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A simple user interface is also critical for image database retrieval systems. A

study conducted by the IBM QBIC group has shown that users are likely to use

the simplest searching interface (i.e., click on an image to �nd similar images), in

preference to a set of much more sophisticated user interfaces, such as drawing tools.

Figure 2.2 shows the user interface for the Blobworld system [11] developed by Carson

et al. of the University of California at Berkeley. The NeTra region-based image

retrieval system developed by Ma et al. of the University of California at Santa

Barbara uses an even more complicated user interface1. Despite the fact that it takes

minutes for a typical user to specify a query, the query results are often not better

than those with much simpler query interfaces.

Recently, several CBIR systems have been developed with relevance feedback and

query modi�cation techniques [49]. Such systems provide trade-o�s between the com-

plexity and the functionality of the user interface. However, it requires that the

systems be at the same high-level semantics to utilize the user feedback.

It is necessary to design an interface that is easy to use for the speci�c application

area. For example, in general, Web users are expected to be interested in searching

based on the overall structures or object semantics of the images, while users of

biomedical image databases are often interested in �ne details within the images.

Consequently, biomedical image database users will not �nd it useful to �nd images

based on a given color histogram or a given color layout sketch.

Evaluation

There are deterministic ways to evaluate a CBIR system in speci�c domains such as

image copyright violation and identifying online objectionable images. However, it is

di�cult to evaluate a general-purpose CBIR system due to the complexity of image

semantics and the lack of a \gold standard".

In the �eld of information retrieval, precision and recall are frequently used to

evaluate text-based retrieval systems.

1URL: http://maya.ece.ucsb.edu
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Figure 2.3: It is di�cult to de�ne relevance for image semantics. Left: images labeled
as \dog" by photographers. Right: images labeled as \Kyoto, Japan" by photogra-
phers.

Precision =
Retrieved Relevant Items

Retrieved Items
(2.1)

Recall =
Retrieved Relevant Items

Relevant Items
(2.2)

However, the \relevance" in the above de�nitions depends on the readers' point-

of-view. For example, Figure 2.3 shows a group of three images labeled as \dog"

and a group of three images labeled as \Kyoto, Japan", by photographers. If we

use the descriptions such as \dog" and \Kyoto, Japan" as de�nitions of relevance to

evaluate CBIR systems, it is unlikely that we can obtained a consistent performance

evaluation. A system may perform very well on one query (such as the dog query),

but very poorly on another (such as the Kyoto query).

Currently, most developers evaluate the retrieval e�ectiveness of their systems

through the following methods:

� Provide a few examples of retrieval results and compare with the results of

previously developed systems or methods
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� Systematic evaluation using a small database with only a few distinct categories

(e.g., sunset, oranges, tigers)

� Systematic evaluation over several added distinct categories within a larger

database

These evaluation methods provide meaningful information as to whether one sys-

tem is better than another system. However, they are not ideal in measuring exactly

how good a system is in real world. A few examples are not su�cient in evaluating

complex systems. Systematic evaluation over a small categorized database is not suf-

�cient either, because distinct categories of images may easily form distinct clusters

in the feature space. It is much more di�cult to retrieve a certain number of rele-

vant images within a semantic category when the database contains a large number

of images because the discriminative function will have to be more precise. In real-

world applications, images in the same semantic category are often distributed near

uniformly and hence rarely well-clustered in known feature spaces.

2.2.2 Previous work

Many CBIR systems have been developed, such as the IBM QBIC System [30, 32]

developed at the IBMAlmaden Research Center, the VIRAGE System [46] developed

by the Virage Incorporation, the Photobook System developed by the MIT Media

Lab [91, 89], the WBIIS System [118] developed at Stanford University, and the

Blobworld System [11] developed at U.C. Berkeley.

The common ground for CBIR systems is to extract a signature for every image

based on its pixel values, and to de�ne a rule for comparing images. Figure 2.4

shows the architecture of a typical CBIR system. The components of a CBIR system

function as follows:

� The image manager module manages image �le access, image format conver-

sions, and the retrieval of any textual information from the image database.

� The feature indexing module is an o�-line process which assigns signatures to

images in the database. Figure 2.5 shows the process of indexing an image using
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Figure 2.4: The architecture of a typical CBIR system.
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Figure 2.5: The indexing process of a typical CBIR system.
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a set of feature extraction processes. The features can be further indexed in the

feature space before they are stored in a signature database.

� The retrieval module is an on-line server handling user queries based on image

content. As shown in Figure 2.7, the main functions of this module are:

1. Accept queries from di�erent user interfaces (interface manager)

2. Process the query (feature extraction module)

3. Perform image comparisons using features stored in the signature database

(feature comparison module)

4. Sort the query results (sorting module)

5. Retrieve the relevant images from the image database (image manager)

6. Present the querying results to the users (interface manager)

� The user interface modules are client programs for users to formulate content-

based image queries and to visualize the query results.

image

feature 1

feature 2
... ...

feature n

signature

Figure 2.6: The signature of an image is a set of features.

The signature serves as an image representation in the `view' of a CBIR system.

The components of the signature are called features. Figure 2.6 shows the relationship

among an image, its signature, and features.

One advantage of using a signature instead of the original pixel values is the

signi�cant compression of image representation. However, a more important reason

for using the signature is the improved correlation with image semantics. Actually, the

main task of designing a signature is to bridge the gap between image semantics and
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the pixel representation, that is, to create a better correlation with image semantics.

The human vision system (HVS), which may be regarded as a perfect image analyzer,

after looking at an image may describe the image as \some brown horses on grass."

With the same image, a simple example signature stored in a database might be \90%

of the image is green and 10% is brown." Similarly, the HVS may describe a radiology

image as \a round-shaped lesion near the cerebro-spinal uid (CSF) region", while

the image may have a signature \a cluster of bright pixels located near the center of

the image." The CSF is the center part of the brain containing the cerebro-spinal

uid.

Existing general-purpose CBIR systems roughly fall into three categories depend-

ing on the signature extraction approach used: histogram, color layout, and region-

based search. We will briey review these methods later in this section. There are

also systems that combine retrieval results from individual algorithms by a weighted

sum matching metric [46, 32], or other merging schemes [101].

0.5  107.3  23.6  1.7

Feature Vector
Visual Feature

Extraction 2

Image
Manager

Image Database

Result

Feature
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Sorting

Interface
Manager

Signature Database

150.4  23.5  8.3  ......  0.3

12.5  37.3  1.2  5.3  10.3  0.4
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Figure 2.7: The retrieval process of a typical CBIR system.

After extracting signatures, the next step is to determine a comparison rule, in-

cluding a querying scheme and the de�nition of a similarity measure between images.

Most image retrieval systems perform a query by having the user supply an image
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to be matched; the system then searches for images similar to the speci�ed one. We

refer to this as global search, since similarity is based on the overall properties of

images. In contrast to global search, there are also \partial search" querying systems

that retrieve based on a particular region in an image, such as the NeTra system [77]

and the Blobworld system [11].

Color spaces

Before an image can be indexed in a CBIR system, a proper transformation to a

suitable color space is typically required. A color space is de�ned as a model for

representing color in terms of intensity values. Typically, a color space de�nes a

one- to four-dimensional space. A color component, or a color channel, is one of the

dimensions. A one-dimensional space (i.e., one dimension per pixel) represents the

gray-scale space.

Color spaces are related to each other by very simple mathematical formulas.

The following is a list of commonly used color spaces in image processing and image

indexing [135]:

1. Gray spaces

Gray spaces typically have one single component, ranging from black to white.

Gray spaces are the most common color space in biomedical imaging, as most

medical scanners produce 2-D or 3-D (spatially) gray-scale images and 2-D

electrophoresis gels are typically of gray-scale.

2. RGB-based spaces

The RGB space is a three-dimensional color space with components representing

the red, green, and blue intensities that make up a given color. The RGB-based

spaces are commonly used for devices such as color scanners and color monitors.

They are also the primary color spaces in computer graphics due to the hardware

support. The family of the RGB-based spaces include the RGB space, the HSV

(hue, saturation, value) space, and the HLS (hue, lightness, saturation) space.
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Any color expressed in the RGB space is a mixture of three primary colors: red,

green, and blue. For example, the color cyan can be viewed as the combination

of the blue color and the green color.

The HSV space and the HLS space are transformations of RGB space that can

describe colors in terms more natural to a person. The HSV and the HLS spaces

are slightly di�erent in their mathematical de�nitions.

3. CMYK-based spaces

CMYK stands for Cyan, Magenta, Yellow, and blacK. CMYK-based color

spaces model the way dyes or inks are applied to paper in the printing or

drawing process. Ideally, the relation between RGB values and CMYK values

is as simple as:

8>>>>>>><
>>>>>>>:

C = max�R

M = max�G

Y = max�B

K = 1 when R = G = B = 0

K = 0 when R 6= 0; G 6= 0; or B 6= 0

(2.3)

Here max is the maximum possible value for each color component in the RGB

color space. For a standard 24-bit color image, max = 255.

4. CIE-based spaces

The RGB color spaces and the CMYK color spaces are all device-dependent be-

cause they were developed mainly to facilitate computer devices including mon-

itors and printers. They are not very well correlated to the human perception.

There are classes of color spaces that can express color in a device-independent

way. They are based on the research work done in 1931 by the Commission

Internationale d'Eclairage (CIE). They are also called interchange color spaces

because they are used to convert color information from the native color space
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of one device to the native color space of another device. XYZ, CIE LUV, CIE

Lab are examples of the CIE-based color spaces [135].

The CIE-based color spaces simulates human color perception. Research in

human vision has revealed that three sensations are generated after the sensory

membrane in the eye (or the retina) receives three color stimuli (red, green and

blue). The three sensations are a red-green sensation, a yellow-blue sensation,

and a brightness sensation. The CIE-based color spaces are considered a global

color reference systems because of its perception correlation properties.

Histogram search

Histogram search [88, 32, 96] characterizes an image by its color distribution, or

histogram. For example, to index a color image of 1024 � 1024 = 1M pixels in the

standard 3-D RGB color space, we may generate 8�8�8(= 512) number of counting

bins, each representing a range of 32 values in each of the three color components. By

counting the pixels falling into these bins, a color histogram feature of 512 dimensions

is created to represent the color image. The components of this 512-dimensional

feature vector represent a distribution of colors in an image, without considering the

location of the colors.

Many distances have been used to de�ne the similarity of two color histogram rep-

resentations. Euclidean distance and its variations are the most commonly used [47,

81]. A spatial-augmented histogram matching has recently been proposed [17]. Rub-

ner et al. of Stanford University proposed an earth mover's distance (EMD) [96, 97]

using linear programming [51] for matching histograms.

The drawback of a global histogram representation is that information about

object location, shape, and texture is discarded. Figure 2.8 shows two sample query

results. The global color histogram indexing method correlates to the image semantics

well in the �rst example. However, images retrieved in the second example are not

all semantically related, even though they share similar color distribution. Color

histogram search is sensitive to intensity variation, color distortions, and cropping.



CHAPTER 2. RELATED WORK 31

(a) good result

(b) poor result

Figure 2.8: Two sample color histogram query results, one good, one poor. The image
in the upper-left corner of each block is the query image. DB size: 10,000 images.
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Color layout search

The \color layout" approach attempts to mitigate the problems with histogram

search. For traditional color layout indexing [88], images are partitioned into blocks

and the average color of each block is stored. Thus, the color layout is essentially

a low resolution representation of the original image. A later system, WBIIS [118]

(see Chapter 5 for details), uses signi�cant Daubechies' wavelet2 coe�cients instead

of averaging. By adjusting block sizes or the levels of wavelet transforms, the coarse-

ness of a color layout representation can be tuned. The �nest color layout using a

single pixel block is the original pixel representation. We can hence view a color

layout representation as an opposite extreme of a histogram. At proper resolutions,

the color layout representation naturally retains shape, location, and texture infor-

mation. However, as with pixel representation, although information such as shape

is preserved in the color layout representation, the retrieval system cannot \see" it

explicitly. Color layout search is sensitive to shifting, cropping, scaling, and rotation

because images are characterized by a set of local properties [118].

The approach taken by the recent WALRUS system [86] to reduce the shifting and

scaling sensitivity for color layout search is to exhaustively reproduce many subimages

based on an original image. The subimages are formed by sliding windows of various

sizes and a color layout signature is computed for every subimage. The similarity

between images is then determined by comparing the signatures of subimages. An

obvious drawback of the system is the sharply increased computational complexity

and increase of size of the search space due to exhaustive generation of subimages.

Furthermore, texture and shape information is discarded in the signatures because

every subimage is partitioned into four blocks and only average colors of the blocks are

used as features. This system is also limited to intensity-level image representations.

Region-based search

Region-based retrieval systems attempt to overcome the de�ciencies of color layout

search by representing images at the object-level. A region-based retrieval system

2Details about wavelets are given in Chapter 3
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applies image segmentation [69, 70, 120, 102, 78, 136] to decompose an image into

regions, which correspond to objects if the decomposition is ideal. The object-level

representation is intended to be close to the perception of the human visual sys-

tem (HVS). However, semantically-precise image segmentation is nearly as di�cult

as image understanding because the images are 2-D projections of 3-D objects and

computers are not trained in the 3-D world the way human beings are.

Since the retrieval system has identi�ed what objects are in the image, it is easier

for the system to recognize similar objects at di�erent locations and with di�erent

orientations and sizes. Region-based retrieval systems include the NeTra system [77],

the Blobworld system [11], and the query system with color region templates [107].

The NeTra and the Blobworld systems compare images based on individual re-

gions. Although querying based on a limited number of regions is allowed, the query

is performed by merging single-region query results. The motivation is to shift part

of the comparison task to the users. To query an image, a user is provided with the

segmented regions of the image, and is required to select the regions to be matched

and also attributes, e.g., color and texture, of the regions to be used for evaluating

similarity. Such querying systems provide more control for the users. However, the

key pitfall is that the user's semantic understanding of an image is at a higher level

than the region representation. When a user submits a query image of a horse on

grass, the intent is most likely to retrieve images with horses. But since the concept

of horses is not explicitly given in region representations, the user has to convert the

concept into shape, color, texture, location, or combinations of them. For objects

without distinctive attributes, such as special texture, it is not obvious for the user

how to select a query from the large variety of choices. Thus, such a querying scheme

may add burdens on users without any corresponding reward. On the other hand,

because of the great di�culty of achieving accurate segmentation, systems in [77, 11]

tend to partition one object into several regions with none of them being represen-

tative for the object, especially for images without distinctive objects and scenes.

Queries based on such regions often yield images that are indirectly related to the

query image.

Not much attention has been paid to developing similarity measures that combine
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information from all of the regions. One e�ort in this direction is the querying system

developed by Smith and Li [107]. Their system decomposes an image into regions with

characterizations pre-de�ned in a �nite pattern library. With every pattern labeled by

a symbol, images are then represented by region strings. Region strings are converted

to composite region template (CRT) descriptor matrices that provide the relative

ordering of symbols. Similarity between images is measured by the closeness between

the CRT descriptor matrices. This measure is sensitive to object shifting since a

CRT matrix is determined solely by the ordering of symbols. Robustness to scaling

and rotation is also not considered by the measure. Because the de�nition of the

CRT descriptor matrix relies on the pattern library, the system performance depends

critically on the library. The performance degrades if region types in an image are

not represented by patterns in the library. The system in [107] uses a CRT library

with patterns described only by color. In particular, the patterns are obtained by

quantizing color space. If texture and shape features are used to distinguish patterns,

the number of patterns in the library will increase dramatically, roughly exponentially

in the number of features if patterns are obtained by uniformly quantizing features.

2.2.3 CBIR for biomedical image databases

CBIR is more challenging in biomedical domain than in many general-purpose image

domains. The main reason is that important features in biomedical images are often

local features rather than global features. This makes feature extraction much more

demanding. Features extracted for biomedical images must be able to both describe

�ne details of the images and allow quick retrieval of relevant images.

Shyu et al. [104] of Purdue University have developed a semi-automatic hierarchi-

cal human-in-the-loop (or physician-in-the-loop) system. The human delineates the

pathology-bearing regions (PBR) and a set of anatomical features of the image at the

time the image is entered into the database. From these marked regions, the system

applies low-level computer vision and image processing algorithms to extract features

related to the variations of gray scale, texture, shape, etc. To form an image-based

query the physician �rst marks some interesting regions. The system then extracts
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the relevant image features, computes the distance of the query image to all image

indices an the database. Promising results have been reported for some small medical

image databases. However, the approach is not suitable to very large image databases

due to the ine�ciency of the manual labeling process.

Retrieval systems have been developed in speci�c �elds such as brain MRI. Liu

et al. [75] of the Robotics Institute of Carnegie Mellon University have developed

a system for 3-D neuroradiology image databases. The system is designed for a 3-

D MRI of the human brain, and requires registration of the 3-D MRI images in the

database. A combination of both visual and collateral information is used for indexing

and retrieval. The system is specialized to the neuroradiology application.

More biomedical CBIR e�orts are summarized in a recent book edited by S.

Wong [134]. They are:

� The interface and query formulation work at the University of California, Los

Angeles

� The tumor shape matching work at the University of Maryland

� Using arti�cial neural network for event detection at the University of Pitts-

burgh

� Medical image �ltering at Stanford University

� Remote sensing for public health at the IBM T.J. Watson Research Center

� Integration of CBIR in decision support at the Tokyo Medical and Dental Uni-

versity

Most biomedical systems are domain-speci�c. In this dissertation, we address

the general problems associated with content-based image retrieval. Techniques and

methods we have developed are applicable to di�erent types of images, including

picture libraries and biomedical images.
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2.3 Image semantic classi�cation

The purpose of CBIR is to retrieve relevant images from an image database on the

basis of automatically-derived image features. The underlying assumption is that

semantically-relevant images have similar visual characteristics, or features. Conse-

quently, a CBIR system is not necessarily capable of understanding image semantics.

Image semantic classi�cation, on the other hand, is a technique for classifying

images based on their semantics. While image semantics classi�cation is a limited

form of image understanding, the goal of image classi�cation is not to understand

images the way human beings do, but merely to assign the image to a semantic class.

Image class membership is then used in the retrieval process. In this section, we

discuss the related work in classi�cation of images.

Despite the fact that it is currently impossible to reliably recognize objects in

general-purpose images, there are methods to distinguish certain semantic types of

images. Any information about semantic types is helpful since a system can constrict

the search to images with a particular semantic type. The semantic classi�cation

schemes can also improve retrieval by using various matching schemes tuned to the

semantic class of the query image. Most of these classi�cation schemes use statistical

classi�cation methods based on training data.

2.3.1 Semantic classi�cation for photographs

Although region-based systems attempt to decompose images into constituent objects,

a representation composed of pictorial properties of regions is indirectly related to its

semantics. There is no clear mapping from a set of pictorial properties to semantics.

An approximately round brown region might be a ower, an apple, a face, or part of

a sunset sky. Moreover, pictorial properties such as color, shape, and texture of an

object vary dramatically in di�erent images. If a system understood the semantics of

images and could determine which features of an object are signi�cant, it would be

capable of fast and accurate search. However, due to the great di�culty of recognizing

and classifying images, not much success has been achieved in identifying high-level

semantics for the purpose of image retrieval. Therefore, most systems are con�ned to
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matching images with low-level pictorial properties.

One example of semantic classi�cation is the identi�cation of natural photographs

versus arti�cial graphs generated by computer tools [68, 119]. The classi�er breaks

an image into blocks and segments every block into either of the two classes. If the

percentage of blocks classi�ed as photograph-type is higher than a threshold, the

image is marked as photograph; otherwise, it is marked as text.

Other examples include the `WIPE' system to detect objectionable images devel-

oped by Wang et al. [119] and an earlier system by Fleck et al. [31, 34] of University

of California at Berkeley. Details of the WIPE system will be given in Appendix A

of this dissertation. WIPE uses training images and CBIR to determine if a given

image is closer to the set of objectionable training images or the set of benign training

images. The system developed by Fleck et al., however, is more deterministic and

involves a skin �lter and a human �gure grouper.

Szummer and Picard [112] has developed a system to classify indoor and outdoor

scenes. Classi�cation over low-level image features such as color histogram and DCT

coe�cients is performed. A 90% accuracy has been reported over a database of 1300

images from Kodak.

Wang and Fischler [128] have shown that rough but accurate semantic under-

standing can be very helpful in computer vision tasks such as image stereo matching.

Vailaya et al. of Michigan State University has developed a classi�cation method

for city vs. landscape images [115]. Low-level features such as the color histogram, the

color coherence vector DCT coe�cient, and the edge direction histogram are used in

the classi�cation process. Higher than 90% accuracy has been reported on an image

database of 2,716 images.

Face detection [16, 9] from color images is an active research area. In 1995, Chen

et al. [16] developed a real-time face detection program using parallel computers. The

face candidates are detected by �nding \face-like" regions in the input image using

the fuzzy pattern matching method. A perceptually uniform color space is used to

obtain reliable results. Wang et al. of Stanford University proposed the use of reliable

face detection in a medical image security application to blur patient faces appearing

in pathology images before distributing the image over the Internet [121].
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2.3.2 Medical image classi�cation

In the medical domain, image classi�cation can be categorized into global classi�ca-

tion and local classi�cation, based on the targeted tasks.

� Global classi�cation

To identify images with lesions (abnormal cases) and images without lesions

(normal cases).

Researchers at the University of Chicago Medical Center [12] have developed

and deployed the �rst clinical computer-assisted system to read mammograms.

The system assists radiologists specializing in mammography in determining

whether a mammogram is normal. Computer-aided diagnosis is expected to

greatly reduce the number of breast cancers missed by radiologists.

A recent review article by Duncan and Ayache [28] provides more examples of

medical image classi�cation research e�orts over the past two decades.

� Local classi�cation or image segmentation

To identify the regions, or set of pixels, representing certain objects (e.g., the

lesions, the blood vessels).

Among others [62, 41, 7], Udupa and Grossman's research group at the Uni-

versity of Pennsylvania [113] has designed and implemented an algorithm to

segment and estimate the volume of MS lesions in MRI. Their algorithms in-

volve a fuzzy-connectedness principle. A human operator indicates a few points

in the images by pointing to the white matter, the gray matter, and the cerebro-

spinal uid (CSF). Each of these objects is then completed as a fuzzy connected

set using region growing. The remaining areas are potential lesion sites which

are utilized to detect each potential lesion as a three-dimensional (3-D) fuzzy

connected object. These objects are then presented to the operator who indi-

cates acceptance/rejection. As indicated in [113], a coe�cient of variation3 (due

3De�ned as the ratio of standard deviation to mean.
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to subjective operator actions) of 0.9% (based on 20 patient studies, three op-

erators, and two trials) for volume and a mean false-negative volume fraction of

1.3%, with a 95% con�dence interval of 0%-2.8% (based on ten patient studies)

has been obtained. However, a consistent algorithm may not produce correct

classi�cation consistently.

2.4 Summary

CBIR is a technique for retrieving relevant images from an image database on the basis

of automatically-derived image features. CBIR systems can be categorized roughly

into histogram, layout and region-based systems. Image semantic classi�cation is a

technique for classifying images based on their semantics. By using image semantic

classi�cation as an initial step in CBIR, we permit semantically-adaptive searching

methods and reduce the searching range in a database. We discussed related work in

the �eld of CBIR and image classi�cation. Examples of their biomedical applications

were provided.



Chapter 3

Wavelets

Mathematics is the art of giving the same name to di�erent things.

| Jules Henri Poincare (1854-1912)

3.1 Introduction

When constructing basis functions of a transform, the prime consideration is the

localization, i.e., the characterization of local properties, of the basis functions in time

and frequency. The signals we are concerned with are 2-D color or gray-scale images,

for which the time domain is the spatial location of a pixel, and the frequency domain

is the color variation around a pixel. We thus seek a transform that can e�ectively

represent color variations in any local spatial region of the image so that selected

coe�cients of this transform can be used in the image feature vector. In this chapter,

we compare various transforms and their properties to select a transform suitable for

CBIR.

We briey review the Fourier transform in Section 3.2. In Section 3.3 we dis-

cuss wavelet transforms, including the Haar transform and the Daubechies' wavelet

transforms. Several related applications of wavelets are introduced in Section 3.4.

40
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3.2 Fourier transform

original image edge map

35:1 compressed JPEG edge map

Figure 3.1: The Fourier transforms create visible boundary artifacts.

Fourier-based transforms [21, 33], such as the Discrete Cosine Transform (DCT), aim

to capture the frequency content of a signal. The Discrete Fourier Transform and its

inverse are de�ned as

F [k] =
N�1X
n=0

f [n]e�j2�nk=N (3.1)

f [n] =
1

N

N�1X
k=0

F [k]ej2�nk=N: (3.2)

The Discrete Fourier Transform is widely used in signal and image processing,

and has proven e�ective for numerous problems because of its frequency domain



CHAPTER 3. WAVELETS 42

localization capability. It is ideal for analyzing periodic signals because the Fourier

expansions are periodic. However, it lacks spatial localization due to the in�nitely

extending basis functions. Spline-based methods are e�cient for analyzing the spatial

localization of signals containing only low frequencies.

Image compression and CBIR share an important goal, i.e., to reduce the number

of bits needed to represent the content of the original image. We now study the

advantages and disadvantages of using the DCT transform for image compression.

The DCT is used in the JPEG (Joint Photographic Experts Group) compression

coding and decoding (codec) approach and standard. In order to improve spatial

localization, JPEG divides images into 8�8 non-overlapping pixel blocks and applies

the DCT to each block. The system quantizes each of the 64 frequency components

uniformly using a quantization step speci�ed by a table based on the human visual

system (HVS)'s sensitivity to di�erent frequencies. A smaller quantization step is

assigned to a frequency component to which the HVS is more sensitive so that this

component is encoded with higher accuracy. Entropy encoding is applied using the

Hu�man code to further reduce the bits needed for the representation.

Although spatial domain localization is improved by the windowed DCT, pro-

cessing the 8 � 8 non-overlapping blocks separately results in boundary artifacts at

block borders, as shown in Figure 3.1. Wavelet-based compression methods typically

generate much less visible artifacts at the same compression ratio.

3.3 Wavelet transform

Two important mathematicalmethods are available for non-periodic signals, the Win-

dowed Fourier Transform (WFT) and the wavelet transform. WFT analyzes a signal

in spatial and frequency domains simultaneously by examining the portion of the

signal constrained in a moving window with �xed shape. Therefore, a signal is likely

under-localized or over-localized in spatial domain since the spatial localization of

WFT is restricted by the window. Wavelets are basis functions with similarities to

both splines and Fourier series. They are more e�cient than WFT for analyzing

aperiodic signals, such as images, that contain impulsive sharp changes.
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Wavelets, studied in mathematics, quantum physics, statistics, and signal process-

ing, are functions that decompose signals into di�erent frequency components, each

with a resolution matching its scale [19]. There is active research [98, 109] in applying

wavelets to signal denoising, image compression, image smoothing, fractal analysis,

and turbulence characterization [109, 98].

3.3.1 Haar wavelet transform

Wavelet analysis can be based on an approach developed by Haar [84]. In 1909, A.

Haar described an orthonormal bases (in an appendix to his thesis), de�ned on [0; 1],

namely h0(x); h1(x); ::::::; hn(x); :::, other than the Fourier bases, such that for any

continuous function f(x) on [0; 1], the series

1X
j=1

< f; hj > hj(x) (3.3)

converges to f(x) uniformly on [0; 1]. Here, < u; v > denotes the inner product of u

and v:

< u; v >=

Z 1

0

u(x)v(x)dx ; (3.4)

where v is the complex conjugate of v, which equals v if the function is real-valued.

One version of Haar's construction [84, 19, 20] is as follows:

h(x) =

8>><
>>:

1; x 2 [ 0; 0:5 )

�1; x 2 [ 0:5; 1 )

0; elsewhere

(3.5)

hn(x) = 2j=2h(2jx� k) (3.6)

where n = 2j + k, k 2 [ 0; 2j ), x 2 [ k2�j ; (k + 1)2�j ).

There are limitations in using Haar's construction. Because Haar's base functions
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are discontinuous step functions, they are not suitable for analyzing smooth functions

with continuous derivatives. Since images often contain smooth regions, the Haar

wavelet transform does not provide satisfactory results in many image applications.

3.3.2 Daubechies' wavelet transform

Another type of basis for wavelets is that of Daubechies. For each integer r, the

orthonormal basis [23, 24, 63] for L2(R) is de�ned as

�r;j;k(x) = 2j=2�r(2
jx� k); j; k 2Z (3.7)

where the function �r(x) in L2(R) has the property that f�r(x � k)jk 2 Zg is an
orthonormal sequence in L2(R). Here, j is the scaling index, k is the shifting index,

and r is the �lter index.

Then the trend fj, at scale 2�j , of a function f 2 L2(R) is de�ned as

fj(x) =
X
k

< f; �r;j;k > �r;j;k(x): (3.8)

The details or uctuations are de�ned by

dj(x) = fj+1(x)� fj(x): (3.9)

To analyze these details at a given scale, we de�ne an orthonormal basis  r(x) with

properties similar to those of �r(x) described above.

�r(x) and  r(x), called the father wavelet and themother wavelet, respectively, are

the wavelet prototype functions required by the wavelet analysis. Figure 3.2 shows

several popular mother wavelets. The family of wavelets such as those de�ned in

Eq.( 3.7) are generated from the father or the mother wavelet by changing scale and

translation in time (or space in image processing).

Daubechies' orthonormal basis has the following properties:

�  r has the compact support interval [0; 2r + 1];

�  r has about r=5 continuous derivatives;
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Figure 3.2: Plots of some analyzing wavelets. First row: father wavelets, �(x). Second
row: mother wavelets,  (x)
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(a) (b) (c) (d)

Figure 3.3: Comparison of Haar's wavelet and Daubechies wavelets on a 1-D signal.
(a) original signal (xe�x

2

) of length 1024 (b) coe�cients in high-pass bands after a
4-layer Haar transform (c) coe�cients in high-pass bands after a 4-layer Daubechies-3
transform (d) coe�cients in high-pass bands after a 4-layer Daubechies-8 transform

� R1�1  r(x)dx = ::: =
R1
�1 x

r r(x)dx = 0.

Daubechies' wavelets provide excellent results in image processing due to the above

properties. A wavelet function with compact support can be easily implemented by

�nite length �lters. Moreover, the compact support enables spatial domain localiza-

tion. Because the wavelet basis functions have continuous derivatives, they decompose

a continuous function more e�ciently with edge artifacts avoided. Since the mother

wavelets are used to characterize details in a signal, they should have a zero inte-

gral so that the trend information is stored in the coe�cients obtained by the father

wavelet. A Daubechies' wavelet representation of a function is a linear combination

of the wavelet basis functions.

Daubechies' wavelets are usually implemented numerically by quadratic mirror

�lters [84, 6, 22]. Multiresolution analysis of the trend and uctuation of a function

is implemented by convolving it with a low-pass �lter and a high-pass �lter that

are versions of the same wavelet. The Haar wavelet transform is a special case of

Daubechies' wavelet transform with r = 2, which is termed as Daubechies 2 wavelet

transform. Eq.( 5.3) and Eq.( 5.4) provide the transform of signal x(n), n 2 Zby

the Haar's wavelet. The corresponding low-pass �lter is f 1p
2
; 1p

2
g; and the high-pass

�lter is f 1p
2
;� 1p

2
g. In fact, average color block layout image indexing is equivalent

to using transform coe�cients obtained by the low-pass �lter of the Haar's wavelet.
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original image saved Haar's coe�. (16 � 16) saved Daubechies' coe�. (16 � 16)
128 � 128 and its image reconstruction and its image reconstruction

Figure 3.4: Comparison of Haar's wavelet and Daubechies-8 wavelet.

Daubechies' wavelets transforms with r > 2 are more like weighted averaging which

better preserves the trend information in signals if we consider only the low-pass

�lter part. Various experiments and studies [109] have shown that in many cases

Daubechies' wavelets with r > 2 result in better performance than the Haar's wavelet.

Figures 3.3 and 3.4 show comparisons of the Haar wavelet, equivalent to average

color blocks, and the Daubechies' 8 wavelet. In Figure 3.3, we notice that the signal

with a sharp spike is better analyzed by Daubechies' wavelets because much less en-

ergy or trend is stored in the high-pass bands. Daubechies' wavelets are better suited

for natural signals or images than the Haar wavelet. In layout image indexing, we

want to represent as much energy in the image as possible in the low-pass band coef-

�cients, which are used as features. When using the Haar wavelet, we lose more trend

information in the discarded high-pass bands. Figure 3.4 shows the reconstruction of

two images based only on the feature vectors of traditional layout indexing (same as

Haar) and those using Daubechies' wavelets. Later in Chapter 5, we use Daubechies'

wavelets in our experimental WBIIS system. Clearly, images reconstructed by low-

pass band Daubechies' coe�cients are closer to the original images than those by the

Haar's coe�cients. Here, we use image reconstruction to compare information loss or
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encoding e�ciency between Haar's and Daubechies' wavelets in the course of truncat-

ing discrete wavelet representations. Although these two examples in themselves do

not imply for sure that a searching scheme using Daubechies' wavelets is better than

one using Haar's wavelet, they may provide insights on how the schemes function.

In general, Daubechies' wavelets with long-length �lters gives better energy con-

centration than those with short-length �lters. However, it is not feasible to process

discrete images using long-length wavelet �lters due to the border problems associated

with long-length �lters. We use Daubechies-4 and Daubechies-8 as compromises.

3.4 Applications of wavelets

Because the original signal can be represented by coe�cients in a linear combination

of the wavelet basis functions, similar to Fourier analysis, data operations can be

performed on the wavelet coe�cients. Image data can be sparsely represented if we

discard coe�cients below a threshold value.

Figure 3.5: A 3-level wavelet transform of an MRI image slice using Daubechies'
wavelet.

The wavelet transform o�ers good time and frequency localization. Information

stored in an image is decomposed into averages and di�erences of nearby pixels. For

smooth areas, the di�erence elements are near zero. The wavelet approach is therefore

a powerful tool for data compression, especially for functions with long-range slow

variations and short-range sharp variations [116]. The time and frequency localization
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original image 1-level wavelet 3-level wavelet
(256 � 256) transform transform

Figure 3.6: Multi-scale structure in the wavelet transform of an image. Dots indicate
non-zero wavelet coe�cients after thresholding. Daubechies-8 wavelet is used for this
transform.

of the basis functions are adjusted by both scale index j and position index k. We

may decompose the image even further by applying a wavelet transform several times

recursively.

Figures 3.5 and 3.6 show the multi-scale structure in the wavelet transform of an

image. In Figure 3.6, an original image of 256�256 pixels is decomposed into a 1-level

wavelet transform of 256 � 256 coe�cients. These coe�cients are organized into 4

bands, emphasizing low frequency trend information, vertical-directional uctuations,

horizontal-directional uctuations, and diagonal-directional uctuations, respectively.

The low frequency band of coe�cients can be further decomposed to form higher-level

wavelet transforms. The �gure shows wavelet transforms after thresholding near zero.

Most of the high frequency coe�cients are of near-zero values. Note that information

about the airplane's shape, color, and surface texture are well preserved and organized

in di�erent scales for analysis.

Since wavelet transforms decompose images into several resolutions, the coe�-

cients, in their own right, form a successive approximation of the original images. For

this reason, wavelet transforms are naturally suited for progressive image compression

algorithms. Many current progressive compression algorithms apply quantization on

coe�cients of wavelet transforms [100, 98], which became more widely used after
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Shapiro's [100] invention of the zero-tree structure, a method to group wavelet co-

e�cients across di�erent scales to take advantage of the hidden correlation among

coe�cients. Much subsequent research has taken place based on the zero-tree idea,

including a very signi�cant improvement made by Said and Pearlman [98], referred

to as the S & P algorithm. This algorithm was applied to a large database of mam-

mograms [1, 90] and was shown to be highly e�cient even by real clinical-quality

evaluations. An important advantage of the S & P algorithm and many other pro-

gressive compression algorithms is the low encoding and decoding complexity. No

training is needed since trivial scalar quantization of the coe�cients is applied in the

compression process. However, by trading o� complexity, the S & P algorithm was

improved by tuning the zero-tree structure to speci�c data [29].

Other than compression, wavelet transforms have been applied to almost all re-

search areas in signal processing [79, 80] and image processing [3, 27]. In speech recog-

nition, �ngerprint recognition, and denoising, techniques based on wavelet transforms

represent the best available solutions.

In addition, wavelet transforms have been actively used in solving ordinary and

partial di�erential equations, numerical analysis [6], statistics [25, 26], economet-

rics [92, 93, 61], fractals [36], communication theory [74], computer graphics [99, 43],

and physics [35, 64]. A comprehensive list of related articles and books is maintained

by MathSoft Inc. and is provided on-line [137].

3.5 Summary

In this chapter, we briey reviewed an important mathematical tool for signal and

image processing | the wavelet transform. Compared to other tools such as the

Fourier transform, the wavelet transform provides much better spatial domain local-

ization, an important property for signal processing. We compared several transforms

and their properties to gain insights into choosing transforms for the image retrieval

problem.
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Statistical Clustering and

Classi�cation

All knowledge is, in the �nal analysis, history.

All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.

| C. Radhakrishna Rao (1920- )

4.1 Introduction

In modern CBIR systems, statistical clustering and classi�cation methods are of-

ten used to extract visual features, index the feature space, and classify images into

semantic categories. In our work, we apply statistical clustering to the block-wise

feature space to extract region features. For very large databases, we use statisti-

cal clustering methods to index the high-dimensional feature space. Our semantic

classi�cation process is a statistical classi�cation process.

Machine learning algorithms search for and generalize concepts within domain-

speci�c search spaces. Clustering and classi�cation are both important machine
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learning methods. Clustering is an example of unsupervised learning, while clas-

si�cation is an example of supervised learning. In this chapter, we briey review a

number of commonly used statistical clustering and classi�cation methods.

In Section 4.2, we discuss the history of, and concepts in, arti�cial intelligence and

its sub�eld of machine learning. We then discuss two statistical clustering methods

we used in our work: the k-means algorithm and the TSVQ algorithm (Section 4.3).

Lastly, we review a statistical classi�cation method we used in our work, the CART

algorithm, in Section 4.4.

4.2 Arti�cial intelligence and machine learning

Herbert Simon [105] de�ned learning as \any change in a system that allows

it to perform better the second time on repetition of the same task or on another

task drawn from the same population". The improvement of expertise is obtained

through acquisition of knowledge. Most living creatures must learn in order to survive.

The ability to learn should also be a fundamental capability of arti�cially intelligent

systems.

Machine learning algorithms search and generalize concepts within domain-speci�c

search spaces. New domain-speci�c concepts can be accepted by generalizing the con-

cepts. Depending on whether the class identities of objects used in training are pro-

vided, a learning method is categorized as supervised learning, unsupervised learning,

or a hybrid learning algorithm.

In 1943, Warren McCulloch and Walter Pitts developed a model of arti�cial neu-

rons [82], one of the earliest works in machine learning. They demonstrated that any

computable function could be computed by some network of connected neurons and

argued that suitably structured networks could learn.

In 1950s, John McCarthy wrote a high level programming language called LISP,

now the most dominant AI programming language. While LISP is not speci�cally

targeted to learning, it has been used in almost all early learning systems. Allen

Newell and Herbert Simon developed \General Problem Solver (GPS)", which was
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the �rst known program built to imitate human problem-solving protocols [87]. GPS

did not have learning capabilities.

Researchers quickly realized that it was necessary to use more domain knowledge

for complicated and larger reasoning tasks. The DENDRAL program developed by

Bruce Buchanan in 1969 and the MYCIN program [103] developed by Edward H.

Shortli�e in mid-1970's were based on knowledge bases. MYCIN is known as the

�rst program that addressed the problem of reasoning with uncertain or incomplete

information.

Many of these knowledge-based systems involve manually entered domain knowl-

edges and supervised learning. With the available large amount of data and sig-

ni�cantly improved computing power of the modern computers, statistical machine

learning has become a popular research trend. We review recent work in statistical

clustering and classi�cation in the following sections.

4.3 Statistical clustering

A learner is classi�ed as unsupervised if the learning process is given a set of

examples that are not labeled as to class. Statistical clustering algorithms are unsu-

pervised learning methods. Other unsupervised learning methods include conceptual

clustering, Kohonen net clustering, theory-driven discovery, and data-driven discov-

ery.

In statistical clustering, objects are described by numerical feature vectors. Class

identities of the objects used in training are not provided. Depending on how a

clustering algorithm adjusts to an added object in training, it can be non-incremental

or incremental.

For any statistical clustering algorithm, a similarity or distance metric between

feature vectors of objects is needed. Examples include the Euclidean distance and

the Manhattan distance:
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Euclidean distance =

 X
i

(xi � yi)
2

! 1

2

(4.1)

Manhattan distance =
X
i

jxi � yij (4.2)

where xi and yi are the elements of two feature vectors.

The distance between a feature vector and a cluster may be computed as the

distance from the feature vector to the nearest or furthest point within the cluster,

or to the centroid of the cluster, the latter being used much more often. The distance

between two clusters can be computed likewise.

In this section, we focus on two statistical clustering algorithms, the k-means

algorithm and the Tree-Structured Vector Quantization (TSVQ) algorithm. These

algorithms were used in the dissertation research described in the following chapters.

4.3.1 The k-means algorithm

The k-means algorithm is a well-known statistical clustering algorithm [50]. To briey

introduce the idea, suppose observations (e.g., feature vectors in CBIR) are fxi : i =
1; :::; Lg. The goal of the k-means algorithm is to partition the observations into k

groups with means x̂1; x̂2; :::; x̂k such that

D(k) =
LX
i=1

min
1�j�k

(xi � x̂j)
2 (4.3)

is minimized. That is, the average distance between a feature vector and the cluster

with the nearest centroid to it is minimized. This \average distance" is also referred

to as \the average class variance" since they are equivalent if the Euclidean distance

is used. Two necessary conditions for the k clusters are:

1. Each feature vector is partitioned into the cluster with the nearest centroid to

it.
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2. The centroid of a cluster is the vector minimizing the average distance from it to

any feature vector in the cluster. In the special case of the Euclidean distance,

the centroid should be the mean vector of all the feature vectors in the cluster.

A simple k-means algorithm consists of the following steps:

1. Initialization: choose the initial k cluster centroids.

2. Loop until the stopping criterion is met:

(a) For each feature vector in the data set, assign it to a class such that the

distance from this feature to the centroid of that cluster is minimized.

(b) For each cluster, recalculate its centroid as the mean of all the feature

vectors partitioned to it.

feature
representing

feature
representing

features

partitioning
hyperplane

Figure 4.1: The k-means algorithm partitions the feature space using hyper-planes.

If the Euclidean distance is used, the k-means algorithm results in hyper-planes

as cluster boundaries. That is, for the feature space Rn, the cluster boundaries are

hyper-planes in the n � 1 dimensional space Rn�1. Figure 4.1 shows an example in

the three-dimensional Euclidean feature space. Each partition of the space is a two

dimensional hyperplane.

The initialization process is critical to the results. There are a number of di�erent

ways to initialize the k-means algorithms:
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1. Assign classes to features randomly

2. Choose centroids as random samples from an uniform distribution on the feature

space.

3. Randomly select feature vectors in the data set as centroids.

The k-means algorithm terminates when no more feature vectors are changing

classes. It can be proved that the k-means algorithm is guaranteed to terminate, based

on the fact that both steps of k-means (i.e., assigning vectors to nearest centroids and

computing cluster centroids) reduce the average class variance. In practice, running

to completion may require a large number of iterations. The cost for each iteration

is O(kn), for the data size n. Typically stopping criteria are:

1. Stop after a �x number of iterations

2. Stop after the average class variance is smaller than a threshold

3. Stop after the reduction of the class variance is smaller than a threshold

4.3.2 The TSVQ algorithm

Vector Quantization (VQ) [39] is the process of mapping vectors (usually continuous,

real valued vectors), from a subsetA of n-dimensional Euclidean spaceRn onto a �nite

set of vectors in Rn, denoted by C = fx̂1; x̂2; :::; x̂Ng. Although techniques of VQ are

applied primarily to data compression, they are naturally suitable to classi�cation.

If for each x̂i in C, a class ci is assigned to it and a vector x 2 A mapped to x̂i

is identi�ed as class ci, the vector quantizer is also a classi�er. The goal of a vector

quantizer is to minimize the average distance between a feature vector and a vector in

C that is closest to this feature vector. It is clear that this goal is the same as that of

the k-means algorithm. In fact, the same algorithm as the k-means was developed in

the signal processing community and was referred to as the Lloyd vector quantization

(LVQ) [76] algorithm.

In image retrieval, similar images are retrieved by �nding images with feature

vectors close in certain distance to that of the query image. Since a vector quantizer



CHAPTER 4. STATISTICAL CLUSTERING AND CLASSIFICATION 57

divides feature vectors into cells so that vectors clustered together are grouped into

one cell, it can be used to structure an image database so that similar images are

grouped together. Given any query image, we �rst decide which cell its feature

vector belongs to, and then search for similar images within this cell. Compared with

algorithms that search the whole database, this restricted searching method reduces

complexity signi�cantly. One may point out that by constraining the search to the

cell containing the query feature vector, we are not guaranteed to �nd the images

with the smallest distances to the query in the entire database. However, this is not

necessarily a disadvantage in view of data clustering. The underlying assumption

for retrieval, that images with feature vectors closer to each other are more similar,

may not be absolutely correct. If similar images form clusters and the clusters are

identi�ed, constraining search within the clusters actually prevents unrelated images

from being retrieved. The statistical aspects of data clustering are discussed in [58].

We have applied the TSVQ algorithm not only to large-scale image databases, but

also to large-scale DNA sequence databases [40].

ROOT

A

B

DC
A

B

C

D

Figure 4.2: An example of tree structured partition of feature space. 'x' indicates an
individual feature. '.' indicates the centroid of a cluster cell.

As vector quantization algorithms are used in communication systems, computa-

tional complexity is an important issue, especially for real-time systems. In communi-

cation systems, a vector quantizer consists of two parts: the encoder and the decoder.

The encoder maps x 2 A to an index i, which is transmitted by a �nite number

of bits to a receiver. The decoder at the receiving end maps the index i into the

representative vector x̂i. The LVQ algorithm is highly asymmetric in terms of com-

putation needed by the encoder and the decoder. The decoder is very fast regardless

of the vector dimension and the number of representative vectors N because it can
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be implemented by a simple table lookup. The amount of computation in encoding,

however, increases linearly with N . Usually, since the bit rate per dimension logN
n

is

�xed, the complexity of encoding grows exponentially with the dimension n. Many

algorithms have been developed to reduce the encoding complexity [39]. A widely

used one is the tree-structured vector quantization (TSVQ) algorithm [94, 95, 39]

(Figure 4.2). As the TSVQ algorithm also �nds cluster centroids signi�cantly faster

than the Lloyd VQ or k-means algorithm, applying TSVQ to image retrieval speeds

up searching as well as indexing, which is crucial if real-time indexing of an image

database is demanded.

The TSVQ algorithm progressively partitions the feature vector space into cells.

As suggested by the name of the algorithm, the partition is characterized by a tree

structure. In the case of image retrieval, feature vectors of all the images in a database

are used as training data to design the tree. Initially, all the feature vectors belong to

one cell, i.e., the entire space, marked as the root node of the tree. The root node is

split into two child nodes, each representing one cluster, by the LVQ algorithm. The

two child nodes divide the training feature vectors into two subsets. According to

LVQ, a feature vector is grouped to the subset whose centroid is closer to the vector.

LVQ is then applied to each subset represented by a child node to further divide

the feature space. The tree grows by splitting leaf nodes recursively. The algorithm

is greedy in that at every step, the node that provides the largest \goodness" if it

is divided is chosen to be split [95]. This strategy is optimal at every step, but not

globally optimal in general. A node becomes terminal if the number of feature vectors

in the node is smaller than a threshold. The procedure of generating a tree in two-

dimensional space is shown in Figure 4.2. The complexity for TSVQ is O(nlog(k)),

for data size n and the number of clusters k.

4.4 Statistical classi�cation

A learner is regarded as supervised if the learning process is given a set of examples,

each with the class to be returned for a given input. Classi�cation algorithms are
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supervised learning methods. In this section, we introduce the Classi�cation and

Regression Trees (CARTR) algorithm. A large variety of classi�cation algorithms have

been developed, such as the kernel method, the Gaussian mixture model method, the

k-nearest neighbor (k-NN), and the learning vector quantization (LVQ) algorithm.

4.4.1 The CART algorithm

CART [8] is a non-parametric statistical classi�cation algorithm. The output can

be either categorical (discriminant analysis or classi�cation), or continuous (non-

parametric regression). We restrict our interest to classi�cation in the sequel. CART

is powerful in that it is capable of dealing with incomplete data, multiple types of

input and output features, and the classi�cation trees it produces contain rules easy

to interpret.

.

.

.

.

.

.

(15.24 1656.63 ...... -0.56)    1
( 5.78 5425.37 ......  9.95)    1
(-4.23 6785.22 ...... -4.87)    2
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(  V1     V2   ......   Vn )    k
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Figure 4.3: Generating a classi�cation tree using the CART algorithm.

Given a set of training data containing both feature vectors and class identities,

CART produces a binary decision tree (Figure 4.3) with each decision or split charac-

terized by a condition xi > �?, where xi is one component of the feature vector and
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V2

V1

partitioning
hyperplane

Figure 4.4: CART partitions the 2-D feature space into cells using straight lines
parallel to the coordinate axes.

� is a threshold. The binary decision tree ultimately partitions the feature vector

space into cells, each corresponding to a leaf on the tree. Any feature vector in a cell

is identi�ed as a unique class selected by the majority vote based upon all the feature

vectors in the training data set that are partitioned to the cell. A byproduct of the

decision tree is the empirical probability mass function of classes in each cell.

The binary decision tree is formed by splitting nodes recursively such that the

\impurity" of the tree is minimized. The procedure is recursive in that it starts

with splitting the feature space into two cells, or nodes, and then applies the same

splitting process to each newly generated node, which represents a subset of the

feature space. De�nitions of the \impurity" indicators will be discussed shortly. There

are a number of stopping criteria for growing the decision tree. One example is

a minimum number of feature vectors in a node. CART is a suboptimal greedy

algorithm. It is computationally too expensive to search for an optimal set of splitting

criteria.

As illustrated in Figure 4.4, the CART algorithm results in hyper-planes parallel

to coordinate planes as partition boundaries in the Euclidean space. That is, for the

feature space Rn, the cluster boundaries are de�ned by hyper-planes xi = � in the

n� 1 dimensional space Rn�1.

There are a few commonly used \impurity" indicators. One is the entropy. The
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entropy of a node is

X
allclassesc

�p̂(c) log p̂(c) ; (4.4)

where p̂(c) is the empirical distribution of classes for feature vectors in the node. The

\impurity" of a tree is de�ned as a weighted summation of the entropy values of all

the leaves with the weight being the percentage of training vectors that belong to

each leaf. Another popular \impurity" indicator, which yields better results in many

applications compared with entropy is the Gini index. The Gini index of each node

is

X
allclassesc

�p̂(c)(1� p̂(c)) : (4.5)

Other \impurity" indicators include the mean Euclidean distance between all vectors

of parameters in the sample set.

The splitting criteria are set for each member of the feature. For example, one

criterion may be whether the i-th member of the feature vector has value greater than

x. Usually the range of each member of the feature is linearly split into prede�ned

mutually exclusive intervals. This is not optimal but o�ers a reasonable compromise

between accuracy and the computational time.

Once the initial full tree is grown, i.e., the stopping criterion is met, CART employs

a backward pruning process to avoid shortsightedness in splitting and over-�tting to

the training data. Cross-validation is used to select an intermediate classi�cation

tree.

To penalize over-�tting to the training data caused by a large tree (too many

splits), the cost of a tree T is de�ned by

C�(T ) =
X

Dg(T ) + �jT j ; (4.6)

where the sum is over all the leaves, or terminal nodes of T , jT j is the number

of terminal nodes in T , and � is a cost-complexity parameter. A subtree of T is
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color image semantic overlay

color image semantic overlay

Figure 4.5: Semantic analysis of outdoor scenes using the classi�cation and regression
trees (CART) algorithm. No post-processing is performed. Color scheme: Deep blue
(darkest) for sky, yellow (very light gray) for stone, light blue (lightest gray) for
river/lake, light green (light gray) for grass, deep green (dark gray) for tree/forest.
(Wang and Fischler [128])
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obtained by pruning o� branches in the tree. For each �, the best subtree T� is found

via pruning. The optimal �, �̂, is estimated via cross-validation. The corresponding

subtree T�̂ is the �nal result. The complexity of tree generation is O(n), for data size

n.

One major advantage of CART is that trees generated are easy to understand

and interpret. In addition, the computational complexity of applying decision trees

to classi�cation is extremely low. In fact, the complexity depends on the distribution

of the training data. For a �xed distribution, the complexity of classi�cation is O(1).

gray-scale image semantic overlay

gray-scale image semantic overlay

Figure 4.6: Semantic analysis of outdoor scenes using the classi�cation and regression
trees (CART) algorithm. No post-processing is performed. Color scheme: Deep blue
(darkest) for sky, light blue for river/lake, light green (light gray) for grass, deep green
(dark gray) for tree/forest, white for non-classi�ed regions. (Wang and Fischler [128])

A drawback is that the classi�cation boundaries are not smooth. To approximate

a circle cluster in a 2-D feature space, CART creates a zig-zag boundary, the closeness
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to the circle being determined by the number of training vectors available.

Wang and Fischler used CART in the problem of creating a semantic \overlay"

for natural outdoor scenes [128]. A sequence of only seven training images are used to

represent sky, stone, river/lake, grass and tree/forest. The mean colors and variances

of 4�4 blocks in RGB color space are the components of the training feature vectors.

These features are simple but have proven capable of distinguishing the above �ve

classes. For gray-scale images, only the mean intensities and variances of 4�4 blocks

are used as the components of the training feature vectors.

It takes about one minute on a Pentium III PC to create the classi�cation tree

structure. After the classi�cation tree is created, it takes only a few seconds to classify

a given image to create the semantic overlay for a color image of 768 � 512 pixels.

Figures 4.5 and 4.6 show the classi�cation results on color and gray-scale images.

Each of the �ve di�erent classes is given a unique \pseudo" color in the �nal result.

T2-weighted MS lesions

Figure 4.7: Classi�cation of MRI images using CART. No pre- or post-processing.
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CART can be used to create a classi�cation \overlay" for biomedical images. We

applied a similar algorithm on multi-spectrumMRI images. The pixels in the images

are classi�ed fully automatically as regions of white matter, gray matter, CSF, and

multiple sclerosis (MS) lesions. As shown in Figure 4.7, pixels of MS lesion regions can

be found. The algorithm was developed for indexing clinical trial image databases.

CART has been used in many other biomedical applications.

4.5 Summary

Statistical clustering and classi�cation are both important machine learning meth-

ods that are used in CBIR to extract visual features, index the feature space, and

classify images into semantic categories. Clustering is an example of unsupervised

learning, while classi�cation is an example of supervised learning. In this chapter, we

reviewed three important statistical clustering and classi�cation methods, including

the k-means algorithm, the TSVQ algorithm, and the CART algorithm. The cost for

each iteration in the k-means algorithm is O(kn), for the data size n. The complex-

ity for the TSVQ algorithm is O(nlog(k)), for generating k clusters. In CART, the

complexity of tree generation is O(n).



Chapter 5

Wavelet-Based Image Indexing and

Searching

A journey of a thousand miles must begin with a single step.

| Lao-Tzu (� 570-490 B.C.)

5.1 Introduction

This chapter describes WBIIS (Wavelet-Based Image Indexing and Searching), an im-

age indexing and retrieval algorithm with partial-sketch image-searching capability for

large image databases. We developed WBIIS in 1996 as a �rst step in image retrieval

using wavelets [122]. The SIMPLIcity system (Chapter 6), another wavelet-based

image indexing and searching system, has been developed to address the limitations

of the WBIIS system.

The WBIIS algorithm characterizes the color variations over the spatial extent of

the image in a manner that often provides semantically-meaningful image compar-

isons. The indexing algorithm applies a Daubechies' wavelet transform for each of the

three opponent color components. The wavelet coe�cients in the lowest few frequency

66
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bands, and their variances, are stored as feature vectors. To speed up retrieval, a two-

step procedure is used that �rst does a crude selection based on the variances, and

then re�nes the search by performing a feature-vector match between the selected

images and the query. For better accuracy in searching, two-level multiresolution

matching is used. Masks are used for partial-sketch queries. This technique performs

much better in capturing coherence of image, object granularity, local color/texture,

and bias avoidance than earlier color layout algorithms [88, 46]. WBIIS is much faster

and more accurate than earlier algorithms. When tested on a database of more than

10,000 general-purpose COREL photograph images, the best 100 matches were found

in two seconds.

In Section 5.2, we discuss details of the preprocessing step of WBIIS. An overview

of multiresolution indexing is given in 5.3. The indexing and retrieval processes are

discussed in Section 5.4 and Section 5.5, respectively. Some experimental results are

shown in Section 5.6. WBIIS has limitations (Section 5.7) due to its close relationship

with color layout indexing. These limitations are addressed in the recently developed

SIMPLIcity system, which is described in Chapter 6.

5.2 Preprocessing

As discussed in Chapter 2, many color spaces are in use to represent images. As a

result, many image formats are currently in use, e.g., GIF, JPEG, PPM and TIFF are

the most widely used formats for picture libraries. In the medical domain, DICOM

is becoming a dominant image format for radiology images. Because images in an

image database can have di�erent formats and di�erent sizes, we must �rst normalize

the data so that comparisons among images is possible.

5.2.1 Scale normalization

For the test database of images, a rescaled thumbnail consisting of 128 � 128 pixels

in Red-Green-Blue (i.e., RGB) color space is adequate for the purpose of computing

the feature vectors. For medical images, we retain the original resolution to keep the
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details. Typically, medical images of the same modality share the same resolution.

For example, most Computed Tomography (CT) images are of 512 � 512 pixels.

Bilinear interpolation is used for the rescaling process. This method resamples the

input image by overlaying on the input image a grid with 128�128 points. This gives

one grid point for each pixel in the output image. The input image is then sampled at

each grid point to determine the pixel colors of the output image. When grid points

lie between input pixel centers, the color values of the grid point are determined by

linearly interpolating between adjacent pixel colors (both vertically and horizontally).

This rescaling process is more e�ective than a Haar-like rescaling, i.e., averaging

several pixels to obtain a single pixel to decrease image size, and replicating pixels

to increase image size, especially when the image to be rescaled has frequent sharp

changes such as local texture. It is necessary to point out, however, that the rescaling

process is in general not important for the indexing phase when the size of the images

in the database is close to the size to be rescaled. The sole purpose for the rescaling is

to make it possible to use the wavelet transforms and to normalize the feature vectors.

Here, we assume the images in the database to have sizes close to 128� 128. In fact,

images may be rescaled to any other size as long as each side length is a power of

two. Therefore, to obtain a better performance for a database of mostly very large

images, we would suggest using a bilinear interpolation to rescale to a large common

size, with side lengths being powers of two, and then apply more levels of Daubechies'

wavelets in the indexing phase.

5.2.2 Color space normalization

Since color distances in RGB color space do not reect the actual human perceptual

color distance, we convert and store the image in a component color space with

intensity and perceived contrasts. We de�ne the new values at a color pixel based on
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the RGB values of an original pixel as follows:

8>><
>>:

C1 = (R +G+B)=3

C2 = (R + (max�B))=2

C3 = (R + 2 � (max�G) +B)=4

(5.1)

Here max is the maximum possible value for each color component in the RGB color

space. For a standard 24-bit color image, max = 255. Clearly, each color component

in the new color space ranges from 0 to 255 as well. This color space is similar to the

opponent color axes

8>><
>>:

RG = R� 2 �G +B

BY = �R �G + 2 �B
WB = R +G+B

(5.2)

de�ned in [5] and [111].

Besides the perception correlation properties [54] of such an opponent color space,

one important advantage of this alternative space is that the C1 axis, or the intensity,

can be more coarsely sampled than the other two axes. This reduces the sensitivity

of color matching to a di�erence in the global brightness of the image, and it reduces

the number of bins and subsequent storage in the color histogram indexing.

5.3 Multiresolution indexing

In this section, we review related work in multiresolution indexing, including earlier

color layout indexing algorithms and the work at the University of Washington using

the Haar wavelet [57].

5.3.1 Color layout

Storing color layout information is another way to describe the contents of the image.

It is especially useful when the query is a partial sketch rather than a full image.

In simple color layout image indexing, an image is divided into equal-sized blocks.
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The average color on the pixels in each block is computed and stored for subsequent

image matching using Euclidean metric or variations of the Euclidean metric. It is

also possible to form the features based on statistical analysis of the pixels in the

block. Both techniques are very similar to image rescaling or subsampling. However,

they do not perform well when the image contains high-frequency information such

as sharp color changes. For example, if there are pixels of various colors ranging from

black to white in one block, an e�ective result value for this block cannot be predicted

using these techniques.

5.3.2 Indexing with the Haar wavelet

The system developed at the University of Washington [57] applies the Haar wavelet

to multiresolution image querying. Forty to sixty of the largest magnitude coe�cients

are selected from the 1282 = 16; 384 coe�cients in each of the three color channels.

The coe�cients are stored as +1 or �1 along with their locations in the transform

matrix. As demonstrated in the cited paper, the algorithm performs much faster than

earlier algorithms, with an accuracy comparable to earlier algorithms when the query

is a hand sketch or a low-quality image scan.

One drawback of using Haar to decompose images into low frequency and high

frequency is that the Haar transform cannot e�ciently separate image signals into low-

frequency and high-frequency bands. From the signal processing point of view, since

the wavelet transform is essentially a convolution operation, performing a wavelet

transform on an image is equivalent to passing the image through a low-pass �lter

and a high-pass �lter [44]. The low-pass and high-pass �lters corresponding to the

Haar transform do not have a sharp transition and fast attenuation property. Thus,

the low-pass �lter and high-pass �lter cannot separate the image into clean distinct

low-frequency and high-frequency parts. On the other hand, the Daubechies wavelet

transform with longer length �lters [23] has better frequency properties. Because

in our algorithm we rely on image low-frequency information to do comparison, we

applied the Daubechies wavelet transform instead of the Haar transform.

Moreover, due to the normalization of functional space in the wavelet basis design,
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the wavelet coe�cients in the lower frequency bands, i.e., closer to the upper-left

corner in a transform matrix, tend to be more dominant (are of larger magnitude) than

those in the higher frequency bands. Coe�cients obtained by sorting and truncating

will most likely be in the lower frequency bands. For the Haar case,

F0(x(n)) =
1p
2
(x(n) + x(n+ 1)) (5.3)

F1(x(n)) =
1p
2
(x(n)� x(n+ 1)) (5.4)

coe�cients in each band are expected to be 2p
2
times larger in magnitude than those

in the next higher frequency band, i.e., those in one level previous to the current level.

For a 128 � 128 image, we expect the coe�cients in the transform to have an added

weight varying from 1 to 8 before the truncation process. As indicated in Eq. 5.3,

the low-frequency band in a Haar wavelet transform is mathematically equivalent to

the averaging color block or image rescaling approach in earlier layout algorithms

mentioned above. Thus, the accuracy is not improved when the query image or the

images in the database contain high-frequency color variation.

Although the University of Washington approach can achieve a much faster com-

parison by storing only 40 to 60 coe�cients for each color channel as a feature vector,

much useful information about the image is discarded. Thus, it is possible for two

images having the same feature vector to di�er completely in semantic content. In

addition, two pictures with similar content but di�erent locations of sharp edges may

have feature vectors that are far apart in feature space. This is why the University

of Washington algorithm has a sharp decrease in performance when the query image

consists of a small translation of the target image.

5.3.3 Overview of WBIIS

We have developed a color layout indexing scheme using Daubechies' wavelet trans-

forms that better represents image semantics, namely, object con�guration and lo-

cal color variation, both represented by Daubechies' wavelet coe�cients. For large

databases, feature vectors obtained from multi-level wavelet transforms are stored to
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speed up the search. We apply a fast wavelet transform (FWT) with Daubechies'

wavelet to each image in the database, for each of the three color components. Two-

level low-frequency coe�cients of the wavelet transform, and their standard devia-

tions, are stored as feature vectors.

Given a query image, the search is carried out in two steps. In the �rst step, a

crude selection based on the stored standard deviations is carried out. Images with

similar semantics usually have similar standard deviation values. An image with

almost the same color, i.e., with low standard deviation values, is unlikely to have

the same semantics as an image with very high variation or high standard deviation

values.

In the second step, a weighted version of the Euclidean distance between the

feature coe�cients of an image selected in the �rst step and those of the querying

image is calculated, and the images with the smallest distances are selected and sorted

as matching images to the query. We use two levels of wavelet coe�cients to process

the query in a multiresolution fashion. We will show below that this algorithm can be

used to handle partial hand-drawn sketch queries by modifying the computed feature

vector.

5.4 The indexing algorithm

The discrete wavelet transform (DWT) we described can be directly used in image

indexing for color layout type queries. Our indexing algorithm is described below.

For each image to be inserted to the database, obtain 128 � 128 square rescaled

matrices in (C1; C2; C3) components following Eq. 5.1 in Section 5.2. We then compute

a 4-layer 2-D fast wavelet transform on each of the three matrices using Daubechies'

wavelets. Denote the three matrices obtained from the transforms as WC1
(1 : 128; 1 :

128), WC2
(1 : 128; 1 : 128) andWC3

(1 : 128; 1 : 128)1. Then the upper-left 8�8 corner
of each transform matrix, WCi

(1 : 8; 1 : 8), represents the lowest frequency band of

the 2-D image in a particular color component for the level of wavelet transform we

1Here we use MATLAB [48] notation. That is, A(m1 : n1;m2 : n2) denotes the submatrix with
opposite corners A(m1;m2) and A(n1; n2).
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used. The lower frequency bands in the wavelet transform usually represent object

con�gurations in the images and the higher frequency bands represent texture and

local color variation. The three 8� 8 submatrices (namely,WCi
(1 : 8; 9 : 16), WCi

(9 :

16; 1 : 8) and WCi
(9 : 16; 9 : 16)) closest to the 8�8 corner submatrixWCi

(1 : 8; 1 : 8)

represent detailed information in the original image to some extent, though most

of the uctuation information is stored in the thrown-away higher frequency band

coe�cients. Extracting a submatrixWCi
(1 : 16; 1 : 16) of size 16�16 from that corner,

we get a semantic-preserving compression of 64:1 over the thumbnail of 128�128 pixels
and a higher compression over the original image. We store this as part of the feature

vector.

Then we compute the standard deviations, denoted as �c1; �c2; �c3 , of the 8 � 8

corner submatrices WCi
(1 : 8; 1 : 8). Three such standard deviations are then stored

as part of the feature vector as well. Figure 5.1 shows two images with the upper-left

corner submatrices of their 2-D fast wavelet transforms in (C1; C2; C3) color space.

Notice that the standard deviation of the coe�cients in the lowest frequency band

obtained from the �rst image di�ers considerably from that obtained from the second

image. Since the standard deviations are computed based on the wavelet coe�cients

in the lowest frequency band, we have eliminated disturbances arising from detailed

information in the image.

We also obtain a 5-level 2-D fast wavelet transform using the same bases. We

extract and store a submatrix of size 8� 8 from the upper-left corner. Thus, we have

stored a feature index using the multiresolution capability of the wavelet transform.

Because the set of wavelets is an in�nity set, di�erent wavelets may give di�erent

performance for di�erent types of image. One should take advantage of this charac-

teristic in designing an image retrieval system. To match the characteristics of the

signal we are analyzing, we used a Daubechies-8 or Symmlet-8 wavelet for the DWT

process. Symmlets were designed by Daubechies [24] to be orthogonal, smooth, nearly

symmetric, and non-zero on a relatively short interval (compact support). Wavelet

subclasses are distinguished by the number of coe�cients and by the level of itera-

tion. Most often they can be classi�ed by the number of vanishing moments. The

number of vanishing moments is weakly linked to the number of oscillations of the
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Figure 5.1: Two images with the upper-left corner submatrices of their fast wavelet
transforms in (C1; C2; C3) color space. We use the standard deviations of wavelet co-
e�cients to distinguish images with very di�erent object composition. The standard
deviations we stored for the �rst image are �C1

= 215:93, �C2
= 25:44, and �C3

= 6:65
while means of the coe�cients in the lowest frequency band are �C1

= 1520:74,
�C2

= 2124:79, and �C3
= 2136:93. The standard deviations we stored for the second

image are �C1
= 16:18, �C2

= 10:97, and �C3
= 3:28 while means of the coe�cients

in the lowest frequency band are �C1
= 1723:99, �C2

= 2301:24 and �C3
= 2104:33.
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wavelet, and determines what the wavelet does or does not represent. The number of

vanishing moments for the subclass of our Symmlet wavelet is 8, which means that

our wavelet will ignore linear through eighth degree functions.

Daubechies' wavelets perform better than earlier layout coding because the coe�-

cients in wavelet-created compression data actually contain su�cient information to

reconstruct the original image at a lower loss rate using an inverse wavelet transform.

By using the low-frequency coe�cients of Daubechies' wavelet transforms to index

images, we retain the most important information in the image, the trend informa-

tion. However, even with Daubechies' wavelet transforms, we drop a small amount

of detailed information by not keeping high-frequency wavelet coe�cients. Without

region segmentation, it takes too much space to keep all the wavelet coe�cients. In

Chapter 6, we introduce our recent region-based SIMPLIcity system using both the

trend information and the uctuation information represented in the wavelet coe�-

cients.

5.5 The matching algorithm

In WBIIS, the matching process for fully-speci�ed queries is not the same as that for

partial sketch queries. We discuss the details of each of the processes below.

5.5.1 Fully-speci�ed query matching

When a user submits a query, we must compute the feature vector for the querying

image and match it to the pre-computed feature vectors of the images in the database.

This is done in two phases.

In the �rst phase, we compare the standard deviations stored for the querying

image with the standard deviations stored for each image in the database.

Figure 5.2 demonstrates the histograms of the standard deviations we computed

for general-purpose photograph images. Studying the three histograms, we found that

the standard deviations of the intensity component (the C1 component) are a lot more

diverse than those of the other two (the C2 and C3 components). In fact, the values
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histogram of �C1
histogram of �C2

histogram of �C3

Figure 5.2: Histogram of the standard deviations of the wavelet coe�cients in the
lowest frequency band. Results were obtained from a database of more than 10,000
general-purpose images.

of �C1
are much much higher than the values of �C2

and �C3
. We consider �C1

more

dominant than �C2
or �C3

alone. Moreover, most images in this general-purpose image

database have low standard deviations. For any given standard deviation computed

for the query, we want to �nd roughly the same number of images having standard

deviations close to those of the query. Based on the trends shown in the histograms,

we have developed the following selection criterion for the �rst step.

Denote the standard deviation information computed for the querying image as

�c1, �c2 and �c3. Denote the standard deviation information stored in the database

indexing for an image as �0c1, �
0
c2
and �0c3 .

If the acceptance criteria2

(�c1� < �0c1 <
�c1
�
) j j

�
(�c2� < �0c2 <

�c2
�
) &&(�c3� < �0c3 <

�c3
�
)

�
(5.5)

fails, then we set the distance of the two images to 1, which means that the image will

not be further considered in the matching process. Here, � = 1� percent
100

and percent

is a threshold variable set to control the number of images passing the �rst matching

phase. Usually it is set to around 50. Note that the above acceptance criteria holds

if and only if the following expression holds.

(�0c1� < �c1 <
�0c1
�
) j j

�
(�0c2� < �c2 <

�0c2
�
) &&(�0c3� < �c3 <

�0c3
�
)

�
(5.6)

2Here we use standard C notation. That is, j j denotes OR and && denotes AND.
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Having �rst a fast and rough cut and then a more re�ned pass maintains the

quality of the results while improving the speed of the matching. With percent = 50,

about one-�fth of the images in the entire database passes through the �rst cut.

We obtain a speed-up of about �ve by doing this step, compared to comparing all

images in the database using stored wavelet coe�cients. For a database of 10,000

images, about 2000 images will still be listed in the queue for the Euclidean distance

comparison. Although it is possible that the �rst pass may discard some images that

should be in the result list, the quality of the query response is slightly improved in

more than 70% of the test cases due to this �rst pass. For example, an image with

almost the same color, i.e., with low standard deviation values, is unlikely to have

the same semantics as an image with very high color and texture variations, i.e., with

high standard deviation values.

A weighted variation of Euclidean distance is used for the second phase com-

parison. The Euclidean distance compares all components in the feature vector with

equal weightings and has a low computational complexity. If an image in the database

di�ers from the querying image too much when we compare the 8 � 8 � 3 = 192 di-

mensional feature vector, we discard it. The remaining image vectors are used in the

�nal matching, using the 16 � 16 � 3 = 768 dimensional feature vector with more

detailed information considered. Let w1;1, w1;2, w2;1, w2;2, wc1, wc2 and wc3 denote

the weights. Then our distance function is de�ned as

Dist(Image; Image0)

= w1;1

3X
i=1

(wci k WCi;1;1 �W 0
Ci;1;1

k) + w1;2

3X
i=1

(wci k WCi;1;2 �W 0
Ci;1;2

k)

+ w2;1

3X
i=1

(wci k WCi;2;1 �W 0
Ci;2;1

k) + w2;2

3X
i=1

(wci kWCi;2;2 �W 0
Ci;2;2

k)

(5.7)
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where

WCi;1;1 = WCi
(1 : 8; 1 : 8); WCi;1;2 = WCi

(1 : 8; 9 : 16);

WCi;2;1 = WCi
(9 : 16; 1 : 8); WCi;2;2 =WCi

(9 : 16; 9 : 16)

and k u � v k denotes the Euclidean distance. In practice, we may compute the

square of the Euclidean distances instead in order to reduce computation complexity.

If we let wj;k = 1, then the function Dist(I1; I2) is the Euclidean distance between

I1 and I2. However, we may raise w2;1, w1;2, or w2;2 if we want to emphasize the

vertical, horizontal or diagonal edge details in the image. We may also raise wc2 or

wc3 to emphasize the color variation more than the intensity variation. These weights

can be determined by database developers based on the types of the images stored.

For example, we raise w1;1 if the images in the database are all graphs (i.e., images

with smooth local texture) because color is more important than local texture in

distinguishing images in this case. For a photograph database, we assign the same

value for all the weights. For a textured-image database, we emphasize the texture

features by raising w2;1, w1;2, and w2;2.

To further speed up the system, we use a component threshold to reduce the

amount of Euclidean distance computation. That is, if the di�erence at any compo-

nent within the feature vectors to be compared is higher than a pre-de�ned threshold,

we set the distance of the two images immediately to 1 so that the image will not be

further considered in the matching process. For example, by setting this threshold

to be the median value of the component distances obtain through random sampling,

we obtain a speed-up of 2. The accuracy is degraded when we attempt to obtain a

higher speed-up. We can use parallel computation to obtain a high speed-up and low

degradation in accuracy.

The angle of any two feature vectors in the n-dimensional feature vector space is an

alternative measure to the Euclidean distance we discussed above. The cosine value

of the angle can be obtained by computing the vector dot product in a normalized

vector space. This alternative measure reduces the sensitivity to color or brightness

shift. However, the distance is much slower to compute than the Euclidean distance.
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In our WBIIS system, we use the Euclidean distance to reduce the query processing

time.

5.5.2 Partial query

A partial image query can be based on an image of low resolution, a partial image,

a very low resolution block sketch or a hand-drawn sketch. Figure 5.3 shows the

di�erent types of partial image queries our system is designed to handle. We assume

that the users do not care about the non-speci�ed areas, but are only interested in

�nding images in the database that best match the speci�ed areas of the query image.

This kind of query is very useful in real-world digital libraries. For example, if a user

wants to �nd all images with a racing car of any color in the center of an image, the

user may simply form a query by cutting out the center area of an image with a white

car. Figure 5.8 shows a similar example.

low resolution partial image block sketch hand-drawn sketch

Figure 5.3: Types of partial sketch queries our WBIIS system handles. Black areas
in a query image represent non-speci�ed areas.

To handle partial image queries, spatial localization of the feature vector is crucial.

For example, if we use some variations of the color moments to represent images, we

would not be able to answer partial sketch queries because each element in a feature

vector is a function of all pixels in the image. Due to the spatial localization properties

of our wavelet-based image indexing, we can implement a retrieval algorithm for

partial sketch queries with ease.

When a user submits a partial image query, we �rst rescale the query image

into a 128 � 128 rescaled image. At the same time, the non-speci�ed areas are

rescaled to �t in the 128 � 128 rescaled image. A binary mask, denoted initially as
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M0(1 : 128; 1 : 128) is created to represent the speci�ed areas. Then we compute the

feature vector of the rescaled query image using the wavelet-based indexing algorithm

we discussed above with the non-speci�ed areas being assigned as black. Here, the

standard deviations are computed based on the wavelet coe�cients within an 8 � 8

mask M4(1 : 8; 1 : 8) which is a subsample of M0(1 : 128; 1 : 128).

Comparison of the query feature vector with the stored vectors for the image

database is done in two phases.

In the �rst phase, we compare the standard deviations computed for the querying

image with the standard deviations within the mask for the wavelet coe�cients stored

for each image in the database. That is, we need to �rst re-compute the standard de-

viations of the wavelet coe�cients in the masked areas for each image in the database.

In cases where the users specify a majority of pixels in the query, we may simply use

the pre-computed and stored standard deviation information. Then a similar distance

measure is used to compare the standard deviation information.

A masked weighted variation of the Euclidean distance is used for the second

phase comparison. The distance function is de�ned as3

Dist(Image; Image0)

= w1;1

3X
i=1

( wci kM4 : �WCi;1;1 �M4 : �W 0
Ci;1;1

k )

+ w1;2

3X
i=1

( wci kM4 : �WCi;1;2 �M4 : �W 0
Ci;1;2

k )

+ w2;1

3X
i=1

( wci kM4 : �WCi;2;1 �M4 : �W 0
Ci;2;1

k )

+ w2;2

3X
i=1

( wci kM4 : �WCi;2;2 �M4 : �W 0
Ci;2;2

k )

(5.8)

If an image in the database di�ers from the querying image too much when we

3Here we use standard MATLAB notation. That is, ` .* ' denotes component-wise product.
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compare the 8 � 8 � 3 = 192 dimensional feature vector, we again discard it. The

remaining image vectors are used in the �nal matching, using the 16 � 16 � 3 = 768

dimensional feature vector. The measure is the same as discussed in the previous

subsection except that we assign di�erent weights in the three color components for

partial queries with low resolution. In fact, when the resolution in the partial sketch

is low, we need to emphasize the color variation rather than the intensity variation.

For example, a red block (i.e., R=255, G=0, B=0) shows the same color intensity

with a green block (i.e., R=0, G=255, B=0). As a result, we raise wc2 and wc3 to

about twice the setting for wc1 .

5.6 Performance

The WBIIS algorithm has been implemented by embedding it within the IBM QBIC

multimedia database system [88]. The discrete fast wavelet transforms are performed

on IBM RS/6000 workstations. To compute the feature vectors for the 10,000 color

images in our database requires approximately 2 hours of CPU time.

The matching speed is very fast. Using a SUN Sparc-20 workstation, a fully-

speci�ed query takes about 3.3 seconds of response time with 1.8 seconds of CPU

time to select the best 100 matching images from the 10,000 image database using

our similarity measure. It takes about twice the time to answer a partially speci�ed

query. The speed is about twice as fast as the IBM QBIC system and the VIRAGE

system. The system developed at the University of Washington is much faster due to

their fast binary matching algorithm.

There are ways to further speed up the system for very large image databases.

For example, we may pre-sort and store the standard deviation information within

the feature vectors of the images in the database because we must compare this

information for each query. Also, we may use a better algorithm to �nd the �rst k

matching images if k is smaller than log2(n) if the database contains n images. In

fact, an algorithm of execution time of O(kn) can be constructed for this task to

replace the quick-sort algorithm with run time O(n log(n)) we are currently using.

Figures 5.4, 5.5, 5.6 and 5.7 show accuracy comparisons of our wavelet algorithm
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commercial algorithm WBIIS

Figure 5.4: Comparisons with a commercial algorithm (IBM QBIC) on a galaxy-type
image. Note that 12 out of 15 images retrieved by the commercial algorithm are
unrelated to the galaxy query image. WBIIS retrieved only 6 unrelated images. The
upper-left corner image in each block of images is the query. The image to the right of
that image is the best matching image found. Matches decrease in measured closeness
from left to right and from top to bottom. Results were obtained from a database of
approximately 10,000 images.
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algorithm by University of Washington

WBIIS

Figure 5.5: A query example. 9 images unrelated to a water scene were retrieved
by the University of Washington algorithm. WBIIS retrieved only one unrelated
image. The upper-left corner image in each block of images is the query. Results
were obtained from a database of approximately 10,000 images.
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algorithm by University of Washington

WBIIS with Haar Wavelet

WBIIS with Daubechies' Symmlet-8 Wavelet

Figure 5.6: Another query example.
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algorithm by University of Washington            

commercial algorithm by VIRAGE

WBIIS with Haar Wavelet

WBIIS with Daubechies' Symmlet-8 Wavelet

Figure 5.7: Comparison on a texture image.
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(a) �ne block sketch            

(b) rough block sketch            

(c) image with omitting block(s)

Figure 5.8: Partial sketch queries in di�erent resolutions. The upper-left corner image
in each block of images is the query. Black areas in a query image represent non-
speci�ed areas. Database size: 10,000 images.
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WBIIS

algorithm by University of Washington (query image not shown)

Figure 5.9: Query results on a hand-drawn query image (with blue, black, yellow, and
green blocks). Black areas in a query image represent non-speci�ed areas. Equivalent
query were used. Database size: 10,000 images.
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Figure 5.10: Two other query examples using WBIIS. The upper-left corner image in
each block of images is the query.
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with the color layout algorithms in IBM QBIC and VIRAGE [46], two of the most

popular commercial multimedia databases, and the system developed at the Univer-

sity of Washington. Figures 5.8, 5.10 and 5.9 show the query results obtained from

partial sketch image queries. Default parameters are used for the University of Wash-

ington's algorithm. In all cases, the number of reasonably similar images retrieved by

our algorithm within the best matches is higher. In our comparisons of query results,

we consider one retrieval algorithm as better than another if the number of similar

images among a �xed number of best matching images is higher. We do not attempt

to compare two images which are both very similar to a query image because we do

not have a quantitative measure of the similarity between two images. When several

images are all very close to the query image, it is meaningless to rank their similar-

ities to the query image since subjective opinions often dominate and the distances

are too close to make ranking orders simply based on sorting results. For example,

in Figure 5.5, the second and third images retrieved by our algorithm are both very

close to the query image (the �rst image). Some reader may favor the second image

because the color of the boat is the same as that of the boat in the query image; on

the other hand, some may favor the third image since it has a closer composition to

the query image.

We compared the WBIIS system with the IBM QBIC, the VIRAGE, and the

University of Washington's system using the same COREL database. We manually

tested about 100 random queries in the database. In about one half of the cases, the

WBIIS system performs equally well or slightly better. When the query image is not

smooth (as in the shown query examples), the WBIIS system outperform the other

systems signi�cantly. The results are expected because of the energy-concentration

properties (shown in Chapter 3) of the Daubechies' wavelet transforms.

5.7 Limitations

WBIIS is designed to be invariant to scale and aspect ratio changes since query im-

ages and all images in the database are normalized to the same size and aspect ratio

before the matching step. Color and intensity shift can be handled by the alternative
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measure discussed at the end of Section 3.5. However, like color layout indexing,

severe cropping (i.e., query based on subregions) cannot be handled. In Chapter 6,

we discuss our region-based approach and the recently developed SIMPLIcity system,

an image indexing and retrieval system using wavelet-based features. The integrated

region matching (IRM) metric for the SIMPLIcity system provides much better ro-

bustness with respect to cropping and scaling changes, as well as other variations.

WBIIS system is designed to handle color layout type queries. Because of the

nature of color layout search, WBIIS has limitations in certain types of applications

when high degrees of rotation and translation invariance are important. However,

WBIIS can handle small amount of rotation and translation changes. In the searching

phase, a global measure, i.e., the set of the standard deviations of the saved wavelet

coe�cients, is utilized to measure the image coherence. Multi-scale indexing scheme

is also used to avoid bias.

We have performed robustness tests using several randomly selected image queries,

WBIIS with Daubechies' wavelets is capable of handling a maximum rotation of 20

degrees and a maximum translation of around 20% in general. In Figure 5.5, for

instance, the system successfully �nds images with wind surfers in various parts,

many of which di�er considerably from that of the query. Similar situations can be

found in Figures 5.6, 5.7 and 5.9. The system is sensitive to rotation and translation

changes when performing partial sketch search with large non-speci�ed areas.

5.8 Summary

In this chapter, we have explored some alternatives for improving both the speed and

accuracy of earlier color layout image indexing algorithms used in large multimedia

database systems. An e�cient wavelet-based multi-scale indexing and matching sys-

tem using Daubechies' wavelets developed by us has been demonstrated. The system

is capable of handling both fully-speci�ed queries and partial sketch queries. Like

color layout indexing, it has limitations with respect to cropping, translational and

rotational changes. In the next chapter, we address this issue by introducing details

of our recently developed SIMPLIcity system.



Chapter 6

Semantics-sensitive Integrated

Matching

The important thing is not to stop questioning.

Curiosity has its own reason for existing.

| Albert Einstein (1879-1955)

6.1 Introduction

We present here SIMPLIcity (Semantics-sensitive Integrated Matching for Picture

LIbraries), an image database retrieval system, which uses high-level semantics clas-

si�cation and integrated region matching (IRM) based upon image segmentation.

The SIMPLIcity system represents an image by a set of regions, roughly correspond-

ing to objects, which are characterized by color, texture, shape, and location. Based

on segmented regions, the system classi�es images into semantically meaningful cat-

egories. These high-level categories, such as textured-nontextured, indoor-outdoor,

objectionable-benign, graph-photograph, enhance retrieval by narrowing down the

91
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searching range in a database and permitting semantically-adaptive searching meth-

ods. A measure for the overall similarity between images is de�ned by a region-

matching scheme that integrates properties of all the regions in the images. Armed

with this global similarity measure, the system provides users a simple querying in-

terface. The integrated region matching (IRM) similarity measure is insensitive to

inaccurate segmentation.

Section 6.2 gives an overview of the system architecture. The image segmentation

process is introduced in Section 6.3. In Section 6.4, we give details of the classi�ca-

tion process. The similarity metric, i.e., the IRM metric, is de�ned in Section 6.5.

In Section 6.6, we describe the main concepts of a system specially developed for

biomedical image databases, based on concepts and methods discussed earlier. For

very large image databases, we propose the use of TSVQ to cluster the data. Details

of the process are given in Section 6.7.

6.2 Overview

The architecture of the SIMPLIcity system is described by Figure 6.1, the indexing

process, and Figure 6.2, the querying process. During indexing, the system partitions

an image into 4�4 pixel blocks and extracts a feature vector for each block. A statis-

tical clustering [50] algorithm is then used to quickly segment the image into regions.

The segmentation result is fed into a classi�er that decides the semantic type of the

image. An image is currently classi�ed as one of the n manually-de�ned mutually

exclusive and collectively exhaustive semantic classes. The system can be extended

to allow an image to be softly classi�ed into multiple classes with probability as-

signments. Examples of semantic types are indoor-outdoor, objectionable-benign,

textured-nontextured, city-landscape, with-without people, and graph-photograph

images. Features including color, texture, shape, and location information are then

extracted for each region in the image. The features selected depend on the semantic

type of the image. The signature of an image is the collection of features for all of

its regions. Signatures of images with various semantic types are stored in separate

databases.
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In the querying process, if the query image is not in the database as indicated by

the user interface, it is �rst passed through the same feature extraction process as

was used during indexing. For an image in the database, its semantic type is �rst

checked and then its signature is extracted from the corresponding database. Once

the signature of the query image is obtained, similarity scores between the query

image and images in the database with the same semantic type are computed and

sorted to provide the list of images that appear to have the closest semantics.
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Figure 6.1: The architecture of feature indexing process. The heavy lines show a
sample indexing path of an image.
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Figure 6.2: The architecture of query processing process. The heavy lines show a
sample querying path of an image.
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6.3 Image segmentation

This section describes our image segmentation procedure based on color and frequency

features using the k-means algorithm [50] described in Chapter 4. For general-purpose

images such as the images in a photo library or the images on the World-Wide Web

(WWW), automatic image segmentation is almost as di�cult as automatic image

semantic understanding. Currently there is no non-stereo image segmentation algo-

rithm that can perform at the level of the human visual system (HVS). The segmen-

tation accuracy of our system is not crucial because we use a more robust integrated

region-matching (IRM) scheme which is insensitive to inaccurate segmentation.

To segment an image, SIMPLIcity partitions the image into blocks with 4 � 4

pixels and extracts a feature vector for each block. The k-means algorithm is used

to cluster the feature vectors into several classes with every class corresponding to

one region in the segmented image. An alternative to the block-wise segmentation

is a pixel-wise segmentation by forming a window centered around every pixel. A

feature vector for a pixel is then extracted from the windowed block. The advantage

of pixel-wise segmentation over block-wise segmentation is the removal of blockyness

at boundaries between regions. Since we use rather small block size and boundary

blockyness has little e�ect on retrieval, we choose block-wise segmentation with the

bene�t of 16 times faster segmentation.

Details of the k-means algorithm are given in Chapter 4. Suppose observations are

fxi : i = 1; :::; Lg. The goal of the k-means algorithm is to partition the observations

into k groups with means x̂1; x̂2; :::; x̂k such that

D(k) =

LX
i=1

min
1�j�k

(xi � x̂j)
2 (6.1)

is minimized. The k-means algorithm does not specify how many clusters to choose.

We adaptively choose the number of clusters k by gradually increasing k and stop

when a criterion is met. We start with k = 2 and stop increasing k if one of the

following conditions is satis�ed.

1. The distortion D(k) is below a threshold. A low D(k) indicates high purity in
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the clustering process. The threshold is not critical because the IRM measure

is not sensitive to k.

2. The �rst derivative of distortion with respect to k, D(k) � D(k � 1), is below

a threshold with comparison to the average derivative at k = 2; 3. A low

D(k)�D(k � 1) indicates convergence in the clustering process. The threshold

determines the overall time to segment images and needs to be set to a near-

zero value. It is critical to the speed, but not the quality of the �nal image

segmentation. The threshold can be adjusted according to the experimental

run-time.

3. The number k exceeds an upper bound. We allow an image to be segmented

into a maximum of 16 segments. That is, we assume an image has less than 16

distinct types of objects. Usually the segmentation precess generates much less

number of segments in an image. The threshold is rarely met.

Six features are used for segmentation. Three of them are the average color

components in a 4�4 block. The other three represent energy in high frequency bands
of wavelet transforms [24, 84], that is, the square root of the second order moment of

wavelet coe�cients in high frequency bands. We use the well-known LUV color space,

where L encodes luminance, and U and V encode color information (chrominance).

The LUV color space has good perception correlation properties. Details of the color

spaces are given in Chapter 2. We chose the block size to be 4 � 4 to compromise

between the texture detail and the computation time.

To obtain the other three features, we apply either the Haar wavelet transform

or the Daubechies-4 wavelet transform to the L component of the image. We use

these two wavelet transforms because they capture more texture information. After a

one-level wavelet transform, a 4�4 block is decomposed into four frequency bands as

shown in Figure 6.3. Each band contains 2�2 coe�cients. Without loss of generality,

suppose the coe�cients in the HL band are fck;l; ck;l+1; ck+1;l; ck+1;l+1g. One feature
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is then computed as

f =

 
1

4

1X
i=0

1X
j=0

c2k+i;l+j

! 1

2

: (6.2)

The other two features are computed similarly from the LH and HH bands. The mo-

tivation for using the features extracted from high frequency bands is that they reect

texture properties. Moments of wavelet coe�cients in various frequency bands have

been shown to be e�ective for representing texture [114]. The intuition behind this is

that coe�cients in di�erent frequency bands show variations in di�erent directions.

For example, the HL band shows activities in the horizontal direction. An image with

vertical strips thus has high energy in the HL band and low energy in the LH band.

This texture feature is a good compromise between computational complexity and

e�ectiveness.

LL HL

LH HH

original image wavelet transform

Figure 6.3: Decomposition of images into frequency bands by wavelet transforms.

Examples of segmentation results for both textured and non-textured images are

shown in Figure 6.4. Segmented regions are shown in their representative colors. It

takes about one second on average to segment a 384 � 256 image on a Pentium Pro

430MHz PC using the Linux operating system. We do not apply post-processing

techniques to smooth region boundaries or to delete small isolated regions because

these errors are rarely signi�cant. Since our retrieval system is designed to tolerate

inaccurate segmentation, re�ning the segmentation results by post-processing (at the

cost of speed) is unnecessary.
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(a)

#regions=4 #regions=2 #regions=2 #regions=3
��2 = 0:125 ��2 = 0:207 ��2 = 0:009 ��2 = 0:066

(b)

(c)

#regions=2 #regions=4 #regions=4 #regions=12
��2 = 0:694 ��2 = 1:613 ��2 = 1:447 ��2 = 1:249

(d)

Figure 6.4: Segmentation results by the k-means clustering algorithm: (a) Original
texture images, (b) Regions of the texture images, (c) Original non-textured images,
(d) Regions of the non-textured images.



CHAPTER 6. SEMANTICS-SENSITIVE INTEGRATED MATCHING 99

6.4 Image classi�cation

The image classi�cation methods described in this section have been developedmainly

for searching picture libraries such as Web images. We are initially interested in clas-

sifying images into the classes textured vs. non-textured, graph vs. photograph, and

objectionable vs. benign. Other classi�cation methods such as city vs. landscape [115]

and with people vs. without people [16, 9] were developed elsewhere. Details of the

objectionable image classi�cation method are given as an appendix (Appendix A).

6.4.1 Textured vs. non-textured images

In this section we describe the algorithm to classify images into the semantic classes

textured or non-textured. By textured images, we refer to images that are composed

of repeated patterns and appear like a unique texture surface.

For textured images, color and texture are muchmore important perceptually than

shape, since there are no clustered objects. As shown by the segmentation results in

Figure 6.4, regions in textured images tend to scatter in the entire image, whereas

non-textured images are usually partitioned into clumped regions. A mathematical

description of how evenly a region scatters in an image is the goodness of match

between the distribution of the region and a uniform distribution. The goodness of

�t is measured by the �2 statistics [108].

We partition an image evenly into 16 zones, fZ1; Z2; :::; Z16g. Suppose the image

is segmented into regions fri : i = 1; :::;mg. For each region ri, its percentage in zone
Zj is pi;j ,

P16
j=1 pi;j = 1, i = 1; :::;m. The uniform distribution over the zones should

have probability mass function qj = 1=16, j = 1; :::; 16. The �2 statistics for region i,

�2
i , is computed by

�2
i =

16X
j=1

(pi;j � qj)2

qj
=

16X
j=1

16(pi;j � 1

16
)2 : (6.3)

The classi�cation of textured or non-textured image is performed by thresholding the

average �2 for all the regions in the image, ��2 = 1
m

Pm
i=1 �

2
i . If ��

2 < 0:32, the image
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Figure 6.5: The histograms of average �2's over 100 textured images and 100 non-
textured images.

is labeled as textured; otherwise, non-textured. We randomly chose 100 textured

images and 100 non-textured images and computed ��2 for them. The histograms of

��2 for the two types of images are shown in Figure 6.5. It can be seen that the two

histograms separate signi�cantly around the decision threshold 0:32.

6.4.2 Graph vs. photograph images

Now we describe our algorithm to classify images into the semantic classes graph or

photograph. We use this classi�cation method for general-purpose image databases

(e.g., WWW images). An image is a photograph if it is a continuous-tone image.

A graph image is an image containing mainly text, graph and overlays. We have

developed a graph-photograph classi�cation method.

The classi�er partitions an image into blocks and classi�es every block into either

of the two classes. If the percentage of blocks classi�ed as photograph-type is higher

than a threshold, the image is marked as photograph; otherwise, it is marked as text.

The algorithm we used to segment image blocks is based on a probability density

analysis for wavelet coe�cients in high frequency bands. For every block, two feature

values, which describe the distribution pattern of the wavelet coe�cients in high
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frequency bands, are evaluated. Then the block is marked as a corresponding class

according to the two feature values. We do not count pure black or pure white blocks

because index images usually have black or white backgrounds. The algorithm is

based on a multiresolution document image segmentation algorithm [69].

We tested the classi�cation method on a database of 12,000 photographic images

and a database of 300 randomly downloaded graph-based image maps from the web.

We achieved 100% sensitivity for photographic images and higher than 95% speci�city.

6.5 The similarity metric

In this section, we give details of our novel integrated region matching (IRM) algo-

rithm. IRM is a measure for the overall similarity between images that integrates

properties of all the regions in the images. The advantage of using such a soft match-

ing is that it makes the metric robust to poor segmentation (Figure 6.6), an important

property that previous work [11, 77] has not solved.

IRM can be used for image classes that are suitable to region-based matching.

As shown in Figure 6.2, di�erent feature extraction and matching schemes are used

in SIMPLIcity for di�erent semantic classes. Color layout features are suitable for

outdoor landscape photographs. Texture features gives better results on textured

images. Region-based features are needed for many other semantic classes, such as

indoor photos, portraits, and city photos.

6.5.1 Integrated region matching

In this section, we de�ne the similarity measure between two sets of regions. Assume

that Image 1 and 2 are represented by region sets R1 = fr1; r2; :::; rmg and R2 =

fr01; r02; :::; r0ng, where ri or r0i is the descriptor of region i. Denote the distance between
region ri and r0j as d(ri; r

0
j), which is written as di;j in short. Details about features

included in ri and the de�nition of d(ri; r0j) will be discussed later. To compute

the similarity measure between region sets R1 and R2, d(R1; R2), we �rst match all

regions in the two images. When we judge the similarity of two animal photographs,
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# regions = 2
# regions = 6

Traditional region-based matching
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# regions = 6

match

Integrated Region Matching (IRM)

Figure 6.6: Integrated Region Matching (IRM) is robust to poor image segmentation.
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we usually compare the animals in the images before comparing the background areas

in the images. The overall similarity of the two images depends on the closeness in

the two aspects. The correspondence between objects in the images is crucial to

our judgment of similarity since it would be meaningless to compare the animal in

one image with the background in another. Our matching scheme aims at building

correspondence between regions that is consistent with human perception. To increase

robustness against segmentation errors, we allow a region to be matched to several

regions in another image. A matching between ri and r0j is assigned with a signi�cance

credit si;j, si;j � 0. The signi�cance credit indicates the importance of the matching

for determining similarity between images. The matrix

S =

8>>>>>>>>>>>>>>:

s1;1 s1;2 ::: s1;n

s2;1 s2;2 ::: s2;n

::: ::: ::: :::

sm;1 sm;2 ::: sm;n

9>>>>>>>>>>>>>>;
; (6.4)

is referred to as the signi�cance matrix.

A graphical explanation of the integrated matching scheme is provided in Fig-

ure 6.7. The �gure shows that matching between images can be represented by an

edge weighted graph in which every vertex in the graph corresponds to a region. If

two vertices are connected, the two regions are matched with a signi�cance credit

being the weight on the edge. To distinguish from matching two sets of regions,

we refer to the matching of two regions as they are linked. The length of an edge

can be regarded as the distance between the two regions represented. If two vertices

are not connected, the corresponding regions are either from the same image or the

signi�cance credit of matching them is zero. Every matching between images is char-

acterized by links between regions and their signi�cance credits. The matching used

to compute the distance between two images is referred to as the admissible matching.

The admissible matching is speci�ed by conditions on the signi�cance matrix. If a

graph represents an admissible matching, the distance between the two region sets is
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the summation of all the weighted edge lengths, i.e.,

d(R1; R2) =
X
i;j

si;jdi;j : (6.5)

We call this distance the integrated region matching (IRM) distance.

s2,4s1,1

1 2 3

a b dc

Image 1

Image 2

Figure 6.7: Integrated region matching (IRM).

The problem of de�ning distance between region sets is then converted to choosing

the signi�cance matrix S. A natural issue to raise is what constraints should be put

on si;j so that the admissible matching yields good similaritymeasure. In other words,

what properties do we expect an admissible matching to possess? The �rst property

we want to enforce is the ful�llment of signi�cance. Assume that the signi�cance of

ri in Image 1 is pi, and r0j in Image 2 is p0j , we require that

nX
j=1

si;j = pi; i = 1; :::;m (6.6)

mX
i=1

si;j = p0j ; j = 1; :::; n : (6.7)

For normalization, we have
Pm

i=1 pi =
Pn

j=1 p
0
j = 1. The ful�llment of signi�cance

ensures that all the regions play a role for measuring similarity. We also require

an admissible matching to link the most similar regions at the highest priority. For

example, if two images are the same, the admissible matching should link a region

in Image 1 only to the same region in Image 2. With this matching, the distance

between the two images equals zero, which coincides with our intuition. The IRM
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algorithm attempts to ful�ll the signi�cance credits of regions by assigning as much

signi�cance as possible to the region link with minimum distance. We call this the

\most similar highest priority (MSHP)" principle. Initially, assume that di0;j0 is the

minimum distance, we set si0;j0 = min(pi0 ; p0j0). Without loss of generality, assume

pi0 � p0j0 . Then si0;j = 0, for j 6= j0 since the link between regions i0 and j 0 has �lled

the signi�cance of region i0. The signi�cance credit left for region j 0 is reduced to

p0j0 � pi0. The updated matching problem is then solving si;j, i 6= i0, by the MSHP

rule under constraints:

nX
j=1

si;j = pi 1 � i � m; i 6= i0 (6.8)

X
i:1�i�m;i6=i0

si;j = p0j 1 � j � n; j 6= j0 (6.9)

X
i:1�i�m;i6=i0

si;j0 = p0j0 � pi0 (6.10)

si;j � 0 1 � i � m; i 6= i0; 1 � j � n : (6.11)

We apply the previous procedure to the updated problem. The iteration stops when

all the signi�cance credits pi and p0j have been met. The algorithm is summarized as

follows.

1. Set L = fg, denote M = f(i; j) : i = 1; :::;m; j = 1; :::; ng.

2. Choose the minimum di;j for (i; j) 2 M�L. Label the corresponding (i; j) as

(i0; j 0).

3. min(pi0 ; p0j0)! si0;j0 .

4. If pi0 < p0j0 , set si0;j = 0, j 6= j 0; otherwise, set si;j0 = 0, i 6= i0.

5. pi0 �min(pi0 ; p0j0)! pi0 .

6. p0j0 �min(pi0 ; p
0
j0)! p0j0 .

7. L+ f(i0; j0)g ! L.
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8. If
Pm

i=1 pi > 0 and
Pn

j=1 p
0
j > 0, go to Step 2; otherwise, stop.

Consider an example of applying the integrated region matching algorithm. As-

sume that m = 2 and n = 3. The values of pi and p0j are

p1 = 0:4 ; p2 = 0:6 (6.12)

p01 = 0:2 ; p02 = 0:3 ; p03 = 0:5 : (6.13)

The region distance matrix fdi;jg, i = 1; 2, j = 1; 2; 3, is

8>>>>: 0:5 1:2 0:1

1:0 1:6 2:0

9>>>>; : (6.14)

The sorted di;j is

(i; j) : (1; 3) (1; 1) (2; 1) (1; 2) (2; 2) (2; 3)

di;j : 0:1 0:5 1:0 1:2 1:6 2:0 :
(6.15)

The �rst two regions matched are regions 1 and 3. As the signi�cance of region 1, p1,

is ful�lled by the matching, region 1 in Image 1 is no longer in consideration. The

second pair of regions matched is then regions 2 and 1. The region pairs are listed

below in the order of being matched:

region pairs : (1; 3) (2; 1) (2; 2) (2; 3)

signi�cance : 0:4 0:2 0:3 0:1 :
(6.16)

The signi�cance matrix is

8>>>>: 0:0 0:0 0:4

0:2 0:3 0:1

9>>>>; : (6.17)

We now come to the issue of choosing pi. The value of pi is chosen to reect

the signi�cance of region i in the image. If we assume that every region is equally

important, then pi = 1=m, where m is the number of regions. In the case that Image
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1 and Image 2 have the same number of regions, a region in Image 1 is matched

exclusively to one region in Image 2. Another choice of pi is the percentage of the

image covered by region i based on the view that important objects in an image

tend to occupy larger areas. We refer to this assignment of pi as the area percentage

scheme. This scheme is less sensitive to inaccurate segmentation than the uniform

scheme. If one object is partitioned into several regions, the uniform scheme raises its

signi�cance improperly, whereas the area percentage scheme retains its signi�cance.

On the other hand, if objects are merged into one region, the area percentage scheme

assigns relatively high signi�cance to the region. The SIMPLIcity system uses the

area percentage scheme.

The scheme of assigning signi�cance credits can also take region location into

consideration. For example, higher signi�cance may be assigned to regions in the

center of an image than to those around boundaries. Another way to count location

in the similarity measure is to generalize the de�nition of the IRM distance to

d(R1; R2) =
X
i;j

si;jwi;jdi;j : (6.18)

The parameter wi;j is chosen to adjust the e�ect of region i and j on the similarity

measure. In the SIMPLIcity system, regions around boundaries are slightly down-

weighted by using this generalized IRM distance.

In the future, we will explore di�erent schemes for assigning signi�cance credits.

We are especially interested in center-weighted region signi�cance.

6.5.2 Distance between regions

We now discuss the de�nition of distance between a region pair, d(r; r0). The SIM-

PLIcity system characterizes a region by color, texture, and shape. The feature

extraction process is shown in Figure 6.8. We have described in Section 6.3 the fea-

tures used by the k-means algorithm for segmentation. The mean values of these

features in one cluster are used to represent color and texture in the corresponding

region. These features are restated in the following list:
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1. f1 = the average L component of color

2. f2 = the average U component of color

3. f3 = the average V component of color

4. f4 = the square root of the second order moment of wavelet coe�cients in the

HL band

5. f5 = the square root of the second order moment of wavelet coe�cients in the

LH band

6. f6 = the square root of the second order moment of wavelet coe�cients in the

HH band

To describe shape, normalized inertia [38] of order 1 to 3 are used. For a region H in

k dimensional Euclidean space Rk, its normalized inertia of order  is

l(H; ) =

R
H
kx� x̂kdx

[V (H)]1+=k
(6.19)

where x̂ is the centroid of H and V (H) is the volume of H. Since an image is speci�ed

by pixels on a grid, the discrete form of the normalized inertia is used, that is,

l(H; ) =

P
x:x2H kx� x̂k
[V (H)]1+=k

(6.20)

where V (H) is the number of pixels in region H. The normalized inertia is invariant

with scaling and rotation. The minimum normalized inertia is achieved by spheres.

Denote the th order normalized inertia of spheres as L. We de�ne shape features

as l(H; ) normalized by L :

f7 = l(H; 1)=L1 ; f8 = l(H; 2)=L2 ; f9 = l(H; 3)=L3 : (6.21)

The computation of shape features is skipped for textured images because in this

case region shape is not important perceptually. The region distance d(r; r0) is de�ned
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Figure 6.8: Feature extraction in the SIMPLIcity system. (* The computation of
shape features is omitted for textured images.)

as

d(r; r0) =
6X

i=1

wi(fi � f 0i)
2 : (6.22)

For non-textured images, d(r; r0) is de�ned as

d(r; r0) = g(ds(r; r
0)) � dt(r; r0) ; (6.23)

where ds(r; r0) is the shape distance computed by

ds(r; r
0) =

9X
i=7

wi(fi � f 0i)
2 ; (6.24)

and dt(r; r0) is the color and texture distance de�ned the same as the distance between

textured image regions, i.e.,

dt(r; r
0) =

6X
i=1

wi(fi � f 0i)
2 : (6.25)
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The function g(ds(r; r0)) is a converting function to ensure a proper inuence of the

shape distance on the total distance. In our system, it is de�ned as

g(d) =

8>><
>>:

1 d � 0:5

0:85 0:2 < d � 0:5

0:5 d < 0:2 :

(6.26)

It is observed that when ds(r; r0) � 0:5, the two regions bear little resemblance.

It is then not meaningful to distinguish the extent of similarity by ds(r; r0) because

perceptually the two regions simply appear di�erent. We thus set g(d) = 1 for d

greater than a threshold. When ds(r; r0) is very small, we intend to keep the inuence

of color and texture. Therefore g(d) is bounded away from zero. We set g(d) to be

a piece-wise constant function instead of a smooth function for simplicity. Because

rather simple shape features are used in our system, we emphasize color and texture

more than shape. As can be seen from the de�nition of d(r; r0), the shape distance

serves as a \bonus." If two regions match very well in shape, their color and texture

distance is attenuated by a smaller weight to provide the �nal distance.

6.6 System for biomedical image databases

The purpose of content-based indexing and searching for biomedical image databases

is very di�erent from that for picture libraries. Users of a general-purpose picture

library are typically interested in images with similar object and color con�gurations

at a global scale, while users of a biomedical image database are often interested in

images with similar objects at the �nest scale.

With this in mind, we have developed the Path�nder system [131], a CBIR system

for retrieving biomedical images with extremely high resolution. The system was

initially designed for pathology slides [129]. It can be extended for other biomedical

image databases and satellite image databases because of the ability to search for a

region with desired objects.

We applied the Path�nder system to a database of more than 70,000 pathology
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image fragments. Promising results have been obtained and summarized in Chapter 7.

original image edge detection edge detection
with one threshold with another threshold

Figure 6.9: Automatic object segmentation of pathology images is an extremely dif-
�cult task. When di�erent thresholds are provided, an edge detector either gives too
many edges or too few edges for the object grouping. We avoid the precise object
segmentation process by using our IRM \soft matching" metric.

Like the SIMPLIcity system, we use a region-based approach with the IRM met-

ric. Shape matching is usually impossible without a highly accurate and robust object

segmentation algorithm. However, automatic object segmentation of pathology im-

ages is an extremely di�cult task, if at all possible. As shown in Figure 6.9, when

di�erent thresholds are provided, an edge detector [10] either gives too many edges or

too few edges for the object grouping. As we have mentioned before, the advantage of

using our novel IRM is that the \soft matching" process makes the metric robust to

inaccurate segmentation. We avoid the precise object segmentation process by using

our IRM \soft matching" metric.

Besides the usage of the IRM, the Path�nder system is very di�erent from the

SIMPLIcity system for picture libraries. Speci�cally, the system has a di�erent feature

extraction component and a progressive image browsing component. We discuss these

di�erences in the following sections.

6.6.1 Feature extraction

The feature extraction is performed on multiresolution image blocks (or segments) of

the original images, rather than the original images.
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In fact, we �rst partition the images and lower resolution versions of the same

image into overlapping blocks. A user may submit an image patch or a sketch of a

desired object to form a query. The system attempts to �nd image segments within

the database to match with the object speci�ed by the user.

In the biomedical domain, color information is often less important than other

visual features such as texture and object shape. Most radiology images are only

gray-scale. In our Path�nder system, we turn o� the color features in the matching

phase when the images are gray-scale images.

6.6.2 Wavelet-based progressive transmission

Digital pathology and radiology images typically have very high resolution, making

it di�cult to display them in their entirety on the computer screen and ine�cient to

transmit over the network for educational purposes. Progressive zooming of pathology

images is desirable despite the availability of inexpensive networking bandwidth. We

have developed an e�cient progressive image resolution re�ning system for on-line

distribution of pathology image using wavelets. Details of the server design can be

found in [129].

The system is practical for real-world applications, pre-processing and coding

each 24-bit image of size 2400 � 3600 within 40 seconds on a Pentium III PC. The

transmission process is in real-time. Besides its exceptional speed, the algorithm has

high exibility. The server encodes the original pathology images without loss. Based

on the image request from a client, the server dynamically generates and sends out

the part of the image at the requested scale and quality requirement. The algorithm

is expandable for medical image databases such as PACS.

6.7 Clustering for large databases

For very large image databases, we apply the tree-structured vector quantization

(TSVQ) algorithm (Chapter 4) to progressively partition the feature vector space

into cells. Every feature vector, which corresponds to an region of an image in the
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Memory CPU Time I/O Time Storage

Indexing O(1) O(N) O(N) O(N)

Clustering O(N) O(N log2(
N
C
)) O(N) O(N)

Searching O(N
C
log2

N
C
+ C) O(log2(

N
C
) + C log2C) O(1) {

Table 6.1: Performance of the system for an image database of N images. C is the
maximum number of images in each leaf node.

database, lands in one of the cells.

In the retrieval process, the feature vector of a region is calculated and the cell it

belongs to is decided using the tree-structured partition. Then, the distances between

the feature vector and all the feature vectors in the database which are included in the

cell are calculated. A certain number of images in the cell with minimum distances

is retrieved. The searching process is signi�cantly speeded up because we only need

to calculate to which cell of the feature space the query image belongs. Besides,

the computation needed for �nding the correct cell is negligible compared to the

calculation of the distances.

After the tree is designed, to retrieve similar images for a query image, we �rst

locate the cell of the feature space to which the query image belongs. Then we

compare the query image with all the training images in the cell and nearby cells to

�nd the most similar ones in terms of small distance between their feature vectors.

To quantitatively compare the amount of computation needed for both algorithms,

we assume there are totally N training images and the splitting of a node is stopped

when the number of training images in the node is less than C. The space is thus

divided into roughly N
C
cells, which correspond to the approximately N

C
leaf nodes in

the tree. For a binary tree, the depth of the tree is then about log N
C
with 2 as base.

In order to locate the cell to which the feature vector of a query image belongs,

the feature vector must be compared with 2 log N
C
centroids of nodes. That is, 2 log N

C

distances need to be computed. After the cell is located, another O(C) distances
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are calculated to select the most similar images from the C training images in the

cell. To present the �nal result, a quick sort taking O(C logC) time must be per-

formed. Hence, we need a total of C + 2 log N
C
distance calculations. However, for

the traditional algorithms, a total of N distance calculations are necessary. Clearly,

C + 2 log N
C
is usually much smaller than N . For instance, if N

C
= 100, for a large N ,

the �rst value, N
100

+2 log 100, is approximately one percent of N . Usually, we choose
N
C
larger than 100 for very large image databases. The details on the performance of

the algorithms are provided in Table 6.1.

This clustering process is designed to signi�cantly speed up the retrieval process.

However, the retrieval accuracy is degraded when the dimensionality of the feature

space is high. The process is therefore useful to applications when high precision

and high speed are more critical than high recall. We are exploring more suitable

alternatives to handle very large image databases.

6.8 Summary

In this chapter, we gave an overview of the SIMPLIcity system architecture and details

of the concepts and methods used in the system, including the image segmentation

process, the classi�cation methods, and the IRM region-based similarity metric. For

very large image databases, we use TSVQ to cluster the feature data.



Chapter 7

Evaluation

Few things are harder to put up with than a good example.

| Mark Twain (1835-1910)

7.1 Introduction

In this chapter, we further describe the experimental system we have developed, the

SIMPLIcity system, using the concepts we proposed in previous chapters. Speci�cally,

we present the data sets we used for the experiments, functions of the query interfaces,

the characteristics of the IRM distance, the accuracy comparisons, the robustness to

various changes, and the speed of indexing and searching.

7.2 Overview

The SIMPLIcity system has been implemented with a general-purpose image database

including about 200; 000 pictures, which are stored in JPEG format with size 384�256
or 256 � 384. The Path�nder system (described in Section 6.6) has been tested on a

pathology image database with more than 70; 000 image fragments, which are stored

in raw format with size 256�256. Neither of two systems uses any textual information

115
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in the matching process because we try to explore the possible advances of CBIR.

In a real-world application, however, textual information is often used as a helpful

addition to CBIR systems.

For each image, the features, locations, and areas of all its regions are stored.

Images of di�erent semantic classes are stored in separate databases. Because the

EMD-based color histogram system [97] and the WBIIS system are the only other

systems we have access to, we compare the accuracy of the SIMPLIcity system to

these systems using the same COREL database. WBIIS had been compared with the

IBMQBIC system and found to perform better [118] (also see Chapter 5). WBIIS has

been incorporated into the current IBM QBIC system. It is di�cult to design a fair

comparison with existing region-based searching algorithms such as the Blobworld

system which depends on additional information to be provided by the user during

the process.

With the Web, on-line demonstration has become a popular direction in letting

user evaluate CBIR systems. An on-line demonstration, with WBIIS, SIMPLIcity,

and WIPE, is provided at URL: http://WWW-DB.Stanford.EDU/IMAGE . Readers are

encouraged to compare the performance of SIMPLIcity with other systems. A list of

on-line image retrieval demonstration websites can be found on our site.

7.3 Data sets

Several data sets have been used to test the accuracy and speed of the system and

compare the system with existing systems and traditional indexing methods.

7.3.1 The COREL data set

The COREL data set, a collection of photographic stock images and clip art, is the

most widely used standard data set for testing CBIR systems. Typically, researchers

use between 1,000 and 30,000 images from the COREL data set. To validate the

hypothesis of this dissertation, we used all the 200,000 COREL images available to

us. For the purpose of simulating feature-based indexing under di�cult situations,
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Content # Content # Content # Content #

Africa 100 autumn 200 Bhutan 100 Cal sea 100
Canada sea 100 Canada West 100 China 100 Croatia 100
Death Val 100 dogs 100 England 100 Galapago 100

Grand Canyon 100 Holland 100 ice frost 100 Ireland 100
Kyoto 100 lizard 100 Mexico 100 models 200
Monaco 100 mushroom 200 novascot 100 NY city 100
Ottawa 100 perennial 100 Peru 100 plants 100
Pyramids 100 Rome 100 royal grd 100 France 100
rural UK 100 sail fast 100 subsea 100 texture 500
Thailand 100 Turkey 100 US garden 100 vegetable 100
vineyard 100 wild Alaska 100 wild cats 100 wild cougar 100
wild eagle 100 wild goat 100 wild nests 100 sea animals 200
rare animals 100 young animals 100 Yosemite 100 bird 100

deer 100 lion 100 penguin 100 elephant 100
�sh 100 wolf 200 gates 100 water ox 100
tiger 100 glacier 100 orchard 100 market 100
beach 400 church 300 animal 100 ower 500

mountain 100 cloud 200 people 100 India 100
indoor 100 button 100 cave 100 owl 100
Europe 200 boat 100 tourist 100 ski 100

Table 7.1: The contents of the �rst 10,000 images in the COREL image database
according to the titles of the CDs.

we used JPEG-compressed images of relatively low resolution (256 � 256).

The COREL image database contains a wide variety of photographic images and

clip art pictures. According to SIMPLIcity, there are 3772 texture images in the

database, about 6% of the total collection. It is di�cult to summarize all the contents

of the 200,000 images. Table 7.1 illustrates the contents of the �rst 10,000 (5%) images

in the COREL image database.
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7.3.2 Pathology data set

As we have mentioned before, the purpose of content-based indexing and searching

for biomedical image databases is very di�erent from that for picture libraries. We

provide evaluation results on pathology images to illustrate the ideas of using block-

based IRM to match regions for high-resolution images.

Figure 7.1: A random set of 24 image fragments from the pathology image database.

The pathology image database we are using were provided by Donald Regula,

M.D., at the Stanford University Pathology Department. The database contains of

more than 70,000 image segments, obtained through multiresolution partitioning of

digitized pathology slides with extremely high resolution. Figure 7.1 shows a random

set of 24 image fragments from the pathology image database.
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7.4 Query interfaces

The current implementation of the SIMPLIcity system provides several query inter-

faces: a CGI-based Web access interface, a JAVA-based drawing interface, and a

CGI-based Web interface for submitting a query image of any format anywhere on

the Internet.

7.4.1 Web access interface

Figure 7.2: The Web access interface. A di�erent random set of 18 images from the
database is shown initially.

This interface (Figure 7.2) is written in CGI and is designed for accessing images in

the database with a query image from the database. The user may select a random

set of images from the database to start with and click on an image in the window to

form a query. Or, the user may enter the ID of an image as the query.
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If the user places the mouse on top of a thumbnail image shown in the window

(without clicking on it), the thumbnail image will be automatically changed to its

region segmentation and each region is painted with its representing color. This

feature is important for partial region matching. The user may click in one of the

regions in the segmentation map to notify the server that the object represented by

this region is desired. The image server will then give higher weights to the regions

surrounding the region chosen by the user. We will implement this partial-search

function in the system in the near future.

7.4.2 JAVA drawing interface

Figure 7.3: The JAVA drawing query interface allows users to draw sketch queries.

We have developed a JAVA-based drawing interface (Figure 7.3) for users to make

free hand sketch queries 1. We allow users to draw sketches, straight lines, polygons,

1Developed by Desmond Chan and Xin Wang at Stanford University.
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rectangles, and eclipses. A 24-bit color palette is provided on the interface for users

to choose a representing color for each region or line drawn. We are exploring ways

to specify desired textures.

7.4.3 External query interface

Figure 7.4: The external query interface. The best 17 matches are presented
for a query image selected by the user from the Stanford top-level Web page.
The user enters the URL of the query image (shown in the upper-left corner,
http://www.stanford.edu/home/pics/h-quad.jpg) to form a query.

We allow the user to submit any images on the Internet as a query image to the system

by entering the URL of an image (Figure 7.4). Our system is capable of handling

any image format from anywhere on the Internet and reachable by our server via the

HTTP protocol. The image is downloaded and processed by our system on-the-y.

The high e�ciency of our image segmentation and matching algorithms made this
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feature possible2. To our knowledge, this feature of our system is unique in the sense

that no other commercial or academic systems allow such queries.

7.4.4 Progressive browsing

We have developed a Web-based user interface that allows the users to magnify any

portion of the pathology images in di�erent level of resolutions. The details of the

wavelet-based progressive transmission server are provided in our paper [129]. We use

Web interface and JAVA primarily because of the wide acceptance of the Internet and

the Web in health-care environments. Figure 7.5 shows sample image query results

with the HTML-based client user interface.

7.5 Characteristics of IRM

To study the characteristics of the IRM distance, we performed 100 random queries

on our COREL photograph data set. We obtained 5:6 million IRM distances. Based

on these distances, we estimated the distribution of the IRM distance. The empirical

mean of the IRM is 44:30, with a 95% con�dence interval of [44:28; 44:32]. The

standard deviation of the IRM is 21:07. Figure 7.6 shows the empirical probability

distribution function and the empirical cumulative distribution function.

Based on this empirical distribution of the IRM, we may give more intuitive sim-

ilarity distances to the end user than the distances themselves using the similarity

percentile. As shown in the empirical cumulative distribution function, an IRM dis-

tance of 15 represents approximately 1% of the images in the database. We may

notify the user that two images are considered to be very close when the IRM dis-

tance between the two images is less than 15. Likewise, we may advise the user that

two images are likely to be far away in similarity when the IRM distance between the

two images is greater than 50.

2It takes some other region-based CBIR system [11] approximately 8 minutes CPU time to
segment an image.
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Figure 7.5: Multiresolution progressive browsing of pathology slides of extremely high
resolution. HTML-based interface shown. The magni�cation of the pathology images
are shown on the query interface.
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Figure 7.6: The empirical PDF and CDF of the IRM distance.

7.6 Accuracy

We evaluated the accuracy of the system in three ways. First, we used a 200,000-

image COREL database to compare with existing systems such as EMD-based color

histogram and WBIIS. Then, we designed systematic evaluation methods to judge the

performance statistically. Finally, we used a database of pathology images to test the

applicability of the system to other domains. The image classi�cation performance

of the system is evaluated and reported in Appendix A.

In Section 7.6.1, we show the accuracy of SIMPLIcity using the COREL database.

We systematically compare SIMPLIcity with EMD-based color histogram and WBIIS

in Section 7.6.2. The SIMPLIcity system has demonstrated much improved accuracy

over the other systems. Performance on a biomedical image database is reported in

Section 7.6.3.

7.6.1 Picture libraries

We compare the SIMPLIcity system with the WBIIS (Wavelet-Based Image Index-

ing and Searching) system [118] with the same image database. In this section, we

show the comparison results using query examples. In the next section, we provide

numerical evaluation results by systematically comparing several systems.

As WBIIS forms image signatures using wavelet coe�cients in the lower frequency
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SIMPLIcity

WBIIS

Figure 7.7: Comparison of SIMPLIcity and WBIIS. The query image is a landscape
image on the upper-left corner of each block of images. SIMPLIcity retrieved 8 related
images within the best 11 matches. WBIIS retrieved 7 related images.
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SIMPLIcity

WBIIS

Figure 7.8: Comparison of SIMPLIcity and WBIIS. The query image is a photo of
food. SIMPLIcity retrieved 10 related images within the best 11 matches. WBIIS
did not retrieve any related images.



CHAPTER 7. EVALUATION 127

SIMPLIcity

WBIIS

Figure 7.9: Comparison of SIMPLIcity and WBIIS. The query image is a portrait
image that probably depicts life in Africa. SIMPLIcity retrieved 10 related images
within the best 11 matches. WBIIS did not retrieve any related images.
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SIMPLIcity

WBIIS

Figure 7.10: Comparison of SIMPLIcity and WBIIS. The query image is a portrait of
a model. SIMPLIcity retrieved 7 related images within the best 11 matches. WBIIS
retrieved only one related image.
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SIMPLIcity

WBIIS

Figure 7.11: Comparison of SIMPLIcity and WBIIS. The query image is a photo of
owers. SIMPLIcity retrieved 10 related images within the best 11 matches. WBIIS
retrieved 4 related images.
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bands, it performs well with relatively smooth images, such as most landscape im-

ages. For images with details crucial to semantics, such as pictures with people, the

performance of WBIIS degrades. In general, SIMPLIcity performs as well as WBIIS

for smooth landscape images. One example is shown in Figure 7.7. The query image

is the image at the upper-left corner. The underlined numbers below the pictures are

the ID numbers of the images in the database. The other two numbers are the value

of the similarity measure between the query image and the matched image, and the

number of regions in the image. To view the images better or to see more matched

images, users can visit the demonstration web site and use the query image ID to

repeat the retrieval.

SIMPLIcity also performs well for images composed of �ne details. Retrieval

results with a photo of a hamburger as the query are shown in Figure 7.8. The

SIMPLIcity system retrieves 10 images with food out of the �rst 11 matched images.

The WBIIS system, however, does not retrieve any image with food in the �rst 11

matches. The top match made by SIMPLIcity is also a photo of hamburger, which

is perceptually very close to the query image. WBIIS misses this image because the

query image contains important �ne details, which are smoothed out by the multi-

level wavelet transform in the system. The smoothing also causes a textured image

(the third match) to be matched. Such errors of WBIIS are observed with other

image queries when �ne details are important in distinguishing image semantics. The

SIMPLIcity system, however, prevents images of di�erent classes to be matched by

classifying them before searching.

Another three query examples are compared in Figure 7.9, 7.10, and 7.11. The

query images in Figure 7.9 and 7.10 are di�cult to match because objects in the

images are not distinctive from the background. Moreover, the color contrast for

both images is small. It can be seen that the SIMPLIcity system achieves much

better retrieval. For the query in Figure 7.9, only the third matched image is not a

picture of a person. A few images, the 1st, 4th, 7th, and 8th matches, depict a similar

topic as well, probably about life in Africa. The query in Figure 7.11 also shows the

advantages of SIMPLIcity. The system �nds photos of similar owers with di�erent

sizes and orientations. Only the 9th match does not have owers in it.
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SIMPLIcity

SIMPLIcity without image classi�cation

WBIIS

Figure 7.12: SIMPLIcity gives better results than the same system without the clas-
si�cation component. The query image is a textured image.
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For textured images, SIMPLIcity and WBIIS often perform equally well. How-

ever, SIMPLIcity captures high frequency texture information better. An example

of textured image search is shown in Figure 7.12. The granular surface in the query

image is matched more accurately by the SIMPLIcity system. We performed another

test on this query using SIMPLIcity system without the image classi�cation com-

ponent. As shown in Figure 7.12, the degraded system found several non-textured

pictures (e.g., sunset scenes) for this textured query picture.

SIMPLIcity

Figure 7.13: SIMPLIcity does not mix clip art pictures with photographs. A graph-
photograph classi�cation method using image segmentation and statistical hypothesis
testing is used. The query image is a clip art picture.

Existing CBIR systems do not perform well when the image databases contain

both photographs and graphs. Graphs, such as clip art pictures and image maps,

appear frequently on the Web. The semantics of clip art pictures are typically more

abstract and signi�cantly di�erent from photos with similar low-level visual features,
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such as the color histogram. For image maps on the Web, an indexing method based

on Optical Character Recognition (OCR) may be more e�cient than CBIR systems

based on visual features. Wang et al. used wavelets and OCR in retrieving medical

images with patient identi�cation information [127]. SIMPLIcity classi�es picture

libraries into graphs and photographs [71] using image segmentation and statistical

hypothesis testing before the feature indexing step. Figure 7.13 shows the result of a

clip art query. All the best 23 matches of this 200,000-picture database are clip art

pictures, many with similar semantics.

7.6.2 Systematic evaluation

We performed two sets of systematic evaluation tests to provide objective comparison

of SIMPLIcity with various other systems.

Performance on image queries

To provide numerical results, we tested 27 sample images chosen randomly from 9

categories, each containing 3 of the images. Image matching is performed on the

COREL database of 200,000 images. A retrieved image is considered a match if it

belongs to the same category of the query image. The categories of images tested are

listed in Table 7.2. Most categories simply include images containing the speci�ed

objects. Images in the \sports and public events" class contain people in a game

or public event, such as a festival. Portraits are not included in this category. The

\landscape with buildings" class refers to outdoor scenes featuring man-made con-

structions such as buildings and sculptures. The \beach" class refers to scenery at

coasts or river banks. For the \portrait" class, an image has to show people as the

main feature. A scene with human beings as a minor part is not included.

Precision was computed for both SIMPLIcity and WBIIS. Recall was not calcu-

lated because the database is large and it is di�cult to estimate the total number of

images in one category, even approximately. As we have mentioned in Chapter 2, the

\relevance" in the de�nitions of recall depends on the readers' point-of-view. For the

database of 60; 000 photographs, we have to manually read all the images for each
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ID Category Name
1 Sports and public events
2 Beach
3 Food
4 Landscape with buildings
5 Portrait
6 Horses
7 Tools and toys
8 Flowers
9 Vehicle

Table 7.2: COREL categories of images tested for comparing with WBIIS.

query to determine the number of relevant images to the given query. In the future,

we will develop a large-scale sharable test database to evaluate the recall.

To account for the ranks of matched images, the average of the precision values

within k retrieved images, k = 1; :::; 100, is computed, that is,

�p =
1

100

100X
k=1

nk
k
;

nk = # of matches in the �rst k retrieved images :

This average precision is called the \weighted precision"3 because it is equivalent to

a weighted percentage of matched images with a larger weight assigned to an image

retrieved at a higher rank. For instance, a relevant image appearing earlier in the list

of retrieved images would enhance the weighted precision more signi�cantly than if

it appears later in the list.

For each of the 9 image categories, the average precision and weighted precision

based on the 3 sample images are plotted in Fig. 7.14. The image category identi�-

cation number is indicated in Table 7.2. Except for the tools and toys category, in

which case the two systems perform about equally well, SIMPLIcity has achieved bet-

ter results than WBIIS measured in both ways. For the two categories of landscape

with buildings and vehicle, the di�erence between the two systems is quite signi�cant.

3The weighted precision has been used in information retrieval.
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On average, the precision and the weighted precision of SIMPLIcity are higher than

those of WBIIS by 0:227 and 0:273 respectively. In another perspective, SIMPLIcity

retrieves on average twice as many relevant images than WBIIS does.
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Figure 7.14: Comparison of SIMPLIcity and WBIIS: average precision and weighted
precision of 9 image categories.

Performance on image categorization

The SIMPLIcity system was also evaluated based on a subset of the COREL database,

formed by 10 image categories (shown in Table 7.3), each containing 100 pictures.

These image categories were randomly selected from about 600 photograph categories

of the COREL image database. Within this database, it is known whether any two

images are of the same category. In particular, a retrieved image is considered a match

if and only if it is in the same category as the query. This assumption is reasonable

since the 10 categories were chosen so that each depicts a distinct semantic topic.

Every image in the sub-database was tested as a query, and the retrieval ranks of all

the rest images were recorded. Three statistics were computed for each query:

1. The precision within the �rst 100 retrieved images
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ID Category Name

1 Africa people and villages
2 Beach
3 Buildings
4 Buses
5 Dinosaurs
6 Elephants
7 Flowers
8 Horses
9 Mountains and glaciers
10 Food

Table 7.3: COREL categories of images tested for comparing with color histogram.

Category Average p Average r Average �
1 0.475 178.2 171.9
2 0.325 242.1 180.0
3 0.330 261.8 231.4
4 0.363 260.7 223.4
5 0.981 49.7 29.2
6 0.400 197.7 170.7
7 0.402 298.4 254.9
8 0.719 92.5 81.5
9 0.342 230.4 185.8
10 0.340 271.7 205.8

Table 7.4: The performance of SIMPLIcity (with an average of 4.3 regions per image)
on categorizing picture libraries. The average performance for each image category
evaluated by precision p, the mean rank of matched images r, and the standard
deviation of the ranks of matched images �.
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Category Average p Average r Average �
1 0.288 312.9 252.9
2 0.286 280.0 225.8
3 0.233 332.4 270.1
4 0.267 283.7 259.1
5 0.914 54.7 225.2
6 0.384 187.7 214.0
7 0.416 235.3 236.0
8 0.386 278.4 266.5
9 0.218 324.6 265.6
10 0.207 427.3 346.1

Table 7.5: The performance of the EMD-based color histogram approach (with an
average of 42.6 �lled color bins) on categorizing picture libraries. The average perfor-
mance for each image category evaluated by precision p, the mean rank of matched
images r, and the standard deviation of the ranks of matched images �.

2. The mean rank of all the matched images

3. The standard deviation of the ranks of matched images

The recall is identical to the precision in this special case because both the num-

ber of retrieved items and the number of relevant items equal to 100. The average

performance for each image category in terms of the three statistics is listed in Ta-

ble 7.4, where p denotes precision, r denotes the mean rank of matched images, and

� denotes the standard deviation of the ranks of matched images. For a system that

ranks images randomly, the average p is about 0:1, and the average r is about 500.

An ideal CBIR system should demonstrate an average p of 1 and an average r of 50.

Similar evaluation tests were carried out for the state-of-the-art EMD-based color

histogram match. We used LUV color space and a matching metric similar to the

EMD described in [97] to extract color histogram features and match in the catego-

rized image database. Two di�erent color bin sizes, with an average of 13.1 and 42.6

�lled color bins per image, were evaluated. We call the one with less �lled color bins

the Color Histogram 1 system and the other the Color Histogram 2 system. Tables 7.5

and 7.6 show the performance. Figure 7.15 shows the performance when compared to
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Figure 7.15: Comparing SIMPLIcity with color histogram methods on average pre-
cision p, average rank of matched images r, and the standard deviation of the ranks
of matched images �. The lower numbers indicate better results for the last two plots
(i.e., the r plot and the � plot). Color Histogram 1 gives an average of 13.1 �lled color
bins per image, while Color Histogram 2 gives an average of 42.6 �lled color bins per
image. SIMPLIcity partitions an image into an average of only 4.3 regions.
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Category Average p Average r Average �
1 0.132 412.3 279.0
2 0.134 512.3 347.9
3 0.160 393.4 263.5
4 0.108 506.1 354.6
5 0.143 522.1 303.8
6 0.169 416.5 305.4
7 0.113 530.4 343.8
8 0.096 457.5 275.3
9 0.198 519.7 333.9
10 0.114 469.2 304.1

Table 7.6: The performance of the EMD-based color histogram approach (with an
average of 13.1 �lled color bins) on categorizing picture libraries. The average perfor-
mance for each image category evaluated by precision p, the mean rank of matched
images r, and the standard deviation of the ranks of matched images �.

the SIMPLIcity system. Clearly, both of the two color histogram-based matching sys-

tems perform much worse than the SIMPLIcity region-based CBIR system in almost

all image categories. The performance of the Color Histogram 2 system is better than

that of the Color Histogram 1 system due to more detailed color separation obtained

with more �lled bins. However, the Color Histogram 2 system is so slow that it is im-

possible to obtain matches on databases with more than 50,000 images. SIMPLIcity

runs at about twice the speed of the faster Color Histogram 1 system and still gives

much better searching accuracy than the slower Color Histogram 2 system.

7.6.3 Biomedical image databases

The evaluation for biomedical images is more di�cult than the evaluation for general-

purpose images. Ideally, the system must be incorporated into a real-world PACS

system and evaluate with pathologists or radiologists in realistic settings. Moreover,

we need to measure the user satisfaction in addition to the standard precision and

recall. In the medical domain, healthcare practitioners are typically busy during work.

They are unlike to use a CBIR system unless the system interaction is intuitive, stable,

and swift. We are currently working closely with the Radiology Department at the
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University of California at San Francisco (UCSF) and the SHINE/eSkolar project

at Stanford University to integrate our search engine in their PACS image database

management systems.

5 regions 3 regions

3 regions 6 regions

Figure 7.16: Segmentation results obtained using an algorithm based on k-means. A
region is de�ned as a collection of pixels.

The system is tolerant to imprecise image segmentation. Figure 7.16 shows the

results obtained using our fast segmentation algorithm based on the k-means algo-

rithm. Based on our approximate image segmentation, the system is able to perform

region-based matching incorporating intensity, texture, location, and shape features.

Figure 7.17 shows a sample query result. The user supplied a query with a round-

shaped cell. The Path�nder system successfully found images across di�erent resolu-

tion, each with one or more round cells and similar visual characteristics, and ranked

them according to their visual similarity to the query image. Figure 7.18 shows the

results of two hand-drawn sketch queries. Again, the system found visually similar

images.



CHAPTER 7. EVALUATION 141

Figure 7.17: A sample query result. The �rst image is the query.

7.7 Robustness

We have performed extensive experiments on the robustness of the system. Fig-

ures 7.19, 7.20, 7.21, and 7.22 summarize the results. The graphs in the �rst row

show the the changes in ranking of the target image as we increase the signi�cance of

image alterations. The graphs in the second row show the the changes in IRM dis-

tance between the altered image and the target image, as we increase the signi�cance

of image alterations.

The system is exceptionally robust to image alterations such as intensity varia-

tion, sharpness variation, intentional color distortions, other intentional distortions,

cropping, shifting, and rotation. On average, the system is robust to approximately

10% brightening, 8% darkening, blurring with a 15 � 15 Gaussian �lter, 70% sharp-

ening, 20% more saturation, 10% less saturation, random spread by 30 pixels, and

pixelization by 25 pixels.
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Figure 7.18: The results of hand-drawn sketch queries.
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Figure 7.19: The robustness of the system to intensity alterations. 6 images were
randomly selected from the database. Each curve represents the robustness on one
of the 6 images.
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Figure 7.20: The robustness of the system to sharpness alterations. 6 images were
randomly selected from the database. Each curve represents the robustness on one
of the 6 images.
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Figure 7.21: The robustness of the system to color alterations. 6 images were ran-
domly selected from the database. Each curve represents the robustness on one of
the 6 images.
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Figure 7.22: The robustness of the system to other image alterations. 6 images were
randomly selected from the database. Each curve represents the robustness on one
of the 6 images.
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These features are important to biomedical image databases because usually vi-

sual features of the query image are not identical to the visual features of those

semantically-relevant images in the database because of problems such as occlusion,

di�erence in intensity, and di�erence in focus.

In the future, we will evaluate the robustness of the EMD-based color histogram

systems and the color layout systems (e.g., WBIIS). We expect the color histogram

systems to be sensitive to intensity variation, color distortions, and cropping. Color

layout indexing is not robust to shifting, cropping, scaling, and rotation [118].

7.7.1 Intensity variation

Brighten 10%

Darken 6%

Figure 7.23: The robustness of the system to image intensity changes.
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The system seems robust to intensity changes. In Figure 7.23, a 10% brightened or a

6% darkened version of a query image can be used to �nd the original image as the

best match.

In medicine, lesions di�er by intensity from one person to another. In order to

match images from a database of images, a similarity measure must be insensitive to

slight intensity variations.

7.7.2 Sharpness variation

A blurred or a sharpened version of an image can be used to �nd the original image.

Figure 7.24 shows two examples using Gaussian blurring �lters and one example

using a sharpening �lter. This feature is important for handling hand-sketch queries

because typical hand-sketch user interfaces provide blurry query images.

This feature is crucial in medicine. Radiology images often appear blurry due

to the limitations in medical imaging technology. The sharpness di�ers from one

machine to another. It is necessary for an image matching program to be robust to

sharpness variations.

7.7.3 Color distortions

The SIMPLIcity system can tolerate many intentional color distortions. Figure 7.25

shows two examples. In the �rst example, the saturation of the targeted image is

increased by 20%. In the second example, the saturation of the targeted image is

decreased by 20%. In both cases, the system is able to locate the original image as

the best match.

This feature is important in matching color biomedical images. In pathology, im-

ages of the same type of specimens often appear in di�erent color saturation. More-

over, di�erent dye preparation results in di�erent color in the staining process.
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Blur with a 11 � 11 Gaussian �lter

Blur with a 17 � 17 Gaussian �lter

Sharpen by 70%

Figure 7.24: The robustness of the system to sharpness variations.



CHAPTER 7. EVALUATION 150

20% more saturated

20% less saturated

Figure 7.25: The robustness of the system to intentional color distortions.
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Random spread 10 pixels

Pixelize at 20 pixels

Figure 7.26: The robustness of the system to two other intentional distortions.
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7.7.4 Other intentional distortions

The SIMPLIcity system can tolerate many intentional image shape distortions. Fig-

ure 7.26 shows two examples. In the �rst example, the pixels in the query image are

randomly displaced to up to 10 pixels away. The second example is a pixelized (at

20 pixels) query image. The system is able to locate the original image as the best

match in both cases.

7.7.5 Cropping and scaling

To show the robustness of the SIMPLIcity system to cropping and scaling, querying

examples are provided in Figure 7.27. One query image is a cropped and scaled version

of the other. Using either of them as query, SIMPLIcity retrieves the other one as

the top match. Retrieval results based on both of the queries are good. However,

the retrieval performed by WBIIS using one of the images misses the other one. The

performance of SIMPLIcity is better because the IRM distance is computed using

area percentage as region signi�cance measures. The SIMPLIcity system is robust

when the cropped image di�ers slightly in area percentage of regions. On the other

hand, WBIIS is not robust to image cropping because the cropped image di�ers very

much in the layout from the original image.

7.7.6 Shifting

To test the robustness to shifting, we shifted two example images and used the shifted

images as query images. Results are shown in Figure 7.28. The original images are

both retrieved as the top match. In both cases, SIMPLIcity also �nds many other

semantically related images. This is expected since the shifted images are segmented

into regions nearly the same as those of the original images. In general, if shifting

does not a�ect region segmentation signi�cantly, the system will be able to retrieve

the original images with a high rank.
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50% cropping with SIMPLIcity

Inverse 50% cropping with SIMPLIcity

Inverse 50% cropping with WBIIS

Figure 7.27: The robustness of the system to image cropping and scaling.
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Horizontal shifting by 15%

Diagonal shifting by 22%

Figure 7.28: The robustness of the system to image shifting.
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7.7.7 Rotation

Another example is provided in Figure 7.29 to show the e�ect of rotation. SIMPLIcity

retrieves the original image as the top match. All the other images matched are also

horse pictures. For an image without strong orientational texture, such as the query

image in Figure 7.29, its rotation will be segmented into regions with similar features.

Therefore, SIMPLIcity will be able to match images similar to those retrieved by the

original image.

7.8 Speed

Rotate 45�

Flip 180�

Figure 7.29: The robustness of the system to image rotation.
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The algorithm has been implemented on a Pentium III 430MHz PC using the Linux

operating system. To compute the feature vectors for the 200; 000 color images of size

384�256 in our general-purpose image database requires approximately 60 hours. On

average, one second is needed to segment an image and to compute the features of all

regions. The speed is much faster than other region-based methods. For example, the

Blobworld system developed by University of California at Berkeley segments each

image in 8 minutes. Fast indexing has provided us with the capability of handling

external queries and sketch queries in real-time.

The matching speed is very fast. When the query image is in the database, it

takes about 1:5 seconds of CPU time on average to sort all the images in the 200,000-

image database using our similarity measure. If the query image is not already in

the database, one extra second of CPU time is spent to extract the feature from

the query image. Without feature space clustering, the complexity of the query

processing time is O(Nlog(N)), for class database size N . For example, if the size of

the \textured" class database is 10,000 images, the time to process a textured image

query is O(10000log(10000)). The current image semantic classi�cation process is

sequential. With very large image databases, we will use parallel processing to classify

the query images into semantic classes.

7.9 Summary

In this chapter, we gave some implementing details of the experimental systems we

have developed, the SIMPLIcity system and the Path�nder system. Explanations

pertaining to their performance should help in understanding their methods. We in-

troduced the data sets, the query interfaces, the accuracy evaluation, the robustness

evaluation, and the speed evaluation. In general, our SIMPLIcity system performs

much better and much faster than the systems with which we have compared it.

Besides, SIMPLIcity is robust to intensity variations, sharpness variations, color dis-

tortions, shape distortions, cropping, scaling, shifting, and rotation. The Path�nder

system, a system based on the SIMPLIcity system, provides visual similarity querying

capabilities for high-resolution biomedical image databases.
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Conclusions and Future Work

A scholar who cherishes the love of comfort

is not �t to be deemed a scholar.

| Lao-Tzu (� 570-490 B.C.)

This chapter concludes the dissertation. In Section 8.1 we summarize the main themes

of our research on semantics-sensitive integrated matching for picture libraries and

biomedical image databases. In Sections 8.2, we examine limitations of our solution.

Suggestions for future work are given in Section 8.3.

8.1 Summary

One contribution of this work is the idea that images can be classi�ed into global

semantic classes, such as textured or nontextured, indoor or outdoor, objectionable

or benign, graph or photograph, radiology and pathology, and that much can be

gained if the feature extraction scheme is tailored to best suit each class.

For the purpose of searching general-purpose image databases, we have developed

a series of statistical image classi�cation methods, including the graph-photograph,

textured-nontextured, objectionable-benign classi�ers. Evaluation over real-world im-

ages is given for each classi�cation method.

157
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We have explored the application of advanced wavelets in feature extraction and

image coding. We have developed an image region segmentation algorithm using

wavelet-based feature extraction and the k-means statistical clustering algorithm.

The algorithm is much faster than the existing algorithms. We rely on a robust

region matching measure than on precise image segmentation.

We have developed a measure for the overall similarity between images, i.e., the

Integrated Region Matching (IRM) measure, de�ned based on a region-matching

scheme that integrates properties of all the regions in the images, resulting in a simple

querying interface. The advantage of using such a soft matching is the increased

robustness against poor segmentation, an important property overlooked in previous

work.

Finally, we have implemented these methods in an experimental system SIMPLIc-

ity (Semantics-sensitive Integrated Matching for Picture LIbraries) with Web-based

query interfaces. The application of SIMPLIcity to a database of about 200,000

general-purpose images and a database of pathology images shows more accurate and

much faster retrieval compared with the existing algorithms. An important feature of

the algorithms implemented in SIMPLIcity is that it is robust to intensity variations,

sharpness variations, color distortions, other distortions, cropping, scaling, shifting,

and rotation. The system is also easier to use than other region-based retrieval sys-

tems.

8.2 Limitations

The SIMPLIcity system is not perfect. We itemize the main limitations of the system:

� Semantic classi�cation: At the current stage, we use only low-level image

semantics or semantic types in distinguishing images in the database. The per-

formance is still far from human performance in understanding image semantics.

We discuss possible future work to address these issues in the next section.

� Region-based features: Like other low-level features, region-based features

do not provide human-level perception of objects and semantics. Region-based
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systems are unlikely to be able to handle high-level queries including object

queries (e.g., �nd pictures with a double-decker bus) and image purpose queries

(e.g., �nd people �ghting, �nd happy mood pictures).

� Integrated Region Matching metric: The basic assumption of the IRM

metric is that images with similar semantics have similar object compositions

or similar regions in the feature space. This assumption may not always hold.

� Classi�ers: The statistical semantic classi�cation methods do not distinguish

images in di�erent classes perfectly. Furthermore, an image may fall into several

semantic classes simultaneously.

� Querying interfaces: The querying interfaces are not powerful enough to

allow users to formulate their queries freely. For di�erent user domains, the

query interfaces should ideally provide di�erent sets of functions.

� Evaluation: The evaluation of CBIR is still a di�cult task. We need a valid

large-scale evaluation method which gives absolute measurements of how a

CBIR system performs.

Still, SIMPLIcity provides dynamically a good selection of relevant images for

users so that searching in large-scale image databases becomes feasible.

8.3 Areas of future work

Advances in CBIR are possible in the following areas:

� Architecture: A statistical soft classi�cation architecture can be developed

to allow an image to be classi�ed based on its probability of belonging to a

certain semantic class. We are also planning to apply parallel processing for

semantic classi�cation. We will allow users to choose between overall matching

and center-weighted matching.
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� High-level classi�ers: We have obtained good progress in applying image

matching and statistics in image classi�cation. One example is the WIPE sys-

tem, described in Appendix A, an e�ective tool for Web image classi�cation.

We need to design more high-level classi�ers. We must improve existing classi-

�ers with the help of a large amount of training data and advanced statistical

methods.

� Feature selection: Region-based features and other low-level features can be

used to determine high-level semantic features. For example, a sunset scene

may contain a round region of certain bright yellow color over a dark reddish

background. Can we develop a statistical learning method to recognize cer-

tain objects and index images based on their object composition? We are also

working on to extract text from icons for image-based Web page identi�cation.

� Querying interface: We need to continue our e�ort in designing simple but ca-

pable graphical user interfaces. Domain knowledge will be required for domain-

speci�c applications, such as biomedicine. Collaborations with experts of other

�elds (e.g., psychology, library science) will be required.

� Evaluation: Science requires standard or sharable methods to assess progress.

We are planning to build a sharable testbed for statistical evaluation of di�erent

CBIR systems.

We will also evaluate the robustness of other CBIR systems. We expect the color

histogram systems to be sensitive to intensity variation, color distortions, and

cropping. Color layout indexing will be sensitive to shifting, cropping, scaling,

and rotation.

� Accuracy with very large databases: Currently, most CBIR system devel-

opers are working on relatively small-scale image databases. The database we

have used is one of the largest. However, it is still too small to experience prob-

lems that may arise from very large image databases, such as the set of images

available on the Web and being extracted by some research e�orts [18]. We
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need to create an image database with millions of images and test the retrieval

methods on this database.

� Speed with very large databases: Statistical feature clustering research

focuses mainly on well-de�ned distances such as the Euclidean distance. In

real-world CBIR systems, often special distances are used [97]. We need to

explore clustering methods for specialized metrics such as the IRM metric.

Currently, we use the disk storage to store all the feature vectors in the database.

On average, 400 bytes are used to store the feature vector of an image. A

database of 2,000,000 images takes less than 1.0 GB of space. To further speed

up the system, we may store the feature data in the main memory.

� Special image databases: We are planning to expend more e�ort on spe-

cial image databases, especially for biomedical applications. Biomedical image

databases are more challenging due to the size of the image data and the amount

of details required in representing images. Currently, we are initiating a joint

research e�ort with the Radiology Department of University of California at

San Francisco. We will develop a wavelet-based feature extraction scheme and

a region-based matching scheme for three-dimensional medical images.

� Special applications: We are interested in more applications of CBIR. For

example, we need to explore the application of CBIR in image classi�cation, for

both general-purpose pictures and biomedical images.

� High level indexing:

Finally, we are exploring the question of the extent to which high-level indexing

can be made possible. Can we build indexes so that retrieval based on high-level

queries becomes possible?



Appendix A

Image Classi�cation By Image

Matching

It pays to have a healthy skepticism about

the miracles of modern technology.

| Dennis A. Hejhal (1949- ), commenting on the Internet

A.1 Introduction

Image classi�cation is usually performed by making measurements on the image it-

self. For example, texture measurements are made to classify an image as \natural"

or \urban." This appendix describes an experiment that we carried out to deter-

mine whether an image could be classi�ed by matching the image against databases

of images, where each database belongs to a di�erent class. Because we wanted a

classi�cation problem that could not be solved in a reasonable time by making mea-

surements on the image, we selected the classes of interest as \benign images" and

\objectionable images." This classi�cation problem is an extremely di�cult one be-

cause although people can usually make the classi�cation, it is almost impossible to

formally de�ne \benign" and \objectionable."

162
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Success in this domain would show that the database matching approach to im-

age classi�cation is practical. In addition, the \benign/objectionable" problem is of

practical interest since certain users, such as children, should be denied access to

objectionable images.

Our work was inspired by the work at the computer vision group at the University

of California, Berkeley. Sections A.2 and A.3 review related work in both the software

industry and academia. We give details of our objectionable-image screening system

in Section A.4. In Section A.5, we describe a related algorithm to classify a website

based on image classi�cation.

A.2 Industrial solutions

There are many attempts to solve the problem of objectionable images in the software

industry. Pornography-free websites such as the Yahoo! Web Guides for Kids have

been set up to protect those children too young to know how to use the web browser

to get to other sites. However, it is di�cult to control access to other Internet sites.

Software programs such as NetNanny, Cyber Patrol, or CyberSitter are available for

parents to prevent their children from accessing objectionable documents. However,

the algorithms used in this software do not check the image contents. Some software

stores more than 10,000 IP addresses and blocks access to objectionable sites by

matching the site addresses, some focus on blocking websites based on text, and

some software blocks all unsupervised image access. There are problems with all of

these approaches. The Internet is so dynamic that more and more new sites and

pages are added to it every day. Manually maintaining lists of sites is not su�ciently

responsive. Textual matching has problems as well. Sites that most of us would �nd

benign, such as the sites about breast cancer, are blocked by text-based algorithms,

while many objectionable sites with text hidden in elaborate images are not blocked.

Eliminating all images is not a solution since the Internet will not be useful to children

if we do not allow them to view images.
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A.3 Related work in academia

Academic researchers are actively investigating alternative algorithms to screen and

block objectionable media. Many recent developments in shape detection, object

representation and recognition, people recognition, face recognition, and content-

based image and video database retrieval are being considered by researchers for use

in this problem [31, 34].

To make such algorithms practical for our purposes, extremely high sensitivity

(or recall of objectionable images) with reasonably high speed and high speci�city

is necessary. In this application, sensitivity is de�ned as the ratio of the number of

objectionable images identi�ed to the total number of objectionable images down-

loaded; speci�city is de�ned as the ratio of the number of benign images passed to

the total number of benign images downloaded. A perfect system would identify all

objectionable images and not mislabel any benign images, and would therefore have

a sensitivity and speci�city of 1. The \gold standard" de�nition of objectionable and

benign images is a complicated social problem and there is no objective answer. In

our experiments, we use a combination of human judgment and the source of the

images to serve as the gold standard.

For real-world application needs, a high sensitivity is desirable, i.e., the correct

identi�cation of almost every objectionable image even though this may result in

some benign images being mislabeled. Parents might be upset if their children are

exposed to even a few objectionable images.

The following properties of objectionable images found on the Internet make the

problem extremely di�cult:

� mostly contain non-uniform image background;

� foreground may contain textual noise such as phone numbers, URLs, etc;

� content may range from grey-scale to 24-bit color;

� some images may be of very low quality (sharpness);

� views are taken from a variety of camera positions;
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� a single image may be an indexing image containing many small icons;

� images may contain more than one person;

� persons in the picture may have di�erent skin colors;

� images may contain both people and animals;

� images may contain only some parts of a person;

� persons in the picture may be partially dressed.

Forsyth's research group [31, 34] has designed and implemented an algorithm to

screen images of naked people. Their algorithms involve a skin �lter and a human

�gure grouper. As indicated in [31], 52.2% sensitivity and 96.6% speci�city have

been obtained for a test set of 138 images with naked people and 1401 assorted

benign images. However, it takes about 6 minutes on a workstation for the �gure

grouper in their algorithm to process a suspect image passed by the skin �lter.

A.4 System for screening objectionable images

WIPETM (Wavelet Image Pornography Elimination) is a system we have developed

that is capable of classifying an image as objectionable or benign. The algorithm

uses a combination of an icon �lter, a graph-photo detector, a color histogram �lter,

a texture �lter, and a wavelet-based shape matching algorithm to provide robust

screening of on-line objectionable images. Semantically-meaningful feature vector

matching is carried out so that comparisons between a given on-line image and images

in a pre-marked training data set can be performed e�ciently and e�ectively.

The system is practical for real-world applications, processing queries at the speed

of less than 2 seconds each, including the time to compute the feature vector for the

query, on a Pentium Pro PC. Besides its exceptional speed, it has demonstrated 96%

sensitivity over a test set of 1,076 digital photographs found on objectionable news

groups. It wrongly classi�ed 9% of a set of 10,809 benign photographs obtained from

various sources (9% speci�city). The speci�city in real-world applications is expected
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to be much higher because benign on-line graphs can be �ltered out with our graph-

photo detector with 100% sensitivity and nearly 100% speci�city, and surrounding

text can be used to assist the classi�cation process.

Our approach is di�erent from previous approaches. Instead of carrying out a

detailed analysis of an image, we match it against a small number of feature vectors

obtained from a training database of 500 objectionable images obtained from the

Web and 8,000 benign images, after passing the images through a series of fast �lters.

If the image is close in content to a threshold number of pornographic images, e.g.,

matching two or more of the marked objectionable images in the training database

within the closest 15 matches, it is considered objectionable. To accomplish this, we

attempt to e�ectively code images based on image content and match the query with

statistical information on the feature indexes of the training database.

A.4.1 Moments

Moments are descriptors widely used in shape and region coding [42] because a

moment-based measure of shape can be derived that is invariant to translation, rota-

tion, and scale. For a 2-D continuous surface f(x; y) embedded on the xy-plane, the

moment of order (p + q) is de�ned as

mpq =

Z 1

�1

Z 1

�1
xpyqf(x; y)dxdy (A.1)

for p; q 2 NSf0g. The theory of moments has shown that the moment sequence

fmpqg is uniquely determined by f(x; y) and vice versa.

The central moment is de�ned as

�pq =

Z 1

�1

Z 1

�1

�
x� m10

m00

�p�
y � m01

m00

�q

f(x; y)dxdy: (A.2)

For discrete cases such as a digitized image, we de�ne the central moment as

�pq =
X
x

X
y

�
x� m10

m00

�p�
y � m01

m00

�q

f(x; y): (A.3)
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Then the normalized central moments are de�ned as

�pq =
�pq
�00

where  =
p + q + 2

2
(A.4)

for p+ q = 2; 3; 4; :::

A set of seven translation, rotation, and scale invariant moments can be derived

from the 2nd and 3rd moments. A detailed introduction to these moments can be

found in [42, 52]. These moments can be used to match two objectionable images

containing people having the same posture but taken from di�erent camera angles.

A.4.2 The algorithm
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Figure A.1: Basic structure of the algorithm in WIPE.

We have developed a new shape-based indexing scheme using forward and backward

Daubechies' wavelet transforms, variant and invariant normalized central moments,

and color histogram analysis that is able to capture the object posture. The screening

algorithm uses several major steps, as shown in Figure A.1. The layout of these

�lters is a result of a cost-e�ectiveness analysis. Faster �lters are placed earlier in the

pipeline so that benign images can be quickly passed.

Our design has several immediate advantages.

1. It does not rely too much on color when detecting sharp edges. That means

that naked people of di�erent races can be detected without bias. It also has
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the potential for shape-based matching of benign images. Image background

does not a�ect the querying results unless the background has sharp features.

Also, the submitted image can be of di�erent color quality.

2. We used multiresolution wavelet analysis rather than a traditional edge detector

to capture the shape information in the images. This reduces the dependence

on the quality or the sharpness of the images.

3. We used a combination of variant and invariant normalized central moments to

make the querying independent of the camera position.

Icon �lter and image normalization

We �rst apply an icon �lter to the image downloaded from the Internet. The current

implementation of the icon �lter is rather simple. If the length of any side of the

image is small, we consider the image an icon image, and hence benign.

Many color image formats are currently in use, e.g., GIF, JPEG, PPM and TIFF

are the most widely used formats on the Internet. Because images can have di�erent

formats and di�erent sizes, we must �rst normalize the data for histogram computa-

tion. For the wavelet computation and moment analysis parts of our algorithm, any

image size is acceptable. To save computation time, we rescale images using bi-linear

interpolation so that the length of the longest side is 256 pixels. Red-Green-Blue (i.e.,

RGB) color space is used for histogram computation.

Graph/photo classi�cation

We apply a classi�er to decide whether an image is a photograph, i.e., a continuous-

tone image, or, a graph image, i.e., a image containing mainly text, line graphics and

overlays. If the image is a graph image, it is very likely that the image is a benign

image map commonly used on the web pages. The details of this speci�c classi�cation

method is given in Chapter 6.

Classi�cation as a graph causes the WIPE algorithm to exit. Misclassifying a pho-

tographic image as graph image leads to false classi�cation of objectionable images.
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However, misclassifying a text image as photograph simply means that the image

is sent to the next stage �lter in the whole WIPE screening system. Consequently,

we sacri�ce the accuracy in classifying graph images to obtain very high sensitivity

in classifying photographic images. In this step, we achieved 100% sensitivity for

photographic images and higher than 95% speci�city. This result was obtained on a

database of 12,000 photographic images and a database of 300 randomly downloaded

graph-based image maps from the web.

Color histogram analysis and texture analysis

Examination of color histograms revealed that objectionable images have a di�erent

color distribution than benign images [123]. We use a total of 512 bins to compute

the histogram. An e�cient histogram analysis was designed and implemented. We

manually de�ne a certain color range in the color spectrum as human body colors.

Then we de�ne a weight for each of these colors based on the probability of being a

human body color. While this assessment was done manually, in the future version

of WIPE this will be done statistically. Finally a weighted amount of human body

colors that the given image contains can be obtained by summing over the entire

histogram. If we set a threshold of, say, 0:15, about one half of the benign images

are then classi�ed correctly, while only a small number of skin images are classi�ed

incorrectly.

The texture analysis part of the WIPE algorithm is rather simple due to the simple

texture shown by the human body in objectionable images. We statistically analyze

the histogram of the high frequency bands of the wavelet transform. If the areas of

human body colors contain much high frequency variation, we consider the area a

non-human body area.

Edge and shape detection and matching

Clearly the color histogram approach alone is not su�cient. Sometimes two images

may be considered very close to each other using this measure when in actuality they

have completely unrelated semantics.
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We apply the wavelet transform to perform multidirectional and multiscale edge

detection. Readers are referred to [4] for the theoretical arguments on the e�ec-

tiveness of a similar algorithm. Our purpose is not to obtain a high quality edge

detection algorithm for this application. Rather, since the goal here is to e�ectively

extract the conceptual shape information for objects and textural information for ar-

eas from the image, it is not necessary to produce a perceptually pleasant edge image.

Consequently, we kept the algorithm simple to achieve a fast computation speed.

We start edge detection by transforming the image using the Daubechies-3 wavelet

basis. The image is decomposed into four frequency bands with corresponding names

LL, HL, LH and HH. The notation is borrowed from the �ltering literature [117]. The

letter 'L' stands for low frequency and the letter 'H' stands for high frequency. The

left upper band is called 'LL' band because it contains low frequency information in

both the row and column directions. An even number of columns and rows in the

querying image is required due to the downsampling process of the wavelet transform.

However, if the dimensions of the image are odd, we simply delete one column or one

row of pixels from the boundaries.

The LH frequency band is sensitive to the horizontal edges, the HL band is sensi-

tive to the vertical edges, and the HH band is sensitive to the diagonal edges [24, 4].

We detect the three types of edges separately and combine them at the end to con-

struct a complete edge image. To detect the horizontal edges, we perform an inverse

Daubechies-3 wavelet transform on a matrix containing only the wavelet coe�cients

in the LH band. Then we apply a zero-crossing detector in vertical direction to �nd

the edges in the horizontal direction. The mechanism for using zero-crossing detector

to �nd the edges can be found in [4]. Similar operations are applied to the HL and

HH band, but di�erent zero-crossing detectors are applied. For the HL band, we use

a zero-crossing detector in the horizontal direction to �nd vertical edges and for the

HH band, we use zero-crossing detector in the diagonal direction to �nd diagonal

edges.

After we obtain the three edge maps, we combine them to get the �nal edge
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image. To numerically show the combination, let us denote1 the three edge maps

by E1[1 : m; 1 : n]; E2[1 : m; 1 : n] and E3[1 : m; 1 : n]. The image size is m � n.

Then the �nal edge image, denoted by E[1 : m; 1 : n], can be obtained from E[i; j] =

(E1[i; j]2+ E2[i; j]2+ E3[i; j]2)
1

2 .

Once the edge image is computed, we compute the normalized central moments

up to order �ve and the translation, rotation, and scale invariant moments based on

the gray scale edge image using the de�nitions in Section A.4.1. A feature vector

containing these 21 + 7 = 28 moments is computed and stored for each image in the

training database. When a submitted image comes in that has passed the histogram

matching step, a moment feature vector is computed and a weighted Euclidean dis-

tance is used to measure the distance of the query and an image in the training

database. The weights are determined so that matching of the 21 normalized central

moments has higher priority than the matching of the 7 invariant moments. In fact,

many objectionable images are of similar orientation.

If the query matches with objectionable images in the training database, we clas-

sify it as an objectionable image, otherwise we classify it as a benign image. The

most recent version of our WIPE system uses a better alternative. We apply the

CART (Chapter 4) algorithm on features of the matching results. For instance, we

train the CART tree over a list of manually classi�ed images and their query scores

and results. Then we use the tree generated by CART to classify new cases. The

accuracy is improved over simple nearest neighbor search.

A.4.3 Evaluation

This algorithm has been implemented on a Pentium Pro 200MHz workstation. We

selected about 500 objectionable images from news groups and 8,000 benign images

from various sources such as the COREL Photo CD-ROM series for our training

database. When we downloaded the objectionable images, we tried to eliminate those

from the same source, i.e., those of extremely similar content. To compute the training

1Here we use MATLAB notation. That is, A(m1 : n1;m2 : n2) denotes the submatrix with
opposite corners A(m1;m2) and A(n1; n2).
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feature vectors for the 8,000 color images in our database requires approximately one

hour of CPU time.

We also selected 1,076 objectionable photographic images and 10,809 benign pho-

tographic images as our queries in order to test WIPE. The matching speed is very

fast. It takes less than one second to process a submitted image and select the best

100 matching images from the 8,500 image database using our similarity measure.

Once the matching is done, it takes almost no extra CPU time to determine the �nal

answer, i.e., if the query is objectionable or benign.

(a) (b) (c) (d) (e)

Figure A.2: Typical benign images being marked mistakenly as objectionable images
by WIPE. (a) areas with similar features (b) �ne-art image (c) animals (without
clothes) (d) partially undressed human (e) partially obscured human.

Besides the fast speed, the algorithm has achieved remarkable accuracy. It has

demonstrated 96% sensitivity and 91% speci�city. Figure A.2 shows typical benign

images being mistakenly marked by the WIPE system. We expect the speci�city in

real-world applications to be much higher than we reported here because there are

many graph images in web pages. These images can be classi�ed as benign images

without any error. Also, we did not experiment on methods for assisting WIPE by

processing surrounding text. We expect the performance to be much improved once

image and textual information is combined.

A.5 Classifying objectionable websites

This section describes IBCOW (Image-based Classi�cation of Objectionable Web-

sites), a system capable of classifying a website as objectionable or benign based on

image content. The system uses WIPETM (Wavelet Image Pornography Elimination)
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and statistics to provide robust classi�cation of on-line objectionable World Wide

Web sites. Semantically-meaningful feature vector matching is carried out so that

comparisons between a given on-line image and images marked as "objectionable"

and "benign" in a training set can be performed e�ciently and e�ectively in the

WIPE module. If more than a certain number of images sampled from a site is found

to be objectionable, then the site is considered to be objectionable. The statistical

analysis for determining the size of the image sample and the threshold number of

objectionable images are given.

The system is practical for real-world applications, classifying a Web site at a speed

of less than 2 minutes each, including the time to compute the feature vector for the

images downloaded from the site, on a Pentium Pro PC. Besides its exceptional speed,

it has demonstrated higher than 97% sensitivity and 97% speci�city in classifying a

Web site based solely on images. Both the sensitivity and the speci�city in real-world

applications is expected to be higher because our performance evaluation is relatively

conservative and surrounding text can be used to assist the classi�cation process.

IBCOW can be incorporated in a World Wide Web client software program so

that a website is �rst screened by the system before the client starts to download the

contents of the website. Once the website is screened, it is saved in the local storage

so that it is considered safe for some period of time. IBCOW can also be used as

a tool for screening software companies to generate lists of potentially objectionable

World Wide Web sites.

A.5.1 The algorithm

In this section, we derive the optimal algorithm for classifying a World Wide Web

site as objectionable or benign based on an image classi�cation system like the WIPE

system developed by us.

Figure A.3 shows the basic structure of the IBCOW system. For a given suspect

website, the IBCOW system �rst downloads as many pages as possible from the web-

site by following the links from the front page. The process is terminated after a

pre-set timeout period. Once the pages are downloaded, we use a parser to extract
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Figure A.3: Basic structure of the algorithm in IBCOW.
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image URLs, i.e., URLs with su�xes such as `.jpg' or `.gif'. N randomly selected

images from this list are downloaded from this website. Then we apply WIPE to

classify the images. If at least a subset, say r � N images (r < 1), of the N im-

ages are classi�ed as objectionable by the WIPE system, the website is classi�ed as

objectionable by the IBCOW system; otherwise, the website is classi�ed as a benign

website. The following subsection will address the ideal combination of N and r given

the performance of WIPE using statistical analysis.

A.5.2 Statistical classi�cation process for websites

In order to proceed with the statistical analysis, we must make some basic assump-

tions. A World Wide Web site is considered a benign website if none of the images

provided by this website is objectionable; otherwise, it is considered an objectionable

website. This de�nition can be re�ned if we allow a benign website to have a small

amount, say, less than 2%, of objectionable images. In our experience, some websites

that most of us would �nd benign, such as some university websites, may still contain

some personal homepages with a small number of partially naked movie stars' images.
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Figure A.4: Distributions assumed for the percentage (p) of objectionable images on
objectionable websites.

For a given objectionable website, we denote p as the chance of an image on the

website to be an objectionable image. The probability p varies between 0:02 and 1

for various objectionable websites. Given a website, this probability equals to the
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percentage of objectionable images over all images provided by the website. The

distribution of p over all websites in the world physically exists, although we would

not be able to know what the distribution is. Therefore, we assume that p obeys

some hypothetical distributions, which are as shown in Figure A.4.

The performance of our WIPE system was evaluated by two parameters: sensitiv-

ity, denoted as q1, is the accuracy of detecting an objectionable image as objectionable,

and speci�city, denoted as q2, the accuracy of detecting a benign image as benign.

The false positive rate, i.e., the failure rate of blocking an objectionable image, is

thus 1� q1, and the false negative rate, i.e., the false alarm rate for benign images, is

1� q2.

For IBCOW, wemust �nd out the minimumnumber of images, denoted as N , from

a suspect website to be tested by the WIPE module in order to classify a website as

objectionable or benign at a con�dence level �, i.e., with a probability 1�� of being

correct. The con�dence level requirements on objectionable websites and benign

websites may di�er. For objectionable websites, we denote the desired con�dence

level to be �1, while for benign websites, we denote the desired con�dence level to be

�2. Furthermore, we must decide the threshold, denoted as r, for the percentage of

detected objectionable images at which the IBCOW systemwill classify the website as

objectionable. Therefore, the system tests N images from a website and classi�es the

website as objectionable if more than r�N images are detected as objectionable by

WIPE. Our objective is that when a website is rated as objectionable with probability

higher than 1� �1, it will be classi�ed as objectionable, and when a website is rated

benign, with probability higher than 1 � �2, it will be classi�ed as benign.

According to the above assumptions, we can calculate the probabilities of misclas-

sifying objectionable websites and benign websites. We start with the simpler case of

benign websites.

Pf classified as benign j a website is benign g = P (I2 � rN) ; (A.5)

where I2 is the number of images detected as objectionable by WIPE. Since I2 is a
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binomial variable [67] with probability mass function

pi =

�
n

i

�
(1 � q2)

iqn�i2 ; i = 0; 1; ::: ; n ; (A.6)

we have

P (I2 � rN) =

[rN ]X
i=1

�
N

i

�
(1 � q2)

iqn�i2 : (A.7)

Similarly, for objectionable websites, we get

Pf classified as objectionable j a website is objectionable g = P (I1 > rN) :(A.8)

For an objectionable website, suppose that any image in this website has prob-

ability p of being objectionable and it is independent of the other images, then the

probability for this image to be classi�ed as objectionable image is evaluated as fol-

lows:

Pf classified as objectionable g
= P (A)P ( classified as objectionable j A) +

P ( ~A)P ( classified as objectionable j ~A)
= pq1 + (1 � p)(1� q2)

where

A = f the image is objectionable g;
~A = f the image is benign g :

For simplicity, we denote

�(p) = pq1 + (1 � p)(1 � q2) : (A.9)
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Similarly, I1 follows a binomial distribution with a probability mass function

pi =

�
n

i

�
(�(p))i(1� �(p))n�i ; i = 0; 1; ::: ; n : (A.10)

For this speci�c website,

P (I2 > rN) =
NX

[rN ]+1

�
N

i

�
(�(p))i(1� �(p))n�i : (A.11)

If p follows a truncated Gaussian distribution, i.e., the �rst hypothetical distribu-

tion, we denote the probability density function of p as f(p). Thus,

Pf classified as objectionable j a website is objectionable g

=

Z 1

0

2
4 NX
[rN ]+1

�
N

i

�
(�(p))i(1� �(p))n�i

3
5 f(p)dp :

(A.12)

As N is usually large, the binomial distribution can be approximated by a Gaus-

sian distribution [67]. We thus get the following approximations.

Pf classified as benign j a website is benign g

=

[rN ]X
i=1

�
N

i

�
(1 � q2)

iqn�i2 � �

 
(r � (1� q2))

p
Np

q2(1� q2)

!
;

(A.13)

where �(�) is the cumulative distribution function of normal distribution [67]. Sup-

posing r > (1 � q2), the above formula converges to 1 when N !1.



APPENDIX A. IMAGE CLASSIFICATION BY IMAGE MATCHING 179

Pf classified as objectionable j a website is objectionable g

�
Z 1

0

 
1 � �

 
(r � �(p))

p
Np

�(p)(1 � �(p))

!!
f(p)dp ; (A.14)

where �(p) = pq1 + (1 � p)(1 � q2) as de�ned before.

When r < �(p),

lim
N!1

�

 
(r � �(p))

p
Np

�(p)(1 � �(p))

!
! 0 : (A.15)

Obviously, for any reasonable objectionable-image screening system, q1 > 1 � q2,

i.e., the truth positive (TP) rate is higher than the false positive (FP) rate. Hence, we

can choose r so that r 2 (1�q2; �q1+(1��)(1�q2)) for � > 0. The inequality r > 1�q2
will guarantee that the probability of misclassifying benign websites approaches zero

when N becomes large, which we concluded in a previous analysis. On the other hand,

the inequality r < �q1 + (1 � �)(1 � q2) will enable the probability of misclassifying

objectionable websites to become arbitrarily small when N becomes large.

To simplify notation, we let

�r;N(p) = 1 � �

 
(r � �(p))

p
Np

�(p)(1 � �(p))

!
: (A.16)

Note that

Z 1

0

�r;N(p)f(p)dp �
Z 1

�

�r;N(p)f(p)dp : (A.17)

By increasing N , we can choose arbitrarily small � so that �r;N(p) is as close to

1 as we need, for all p > �. Hence,
R 1

�
�r;N(p)f(p)dp can be arbitrarily close toR 1

�
f(p)dp. Since we can choose � arbitrarily small, this integration approaches to 1.

In conclusion, by choosing r slightly higher than 1� q2 and N large, our system can

perform near-perfect classi�cation of both objectionable and benign websites.
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As we only require a con�dence level �, i.e., 1�� correctness, we have much more

freedom in choosing r and N . Our WIPE system can provide a performance with

q1 = 96% and q2 = 91%. The actual q1 and q2 in real world can be higher because

icons and graphs on the Web can be easily pre-classi�ed with close to 100% sensitivity.

When we assume f(p) being a truncated Gaussian with mean �p = 0:5 and standard

deviation � = 0:2, which is plotted in Figure A.4, we may test N = 25 images

from each website and mark the website as objectionable once 5 or more images are

identi�ed as objectionable by the WIPE system. Under this con�guration, we can

achieve higher than 97% correctness for classifying both objectionable websites and

benign websites.
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Figure A.5: Dependence of correct classi�cation rates on sensitivity and speci�city
of WIPE (for the Gaussian-like distribution of p). Left: q2 = 91%, q1 varies between
80% to 100%. Right: q1 = 96%, q2 varies between 80% to 100%. Solid line: correct
classi�cation rate for objectionable websites. Dash dot line: correct classi�cation rate
for benign websites.

If we �x the decision rule of our system, i.e., test a maximum of 25 images from

each website and mark the website as objectionable once 5 or more images are identi-

�ed as objectionable, the percentages of correctness for classi�cation of both types of

websites depend on the sensitivity parameter q1 and the speci�city parameter q2. By

�xing q2 to 91% and changing q1 between 80% to 100%, the percentages of correctness

for both types of websites are shown in the left panel of Figure A.5. Similarly, the

results are shown in the right panel of Figure A.5 for the case of �xing q1 to 96%
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and changing q2 between 80% to 100%. As shown in the graph on the left side, when

q2 is �xed, the correct classi�cation rate for benign websites is a constant. On the

other hand, the correct classi�cation rate for objectionable websites degrades with the

decrease of q1. However, the decrease of the correct classi�cation rate is not sharp.

Even when q1 = 0:8, the correct classi�cation rate is higher than 92%. On the other

hand, when q1 = 96%, no matter what q2 is, the correct classi�cation rate for objec-

tionable websites is always above 90%. The rate of correctness for benign websites

monotonically increases with q2. Since benign images in an objectionable website are

less likely to be classi�ed as objectionable when q2 increases, the number of objec-

tionable images found in the set of test images is less likely to pass the threshold 5.

As a result, the correct classi�cation rate for objectionable websites decreases slightly

with the increase of q2. However, the correct classi�cation rate will not drop below

90%.

In the above statistical analysis, we assumed that the probability of an image being

objectionable in an objectionable website has distribution f(p) with mean 0:5. In real

life, this mean value is usually higher than 0:5. With a less conservative hypothetical

distribution of p, as shown in the right panel of Figure A.4, we can achieve higher

than 97% correctness by testing only 12 images from each website and marking the

website as objectionable if 3 or more images are identi�ed as objectionable by the

WIPE system.

A.5.3 Limitations

The screening algorithm in our IBCOW system assumes a minimum of N images

downloadable from a given query website. For the current system set up, N can be

as low as 12 for the less conservative assumption. However, it is not always possible

to download 12 images from each website. We have noticed that some objectionable

websites put only a few images on its front page for non-member netters to view

without a password. For these websites, surround text will be more useful than

images in the classi�cation process. Also, we are considering to assign probabilities

of objectionable to such sites based on accessible images.
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In the statistical analysis, we assume each image in a given website is equally

likely to be an objectionable image. This assumption may be false for some websites.

For example, some objectionable websites put objectionable images in deep links and

relatively benign images in front pages. In this case, we have to download more

images from the website.

A.5.4 Evaluation

This algorithm has been implemented on a Pentium Pro 200MHz workstation. We

selected 20 objectionable websites and 40 benign websites from various categories. It

takes in general less than 2 minutes for the system to process each website. Besides

the fast speed, the algorithm has achieved remarkable accuracy. It correctly identi�ed

all the 20 objectionable websites and did not mismark any one of the 40 benign

websites. We expect the speed to be much faster once image and textual information

is combined in the classi�cation process.

A.6 Summary

In this appendix, we described the application of our CBIR system to the problem

of image classi�cation. An experimental system, targeted to the classi�cation of

Web images, has been developed. Success in this domain showed that the database

matching approach to image classi�cation is practical. Classifying biomedical images

may be possible with this approach combined with a large amount of training image

data. The \benign/objectionable" problem is of practical interest since certain users,

such as children, should be denied access to objectionable images.
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