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Abstract: With the rapid expansion of computer networks, communication and
storage of medical information has entered a new era. Teleclinical practice and com-
puter digital storage are two important medical information technologies that have
made the issue of data compression of crucial importance. E�ciently compressing
data is the key to making teleclinical practice feasible, since the bandwidth provided
by computer media is too limited for the huge amount of medical data that must
be transmitted. Because of the high compressibility of the medical images, data
compression is also desirable for digital storage despite the availability of inexpen-
sive hardware for mass storage. This chapter addresses the family of progressive
image compression algorithms. The progressive property is preferred because it al-
lows users to gradually recover images from low to high quality images and to stop at
any desired bit rate, including lossless recovery. A progressive transmission algorithm
with automatic security �ltering features for on-line medical image distribution using
Daubechies' wavelets has been developed and is discussed in this chapter. The sys-
tem is practical for real-world applications, processing and coding each 12-bit image
of size 512�512 within 2 seconds on a Pentium Pro. Besides its exceptional speed, the
security �lter has demonstrated a remarkable accuracy in detecting sensitive textual
information within current or digitized previous medical images.

12.1 INTRODUCTION

Health care is exceptionally information intensive, and the United States spends
hundreds of billions of dollars each year in processing and managing such in-
formation [16]. However, it is becoming increasingly di�cult to maintain and
retrieve health care information manually as more and more advanced medical
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equipment is used in diagnosis and management of disease. Besides the tradi-
tional textual data such as patient reports, health care records are being �lled
with X-ray images, MRI scans, CT scans, 3-D volume reconstructions, and
video streams. E�cient lossless medical image compression and progressive
transmission is becoming increasingly important.

As the demand for greater accessibility to health care information grows,
medical institutions are being urged to make information available to legitimate
external parties in a timely fashion (e.g., on-line) while protecting the privacy of
patient data [2]. It is therefore crucial that health care institutions be provided
with on-line tools that allow them to disseminate medical information without
compromising data privacy [22, 3]. In this chapter, we present a wavelet-based
lossless medical image compression and progressive transmission algorithm that
also detects textual information (including identifying information) from some
current or digitized previous medical images. Textual terms not known to
be innocuous are eliminated [35]. The resulting processed images can then be
made available to medical researchers, second-opinion physicians, students, and
other legitimate users after being processed by our algorithm. Such a tool could
be used by health care institutions and other repositories of medical images as
part of a real-time medical image distribution system.

12.1.1 Related Work

Image Compression and Progressive Transmission. Currently, there
are many compression and progressive transmission algorithms available. In-
terested readers are referred to [5, 23, 24, 25, 36]. Progressive transmission
algortihms rapidly provide successively better approximations to the input im-
age as the digital data arrives from the network. The progressive property
allows users to truncate an image data sequence and still get a reasonably
good recovery of the image under this bit rate. Fully embedded compression
algorithms generate image data sequences that can be truncated anywhere.
Because successive approximation of images solves the con
ict of di�erent re-
quirements on image qualities, it is valuable in many applications, especially for
medical images because of the wide range of quality requirements in retrieval
and diagnosis. GIF89a, a predominant graphics format on the Web, has build-
in interlaced progressive transmission and lossless compression algorithms. It
is not suitable for medical image transmission due to the high blocky e�ect
introduced in images prior to the last frame.

Since wavelet transforms decompose images into several resolutions, the co-
e�cients, in their own right, form a successive approximation of the original
images. Because of this property, wavelet transforms are naturally suited for
progressive image compression algorithms. As a result, many current progres-
sive compression algorithms use wavelet transforms as an initial step [26, 23].
This trend became stronger after Shapiro's [26] invention of the zerotree struc-
ture for wavelet coe�cients. Much subsequent research has taken place based
on the zerotree idea, including a very signi�cant improvement made by Said
and Pearlman [23], which is referred to as the S & P algorithm. This algorithm

280



WAVELET-BASED PROGRESSIVE TRANSMISSION ...

was applied to a large database of mammograms [1, 21] and was shown to be
highly e�cient using real clinical-quality evaluations. An important character-
istic of the S & P algorithm and many other progressive compression algorithms
is the encoding and decoding simplicity from the decorrelation of images into
di�erent frequency bands brought by the wavelet transforms. No training is
needed since trivial scalar quantization of the coe�cients is applied in the com-
pression process. However, by sacri�cing simplicity, recent research [12] has
made improvements on the S & P algorithm by tuning the zerotree structure
to speci�c data.

Image Security: Eye Detection and Text Detection. Before digital
medical images in computer-based patient record systems can be distributed
online, it is necessary for con�dentiality reasons to eliminate patient identi�ca-
tion information that appears in the images.

Face and eye detection algorithms [4, 15, 19] are at a mature stage of devel-
opment in the computer vision community. For photographic medical images,
it is necessary to use such an algorithm to detect and eliminate human eyes in
order to protect patient privacy. Since the system we are developing deals with
radiological images, such an algorithm is not necessary.

With the DICOM standard, it is easy to eliminate textual information such
as patient name and ID. However, for digitized �lms or previous history images,
a computerized detection and elimination algorithm is needed. The problem
of text identi�cation [17, 27] arises in many applications other than medical
security. Document understanding systems locate text and �gure captions on
a page for processing by optical character recognizers. The detection of text in
scanned maps and mechanical, electrical, and piping drawings is important for
converting the paper form to computer-analyzable form. Work done by Uni-
versity of Maryland [11, 13] uses neural network, texture and multiresolution
analysis to segment the documents into areas of text and areas of image or
graphics. However, the algorithms used in such systems are not designed to
handle superimposed text because it is di�cult to di�erentiate the edges of text
from the edges of the medical objects in the image, as illustrated in Figure 12.2.

12.1.2 Overview of Our Work

In this project, we have developed a wavelet-based progressive lossless com-
pression and transmission algorithm that takes advantage of the Daubechies'
wavelet transforms we used in the textual information detection and elimination
(TIDE) module of the system. The current implementation of this algorithm is
much simpler and hence faster than that of the top-of-the-line algorithms men-
tioned above. The tradeo� is the recovering image quality at a given bit rate.
The quality loss in terms of PSNR compared with the S & P algorithm is within
2dB. However, our purpose of presenting it is mainly to explain the basic ideas
of progressive transmission based on wavelet transforms and to demonstrate an
e�cient combination of text detection and progressive lossless compression and
transmission of digital medical images in our TIDE system.
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The TIDE module in the system consists of an e�cient and accurate al-
gorithm to distinguish areas with and without textual information in digital
or digitized medical images. Areas with text can then be blurred or striped.
Because variations in the diagonal directions can be found in almost all Roman
characters or Arabic numbers, we use Daubechies' wavelets and analysis tech-
niques to detect the high frequency variation in the diagonal direction that is
indicative of text. A mask is used to preserve the losslessness of non-textual
areas. With some basic knowledge of the machine used to create the image,
we are able to eliminate only sensitive patient identi�cation information while
retaining the medical information in the image. Excellent results have been
obtained in experiments using a large set of real-world medical images, many
with superimposed text.

12.2 BACKGROUND ON DAUBECHIES' WAVELETS

Discrete Fourier Transforms are currently used e�ectively in signal and image
processing because of the frequency domain localization capability. They are
ideal for analyzing periodic signals because the Fourier expansions are periodic.
However, because of their in�nite extensibility, they do not have the spatial lo-
calization property needed to locate accurately areas with text within a medical
image.

Two mathematical methods are available for non-periodic signals, the Win-
dowed Fourier Transform (WFT) and the wavelet transform. The WFT ana-
lyzes the signal in both spatial and frequency domains simultaneously by en-
coding the signal through a scaled window related to both location and local
frequency. Therefore, signals are easily underlocalized or overlocalized in the
spatial domain if the spatial behavior is inconsistent with the frequency of the
signal. Since we do not know the exact size of the fonts used in the medical
images we are dealing with, 
exible and adaptive localization is necessary.

Wavelets are basis functions that have some similarities to both splines and
Fourier series. They have advantages when the aperiodic signal contains many
discontinuities or sharp changes. Wavelets, developed in mathematics, quan-
tum physics, and statistics, are functions that decompose signals into di�erent
frequency components and analyze each component with a resolution match-
ing its scale. Applications of wavelets to signal denoising, image compression,
image smoothing, fractal analysis and turbulence characterization are active
research topics.

Wavelet analysis is based on an approach developed by Haar [20]. Haar
found orthonormal bases de�ned on [0; 1], namely h0(x); h1(x); ::::::; hn(x); :::,
other than the Fourier bases, such that for any continuous function f(x) on
[0; 1], the series

1X
j=1

< f; hj > hj(x) (12.1)

converges to f(x) uniformly on [0; 1]. Here, < u; v > denotes
R 1
0
u(x)v(x)dx

and v is the complex conjugate of v.
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One version of Haar's construction [20] can be written as follows:

h(x) =

8<
:

1; x 2 [ 0; 0:5 )
�1; x 2 [ 0:5; 1 )
0; elsewhere

(12.2)

hn(x) = 2j=2h(2jx� k) (12.3)

where n = 2j + k, k 2 [ 0; 2j ), x 2 [ k2�j; (k + 1)2�j ).
One drawback of using Haar's base function to decompose images is that

the Haar transform cannot e�ciently separate image signals into low frequency
and high frequency bands. From the signal processing point of view, since the
wavelet transform is essentially a convolution operation, performing a wavelet
transform on an image is equivalent to passing the image through a low-pass
�lter and a high-pass �lter. The low-pass and high-pass �lters corresponding
to the Haar transform do not have a sharp transition and fast attenuation
property. Thus, the low-pass �lter and high-pass �lter cannot separate the
image into clean distinct low frequency and high frequency parts.

Another basis for wavelets is that of Daubechies wavelet transform with
longer length �lters [9] that has better frequency properties. For each integer
r, Daubechies' orthonormal basis [10, 18] for L2(R) is de�ned as

�r;j;k(x) = 2j=2�r(2
jx� k); j; k 2Z (12.4)

where the function �r(x) in L2(R) has the property that f�r(x� k)jk 2Zg is
an orthonormal sequence in L2(R).

Then the trend fj , at scale 2�j, of a function f 2 L2(R) is de�ned as

fj(x) =
X
k

< f; �r;j;k > �r;j;k(x): (12.5)

The details or 
uctuations are de�ned by

dj(x) = fj+1(x)� fj(x): (12.6)

To analyze these details at a given scale, we de�ne an orthonormal basis  r(x)
having properties similar to those of �r(x) described above.

The functions �r(x) and  r(x), called the father wavelet and the mother
wavelet, respectively, are the wavelet basis functions required by the wavelet
analysis. Figure 12.1 shows some popular mother wavelets. The family of
wavelets such as those de�ned in Eq. 12.4 are generated from the father or the
mother wavelet by change of scale and translation in time (or space in image
processing).

Daubechies' orthonormal basis has the following properties:

 r has the compact support interval [0; 2r+ 1];

 r has about r=5 continuous derivatives;
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Figure 12.1 Plots of some analyzing wavelets. First row: father wavelets,

�(x). Second row: mother wavelets,  (x)

R1
�1

 r(x)dx = ::: =
R1
�1

xr r(x)dx = 0.

Daubechies' wavelets give remarkable results in image analysis and synthesis
due to the above properties. In fact, a wavelet function with compact support
can be easily implemented by �nite length �lters. This �nite length prop-
erty is important for spatial domain localization. Furthermore, functions with
more continuous derivatives analyze continuous functions more e�ciently and
avoid the generation of edge artifacts. Since the mother wavelets are used to
characterize details in the signal, they should have a zero integral so that the
trend information is stored in the coe�cients obtained by the father wavelet.
A Daubechies' wavelet representation of a function is a linear combination of
the wavelet function elements.

Daubechies' wavelets are usually implemented in numerical computation by
quadratic mirror �lters [20]. Multiresolution analysis of trend and 
uctuation
is implemented using convolution with a low-pass �lter and a high-pass �lter
that are versions of the same wavelet. For example, if we denote the sampled
signals as x(n); n 2Z, then

F0(x(n)) =
1p
2
(x(n) + x(n+ 1)) (12.7)

F1(x(n)) =
1p
2
(x(n)� x(n+ 1)) (12.8)

are quadratic mirror �lters for Haar's wavelet.
Besides the advantage of the multiresolution approach, resulting a highly

e�cient algorithm design, Daubechies' wavelets o�er a wide range of 
exibility.
We may select the appropriate wavelet basis to obtain the exact amount of

uctuation we desire in the high-frequency bands. Clean separation of high-
frequency and low-frequency information is essential for an e�cient compression
algorithm. We have used Daubechies' wavelets also in content-based image re-
trieval [29, 31] and a system for screening objectionable images [30, 32, 33]. Our
group is currently considering how to integrate a wavelet-based medical image
indexing and retrieval algorithm with the TIDE system for on-line medical
image distribution.
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Source image

Traditional edge detection

HH band of Daubechies-4 wavelet transform

Figure 12.2 Comparison of traditional edge detection and Daubechies-

4 wavelet transform in distinguishing areas with and without textual

information. Name of the patient was manually blackened in the source image.
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In textual information detection, especially for superimposed text, we want
to distinguish areas with and without textual information as e�ectively as pos-
sible. When using the Haar wavelet, we obtain too much noise in the high-pass
bands within the non-text areas. Traditional edge detection algorithms have
the same problem, as illustrated in Figure 12.2. For both of the two algo-
rithms, it would be di�cult to di�erentiate the edges of text from the edges of
the objects in the image. In our TIDE system, we use Daubechies-4 wavelet
basis to obtain a clean separation of a medical image into low frequency and
high frequency bands. In Figure 12.2, clusters of bright pixels, corresponding
to large coe�cients, occur in regions of the image that contain text.

12.3 THE ALGORITHM

12.3.1 Overview

We have developed a new progressive transmission algorithmwith textual infor-
mation detection and elimination for digital medical images using Daubechies'
wavelet transforms. Figure 12.3 shows the basic structure of the algorithm.

We apply anN -level fast wavelet transform (FWT) with Daubechies-4 wavelet
to each medical image, where N is determined adaptively by the image size. If
the image is of DICOM standard, we may eliminate the patient identi�cation
information without processing the image content. The wavelet transform code
can be directly passed to the progressive transmission and lossless compression
coding routine.

For non-DICOM images, we extract and analyze the lower right-hand cor-
ners of each level of the transform matrix, where the diagonal directional high
frequency information is located, to obtain a mask containing only the areas
with textual information. Once such a mask is computed, we apply it to all
the high-frequency bands to eliminate the text within areas with textual data.
Or, we may apply the mask selectively to all the frequency bands to block the
areas with text. Knowledge of the rough location (e.g., which one of four cor-
ners) of the critical patient identi�cation information of certain type of medical
images or the TIHI system [35] is used to eliminate only information needed to
be deleted while preserving the rest. When we do not have knowledge of the
rough location of patient identi�cation information, we may apply the mask to
eliminate all textual information within the medical image.

Then we pass the processed wavelet transform code to a new adaptive pro-
gressive transmission and lossless compression coding routine. To achieve pro-
gressive secure transmission, we may also apply a PGP encryption [14] to the
code segments before sending the data to the TIDE client via public network.

Our text detection algorithm has several immediate advantages.

1. Unlike traditional approaches, such as the neural network, our algorithm
does not depend on the actual font size, font type and style of the text in
the medical image. Experiments indicate that the algorithm is capable of
handling images with superimposed hand-written text and even foreign
languages. Figure 12.12 shows one example with hand-written text.
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Figure 12.3 Basic structure of the algorithm used in TIDE.

2. We used Daubechies' wavelets rather than a traditional edge detector to
capture the high frequency information in the images. This reduced the
dependence of the results on the quality or the sharpness of the images.

3. The algorithm does not rely on the color of the image or the text. It also
has minimum dependence on the contrast between text and background
objects.

4. It is faster than other algorithms due to our adaptive multiresolution
approach.

5. Wavelet-based algorithm using Daubechies' wavelets can be easily inte-
grated with cutting-edge image compression, compressed-domain index-
ing and processing algorithms.

6. Our wavelet-based compression and progressive transmission algorithm
does not have edge artifacts found in many non-wavelet-based compres-
sion algorithms.

12.3.2 Pre-processing

Many medical image formats and bit rates are currently in use. DICOM, PPM,
GIF, JPEG and TIFF are the most widely used formats. Because the images
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Figure 12.4 Naming convention for a wavelet transform.

may have di�erent format, we must �rst normalize the data for computation.
A gray-scale PPM image of any size is adequate for our textual information
detection algorithm. A color medical image may be considered equivalent to
three gray-scale images. The range of the values of each pixel, or the number of
bits per pixel, for the PPM image is not limited for our algorithm. Usually it is
adequate to use 12 bits per pixel to store a reasonably clear gray-scale medical
image. If the core memory of the computer cannot handle some very large
medical images, we must partition the image and perform the same operations
on each portion of the original image.

In order to perform an N -level wavelet transform to a medical image, we
must make sure the size of the image is suitable, i.e., the number of pixels on
each side of the imagemust be divisible by 2N . This is due to the downsampling
process of the wavelet transform. For images that do not satisfy this constraint,
we may simply extend the boundary row or column of the original image to
form a larger image that satis�es this constraint.

12.3.3 Wavelet Transform

In this step, we apply an N -level wavelet transform to the image obtained
from the pre-processing step. Here, N is determined adaptively so that the
smallest band obtained in the highest level wavelet transform contains at least
8 � 8 pixels. We do not need a high quality edge detection algorithm for this
application. Since the goal here is to e�ectively distinguish the areas with
and without textual information, it is not necessary to produce a perceptually
pleasant edge image. Consequently, we try to keep the algorithm simple to
achieve a fast computation speed.
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Figure 12.5 Daubechies' wavelet transform in TIDE. Name of the patient

was manually blackened in the source image.

We start the process by transforming the gray-scale PPM image converted
from the pre-processing using the Daubechies-4 wavelet basis. Figure 12.5
shows a 3-level wavelet transform on a medical image with superimposed text.
The image is decomposed into four frequency bands with corresponding names
marked in Figure 12.4. Then the low-pass band is decomposed into four smaller
frequency bands to replace the low-pass band in the �rst level decomposition,
and so on.

For simplicity, we borrow the notation from the �ltering literature [28]. The
letter `L' stands for low frequency and the letter `H' stands for high frequency.
The left upper band is called `LL' band because it contains low frequency
information in both the row and column directions. We avoid the details of ex-
plaining the �ltering terminologies here; interested readers are referred to [28].

The LH frequency band in each level is sensitive to the horizontal edges
for that level of scale, the HL band is sensitive to the vertical edges, and
the HH band is sensitive to the diagonal edges [10]. For the medical images
that our system is designed for, the HH bands are much better for dealing
with the distinctions between areas with and without text. In fact, variations
in the diagonal directions can be found in almost all Roman characters or
Arabic numbers. Such variations are detected much more frequently in areas
with textual information than those with only medical objects, if we make a
reasonable assumption that, in general, the text in the medical image is small
compared to the objects in the image. The LH bands and the HL bands are not
useful for distinguishing areas with and without textual information. As shown
in Figure 12.6, vertical clusters of points can be found in both text areas and
non-text areas in the HL band, and horizontal clusters of points can be found
for the LH band. Therefore, we consider only the HH bands in the lowest 3 to
4 levels for textual information detection and elimination module.
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12.3.4 Text Detection and Elimination for Digitized Images
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Figure 12.6 HL band and LH band are not suitable for detecting tex-

tual information within medical images.
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Figure 12.7 Wavelet coe�cient analysis in the TIDE algorithm.

Analysis of the HH bands is required to avoid the incorrect elimination of
diagonal-wise variations in areas of the image without text. Without loss of
generality, we assume that the original image after pre-processing is of size
2n � 2n. Then the wavelet transform W (1 : 2n; 1 : 2n)1 is a matrix of size
2n� 2n. The process is similar if the image is not a squared image.

In this step, we process the HH matrices in a few frequency bands, depending
on the size of the original image. For an image of size close to 512 � 512, we
consider the HH1(1 : n; 1 : n) = W (n + 1 : 2n; n + 1 : 2n) matrix and the

1Here we use MATLAB notation. That is, A(m1 : n1;m2 : n2) denotes the submatrix with
opposite corners A(m1;m2) and A(n1; n2).
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HH2(1 :
n
2
; 1 : n

2
) = W (n

2
+ 1 : n; n

2
+ 1 : n) matrix obtained from the previous

step. Binary matrices, denoted as B1(1 : n; 1 : n) and B2(1 : n
2
; 1 : n

2
), are

constructed from the HH1 and HH2 matrices so that the largest k = O(n)
coe�cients in magnitude in the HH matrix are replaced by 1 and all other
coe�cients are replaced by 0. k is determined adaptively by the size of the HH
matrices. Then we use a moving square window matrix of about w � w pixels
to determine the isolated points in the binary matrix by setting a threshold for
the minimum number of non-zero points in such a moving window. For a B
matrix of size 256� 256, w = 20 is appropriate. The isolated points in B1 and
B2 matrices are then deleted because they represent diagonal-wise variations
in the areas without text. Note that we consider HH matrices of lower scales if
the original image is a lot larger than 512� 512.

Full image Upper-right corner

Figure 12.8 Final images after wavelet reconstruction. After text detection,

we use the TIHI process or some other basic knowledge of the location to eliminate any text

not known to be innocuous.

Denote B0
1(1 : n; 1 : n) and B

0
2(1 :

n
2
; 1 : n

2
) the matrices without the isolated

points, converted from B1(1 : n; 1 : n) and B2(1 :
n
2
; 1 : n

2
), respectively. Then

we group up the remaining points in the matrices B0
1 and rescaled B0

2 to form
a matrix Mask(1 : n; 1 : n) containing detected textual areas. We amend the
mask using the TIHI or some other basic knowledge of the rough location of
the patient identi�cation information. Finally, we rescale the amended mask
appropriately and apply it to the high-frequency bands of the wavelet transform
to eliminate the text. Alternatively, we may apply the amended mask to all the
frequency bands to obtain a blocked �nal image. Figures 12.7 shows the HH
band, and the result after isolated points are eliminated to detect text areas.
Figure 12.8 shows the image with text eliminated.

12.3.5 Wavelet-based Lossless Compression and Progressive Transmission

Since wavelet transforms using Daubechies' advanced wavelet basis are used in
the textual information detection module, we have designed and implemented
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Figure 12.9 Cross-band dependencies in the zerotree algorithm.

a wavelet-based lossless compression and progressive transmission algorithm to
incorporate compression with the TIDE module for secure and e�cient medical
image distribution.

We compared the performance of the current implementation of our algo-
rithm with one of the best available image compression algorithms on a few
common benchmark images. We have achieved comparable results, and we
expect the performance to be improved if we take into consideration the cross-
band correlation of wavelet coe�cients. The structure of cross-band correlation
captured in the zerotree algorithms is illustrated in Figure 12.9.

Our coding algorithm at the server side is outlined as follows:

1. Assume the processed wavelet transform from textual information detec-
tion part contains N levels. Group the wavelet coe�cients into N + 1
bands. Band 0 is the LL band of level 0 and band i is the combination
of HL, LH and HH bands at the decomposition level i. Fig. 12.4 shows
the details of this naming convention. We write N to the channel. For
simplicity, we say output N .

2. Calculate and output necessary header parameters

(a) Output the size of the image

(b) Calculate the mean value of the coe�cients in Band 0, denote the
mean value by �c and output �c. Update the coe�cients by subtracting
the coe�cients in Band 0 by �c.

(c) Calculate the maximum absolute value of the coe�cients, denote it
by cmax and output cmax. Also calculate the maximumabsolute val-
ues of the coe�cients in all the bands, denote them by c0; c1; :::; cN.
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(d) Calculate the variances of the coe�cients in the N + 1 bands sepa-
rately. Denote the variances by vi; i = 0; :::; N . Denote the starting
encoding bit plane for band i as Si; i = 0; :::; N , which is determined
as follows,

S0 = 0;

Si = max(0;

�
log

�
v0
vi

��
):

The base of the logarithm is 2. Output Si; i = 1; :::; N .

3. Encode the coe�cients as speci�ed below. The output bits are then
losslessly encoded by run-length coding. For notational simplicity, we
omit pointing out that the output bits are being encoded by run-length
coding and possibly PGP secure coding later. Hence, when we say `output
a bit', it does not mean that the bit is sent out directly, but rather that
the bit is fed into a run-length encoder and the run-length encoder sends
out a bit stream after lossless compression is done.

(a) cmax ! q

(b) q=2! q, 0! bitplane.

(c) i. Scan the coe�cients in Band 0 row by row.

ii. If the absolute value of a coe�cient is smaller than q, output
bit 0.

iii. Otherwise:
Output bit 1.
If the coe�cient is negative, update the coe�cient by adding q.
If the coe�cient is positive, update the coe�cient by subtracting
q. If the absolute value of the coe�cient is detected greater than
q for the �rst time, i.e., the absolute value is smaller than all
the previous q's, output bit 1 if the coe�cient is positive and
output bit 0 if the coe�cient is negative.

(d) 1! i

(e) If Si > bitplane, i+ 1! i, go back to 3e.

(f) If Si = bitplane and Si > 0, encode Band i at all the previous bit-
planes as follows, i.e., when quantization value is cmax=2; cmax=4; :::; 2q.

i. q0 = cmax

ii. q0=2 ! q0, if q0 = q, go to 3g. If ci < q0, output bit 0, go to
3(f)ii. Otherwise, output bit 1.

A. Scan the coe�cients in Band i row by row, the HL band is
scanned �rst, then the LH band, and �nally the HH band.

B. If the absolute value of a coe�cient is smaller than q, output
bit 0.

C. Otherwise:
Output bit 1.
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If the coe�cient is negative, update the coe�cient by adding
q. If the coe�cient is positive, update the coe�cient by
subtracting q0. If the absolute value of the coe�cient is
detected greater than q0 for the �rst time, i.e., the absolute
value is smaller than all the previous qs, output bit 1 if the
coe�cient is positive and output bit 0 if the coe�cient is
negative.

D. Go to 3(f)ii

(g) Encode the coe�cients in Band i with quantization value q.

i. Scan the coe�cients in Band i row by row, the HL band is
scanned �rst, then the LH band and the HH band.

ii. If the absolute value of a coe�cient is smaller than q, output
bit 0.

iii. Otherwise:
Output bit 1.
If the coe�cient is negative, update the coe�cient by adding q.
If the coe�cient is positive, update the coe�cient by subtracting
q. If the absolute value of the coe�cient is detected greater than
q for the �rst time, i.e., the absolute value is smaller than all the
previous qs, output bit 1 if the coe�cient is positive and output
bit 0 if the coe�cient is negative.

(h) bitplane + 1! bitplane

(i) Check whether the stopping criterion is met, if so, end. Otherwise,
go back to 3b.

The encoding stopping criterion at the server can be speci�ed by the client.
Some examples are the number of output bits exceeding a threshold and the
distortion of the lossy compressed image being less than a threshold. Because

oating point operations are involved in the encoding process of the wavelet
transform, we usually cannot get a perfect reconstruction of the original image,
although we can make the distortion as small as we want. In the case that
perfect reconstruction of the image is required, we can calculate the error image
and compress the error image losslessly and transmit it at the end. As the errors
are small, the error image is much more losslessly compressible than the original
image.

12.4 RESULTS

12.4.1 Experimental Performance

This algorithm has been implemented on a Pentium Pro 200MHz workstation.
We have tested about 100 medical images of di�erent modalities, collected from
di�erent sources. Some of them are downloaded from the world-wide web and
medical imaging newsgroups, while others are provided by the Stanford Medical
Center.
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WAVELET-BASED PROGRESSIVE TRANSMISSION ...
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Figure 12.10 Progressive lossless compression coding e�ciency. CT

scan, chest X-ray and brain MRI images are 8-bit images. Mammogram images are 12

bit images.

Modality CT scan X-ray Mammogram MRI

size/img (bits) 5122 � 8 20482 � 8 40962 � 12 2562 � 8

img/exam 40 2 4 60

size/exam 10 MB 8 MB 128 MB 4 MB

MSE < 10 0.07MB (0.7%) 0.10MB (1.3%) 8.65MB (6.7%) 0.22MB (5.5%)

MSE < 3 0.56MB (5.6%) 0.61MB (7.6%) 18.6MB (14%) 0.64MB (16%)

MSE = 0 4.00MB (40%) 3.73MB (47%) 47.2MB (37%) 1.68MB (42%)

Table 12.1 Performance of progressive coding in TIDE.

Lossless Compression and Progressive Coding Module. The encoding
and decoding programs are both very fast. It takes less than 2 seconds of CPU
time to fully encode a 512� 512 CT scan. The decoder takes about 2 seconds
of CPU time to recover to the original image with Mean Squared Error (MSE)
less than 3. To fully recover the original image without loss, it takes about 3
seconds of CPU time.

The e�ciency of the lossless compression and progressive transmission mod-
ule in the TIDE system is summarized in Table 12.1 and Figure 12.10. Since
we used Daubechies continuous wavelet for compression, edge artifact is mini-
mized. When MSE is lower than 3 for an 8-bit image, the distortion is barely
noticeable to the human eye.

Textual Information Detection Module. The textual information detec-
tion and elimination module takes about 1 second of CPU time to process a
12-bit medical image of size 512 � 512. The algorithm is a linear algorithm
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Figure 12.11 A chest X-ray image processed by the TIDE system. Note

that patient identity information on the upper-right corner is eliminated while the arrows

and annotations within the image are preserved. Text Information simulated.

with respect to the size of the image. Besides the fast speed, the algorithm
has achieved remarkable accuracy. It successfully detected and eliminated all
of the critical textual information within the corners of the medical images.

Figure 12.11 and Figure 12.12 show some sample results on gray scale medical
images processed by the TIDE system. The areas without text are maintained
without loss.

12.4.2 Limitations of the Text Detection Algorithm

Figure 12.12 A medical image with hand-written text processed by

the TIDE system. Text Information simulated.

The text detection algorithm in the TIDE system assumes that the text fonts
are smaller in size than major medical objects that appear in the images, and
smallmedical objects such as tissue are not clustered together as is the case with
text characters. This is true for a vast majority of medical images. However,
the algorithm is not suitable for images with text superimposed on a large area
of clustered medical objects of similar size as the text characters.

Since the algorithm detects clustered diagonal directional variation, it does
not detect printed capitalized Roman characters such as \H", \E" and \F"
because no such variation presents in such characters. The algorithm makes
corrections by assuming the characters in medical images are in general aligned
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to form text strings rather than randomly printed in the image. As noticed on
examples provided, the algorithm works the best when detecting hand-written
text strings. However, if the text strings start or end with characters without
diagonal directional variation as discussed above, the algorithm would not be
able to perform the deletion of such characters.

Finally, the algorithm assumes some basic knowledge of each modality. For
example, if the image to be processed is a CT scan, it is likely that we can
assume the sensitive textual information, such as the patient name and patient
ID, can be found in upper-right corner of the image due to our knowledge of
the machine that creates the image or the digitizer that digitized the �lm. If
we do not know exactly which corner(s) the sensitive textual information is
printed, we may still use the algorithm on all four corners of the image or the
entire image if necessary. In this case, sensitive textual information will be
deleted at the cost of the deletion of non-sensitive textual information. Often,
some non-sensitive textual information found on a medical image, such as the
character \L" or \R" on X-ray images and the serial number and study protocol
for MRI and CT images, can be useful for radiologists to read and understand
the medical image. Missing such information in consultation and interpretation
may result in misdiagnosis. At this stage, we are unable to distinguish di�erent
types of textual information based on semantics. A robust OCR algorithmwith
some text understanding capability will be needed to make this possible.

12.5 CONCLUSIONS AND FUTURE WORK

In this chapter, we have discussed recent developments in wavelet-based image
compression and progressive transmission algorithms. An e�cient wavelet-
based progressive transmission algorithm with security �ltering features for
on-line medical image distribution has been demonstrated. The algorithm uses
Daubechies' wavelets to detect and eliminate textual information within digi-
tized medical images, while maintaining non-textual areas lossless.

It is possible to improve the coding e�ciency of the algorithm by includ-
ing cross-band analysis of wavelet coe�cients. We are also working on spatial
thresholding in addition to the traditional bit-rate or quality-based threshold-
ing. Integrating our system into an on-line real-time secure medical information
retrieval system such as the TIHI system [34, 35] would eliminate dependence
on assuming a �xed location for the identifying information. A user study is
also important to make the system more e�ective for the medical community.
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