
Noname manuscript No.

(will be inserted by the editor)

Automatic Image Semantic Interpretation using Social

Action and Tagging Data

NEELA SAWANT

JIA LI · JAMES Z. WANG

Received: date / Accepted: date

Abstract The plethora of social actions and annotations (tags, comments, ratings)

from online media sharing Websites and collaborative games have induced a paradigm

shift in the research on image semantic interpretation. Social inputs with their added

context represent a strong substitute for expert annotations. Novel algorithms have

been designed to fuse visual features with noisy social labels and behavioral signals. In

this survey, we review nearly 200 representative papers to identify the current trends,

challenges as well as opportunities presented by social inputs for research on image

semantics. Our study builds on an interdisciplinary confluence of insights from image

processing, data mining, human computer interaction, and sociology to describe the

folksonomic features of users, annotations and images. Applications are categorized

into four types: concept semantics, person identification, location semantics and event

semantics. The survey concludes with a summary of principle research directions for

the present and the future.

Keywords Web 2.0 · social media · collaborative annotation · image semantics ·

folksonomic features · survey

The material was based upon work supported in part by the National Science Foundation
under Grant No. IIS-0949891 and IIS-0347148, and by The Pennsylvania State University.

N. Sawant (corresponding author)
College of Information Sciences & Technology,
The Pennsylvania State University, University Park, PA, USA
E-mail: nks125@psu.edu

J. Li
Statistics Department,
The Pennsylvania State University, University Park, PA, USA
E-mail: jiali@psu.edu

J. Z. Wang
College of Information Sciences & Technology,
The Pennsylvania State University, University Park, PA, USA
E-mail: jwang@psu.edu



2

1 Introduction

Modern scientific progress is driven largely by our ability to make sense of enormous

data collections, and harness the findings in a continued sense-making loop. Aptly,

humans are termed informavores: species that consume information to accelerate their

technical evolution [127]. The level of information consumption is limited to the extent

permitted by the organization of underlying data, and for this reason, it is important

to devise systematic and meaningful methods for data storage and retrieval. Till date,

significant progress has been made in the general area of information retrieval, with

numerous models, algorithms and systems governing large text collections. Multimedia,

on the other hand, still remains obscure due to ill-understood theories of perception

and cognition. In this work, we focus on images - a prevalent form of multimedia, and

study the progress in semantic understanding of large image collections. Semantics,

with respect to images, represents the association between low-level visual features

and high-level concepts that can be described in words. Such knowledge possibly arises

from the awareness of the context in which photographs are shot. Thus, the quest for

image understanding encompasses traditional research on object detection and scene

interpretation as well as capturing abstract notions of events, locations, and personal-

ized references that situate images beyond the realm of visual features.

The task of translating raw pixels into abstract semantics is not a well-formed

process. Even simple scenes contain a complex arrangement of objects that can be

described using a variety of color, texture, shape and position features. Ambiguities

result from intra-class variability and inter-class similarity that objects exhibit under

different photographic conditions. The disparity between low-level visual features and

high-level concept semantics, known as the semantic gap [169], severely limits the abil-

ity of automated systems to discern the nuances of visual semantics. The mainstream

research on visual semantics primarily resorts to machine learning techniques, that

given a concept and a large corpus of manually annotated exemplars, build concept

models useful for future annotation of unlabeled images. A practical constraint occurs

from difficulties in the acquisition of manually annotated high-quality training cor-

pora. Therefore, demonstrable applications of most learning based techniques are still

restricted to relatively small-scale datasets [15,59,74,110,201]. Comprehensive surveys

in the area of content based organization and retrieval of images are published early

on by Smeulders et al. [169] and more recently by Datta et al. [44].

Our survey analyzes the paradigm shift in the semantic understanding of images,

brought by recent Web 2.0 phenomenon of social networking and collaborative media

annotation. Newer methods that partially automate training data selection by har-

nessing Web images [37,50] or using crowd-sourcing options [154,174] are on the rise.

Also, concept modeling techniques using fewer exemplars [58,109] have become desir-

able. We discuss how the voluntary actions and annotations by millions of Web users

that contribute to astronomical image collections also pose new research questions and

afford new opportunities of semantics extraction. Two major sources of large labeled

image collections are considered: collaborative image labeling games and tagging in me-

dia sharing social networks. We analyze the characteristic settings in which labels are

contributed with attention to user idiosyncrasies, image and tag properties. The ap-

proaches to social image semantic extraction marry traditional image processing with

techniques and models in the purview of social information retrieval. Fig. 1 highlights

important aspects of this review, where applications of semantics and knowledge ex-

traction are divided into four categories:
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Fig. 1 Focal points of the survey.

1. What does the picture portray? or Content semantics: Content semantics is the

goal of mainstream research in visual semantic interpretation. We discuss how social

data has molded research directions in tag relevance estimation, concept/aesthetics

modeling and image annotation.

2. Who is in the picture? or Person recognition: Whereas content semantics may

establish presence of people in images, person recognition gets to the specifics of

labeling each person with an identifier. Such identification helps in organization of

personal image collections, for celebrity picture search on the Web and for social

network discovery.

3. When is the picture taken? or Event semantics: Pictures are often a snapshot of

an event or an occasion. Event semantics involves identification of person-specific,

community-specific or global events associated with the visual content.

4. Where is the picture taken? or Location semantics: Location semantics corre-

spond to geographically-grounded places (such as Paris, Greece) or non-grounded

entities (such as museum, library). Inferring location semantics is useful for discov-

ering potential landmarks and tourism related information.

2 Social Sources of Image Labels

Recent systems like LabelMe [104,154] and Amazon mechanical turk [126,174] dis-

tribute image annotation and evaluation tasks to Internet users. The volume of an-

notations generated from such crowd-sourcing techniques helps reduce the burden on

experts without significantly sacrificing the quality of annotations. The annotators are

provided with detailed instructions on how to best select labels that can be directly

used for concept modeling. This ensures that relatively good quality annotations are
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generated for object detection and relevance estimation tasks. It is shown that crowd-

sourcing is a reasonable substitute for repetitive expert annotations, when there is

high agreement among annotators [82,140]. Other sources of image annotations are

collaborative games and social media sharing which undoubtedly represent the fastest

growing labeled image collections in the world. In this section, we analyze the char-

acteristic settings in which collaborative games and social media help generate image

labels and other metadata.

2.1 Collaborative Games

Collaborative games are a channel for human computing through which hundreds of

thousands of players contribute perceptual and cognitive information about multimedia

objects1. Recent advances in gaming interfaces utilize simple gestures, making games

accessible even in transit [73]. As the games utilize recreational activities of users to

generate inputs for artificial intelligence research, they are termed as Games with a

Purpose, or GWAP [6,75]. Three popular games, namely, Google ImageLabeler, Peek-

aboom and Phetch are described below.

– Google ImageLabeler : Formerly known as the ESP game [5,150], Google ImageLa-

beler is a game where randomly paired players attempt to guess labels given by

each other to a common input image (snapshot in Fig. 2). Players score points

when a label is agreed upon. When a word has been used frequently (decided by a

threshold), it is marked off-limit to encourage new labels. As the player engagement

increases, so does the volume of labeled images.

Fig. 2 Snapshot of Google ImageLabeler interface.

– Peekaboom: Peekaboom is played between randomly paired players, where one plays

the part of a ‘describer’ and the other is a ‘guesser’. The describer is given an image

1 More than 200,000 players of the ESP game (later renamed Google ImageLabeler) con-
tributed over 50 million image labels as a number of players spent more than 40 hours a week
playing the game. Peekaboom recorded more than 500,000 human-hours of play [6].
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completely masked from the guesser. Given a word, the describer progressively

reveals parts of the input image, where the object corresponding to the word is

present. Points are scored when the other player correctly guesses that word. Thus,

a successful game of Peekaboom yields rough object localizations. Fig. 3 shows a

snapshot of the game interface.

Fig. 3 Snapshot of Peekaboom interface [7].

– Phetch: Similar to Peekaboom, Phetch pairs random players in ‘describer-guesser’

roles. The role of the describer is to furnish a multi-word description of an input

image, that the guesser uses to locate the original image from a reference image

collection. Points are scored when the input image is located by the guesser. With

each successful round, Phetch gains a validated input image description.

Fig. 4 Snapshot of Phetch interface.

Games with a purpose share a number of features designed to appeal to human psy-

chology and to encourage annotation through incentives of fun and competition [6].

The motivation to score increasingly more points within a time limit, improving game

skill level and competing with other players increases user engagement in annotation

tasks. Pairing random players increases the likelihood that players do not cheat and
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annotations are indeed relevant to the visual content. von Ahn et al. showed that,

within this general framework, computational problems can be converted to collabora-

tive games of one of three categories: output agreement, input agreement and inversion

problem [6]. The output agreement games (such as Google ImageLabeler) present a

common input (such as an image) to user pairs who score points when they are able

to generate the same output (such as descriptive words). In problem inversion games

(such as Peekaboom and Phetch), only one player is shown the input and is required

to generate a description. The other player has to infer the original input from the de-

scription. Finally, the input agreement games require players to make a decision about

the commonality of the input presented to them, after viewing the descriptions that

they independently generate. An example is a music related game Tag-a-tune, where

pairs of users determine if they are listening to the same piece of music by inspecting

the description independently created by each other.

2.2 Social Media Sharing

Fig. 5 Snapshot of social media Website Flickr. A typical image is associated with comments,
tags and ratings (mark as a favorite).

Basic social networking mechanisms equip users with the ability to form online

contacts, join special interest groups, upload and share documents (textual and multi-

media). Users can also contribute annotations (tags), comments and ratings as depicted

in Fig. 5. These actions and annotations have become a fast-growing source of image
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descriptions2. Tags are essentially personal keywords which impose a soft organization

on data. As opposed to taxonomies that are restricted by rigid definitions and relation-

ships, tags are continuously influenced by popular trends and colloquial vocabulary.

Therefore, the organization imposed by tags is popularly referred to as folksonomy

(folk + taxonomy).

The idea of using words from personal context for filing purposes has been in prac-

tice for decades. In the memory extender system of W. P. Jones [91], users associated

a set of personalized keywords to their file collections. The benefits were two-fold: a)

recallability, where specification of some of the associated keywords helped retrieve a

particular file from a large personal file collection, and b) recognition, where given a

file’s keywords, the user could be easily reminded of the file creation context. As the

keywords originated from personal context, they guided a user’s mental model during

exploratory search, thus controlling search efficiency [63].

With the introduction of social media sharing, files are tagged for the benefit of

self as well as others. Moreover, within the limit of user-specified permissions, other

users may tag one’s personal resources. Accordingly, the motivations behind tagging

evolve beyond personal benefits to accommodate for social influences. Ames et al. pro-

posed a taxonomy to describe motivations along two dimensions: a) function and b)

sociality (target audience) [10]. Functions are categorized into ‘organization’ and ‘com-

munication’, whereas sociality is categorized into ‘self’ and ‘social’. The organization

function corresponds to the use of tags for future retrieval and for contribution to public

resources. The communication function refers to the provision of contextual informa-

tion to self and to others. Also included is social signaling, whereby a user’s interest

and credibility is communicated through substantial tagging contribution. Marlow et

al. described a more detailed set of motivations comprising of: future retrieval, contri-

bution and sharing, attention seeking, play and competition, opinion expression, and

self presentation [124]. Expansion along the sociality dimension has also resulted in

finer categories. For example, Ames et al. divided the social category into two sub-

categories: ‘friends & family’ and ‘public’. Kustanowitz and Shneiderman used three

sub-categories: ‘family & friends’, ‘colleagues & neighbors’, and ‘citizens & markets’

[103]. It has been shown that function and sociality strongly affect the level and use-

fulness of tagging [139].

2.3 Folksonomic Challenges

Social annotations differ from expert annotations as they are contributed from personal,

often unknown motivations and not directed towards specific computational tasks.

Further, personal tendencies and community influences affect the quality of tags [161].

In this section, we summarize main folksonomic challenges that need to be addressed

before social annotations can be suitably utilized.

– Motivations: Motivations have a direct influence on the usability of tags for sci-

entific purposes [139]. Tags that arise from the need of future retrieval and contri-

bution, in particular for the benefit of external audience, are likely to be visually

more relevant compared to tags used for personal references. Images within special

interest groups are very likely to be specifically annotated and heavily monitored

2 Flickr [196], acquired over four billion user photos within six years after its launch [61].
Tagged Flickr images are widely being used to drive research in visual concept detection.
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by the group members, as they are motivated to contribute and connect with other

users having similar interests.

– Cultural influences: Cultural differences guide perception and cognition differ-

ently [136]. For example, an analysis of image tags created by European American

and Chinese participants concluded that whereas Westerners focus more on fore-

ground objects, the Easterners have a more holistic way of viewing images early on

[51]. This was discovered through the analysis of tag assignment order. For East-

erners, the specificity of tags increased from holistic scene description to individual

objects. On the other hand, the tags given by the Westerners focused on individual

objects first and then on overall scene content.

– Vocabulary problem: The spontaneous choice of words to describe the same

content varies among different people, and the probability of two users using the

same term is very little. Known as the vocabulary problem [64], this issue is often

cited as a common characteristic of folksonomic annotations. The different word

choices introduce problems of polysemy (one word with multiple meanings), syn-

onymy (different words with similar meanings) and basic level variation (use of

general versus specialized terms to refer to the same concept) [72].

– Specialized knowledge: Certain user tags containing special characters, numbers

and personal references can be considered as specialized knowledge if they are not

meaningful to the general audience. For example, tags such as ‘me’ or ‘d20’ may

not have any significance for global audience. Such tags can be filtered out as

stop-words with the help of usage statistics.

– Semantic loss: An annotator in folksonomies is not obliged to associate all relevant

tags with an image, leading to semantic loss in the textual descriptions [193]. The

batch-tag option provided by most photo sharing sites adds to this problem by

allowing users to annotate an entire collection of photos with a set of common

tags. Even if such tags are potentially useful to provide a broad personal context,

they cannot be used to identify image-level differences, thus leading to semantic

loss. One consequence of this fact is that the absence of a tag from an image

description cannot be used to confirm the absence of the concept in that image.

Therefore, such images cannot be directly used as negative examples for training.

Owing to the above challenges, the labeled data from Web 2.0 does not readily

substitute for expert annotations in the identification of visual semantics. Large scale

studies show that nearly half of tag applications on the Web or social media collections

are irrelevant for general audience [96,175]. Such tags need to be pruned to be able to

harness tagged images effectively.

2.4 Statistical Semantics

In stable social tagging systems, tag vocabulary reaches statistical regularity and forms

patterns [72]. Usage statistics can be used to segregate patterns from noise and to

detect emergent semantics beneficial to understand what people mean, at least to a

level sufficient for information access [157]. Such study of statistical patterns of human

word usage for semantic interpretation is referred to as statistical semantics [65].

Usage statistics computed over multiple independent users play a pivotal role in a

number of information retrieval applications. Using the relevance feedback mechanism

[153], user clicks on Web search results are used to tune future result ranking [3,194].
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Aggregation of clicks by user sessions has been utilized to cluster results with similar

semantics, particularly for disambiguation of polysemous queries [181]. In collaborative

games, aggregation takes the form of a requirement that a large number of user pairs

must agree on image descriptions before they can be deemed relevant to visual content.

Overall, the phenomena of social actions and annotations share many similarities with

the proposition of wisdom of crowds [178], that the aggregated verdict of a group of

independent people is closer to the truth than that of any individual in the group. The

origin of this theory goes back several decades. At a country fair in 1906, Sir Francis

Galton observed that when hundreds of people were asked to guess the weight of an

Ox, none of the individuals - even the cattle experts, could correctly guess the weight.

On the other hand, the average of all estimates was closer to the real weight of the

Ox. This occurrence has since then become a famous anecdote for wisdom of crowds.

In case of social media annotations, similar analogy exists. When a tag is applied by

a large number of users to similar visual content, such relationship is significant from

the point of view of tag visual semantics. Drawing a parallel with wisdom of crowds,

four main characteristics must be discussed [178]:

– Diversity of opinion - Every person is entitled to a personal opinion. In case of

social image tagging, each person is entitled to their own subjective interpretation

of image content and corresponding use of annotations.

– Independence - A person’s opinion is not influenced by that of the others. In case

of social image tagging, each person can independently provide zero or more tags to

zero of more images belonging to self and others. However, complete independence

cannot be guaranteed when social influences are strong.

– Decentralization - Each person can operate in a local setting and have a different

view of the system. In case of social image tagging, decentralization is ensured as

users have control of their own tagging activity, without being exposed to tags

given by other users to content-similar images.

– Aggregation - A mechanism to convert the opinions into an aggregated verdict

must exist. As the population size increases, the confidence in the verdict increases

as well. Consider for example, the task to compute similarity between two tags.

One simple mechanism is to count the number of images tagged with both tags.

Other mechanisms can be devised by considering complex relationships of tags with

other tags and users in folksonomy.

The assumption of statistical semantics is that a typical user makes rational choices.

In such case, the actions and annotations of a few idiosyncratic users are reduced to

noise when a large number of users are considered.

3 Representation of Folksonomy

The popular view of folksonomy is as a ternary relationship between users, resources

and tags [76,86,105,160]. We resort to a definition that describes folksonomy as ‘a

tuple F := (U, T, I, A) where U , T , and I are finite sets representing users, tags and

images (documents in general) respectively, and A is a ternary relation between them,

i.e. A ⊆ U × T × I, whose elements are called tag assignments’ (adapted from [86]).

Further, users may be connected to other users through social relationships.

Folksonomy is generally represented as a tripartite hypergraph and its elements

are represented using the vector space model [156]. Let a folksonomy have m users



10

U1 T1

T2

Ik

.........

Users Tags

Um

U2

Tn

I1

I2

Resources
(Images)

Fig. 6 Tripartite hypergraph representing folksonomy (adapted from [76]).

denoted as U , n tags denoted as T , and k images denoted as I (Fig. 6). Then one

type of vector space model for a tag t is a m-dimensional frequency vector, where the

value at position p equals to the number of times the pth(p ∈ (1, . . . , m)) user Up has

used the tag. Another representation is a k-dimensional frequency vector, where the

value at position q equals to the number of times the tag has been assigned to the

qth(q ∈ (1, . . . , k)) image Iq. These two vector models capture the distribution of each

tag over all users and all images respectively. For socially shared images (as in Flickr),

a tag can be applied to an image at most once. Therefore, the k − dimensional vector

space model for tags computed over images is binary. Collaborative image labeling

games, on the other hand, permit a frequency vector representation for tags, since

multiple players are allowed to apply the same tag to a common image.

Stacking vector representations creates an association matrix. For example, the k−

dimensional tag vectors over images can be stacked into a tag-image matrix TI similar

to the term-document matrix representation in the field of text information retrieval.

The tripartite folksonomy graph can be modeled as a three-dimensional matrix UTI,

by stacking together the tag-image matrices for all users (dotted box at the left of

Fig. 7). Returning to the two-mode (bipartite) representations is easier, and requires

aggregation over one of the folksonomic dimensions of the matrix. For example, the

tag-image matrix TI is obtained by collapsing the 3-D matrix UTI along the user

dimension. User vocabulary or the tag-user matrix TU is derived by collapsing the 3-D

matrix UTI along the image dimension. These bipartite representations can be further

used to extract distributional similarity between different elements such as user-user,

image-image, and tag-tag. Fig. 7 shows that the folding of a two-mode matrix results

in a one-mode matrix where the element at a position (i, j) measures the distributional

similarity between element i and element j of the outer dimension of the input two-

mode matrix. For example, one folding of TI computed as (TI)(TI)′ results in a

one-mode matrix where element at position (i, j) is the distributional similarity of tags

Ti and Tj . This similarity is useful for modeling and comparing tags. Folksonomic

matrices are often rather sparse and elements may be correlated. To address these

issues, efficient low-rank approximations can be computed using techniques such as

latent semantic analysis (LSA) [106] and probabilistic latent semantic analysis [79].
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Fig. 7 The dotted box at the left represents the tripartite nature of folksonomy. The tripartite
matrix can be collapsed along each of the three dimensions, resulting in a two-mode association
matrix. Folding each two-mode matrix generates distributional similarity matrices.

3.1 Features

The quality of tag assignments depends on the features of images, users, tags and their

inter-relationships. In this section, we summarize prominent features that are useful for

social image analysis. Image features include visual descriptors and EXIF metadata.

Abstract user qualities are captured into features such as reliability and expertise. Tags

and keywords extracted from photo comments are represented using features such as

frequency and entropy. The apparent heterogeneity in features underscores the need

for effective multi-modal data and decision fusion techniques.

3.1.1 Image Features

Two types of features can be used to describe the content and context of social images:

– Visual features: Over the years, a large number of visual features are proposed

to describe color, texture and shape in images. Descriptors can be computed over

local image regions (interest points, corners, blobs) or entire images (histograms,

moments). Basic features can also be described as per their composition in the

images, using features such as layout and correlogram. Detailed discussion about

various local and global image features are available in [120,169,182].

– EXIF metadata: EXIF data provides information about camera parameters such

as aperture setting, exposure time and focal distance [57]. Additionally, time and

geo-location information of when and where a photo was taken, is also available.
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3.1.2 User Features

The variability in tag assignment, and consequently the quality of assigned tags is

affected by a user’s personal choices and the context of the user’s social network. For

example, the type of tagging motivation is correlated with the number and types of tags

by the user. Also, the number of tags is proportional to the size of the user’s network

and the number of social groups to which he belongs [138,139]. An estimation of the

idiosyncrasies helps assess the quality level of a user’s annotations. In this section, we

summarize a number of descriptive features such as expertise, reputation and reliability.

– Expertise: An expert is a provider of high-quality annotated resources. Topic ex-

perts can be identified by a substantive contribution of relevantly tagged resources

[137] or by a membership to special interest groups related to that topic. Noll

et al. defined experts using the Hyperlink-Induced Topic Search (HITS) algorithm

[97] and distinguished tag spammers from experts [137]. Members of special interest

groups are expected to possess specialized knowledge as compared to non-members.

It is possible to identify the topic of expertise and vocabulary by jointly analyz-

ing visual content and tagging behavior of group members using techniques like

probabilistic latent semantic analysis [134].

– Reputation: Expertise is a topic-specific feature. Reputation, on the other hand,

is a more general property that assimilates overall activities of networked users into

a social order [170]. The degree to which a member’s work is recognized in the net-

work and a user’s social influence can be used as an indicator of reputation [179].

For example, in the computation of Flickr Interestingness [62], a user’s tagging

and social activity plays a major role, such that professional and active members

are qualitatively ranked higher. Tags, comments and views by high ranked users

are considered more useful and can be employed in determining image interesting-

ness. The prestige of special interest groups in which the photo appears is also a

contributing factor [49].

– Reliability: A tag assignment is considered reliable if similar associations are con-

sistently observed over a large user collection. Unreliable tag assignments should be

treated carefully in relevance ranking applications [9,17,18,100,101]. The reliabil-

ity of a specific user’s annotations can be modeled using game-theoretic techniques

as well [163].

– Other network measures: A user and his social network can be represented

using traditional network measures such as characteristic path length, clustering

coefficients, cliquishness and connectivity [28].

3.1.3 Tag and Metadata Features

Quality assessment of textual annotations is an important research question in the

general area of information retrieval. In this section, we discuss features for tags (and in

general textual metadata) such as frequency, entropy, clarity, and linguistic properties.

– Frequency - The distribution of tag frequency for stable media sharing sites can be

described with a power law distribution [76]. The power law nature indicates that

a few tags are chosen by a large number of users, and the long tail of distribution

corresponds to tags that are rarely used. A tag that is applied to a very large

proportion of items is too general to be useful, while another tag that is applied

very few times is useless due to its obscurity [162,175]. A frequency threshold can
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be applied to remove potentially low quality tags [123]. Variants such as Term

Frequency - Inverse Document Frequency (TF-IDF) can also be used to obtain

unbiased estimation of tag representativeness [155]. The search frequency of tags

can also be used as a quality indicator [160].

– Entropy - Typically, the total number of tags in a collective vocabulary is much less

than the total number of objects being tagged [35]. Also, the frequency of different

tags is different. Therefore, the capacity of each tag in isolating a single document or

identifying certain documents as more important than others, varies. This behavior

can be captured using measures of information entropy. Chi et al. proposed an

information theoretic approach to tag quality assessment, defined as the reduction

in entropy or uncertainty in retrieving a particular document using that tag [35].

Zhang et al. compared tag frequency with entropy and concluded that frequency

is a better predictor of tag quality, which can be refined using the measure of

information entropy [205]. Low entropy tags are likely to have a skewed distribution

in the sense that they appear more frequently in images belonging to only specific

categories. Such tags can be treated as more content-descriptive and used to design

visual category classifiers [125].

– Clarity - Image tag clarity is a measure of the descriptive power of a tag. It

is computed as the KL divergence between language models computed from tag-

specific image collection and the entire image collection [177]. As such, tags that

are too general, end up having low clarity values.

– Linguistic properties - The number of characters, and especially those of special

characters can be used as simple linguistic measures to filter low quality tags [160].

Similarity Computation for Tags: Tags can be compared by subjecting their vector

space models to the measures of cosine similarity, Euclidean distance or a combination

of statistical and structural information from lexical taxonomies [88]. We present three

other prominent techniques that resort to large knowledge and document corpora.

– WordNet distance: WordNet is a manually constructed lexical database of En-

glish that contains over 155,000 words arranged in hierarchical groups of related

words called synsets [60,191]. A number of measures are proposed to compute the

semantic similarity and relatedness between words using the information contents

of synsets and the shortest path distance between synsets [143]. Budanitsky and

Hirst presented an evaluation of five WordNet based measures indicating the supe-

riority of information content based measures [22].

– Google distance: Google distance is an automated word-similarity measure com-

puted using the frequency of occurrence and co-occurrence of words [38]. Normal-

ized Google distance between image tags x and y can be computed as:

max{log f(x), log(f(y))} − log f(x, y)

log N − min{log f(x), log f(y)}
(1)

where f(x) denotes the number of images tagged using x and f(x, y) denotes the

number of images tagged using both x and y. N is a normalization factor computed

through summation of co-occurrence counts over all tag pairs (x, y).

– Flickr distance: WordNet similarity and Google distance are both purely text

based measures. Flickr distance is an automated measure that computes word as-

sociation through the similarity of visual models associated with words [192]. For

each tag, the collection of Flickr images tagged with that word is used to build a
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a latent topic-based visual language model. The Flickr distance between two tags

is measured as the square root of Jensen-Shannon divergence between the corre-

sponding visual language models.

4 Techniques

The diverse visual, textual and EXIF features associated with social media can be

processed using a variety of techniques. In this section we present four prominent tech-

niques: co-occurrence statistic, clustering, classification, and spatio-temporal mining.

4.1 Co-occurrence Statistic

Two attributes co-occur if both are associated with a common instance. Let P (vi)

denote the probability of an attribute vi, computed as the ratio ni/n where n is the total

number of instances and ni is the number of instances associated with vi. Let P (vi, vj)

denote the co-occurrence probability of attributes i and j, computed as ni,j/n, where

ni,j is the frequency of co-occurrence of vi and vj . Then, one measure of co-occurrence is

as the count ni,j , possibly normalized using independent attribute frequencies. Another

measure called the point-wise mutual information is computed using log of probability

ratio as log
P (vi,vj)

P (vi)P (vj)
.

Co-occurrence statistic helps measure association between different types of social

media attributes. This is particularly useful for word sense disambiguation [133]. For

example, the distributional hypothesis of statistical semantics states that, words that

occur in the same contexts tend to have similar meanings. Therefore, co-occurrence of

words that appear in the vicinity of a word can be used to disambiguate the meaning

of the target word [27,76,107]. Furthermore, subsumption relationships (hierarchy of

general to specific tags) can be captured using co-occurrence properties. Such knowl-

edge is important for automatic creation of dynamic dictionaries and ontologies [198,

38]. Yang et al. proposed games to sustain and validate such dictionaries [199].

4.2 Clustering

Clustering is a statistical data analysis technique that groups observations in an un-

supervised manner such that the intra-cluster element similarity is higher than the

inter-cluster element similarity. Clustering is beneficial for a number of applications:

as a pre-processing step for classification, for visualization and to facilitate browsing in

large data collections. Clustering of multi-modal information such as visual features,

tags and hyperlinks can be used to identify structural relationships in content [24,

39,188]. The top-down scheme generated using hierarchical clustering helps navigate

from general to more specific concepts and explore large databases, as exemplified

by systems like scatter-gather [41]. Clustering is also well suited for spatio-temporal

data that inherently yield to meaningful groupings corresponding to geographical re-

gions and time durations [135]. In this section, we restrict our discussion to prominent

clustering techniques for social media analysis. For detailed technical discussion of

clustering techniques, please refer to [55].
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– Agglomerative hierarchical clustering: Agglomerative clustering is a type of

hierarchical clustering where small clusters are iteratively merged into larger clus-

ters to create a tree-like organization called dendogram. The leaves of a complete

dendogram correspond to individual elements, whereas the root node consists of

an aggregation of all elements. During each iteration of clustering, two candidate

clusters with the smallest inter-cluster distance are merged to generate a higher-

level cluster. The inter-cluster distance is typically measured using the minimum

(single-linkage), maximum (complete-linkage) or average (average-linkage) pairwise

distance between two clusters. The usage of pairwise distances makes hierarchical

clustering suitable for categorical social data (such as tags, photos, comments)

where pair-wise similarity is easy to compute using distributional measures.

Hierarchical structure is useful for multi-scale visualization as well as for browsing

large databases that involve coarse-to-fine exploratory navigation of the underlying

data. The hierarchy is especially meaningful for geo-located photos, as clusters

often correspond to actual geographic regions. Identifying representative tags over

hierarchical clusters of geo-located data have helped discover location tags and

their subsumption relationships (such as ‘Golden gate bridge’ as a part of ‘San

Francisco’ ). Hierarchies can also be used to effectively capture event semantics

from temporal document collections [200].

– Partitional clustering: In partitional clustering, all cluster centroids are initial-

ized in the beginning itself. k-means is a popular partitional clustering technique

for feature approximation and image segmentation. In k-means, k cluster centroids

are randomly initialized and iteratively refined to optimize the overall coherence of

cluster assignments. Partitional clustering is heavily used for visualization of search

results, where different senses associated with a multi-sense query are segregated

into groups that enhance search experience. For example, clustering image search

results of a query ‘jaguar’ may highlight two unrelated groups - one corresponding

to the animal and the other, a car. An extension called search result clustering

that generates clusters with highly readable names [203] has become popular in

recent years. The IGroups application based on this technique, computes clusters

of image search results and represents each cluster with representative thumbnails

[188]. Spectral clustering is another clustering technique for grouping folksonomic

information represented in a graphical format [122]. A graph is represented as an

association matrix, where the value at position (i, j) denotes the connectivity or

the pair-wise similarity between elements i and j. Clusters are computed based on

the Eigen decomposition of the (possibly normalized) similarity matrix. Leskovec

et al. used the spectral clustering approach to partition interaction graph of users

into meaningful communities [108].

4.3 Classification

Classification is a supervised learning technique that trains on labeled (classified) data

to predict labels for unseen data. In this section, we discuss three supervised classifi-

cation techniques for social images: nearest neighbor approach, Bayesian classification

and support vector machines. For detailed technical discussions, please refer to [55].

– Nearest neighbor approaches: Nearest neighbor classification is an instance

based supervised learning approach where the label for an instance is determined
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from the labels of similar instances - termed as ‘neighbors’. Also known as lazy learn-

ing, nearest-neighbor approaches defer classification until the prediction time. A

popular approach is the k-nearest neighbor or k-NN technique where the candidate

annotation is determined by a majority vote over k number of nearest instances.

Aggregation by a regression analysis can also be used to compute a weighted mean

of labels. When instances are associated with multiple labels (bag of tags represen-

tation), multi-label ranking approaches can be used to aggregate labels [21]. The

nearest neighbor approach is very useful for applications such as social tag recom-

mendation where similarity between a labeled and unlabeled document is used to

propagate tags from the labeled document to the unlabeled document. This idea

is similar in principle to item based collaborative filtering strategies where con-

tent similarity is utilized to mine annotations from already labeled data [158]. The

search for visual neighbors can be conducted within personal or community data

collections to attain personalization.

– Bayesian classifiers: Bayesian classifiers are a popular choice for generative con-

cept modeling [111,159]. The probability of a concept C (hypothesis) given a set

of visual features F (observations), i.e. P (C|F ) is computed using Bayesian for-

mulation
P (F |C)P (C)

P (F )
. In this formula, P (C) represents the concept prior, P (F )

represents the marginal and P (F |C) is the probability with which features F are

observed in the training data of the concept. The issue of data sparsity is of-

ten addressed using a Näıve Bayes formulation, where individual features fi, i ∈

(1, . . . , |F |), are considered independent such that P (F |C) =

|F |∏

i=1

P (fi|C).

– Support vector machines: Support vector machine (SVM) is a supervised clas-

sification technique that uses discriminative modeling. The SVM for a binary clas-

sification problem is a hyperplane in the associated feature space that optimally

separates positive training instances of a class from negative instances. Multi-class

classification problems are decomposed into multiple binary classification problems

using a one-versus-all or one-versus-one (pairwise) classification. SVMs have been

used for computational aesthetic modeling from user-generated photos [42] and

domain-specific classification tasks [31].

4.4 Spatio-Temporal Mining

Identification of events and locations provide a meaningful browsing modality by min-

ing spatio-temporal information such as geo-coordinates, photo capture time, system

upload time and times of user interactions (comments, tags, ratings) associated with

folksonomic data. As such spatio-temporal mining is a vast subject and cannot be

discussed here in sufficient details. Additional references can be found in [77,151] for

temporal analysis and in [56,99,128] for spatial analysis. In this section we briefly touch

upon a subset that is most relevant to social media.

Spatio-temporal models can be constructed by applying clustering or classification

techniques within geographic or temporal constraints. For geographical data, structural

relationships coherent with locations are important, and distance information corre-

sponds to the geographic distance between location coordinates. In case of temporal

analysis, the inherent periodicity (such as recurrence of hours, weeks, and months) is

important and three phenomena are of interest - trend (increasing or decreasing growth
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pattern), seasonality (periodicity of activity) and anomalies (deviation from predicted

activity). Detecting data patterns helps anticipate future activity, such as search vol-

ume for a query that can be easily optimized with help of early predictions. Trend and

seasonality can be deduced using time domain techniques (such as auto-correlation

and cross-correlation) or frequency-domain techniques (such as Fourier transform and

wavelet analysis). Detecting anomalies such as sudden bursts in activity may help un-

cover important events3. Burst detection was first addressed by Kleinberg where he

used an infinite automaton to model topic bursts in document streams [98]. Vlachos

et al. applied discrete Fourier transform and power spectral density measurement to

identify periodicity and bursts in data [184]. Ihler et al. used a time-varying Poisson

model modulated by a hidden Markov process to capture bursty events [83].

5 Applications

Image semantics has a variety of facets as outlined in Section 1. In this section, we

discuss representative work in content semantics, person semantics, event semantics

and location semantics. The discussion of event and location semantics is combined as

the co-existence of location and temporal information is typically analyzed using joint

spatio-temporal mining techniques.

5.1 Visual Semantics

Traditionally, the interpretation of visual semantics is conducted using supervised con-

cept learning from labeled data. With the advent of Web 2.0, image annotation or

tag recommendation techniques can be be classified into two types: a) model-based

and b) model-free techniques. Model-based techniques are conceptually similar to the

traditional concept learning techniques, except that the input training data is mined

from labels in social media and collaborative games. The modeling error when using

noisy folksonomic annotations is typically higher than the error obtained while using

expert labels. Nonetheless, the scalability achieved using folksonomic data is attrac-

tive and efforts to auto-select high-quality training data are on the rise. Also, runtime

annotation is usually automatic and fast. The second type of annotation systems are

model-free and often semi-automatic in the sense that they require one or more tags

or camera metadata to bootstrap the annotation process. Such systems are loosely re-

ferred to as tag completion strategies. Without the restriction of statistical modeling,

model-free systems potentially scale to arbitrarily large vocabularies, albeit at an in-

creased runtime complexity. This section deals with three aspects of visual semantics:

tag relevance assessment, concept modeling, and image annotation. Also, studies on

computational aesthetic modeling are presented.

5.1.1 Tag Relevance Estimation

The primary use of tags is for content retrieval, where the retrieved content may be

used as training data for concept modeling. However, tags associated with an image

3 This problem has gained focus since late 1990s, with the introduction of topic detection

and tracking challenge for event-based information organization [8,200].
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may or may not be relevant to the visual content of the image. In a study of Flickr

tags, Liu et al. showed that the tag input sequence does not have a strong correlation

with the relevance of tags. The evidence of a trend that top tags are more relevant is

weak and the most relevant tag is ranked at the top in less than 10% images [117].

Hence, it becomes necessary to determine and prune noisy tags. Noise mitigation has

been extensively studied for text classification [52,149,147] and for outlier detection

tasks [29,78]. In case of social tags, similar approaches are applicable.

Co-occurrence of tags with visual features can be used to prune irrelevant keywords.

Jin et al. used a fusion of multiple WordNet similarity measures and visual features to

remove tags that were weakly correlated with visual features [90]. Li et al. employed a

K-nearest neighbor voting method to determine the relevance between an image and

an associated tag [114]. Common tags of visually similar images were ranked according

to votes collected from visual neighbors. In the TagProp algorithm, a weighted nearest

neighbor model was used to predict relevance from annotations of labeled visual neigh-

bors [183]. Kennedy et al. demonstrated that original photographers can be treated

as reliable sources of high quality annotations due to their first-hand knowledge of

the content-matter [95]. They utilized agreement between photographers on labels of

visually similar images to select reliable tag-feature association.

The tripartite nature of folksonomies has inspired ranking strategies to assess and

retrieve quality resources. The folkrank algorithm, provided a ranking such that fre-

quently appearing users, tags and resources appeared early on in results [80,81]. Jin

et al. computed the tripartite relationships between groups, tags and images in social

networks to modify relevance ranking to group-based social image search [89]. Tang

et al. presented a sparse graph-based semi-supervised learning approach for removing

weak pairing between image features and tags [180]. To refine the relevance ranking,

Liu et al. used a probabilistic approach that first initialized relevance scores for tags

and computed a refinement using a random walk procedure over a tag similarity graph

[119]. They further proposed a unified framework using visual and semantic similarity

of images to measure the compatibility of tags before and after the approach. Wang et

al. proposed a random walk with restarts method leveraging co-occurrence-based sim-

ilarity as well as the ranking and confidence information of original annotations [185].

In another extension, feature noise was reduced using a canonical correlation analysis

that created a compact representation of features [13].

5.1.2 Concept Modeling

A number of statistical techniques are developed to model the association between

words and visual features, given a large labeled training set of concept exemplars [14,

87,110,111]. In Web 2.0, it is possible to obtain labels from collaborative games such

as Peekaboom and ESP game [6] or from socially tagged images. Learned models are

useful for high-speed automatic annotation of unlabeled images.

Wang et al. developed Gaussian mixture model representations for concepts by clus-

tering keypoint code vectors in tagged images [187]. Chatzilari et al. clustered region-

level MPEG-7 descriptors from social images for object modeling [31]. The descriptors

for an object were extracted from semantically coherent image groups using the SEM-

SOC framework [69] that combines knowledge from WordNet, tag co-occurrence and

visual features information. One limitation on these approaches, as with traditional

concept learning, is that the prediction can be made only for concepts specified in train-

ing. Datta et al. described a PLMFIT model where a limited set of trained concepts
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can be scaled to arbitrarily large vocabularies. Sawant et al. extended this idea using

content-based annotations as meta-features and translating them to the vocabulary of

a user’s local interaction network [159]. This approach is useful especially when the

user’s network indulges in thematic image sharing (resembling special interest groups),

so that with the knowledge of the network’s interests, appropriate inference can be

made about a user’s own tag preferences. The Sheepdog image annotation system also

presented a translation method by detecting pre-determined concepts in images and

identifying relevant communities for the concepts [32]. Using tag models built over the

community vocabularies, annotations were recommended.

5.1.3 Image Annotation

Model-free semi-automatic annotation systems require users to supply an initial set of

tags for the images to be annotated. Additional tags are recommended using techniques

such as co-occurrence statistic, content based retrieval, nearest neighbor matching, and

clustering [1,112].

Fig. 8 Using co-occurrence and aggregation for tag recommendation [166].

Co-occurrence of two tags over a large number of photos indicates that a significant

relationship exists between the tags. In practice, co-occurrence value is normalized by

the individual tag occurrence frequencies to account for bias from popular tags. Tags

having a high co-occurrence with existing tags are selected as natural candidates for

additional annotations. Various aggregation strategies are applied to rank the candi-

date annotations. One example is shown in Fig. 8, where candidate tags are weighted

using a voting mechanism [166]. Garg et al. selected tags using global and personal

level tag co-occurrence and aggregated them using a weighted combination [67]. Wein-

berger et al. used a probabilistic framework to model tag co-occurrence and identified

tags that disambiguate the different temporal, location or semantic contexts in which

a polysemous tag appears [190]. If an image associated with a tag set T contained

an ambiguous tag t, then additional tags ti and tj were selected so as to increase the

divergence p(t|T ∪ ti) and p(t|T ∪ tj). Wang et al. selected candidate annotations using

item-based co-occurrences with existing annotations [186]. Candidate annotations were

ranked using image visual similarity in a Markov model formulation. Wu et al. used
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tag visual correlation, image conditioned tag correlation and tag co-occurrence to cre-

ate separate rankings of candidate tags [193]. The rankings were combined through a

Rankboost algorithm.

Nearest-neighbor search methods are useful to identify visual neighbors from which

annotations can be mined. Search can be optimized using high dimensional indexing

techniques [113]. The Tag Suggestr [102] system based on a combination of visual and

text features, required a user to annotate a photo with an initial set of tags. The

initial tags were used to retrieve additional tags from related photos that had some

of the initial tags in their tag lists. Ivanov et al. proposed a system, where tags are

propagated from images containing duplicate objects as in the query image [84]. Objects

were represented using visual word vectors learned from hierarchical k-means clustering

over sparse local region features. A classification step was applied to categorize images

before the nearest neighbor search [115]. Using location based nearest neighbors, labels

from labeled photos were propagated to unlabeled images [131].

Clustering is an effective technique to identify related tags. When one tag in a

cluster is relevant to a photo, other tags from that cluster can be treated as poten-

tially relevant as well. In Annosearch tool [189] annotations associated with content-

similar images were clustered using search result clustering. Shepitsen et al. developed

a personalized recommendation system that incorporated user profiles and previous

tag clusters to re-rank the tags suggested by a non-personalized recommendation al-

gorithm [165]. Clustering can also be used to power smart batch-tagging techniques

where images are clustered and only the cluster representatives are tagged. Image-level

tags are propagated using measures of visual similarity and temporal consistency [118].

A number of research methods also harness the rich metadata associated with

photos. The camera metadata associated with images can be used for image classifi-

cation and annotation [20,167] as well as for creating new browsing experiences. Cao

et al. suggested annotations from a set of event/activity and scene/location tags, us-

ing the similarity of GPS and time information among visually similar images [26].

Time, location and visual similarity between photos was exploited to propagate high-

confidence labels of photos to similar photos [25]. The SpiritTagger tool utilized GPS

coordinates and visual content to annotate photos with other geographically relevant

tags [129]. The tool ZoneTag also used GPS locations to identify related tags from a

user’s social network [130]. Lindstaedt et al. presented a Tagr system based on a mash

up of different image and user features [116].

5.1.4 Computational Aesthetics Modeling

Aesthetics is the branch of philosophy which deals with questions of beauty and artistic

taste [2]. Image aesthetics is an abstract notion of quality influenced by features like

hue, saturation, sharpness, contrast, colorfulness and edge distribution. The subjectiv-

ity of aesthetics interpretation makes computational modeling a challenge. However,

community contributed photo ratings and comments, have become partially successful

in meeting the challenge. Ratings from peer-rated photo sharing communities such as

Photo.net [144] and DPChallenge.com [53] are used as reasonable ground truth data

for computational aesthetic modeling [42,93,141]. A threshold on average ratings is

used to classify photos into high quality and low quality categories. Datta et al. stud-

ied the correlation of over fifty visual features and developed aesthetic classifiers using

support vector machines [42]. They also demonstrated an application of SVM regressor

to predict a continuous aesthetic quality score. Ke et al. used Bayesian classification
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to predict the perceptual high or low quality of images using features such as edge and

color distribution, blur, and hue. Pere et al. computed an overall aesthetic measure

using features such as color contrast, sharpness, and noise [141].

One other approach to aesthetics and emotion modeling is opinion mining and

sentiment analysis [142] of tags and comments associated with images. For example,

words like ‘bravo’, ‘beautiful’, ‘bestshot’ are indicators that people appreciate visual

content of photos. Additionally, an analysis of user actions such as ratings and page

views may help determine positive and negative sentiments. Solli et al. have presented

a web image dataset associated with emotion-related labels [172]. Such datasets can be

crawled from community contributed collections or specifically obtained by designing

aesthetic rating interfaces. Fig. 9 shows a snapshot of a system that obtains ratings

from users and trains aesthetic inference models [45].

Fig. 9 Snapshot from ACQUINE image aesthetic rating Website.

5.2 Person Recognition

Identification of individuals in personal photographs is helpful for management of per-

sonal photo collections. Detected co-appearances of people can be used to build event

chapters [30] and to infer links in social networks [71]. Current research on person iden-

tification draws heavily on face recognition technology [70,207] as well as clustering and

classification of supplemental information such as clothes, body, and hair appearance

[12,36,168,173,176,195,206]. The repeated temporal and spatial occurrences as well

as frequency of individual appearances, can be used to build belief models that help

prediction in case of unlabeled photographs [132]. GPS information can be used for

person recognition and propagation of such annotations in personal albums [46,204].

5.3 Event and Location Semantics

The discovery of spatio-temporal patterns and representative tags has attracted a great

interest in the research community. In addition to event and location semantics, bursts

in spatio-temporal tags often coincide with names of personalities and communities.
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Patterns in tagging behavior provide additional dimensions for semantic descriptions

and can be discovered using mining as well as interactive visualization techniques [11,

54]. Multi-scale clustering is a popular technique for spatio-temporal mining. Ratten-

bury et al. applied multi-scale clustering to extract event and location semantics from

geotagged images [148]. Chen et al. applied wavelet analysis to a joint representation of

time and location metadata of Flickr photos to detect periodic events [33]. Zunjarwad

et al. applied the hyperlink-induced topic search algorithm [97] to visual and social net-

work information to characterize events (and its facets such as who, where, when, and

what) [208]. Joshi et al. used supervised learning techniques to model the association

between event categories (such as hiking and skiing) and bags of geo-tags computed

from the spatial neighborhoods of Flickr photographs [92]. An alternate approach was

proposed by Yuan et al. by utilizing a fusion of GPS trace features with compositional

visual features [202]. The information about addresses and points of interest was mined

using a large online location database called GeoNames [68]. Such location databases

are also useful for geo-recognition or identification of location semantics when no prior

information is available. Cristani et al. proposed an approach for geo-category predic-

tion by clustering geographically proximal images [40]. Serdyukov et al. used Flickr

tags for geographical location prediction of photos lacking geo-references [164].

5.3.1 Landmark Recognition

People, in particular tourists, are often interested in viewing photos of landmarks across

world-wide locations. To automatically identify landmarks from existing photo collec-

tions, researchers have resorted to methods based on only metadata, only content or

a fusion of both. Methods such as [47,171] used supervised learning to select distin-

guishing features to identify landmarks in a pre-determined list of locations. Berg et

al. employed computer vision techniques to select iconic images for selected locations

[16]. This system is limited to processing photos from a single viewpoint and the rela-

tionships among different views of a landmark cannot be identified.

Fig. 10 Visualization of points of interest in San Francisco using Flickr image tags [94]
.

Social tags with associated spatio-temporal information can be readily plugged into

general techniques for landmark recognition. Jaffe et al. used clustering techniques to
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generate summaries for large collections of geo-referenced photographs [85]. Kennedy

et al. used a multi-modal fusion of location information, tags and computer vision

inputs [94] to predict landmarks as depicted in Fig. 10. Tags occurring over a con-

centrated geographical area were considered more specific to location-semantics than

tags diffused over large regions. TF-IDF based frequency measures were used to as-

sess representativeness. Predictions were coupled with visually representative images

computed using clustering of salient visual features. Clustering helps discover multiple

views of the location, each of which can be described with representative tags. A tool

named World Explorer built around this idea, helps generate visualization for arbitrary

areas in the world [4]. It can also be used to construct tourist maps from geo-tagged

Flickr images [34].

6 Epilogue

Semantic interpretation from social images is a young field that is growing at a tremen-

dous pace. With millions of users, billions of images and associated metadata, the raw

inputs available for the discovery of semantic and structural knowledge are immense.

From the literature review in this paper, we observed that current research resorts to

applications of mature algorithms in the area of data mining and information retrieval.

However, uncertainties associated with human choices of metadata and subjective in-

terpretation of visual content pose new challenges that cannot be fathomed using these

areas alone. To be able to handle the transition of multimedia research from small ex-

pert labeled datasets to astronomical collections with noisy labels requires support

from other research fields that have not been part of mainstream multimedia research

so far. Studies of human perception, cognition, linguistics, psychology, and social sci-

ences represent important aspects addressing the human element in social multimedia.

Secondly, heterogeneous information cues from visual, textual and behavioral data need

to be effectively combined using techniques of multi-modal data and decision fusion.

Finally, a strong boost is needed in technology development that can efficiently handle

the increased burden on time and space requirements. Thus we envision people, infor-

mation and technology to be the three fundamental and equally important components

of future research in semantic interpretation of social media. These components need

to be independently or jointly analyzed, wherever applicable, to advance the state-of-

the-art of semantic understanding from images. In this section, we briefly touch on

some aspects of interest to current and future research directions.

– Accessible information: Current understanding of folksonomic features is skewed.

User modeling, in particular, is an enigma and requires effective analysis of a user’s

actions and annotations, possibly within the context of his social network. The

information is available from a variety of sources such as visual features, tags,

comments, ratings, page views, and social networks. The representation and fusion

of such heterogeneous data is central to effective ingestion of information. Repre-

sentation should be considered as an art of making data accessible such that the

semantic and structural properties of elements become apparent. Statistical model-

ing and visualization techniques need to complement each other to detect needles in

haystacks. We envision multi-lingual image folksonomies as a bridge that will join

knowledge and ontologies from different languages. By matching visual features,

multi-lingual information associated with images can be connected and easily ac-
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cessed. Development of semantic web is a possible extension to make information

accessible not only to humans but also to automated agents.

– Interface design: Manual tagging consumes time and effort. The information

foraging theory predicts that individual tag production rates can be increased by

lowering the effort of tag production [145,146]. Alleviating the tagging burden can

push more individuals to be participative, thus increasing the net production of

quality tags. Current interfaces partially alleviate the effort of tagging by providing

automated recommendations, easy tag selection [23], and faster manual annotation

methods [197]. However, external tag recommendation may influence user decisions

and force folksonomies to artificially converge. The implications and usability of

such convergence has not been studied yet. Support for manual annotations can

also be provided by making annotations fun. In this respect, interface design and

usability analysis of social media and collaborative games is an important research

direction. A good design should be able to prompt users to provide more quality

metadata as well as validate it. Personalization can also be incorporated in the

design to tailor the experience to user interests and expertise.

– Adaptable technology: Adaptability is an important aspect of folksonomies as

they continuously evolve with the underlying user-base and vocabulary. In this re-

gard, the paradigm of change mining is important for analysis of concept drifts

[19]. Another aspect of adaptation arises from the variable performance of social

inputs in concept modeling. The potential of folksonomic annotations for visual

concept modeling and image annotation is evident. However, the high error rates

experienced by current systems are too large for the systems to be of wide-spread

practical use. The success of automation may be greater for certain concepts, such

as those with low semantic gap [121]. Kennedy et al. have conducted initial ex-

periments to predict which visual concepts might benefit from human annotations

versus obtaining images from Web collections [96]. This presents an important sug-

gestion that concept modeling approaches need to adapt to different concept types

- as opposed to a ‘one size fits all ’ approach. Effective personalization techniques

need to be developed to further adapt techniques to individual users and groups.

– Scalable technology - The rapid increase in social collections presents scalability

challenges for existing data mining techniques. It is necessary to develop fast, light-

weight and effective techniques that scale to the rapid influx of data. Considering

the spatio-temporal nature, social data may be subjected to models under the larger

umbrella of data stream mining techniques [66]. Processing of raw data can be

replaced by mining higher order patterns as in higher order mining [152,201]. Fast

computing platforms such as the Map-Reduce framework [48] need to be heavily

adopted in information extraction tasks.

In conclusion, we find that the research on image semantics is undergoing a paradigm

shift with the introduction of social media sharing and collaborative games. The added

context has broadened the scope of semantic interpretation beyond visual features. To

harness the plethora of information requires interdisciplinary research and a confluence

of insights from areas like image processing, data mining, human computer interaction

and sociology. In this paper, we have reviewed nearly 200 representative papers and

summarized current efforts according to four application categories: concept semantics,

person identification, location semantics and event semantics. We have also pointed out

challenges and future research directions. We hope that the readers find this survey as

a concise summary of the rapidly evolving field of social image semantics.
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80. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Inf retrieval in folksonomies: Search

and ranking. Proc Eur Semant Web Conf, vol 4011, 411–426
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