
A Deep Learning Model for Natural Language

Querying in Cyber-Physical Systems

Juan Alberto Llopisa, Antonio Jesús Fernández-Garćıab, Javier Criadoa,
Luis Iribarnea, Rosa Ayalaa, James Z. Wangc

aApplied Computing Group, Department of Informatics, University of Almeŕıa, Spain
bUniversidad Internacional de La Rioja, Spain

cData Science and Artificial Intelligence Area, College of Information Sciences and
Technology, The Pennsylvania State University, USA

Abstract

As a result of technological advancements, the number of IoT devices and
services is rapidly increasing. Due to the increasing complexity of IoT devices
and the various ways they can operate and communicate, finding a specific
device can be challenging because of the complex tasks they can perform.
To help find devices in a timely and efficient manner, in environments where
the user may not know what devices are available or how to access them, we
propose a recommender system using deep learning for matching user queries
in the form of a natural language sentence with Web of Things (WoT) devices
or services. The Transformer, a recent attention-based algorithm that gets
superior results for natural language problems, is used for the deep learning
model. Our study shows that the Transformer can be a recommendation tool
for finding relevant WoT devices in Cyber-Physical Systems (CPSs). With
hashing as an encoding technique, the proposed model returns the relevant
devices with a high grade of confidence. After experimentation, the proposed
model is validated by comparing it with our current search system, and the
results are discussed. The work can potentially impact real-world application
scenarios when many different devices are involved.

Keywords: Deep Learning, Recommender System, Transformer, Web of
Things, Natural Language

Preprint submitted to Internet of Things; Engineering Cyber Physical Human SystemsOctober 18, 2023

1. Introduction

Throughout the history of humanity, the quality of life has constantly
been improving due to advancements in technology. The human being, al-
ready evolving with inventions such as the wheel and metallurgy, developed
further with the advent of electricity and the industrial revolution. This con-
tinues to be the case today with new technologies [1]. Nowadays, evolution
aims at digitalizing or making processes intelligent, as well as automating and
improving the quality of life in each area as follows: Smart Home to auto-
mate household tasks, Smart City to automate city management and control
tasks, Industry 4.0 to automate manufacturing and distribution in industrial
processes, and finally Smart Buildings, Smart Grid and Smart Healthcare,
among others [2].

This digitalization process is being driven by more and more universities,
governments, companies, and other institutions, through the development
of products and services. As more companies participate, a greater variety
of devices that provide solutions for more complex problems are developed,
thus streamlining the digitalization process. However, as the heterogeneity of
devices increases, each company designs a different device to solve the same
problem, making integrating devices difficult [3]. Furthermore, the digital-
ization process increases the number of devices deployed and the complexity
of the devices’ operations. Due to the growth in the number of devices, their
complexity, and their heterogeneity, a quick and efficient way of finding de-
vices or services that meet users’ requests is desired. Finding specific IoT
devices or services in environments where the user may not know what de-
vices are available or how to access them becomes even more challenging. In
these scenarios, the use of natural language sentences can be desirable.

This article solves the matching problem between users’ sentences and
devices by creating a decision-making aid model using the Transformer and
Web of Things (WoT) technology. We propose a deep learning model capa-
ble of matching devices and services with a user query in natural language,
returning a list of devices that matches the query. Our proposed method will
help to integrate Artificial Intelligence (AI) and the Internet of Things (IoT)
into industrial Cyber-Physical Systems (CPSs) and Smart ecosystems such
as Smart Homes and Smart Cities. In doing so, more complex and precise
searches could be made possible than those performed by traditional search
systems. Figure 1 shows a simplified scenario, where a user sends a query as
a natural language sentence and gets a list of recommended CPSs deployed

2

in a Smart Home building. The recommended list is sorted in descending
order, and the four first devices best suit the user’s request are returned.

Regarding communication and interoperability between devices and ser-
vices, an existing problem is the heterogeneity of IoT devices. When IoT de-
vices want to communicate, they need a standard way of doing so. The WoT
initiative was created to resolve this problem, supported by the World Wide
Web Consortium (W3C) through a series of recommendations. When using
WoT, devices are searched for in a common way using the Thing Descrip-
tion (TD). This document defines the features and properties of the device,
providing more information than just the device itself. Another method of
finding devices is using the services described in the TD (properties, actions,
and events), providing a more precise result than returning the entire device
information.

Other problems when searching for devices are (a) the location of sleeping
devices, devices that, following a period of time without activity, reduce their
energy consumption by deactivating features; (b) excessive use of energy due
to device response calls, for instance, through broadcasts; every time a device
search is performed, all network devices will be called, using more energy,
which in some cases may be limited; and (c) network overhead due to device
scanning. In our paper, we solve these problems by searching through the
repository of a discovery service, which contains the TDs of the available

Figure 1: Proposed scenario.

3

devices, and out of these TDs, the recommender finds the device that best
suits the user’s request.

When a user sends a query in the form of a natural language sentence, the
output of the recommender returns a device or a list of devices. This transfor-
mation or classification is made from a list of available devices. Accordingly,
when the user looks for a device capable of meeting their requirements, the
system will translate the sentence into a device available in the repository,
similar to translating from one language to another. The recommender pro-
posed uses the Transformer [4], an attention-based sequence transduction
model. The Transformer is a novel solution that delivers better results re-
garding the problems it is used for, mainly in natural language problems, like
translation [5]. For this reason, the recommender uses the Transformer to aid
a decision-making system. It can be seen then that the main contributions
of this paper are:

(a) A recommender for IoT systems based on a Transformer model.

(b) The support of natural language sentences to find relevant IoT devices
or services.

(c) The ability of the recommender to generate its own natural language
sentences.

(d) The use of the Web of Things paradigm to define IoT devices and
services.

From a scientific point of view, the novelty is the application of Smart
Sensing (SS) and Artificial Intelligence for CPSs to aid in smart decision-
making, explicitly using the Transformer as a recommendation tool to match
WoT devices. It is important to remark that users may not be familiar with
the available Web of Things (WoT) devices or services. Its description is
auto-generated by using the Thing Description (TD) to describe its features,
properties, and capabilities, as well as its nature by applying query expansion.
This technique enhances information retrieval effectiveness by extending or
reformulating user queries [6, 7]. The user introduces a natural language
sentence matching WoT devices in the discovery service repository. The
sentence the user enters goes through a hashing process, and an Embedding
layer is performed on that result. Finally, a Transformer layer is applied to
the result obtained in the Embedding layer. The following research questions
are addressed to identify the objectives to approach the aforementioned facts:

4

RQ1 Is it possible to use deep learning to find relevant devices or services
that users may require (i.e., recommendations) in CPSs through natural
language?

RQ2 Can Transformers be used in industrial CPSs to aid the decision-making
process for smart industrial scenarios?

RQ3 Can auto-generated descriptions for WoT devices or services be enough
to be found by unfamiliar users that may not know their existence
through queries in natural language?

RQ4 Is it apt to return a ranked list of WoT devices or services instead of
providing a fixed query-component binding?

This article is structured as follows. Section 2 offers an overview of various
related projects about searching and applying the Transformer, and explains
important terms. Section 3 presents a general overview of the proposed
model and briefly describes the steps from the model. Section 4 provides an
in-depth explanation regarding the steps of the proposed model before going
on to deal with the experimental setup, from fetching data to the created
model. Section 5 describes the results obtained from the experimentation
process and the validation scenario. Section 6 discusses the results of the
validation scenario. Finally, we discuss future directions in Section 7.

2. Literature Review

This section offers an overview of projects related to our proposal. Fur-
thermore, a background of the related work is outlined to describe some of
the terms used in the paper.

2.1. Background

The introduction of some of the terms used in the paper can be helpful
before explaining our proposal. As it has been introduced, our work tries to
find an equivalence or a proximity relation between a user query described
in natural language, and the devices or services available in a CPS or a
Smart ecosystem that have some kind of link with the query made. In this
sense, devices often correspond to elements of an IoT-based solution, and
the operations and interaction capabilities of those devices provide services.

5

Nevertheless, a current issue in the Internet of Things (IoT) is the hetero-
geneity of devices. Devices with the same features but made by different
providers may have different ways of operating and communicating, making
it harder for developers to create IoT solutions. For this reason, our work is
based on the Web of Things (WoT) technology, a W3C initiative created in
2010 [8] with the idea of adapting application layer technology to IoT, thus
solving the problem explained in the previous sentence. With this initiative,
IoT fragmentation and the cost of IoT solutions are reduced, as each de-
vice has a common way of describing itself through the web, improving the
interoperability and heterogeneity of the devices.

To extract the services to match the users’ queries, the Thing Description
(TD) is used, a JSON-LD document that contains basic information about
the device: name, brief description, security information, and InteractionAf-
fordance [9]. InteractionAffordance is a field, composed of properties, actions,
and events that describes a way of interacting with a thing using hypermedia
controls [10], i.e., the services offered by the thing. Using the TD, machines
and humans can understand the device and use the services that the device
offers, i.e., using the TD document, we can extract the services offered by
the device that the user needs.

Discovery Service shapes the other part of our solution. A Discovery
Service discovers devices, and their TDs are stored in the repository used
by the recommender to respond to the user’s request. Discovery Services
facilitate the search for services that meet the user’s request for many services
offered. When a user has a request, the Discovery Service must be able to
search for and return a service that matches the user’s request [11]. It can
unregister services on a repository or directory, allowing access to the offered
services. In our architecture, we search through TDs stored in the repository
associated with the Discovery Service.

These discovery services, which can help users and applications to iden-
tify, connect and interact with devices and services in the WoT, can be imple-
mented from some straightforward techniques to others that are much more
complex such as retrieval systems or recommender systems. In our research
in the context of WoT, we choose an implementation based on Deep Learning
recommender systems to provide a list of recommendations of devices and
services that users might be interested in, so they can then choose from this
ranked list according to which ones of them are likely to be more relevant
and/or interesting.

In our proposal, with the list of TDs and a sentence sent by the user,

6

the proposed solution matches the user’s query into the available devices or
services. The available services are encoded using the label encoding tech-
nique, while the sentences are encoded using the hashing technique. Label
encoding is an encoding technique where an integer number is assigned for
each word. In our solution, it is employed to transform the services used for
the recommender into numbers to train and evaluate the model.

Hashing is an encoding technique used to vectorize the features, creating
a vector of nxn hash integer features for the n available features [12]. In our
solution, hashing is used to vectorize the sentences obtained from the user’s
requests, using a large vocabulary size to avoid collisions when hashing the
sentences. Finally, the model is trained using Embedding and Transformer
layers. Embedding is a process that compacts high-dimensional vectors into
a low-dimensional space to ease the operation process through the available
data [13]. Once the space is reduced, a Transformer layer trains the model.
The Transformer is a novel sequence transduction model based on multi-
head self-attention [4], on which it relies to pay attention to multiple words
of a sequence in parallel, considering all the possible relations between them.
It is used on translation tasks and performs better than convolution and
recurrent-based solutions.

2.2. Related Work

In IoT environments, information can be gathered from devices or ex-
ternal sources. In addition, the information returned to the user relates to
the search techniques used when collecting the information. Our research
is focused on returning the device information or the services that best suit
the user’s requirements. As such, our work is compared with published work
about searching device information and services, information retrieval and
recommender systems, mainly in WoT, because of its similarity to our so-
lution. Non-WoT work that focuses on similar search techniques is also
included in the comparison.

There are many research efforts on WoT technology [14, 15, 16]. In [14],
the authors designed and developed a recommendation system for WoT APIs
using user preferences and device similarity between the queries and the
information stored about the available APIs. Instead of using the whole
API for the recommendation system, our research uses the different services
offered by the discovery service API. In [15, 16], the main topic concerns
discovering WoT devices. In [15], WoT Store is proposed, a platform to
manage and discover WoT Things. It also has a Thing Manager and an

7

Application Manager. The Thing Manager allows users to search for Things
by filling in a form with a list of predefined fields. A set of Things is returned
as a result of the search operation. For the query, semantic data is used.
The work of Bovent and Hennebert [16] centers on finding devices over the
network. Deployed devices are searched for through semantic queries using
SPARQL. Devices in the network with the resources that match the queries
will respond to the user’s request.

Some researchers explored techniques to find or discover devices [17,
18, 19]. They proposed an IoT framework capable of discovering IoT de-
vices. In [17], the framework can discover, index, and search for IoT devices
(IoTCrawler). The search process is performed through GraphQL and NGSI-
LD. When a GraphQL query is built, a set of NGSI-LD queries resolve the
GraphQL query. IoTCrawler facilitates the searching and ranking streams
of data, sensors, platforms, and observable properties using different ontolo-
gies. In [18], apart from the framework for the IoT search engine, the authors
proposed a naming service and used Long-Short-Term Memory (LSTM) for
query prediction. The proposed framework can search IoT devices by loca-
tion, function, and service type. Devices returned by the search engine can
be ranked. The query prediction module predicts the volume of queries to
aggregate similar queries and reduce system usage. Finally, in [19], the IoT
framework is called COBASEN, a software framework to discover and inter-
act with IoT devices. The Context Module discovers IoT devices connected
to the middleware. After the devices are discovered, stored, and indexed, the
search engine allows users to perform queries that return a ranked list of IoT
devices.

In the topic of retrieval systems, authors focus on discovering and search-
ing for devices by using their metadata and context information. In [20], the
authors propose a retrieval system for IoT that extracts metadata from the
internet to make the discovery process context-aware. In addition, the au-
thors propose the usage of metadata to calculate the relevant rank of contents
in a given topic. In contrast, our proposal uses the sentence given by the user
to return a list of ranked devices. In our proposal, the rank is performed using
a Softmax function, sorting the result by the confidence the ML model has
in each solution. Furthermore, context information can be extracted from
the Thing Description to make the search process context-aware, e.g., using
the location of the device. In [21], the authors review the current trends in
IoT, proposing as future work the use of ML to enhance data retrieval in
IoT to solve the challenge of managing large amounts of data. Our work

8

proposes using ML to enhance the retrieval of IoT information by matching
users’ queries with natural language sentences, thus solving the challenge of
managing large amounts of data related to the description of the device.

Regarding classification, the Transformer is an attention-based sequence
transduction model used mainly for natural language problems [4, 22]. Dur-
ing the search process for IoT devices, natural language is used to search
the available devices or services. However, machine learning is not used in
the field of WoT, and in the field of IoT, it is used but not to search for
devices or services. Consequently, the papers referenced in the related work
are focused on natural language or, in the case of IoT papers, predicting the
measurement value of devices.

In [23, 24, 25], the Transformer is used to create a machine-learning model
which can solve natural language problems. In [23], the authors proposed us-
ing the Transformer for speech recognition. Causal convolution is used for
context modeling and frame rate reduction, and Transformer and VGGNet
for encoding. Results from the experiment with LibriSpeech data show that
the Transformer performs better for encoding. Conversely, for prediction,
LSTM is a better alternative. In [24], the authors suggested using the Trans-
former as an encoder with a CNN-based feature extractor and a position-wise
classifier to perform sound event detection. The authors evaluated the pro-
posal using the Transformer with the DCASE2019 Task 4 dataset, where
the Transformer outperforms the CRNN-based model. Finally, in [25], the
authors used Embedding and the Transformer to analyze the sentiment of
tweets written in Spanish. The proposal is evaluated using a dataset provided
by Task 1 of the 2019 edition of the TASS workshop. Using tweets from five
Spanish language variants, the Transformer ranked first in analyzing two and
second in analyzing the other three.

Another study regarding the use of the Transformer is [26], where the au-
thors used it in an IoT scenario. In such an approach, the authors proposed
DeepHealth, a framework for instant intelligent predictive maintenance. Us-
ing the Transformer, DeepHealth can evaluate industrial facilities’ current
and future health conditions. For future condition evaluation, the Trans-
former predicts the next sequence of sensor signals. The output of the pre-
diction is used again by the Transformer to assess the aforementioned health
conditions of the industrial facilities.

Finally, recommender systems are widely used in many fields and appli-
cations [27, 28]. It includes research focused on recommender systems in IoT
environments. In [29], the authors proposed a system to recommend services

9

related to IoT devices. The user queries for services that improve or support
the CPSs associated with the user profile. After a list of services is retrieved,
the recommender filter and score the services using the information of the
user’s profile and similar profiles. In [30], the authors proposed a voice recog-
nition system integrated with a recommender for controlling IoT devices in a
Smart Home. The system has an authorization system using image recogni-
tion. After the user is authorized, the user can send commands via a chatbot
or voice commands. In the case of using voice commands, the voice is trans-
formed into text and tokenized to extract the desired action. Finally, devices
are recommended using the nearest neighbour algorithm with information
about past choices and choices made by users with a similar profile. The last
paper about recommender systems in IoT environments is RecRules [31].
In RecRules [31], the authors proposed a recommender based on IF-THEN
rules. The system recommends rules to connect a pair of devices, causing an
action on the latter device when a trigger is detected on the other device.
The model gets better results than similar proposals when trained using col-
laborative, technology, and functionality paths using Random Forest as the
main algorithm.

Table 1 shows the comparison between our proposal and the related work
papers, describing the following aspects:

(a) Objective: Indicates the main objective of the paper;

(b) Syntactic: Indicates whether the paper uses syntactic information (in-
cluding queries) to accomplish the objective;

(c) Semantic: Indicates whether the paper uses context information from
the user’s queries (including semantic queries);

(d) Natural Language: Indicates whether the natural language (including
syntactic and semantic data) is used to accomplish the objective;

(e) Transformer: Indicates whether the Transformer algorithm or any vari-
ant of the algorithm is used;

(f) IoT: Indicates whether the scope of the problem is related to IoT;

(g) WoT: Indicates whether the scope of the problem is related to WoT.

10

Research Work Objective SY SE NL TR IoT WoT

Meissa et al. (2021) [14] Recommender ◦ ◦ ◦ ◦ ◦ •
Sciullo et al. (2020) [15] Manage & discover • • ◦ ◦ ◦ •
Bovet and Hennebert (2014) [16] Discover ◦ • ◦ ◦ ◦ •
Iggena et al. (2021) [17] Discover & index • • ◦ ◦ • ◦
Hatcher et al. (2021) [18] Discover & prediction • ◦ ◦ ◦ • ◦
Lunardi et al. (2015) [19] Discover • • ◦ ◦ • ◦
Zhao et al. (2015) [20] Retrieval System • • ◦ ◦ • ◦
Younan et al. (2020) [21] Survey IoT • • ◦ ◦ • •
Yeh et al. (2019) [23] Classification • • • • ◦ ◦
Miyazaki et al. (2020) [24] Classification • • • • ◦ ◦
González-Barba et al. (2020) [25] Classification • • • • ◦ ◦
Zhang et al. (2021) [26] Classification & pred. • • • • • ◦
Mashal et al. (2016) [29] Recommender • • ◦ ◦ • ◦
Torad et al. (2022) [30] Recommender • • • ◦ • ◦
Corno et al. (2019) [31] Recommender • • • ◦ • ◦
Our Work Recommender • • • • • •

Table 1: Summary of related work (SY: Syntactic, SE: Semantic, NL: Natural Language,
TR: Transformer) (• included, ◦ not included).

As shown, our approach combines the search and recommendation process
in WoT with classification techniques using deep learning. We have previ-
ously carried out a small proof of concept [32] using a small dataset with 645
instances to evaluate the usage of Transformer as a recommendation tool for
finding relevant WoT devices in CPSs. In [18], the authors used machine
learning to predict query aggregation and improve query performance. How-
ever, machine learning is not used in the search process. In our proposal,
machine learning and natural language are used in the search process for de-
vices and services. Furthermore, our proposal also uses the Transformer as a
novel technique to accomplish the search objective and recommend devices
and services. Deephealth [26] uses the Transformer for classification and pre-
diction in IoT environments, although it is used to classify and predict the
sensor signals. In our proposed method, the Transformer matches the sen-
tence sent by the user with one of the devices or services available, being the
first time using the Transformer as a recommender in IoT and WoT.

3. Overview

This section provides a general overview of the proposed Transformer-
based recommender model for matching WoT devices and queries in the form

11

of natural language sentences introduced by the user. Figure 2 represents the
proposed model, which is not a formal methodology but defines the pipeline
of steps and processes used to achieve the paper’s objective. The processes
represented in Figure 2 range from data fetching to ranking results from the
Softmax function. As Figure 2 shown, our approach consists of seven steps,
two of them related to Fetching and Pre-processing data, the next two steps
related to the data processing to adapt the data to machine learning, and the
last steps related to training and applying the models. At the end of step six,
a Softmax function is performed through the result of the Transformer layer.
Furthermore, the Softmax output is sorted in descending order to return a
list of recommended devices to the user, instead of only one possible device.
If the first device on the list has a high enough value, in our case higher than
0.75, then only the first device on the list is returned to the user.

As the proposal aims to aid the decision-making process, this solution
returns a device if the system is sure that the returned device matches the
user’s request, keeping the user from having to make a decision. However,
if the system is not sure about the returned device, it returns a list of top-k
devices, forcing the user to select one device among them, but from a smaller
list than using the full list of devices. The main steps of the approach are:

(a) Fetching Data. This step involves getting compatible datasets and
fetching them for the proposed model. In our approach, we extract
the data from a dataset about anomaly detection algorithms in IoT.
In-depth details of this step can be found in Subsection 4.1.

(b) Feature Engineering. This step consists of pre-processing the data
before using it. Unused features are removed, needed features are
added, and features are combined. This section is required to enhance
the model and get better results. In-depth details of this step can be
found in Subsection 4.2.

Figure 2: Pipeline of steps and processes for smart decision-making.

12

(c) Encoding. This step consists of encoding the features to make them
interpretable by machine learning algorithms. This step uses two fea-
ture encoding strategies: label encoding for the classification features
and hashing for the users’ sentences. Additionally, tokenization was
used instead of hashing to evaluate the performance of using individ-
ual words in the Embedding process instead of the whole sentence.
In-depth details of this step can be found in Subsection 4.3.

(d) Normalization. This step consists of normalizing the data encoded to
homogenize it. Padding transforms each vector for vectors of the same
size, making them usable by the machine learning algorithm. In-depth
details of this step can be found in Subsection 4.4.

(e) Training Model. This step consists of randomly splitting the dataset
into two groups, the data used to train the model and the data used
to validate the model. In-depth details of this step can be found in
Subsection 4.5.

(f) Model. This step involves creating a model using machine learning
algorithms to match the devices with the users’ sentences. Two layers
are used in this step: the Embedding Layer to compact the vector
and the Transformer to operate over the Embedding Layer result and
classify the sentences. In-depth details of this step can be found in
Subsection 4.6.

(g) Recommendations. After the model is created, a Softmax function is
performed through the result of the Model to aid in the decision-making
of the device. The Softmax function obtains a list of the available
devices and their match score with the user’s sentence in descending
order. In-depth details of this step can be found in Subsection 4.7.

4. Creation of the Recommender Model

This section explains the rationale for implementing each proposed step
to help the reader understand why the process is split into the proposed
seven steps. Furthermore, this section explains the proposed model and
the experimentation performed. Finally, how each step has been applied is
described in detail, explaining the type of experimentation carried out with
the dataset for each step.

13

4.1. Fetching Data

The dataset used for the research, mainSimulationAccessTraces.csv (IoT
Traffic Traces), is a dataset created to evaluate anomaly detection algorithms.
Devices deployed in a Smart Home call other services through HTTP end-
points. The dataset has IoT devices, services, locations in the Smart Home,
and operations. However, although a feature representing the user’s sentence
is missing, the dataset is still studied due to its similarity to our problem
and its large scale of observations. The dataset has a set of services for each
device, a problem that simulates a TD of the WoT. It also has 357952 ob-
servations of 13 features so that the model can learn and result in a good
recommender for this large amount of observations. Figure 3 shows the dis-
tribution of the most frequent services used for the recommendation process.
The most common services used in the dataset are movement devices, tem-
perature devices, and battery devices. These devices are shown in Table 2.
They represent 98.74% of the total services available in the dataset. As the
recommender model uses natural language sentences and a vocabulary of
words for the training process, the non-homogeneous distribution between
different devices is not a problem. Completely different services can be eas-
ily matched correctly by the recommender. However, the non-homogeneous
distribution between the same type of device in different places can make the
recommender model mismatch the correct device. For instance, each device
has a service to register the device in the discovery service. This service is
called once in the whole dataset, and the name is very similar to the rest of
the device’s services. For that reason, that service will be mismatched with
other services of the same device. This behavior is analyzed in Section 5.
Table 3 shows the set of features from the dataset. The latter was obtained
from Kaggle1 in the form of a CSV file.

The reason for selecting this dataset is that it is the only one available
with a large number of observations to train and validate the machine learn-
ing model. In addition, this dataset fits our research problem, a service-
centric dataset that allowed us to match user queries with CPS services.
To create the sentences associated with each observation of the dataset, we
need information related to the devices. Using WoT technology, the required
information is described in the TD, while in this dataset, we have the in-
formation defined in each observation. Each observation defines a call to a

1Dataset – https://www.kaggle.com/francoisxa/ds2ostraffictraces

14

Figure 3: Dataset distribution of the most frequent device services.

15

device count # device count

1 /agent11/battery4/charge 19032 28 /agent27/tempin27 6350
2 /agent12/battery5/charge 16531 29 /agent24/tempin24 6349
3 /agent5/battery1/charge 16526 30 /agent26/tempin26 6347
4 /agent5/battery2/charge 16494 31 /agent25/tempin25 6347
5 /agent12/battery6/charge 16460 32 /agent1/movement1/movement 6293
6 /agent11/battery4/charging 8611 33 /agent4/battery3/charge 4540
7 /agent6/tempin6 8407 34 /agent14/movement14/movement 4336
8 /agent12/movement12/movement 7124 35 /agent10/movement10/movement 4277
9 /agent5/battery1/charging 6784 36 /agent4/battery3/charging 4204
10 /agent12/battery5/charging 6748 37 /agent4/movement4/movement 4189
11 /agent5/battery2/charging 6649 38 /agent21/movement21/movement 4186
12 /agent28/tempin28 6552 39 /agent24/movement24/movement 4184
13 /agent1/tempin1 6551 40 /agent22/movement22/movement 4183
14 /agent2/tempin2 6550 41 /agent3/movement3/movement 4183
15 /agent12/battery6/charging 6540 42 /agent20/movement20/movement 4183
16 /agent11/tempin11 6512 43 /agent6/movement6/movement 4182
17 /agent3/tempin3 6416 44 /agent2/movement2/movement 4179
18 /agent4/tempin4 6414 45 /agent11/movement11/movement 4178
19 /agent23/tempin23 6406 46 /agent13/movement13/movement 4174
20 /agent20/tempin20 6405 47 /agent25/movement25/movement 4174
21 /agent21/tempin21 6404 48 /agent23/movement23/movement 4172
22 /agent5/tempin5 6401 49 /agent5/movement5/movement 4172
23 /agent22/tempin22 6397 50 /agent27/movement27/movement 4171
24 /agent10/tempin10 6397 51 /agent26/movement26/movement 4170
25 /agent13/tempin13 6384 52 /agent28/movement28/movement 4169
26 /agent14/tempin14 6370 53 /agent29/movement29/movement 4169
27 /agent29/tempin29 6351 54 Others 5475

Table 2: Most frequent device services.

service available in a Smart Home scenario; in other words, each observation
is a request sent by a user to a device to execute one of the services the device
has available. Therefore, we complete each request with a natural language
sentence built using the information of each service to adapt the dataset to
our study case.

4.2. Feature Engineering

To enhance the model and get better results a basic feature engineer-
ing process is applied. Feature engineering transforms the dataset, creating
a new one with features that better suit the proposed model. To trans-
form the dataset using feature engineering, a wide range of techniques are
used [33]. This paper uses feature creation and feature deletion techniques to
pre-process the data before creating the model. Feature creation is applied
to create new derived features that complete the dataset and are useful in
the recommender model. In contrast, feature deletion is applied to remove
features that do not contribute to the recommender model. To apply feature
engineering techniques to our problem, we have to consider that the features
selected must allow the system to classify users’ sentences with the highest

16

F
e
a
t
u
r
e

D
e
s
c
r
ip

t
io

n
C
la
s
s
d
e
s
c
r
ip

t
io

n
#

C
la
s
s

s
o
u
r
c
e
ID

D
e
v
ic
e
ID

th
a
t
p
e
rf
o
rm

s
th

e
q
u
e
ry
.

C
a
te
g
o
ri
c
a
l:

li
g
h
tc
o
n
tr
o
l1
,
m
o
v
e
m
e
n
t2

,
te
m
p
in
2
,

te
m
p
in
4
,
e
tc
.

8
4

s
o
u
r
c
e
A
d
d
r
e
s
s

D
e
v
ic
e
se
rv

ic
e
a
d
d
re
ss

o
f
th

e
so

u
rc
e

d
e
v
ic
e
.

C
a
te
g
o
ri
c
a
l:

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2
,

a
g
e
n
t4

/
m
o
v
e
m
e
n
t4

,
e
tc
.

8
9

s
o
u
r
c
e
T
y
p
e

D
e
v
ic
e
se
rv

ic
e
ty

p
e
o
f
th

e
so

u
rc
e
d
e
v
ic
e
.

C
a
te
g
o
ri
c
a
l:

/
li
g
h
tC

o
n
tr
o
le
r,

/
m
o
v
e
m
e
n
tS

e
n
so

r,
/
se
n
so

rS
e
rv

ic
e
,
e
tc
.

8

s
o
u
r
c
e
L
o
c
a
t
io

n
D
e
v
ic
e
lo
c
a
ti
o
n

o
f
th

e
so

u
rc
e
d
e
v
ic
e

C
a
te
g
o
ri
c
a
l:

B
e
d
ro

o
m
P
a
re
n
ts
,
K
it
ch

e
n
,
G
a
ra

g
e
,

W
a
tt
e
rr
o
o
m
,
e
tc
.

2
1

d
e
s
t
in

a
t
io

n
S
e
r
v
ic
e
A
d
d
r
e
s
s

D
e
v
ic
e
se
rv

ic
e
a
d
d
re
ss

th
a
t
re
c
e
iv
e
s
th

e
q
u
e
ry
.

C
a
te
g
o
ri
c
a
l:

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2
,

/
a
g
e
n
t4

/
te
m
p
in
4
,
e
tc
.

8
5

d
e
s
t
in

a
t
io

n
S
e
r
v
ic
e
T
y
p
e

D
e
v
ic
e
ty

p
e
o
f
th

e
d
e
st
in
a
ti
o
n

d
e
v
ic
e
.

C
a
te
g
o
ri
c
a
l:

/
li
g
h
tC

o
n
tr
o
le
r,

/
m
o
v
e
m
e
n
tS

e
n
so

r,
/
se
n
so

rS
e
rv

ic
e
,
e
tc
.

8

d
e
s
t
in

a
t
io

n
L
o
c
a
t
io

n
D
e
v
ic
e
lo
c
a
ti
o
n

o
f
th

e
d
e
st
in
a
ti
o
n

d
e
v
ic
e
.

C
a
te
g
o
ri
c
a
l:

B
e
d
ro

o
m
P
a
re
n
ts
,
K
it
ch

e
n
,
G
a
ra

g
e
,

W
a
tt
e
rr
o
o
m
,
e
tc
.

2
1

a
c
c
e
s
e
d
N

o
d
e
A
d
d
r
e
s
s

O
p
e
ra

ti
o
n

o
f
th

e
d
e
st
in
a
ti
o
n

se
rv

ic
e

c
a
ll
e
d
.

C
a
te
g
o
ri
c
a
l:

/
a
g
e
n
t3

/
m
o
v
e
m
e
n
t3

/
la
st
C
h
a
n
g
e
,

/
a
g
e
n
t1

2
/
b
a
tt
e
ry

5
/
ch

a
rg

e
,
e
tc
.

1
7
0

a
c
c
e
s
e
d
N

o
d
e
T
y
p
e

T
y
p
e
o
f
o
p
e
ra

ti
o
n

o
f
th

e
d
e
st
in
a
ti
o
n

se
rv

ic
e
.

C
a
te
g
o
ri
c
a
l:

/
d
e
ri
v
e
d
/
b
o
o
le
a
n
,
/
b
a
si
c
/
n
u
m
b
e
r,

/
se
n
so

rS
e
rv

ic
e
,
e
tc
.

1
2

o
p
e
r
a
t
io

n
C
la
ss
ifi
c
a
ti
o
n

o
f
th

e
p
e
rf
o
rm

e
d

o
p
e
ra

ti
o
n
.

C
a
te
g
o
ri
c
a
l:

re
g
is
te
rS

e
rv

ic
e
,
w
ri
te
,
re
a
d
,

su
b
sc
ri
b
e
,
e
tc
.

5

v
a
lu

e
V
a
lu
e
se
n
t
to

th
e
se
rv

ic
e
.

N
u
m
e
ri
c
a
l
a
n
d

B
in
a
ry

-

t
im

e
s
t
a
m

p
T
im

e
w
h
e
n

th
e
o
p
e
ra

ti
o
n

w
a
s

p
e
rf
o
rm

e
d
.

T
im

e
st
a
m
p

-

n
o
r
m

a
li
ty

In
d
ic
a
te
s
if

th
e
c
o
n
n
e
c
ti
o
n

is
n
o
rm

a
l
o
r

a
n
o
m
a
lo
u
s.

C
a
te
g
o
ri
c
a
l:

n
o
rm

a
l,

a
n
o
m
a
lo
u
s(
D
o
S
a
tt
a
ck

),
a
n
o
m
a
lo
u
s(
sc
a
n
),

e
tc
.

8

Table 3: Set of features describing the IoT Traffic Traces datasets.

17

accuracy. That means the features must be able to represent a user’s sentence
and features that represent the device. The deleted features are:

(a) Source features: All the source features are removed from the dataset
(sourceID, sourceAddress, sourceType, and sourceLocation). For
our solution, only the information about the available devices is re-
quired to classify the queries, not the user.

(b) destinationServiceAddress: Looking at Table 3, this feature seems
similar to the feature accesedNodeAddress but with a lower number of
classes. This similarity is due to this class being included in the feature
accesedNodeAddress. As such, it is deleted from the dataset.

(c) accesedNodeType: Looking at Table 3, this feature is similar to the
feature destinationServiceType but with a higher number of classes.
This similarity is due to the inclusion of destinationServiceType in
this feature. However, destinationServiceType was selected because
it is more accurate for our problem. For instance, an operation on a
light is specified as /derived/boolean instead of being represented as
/lightControler.

(d) value, timestamp, and normality: In our solution, these features do
not add relevant information to infer knowledge. Accordingly, they are
deleted.

The remaining features (destinationServiceType, destinationLoca-
tion, and operation) are merged into one new feature (1). Following this
structure, users’ sentences can be auto-generated by using the information
of the Thing Description (TD) to describe their features, properties, and
capabilities as well as their nature. Furthermore, the auto-generation struc-
ture can improve users’ sentences by extending user queries with additional
information that can help in the recommendation process; for instance, by
adding the location of the desired device in the query.

This new feature represents the three merged features and creates a fea-
ture that simulates a user’s sentence. As the sentences are created using the
same schema for each service, they are not very diverse, with a homogeneous
language structure and a medium complexity. This solution can help initially
train the recommender model to adapt it to new devices before storing real
natural language sentences. An example of a sentence from this feature is
defined in (2).

18

I need to+ op+ destinationServiceType+ in+ destinationLocation.
(1)

I need to write a light controller in the bedroom. (2)

After applying feature engineering, the dataset is described by two fea-
tures, by accessedNodeAddress, a categorical type with 170 classes; and by
Sentence, a text type feature defined in (1).

4.3. Encoding

In machine learning, algorithms may need to transform categorical data
into numerical data to make the data usable. The transformation of these
features by the machine learning algorithms is called encoding [34]. To apply
encoding, a wide range of techniques are used [35]. This paper uses two
encoding techniques to transform categorical data into numerical data: label
encoding and hashing. These techniques were explained in Section 2.1. Label
encoding is used to keep the order of the features used for the recommender.
In contrast, hashing creates a numerical vector of the feature representing the
user’s sentences. Another technique used is tokenization, which represents,
for each sentence, a vector with the number of times each word is repeated
in the sentence, creating a mxn vector where m is the number of different
words (the vocabulary) in the largest sentence, Vm and n is the number of
sentences (3).

m = |Vm|;n = |VT |;Vm ∈ VT =⇒ ∃Vm|∀Vn ∈ VT : |Vm| ≥ |Vn|. (3)

For the dataset, the features selected are categorical or text. Label en-
coding is used on the device features and hashing on the sentence features.
For the second experiment, Tokenizer was used instead of hashing on the
sentence features. The transformation operations are described below:

(a) Label encoding: accesedNodeAddress feature is encoded into numerical
values. All the classes are encoded in the {0, 1, . . . ,#Class} range of
values. After a sentence is matched with a device, an inverse trans-
formation can be performed to decode the result and get the matched
device.

19

(b) Hashing: The Sentence feature is encoded into vectors using the func-
tion one hot from Keras, which performs a hash encoding of each sen-
tence using md5. This is done using a vocabulary size higher than the
number of different words from the sentences. Using a number lower
than that of the different words may result in collisions in the encoding
process. The vocabulary size is 250. Each sentence, VT , is defined as
a subset, V , of values between 0 and the vocabulary size, where each
value represents a word, p, from the available vocabulary, P (4).

(c) Tokenizer: In the second experiment, the Sentence feature is encoded
using Tokenizer, which transforms the Sentence feature into vectors.
Once the Sentence feature is represented as a vector, Tokenizer trans-
forms the vector into a matrix representing each sentence as the repe-
tition of each available word in the vocabulary.

VT = {V0, V1 . . . Vn};V ⊆ P ; p ∈ P ;P = {0, 1 . . . vocabularySize} (4)

4.4. Normalization

After applying feature engineering techniques or encoding techniques, fea-
tures may need a transformation process to homogenize the data, i.e., to rep-
resent the features commonly. Padding is used on our features to transform
each vector created in the encoding step for vectors of the same size. Padding
is a technique usually used in image processing when processed by Convo-
lutional Neural Networks. It adds new values to the vector to increase its
size [36]. In our model, it is used to add new values to each vector sentence,
improving the model’s accuracy. Figure 4 shows an example of a natural
language sentence’s encoding and normalization process.

Figure 4: Encoding and normalization example.

20

4.5. Training Model

Before applying the proposed model and after the data have been pro-
cessed and adapted to the machine learning algorithms, the dataset is split
into two sets of data: (a) the training dataset, which represents 75% of the
instances; and (b) the validation dataset, which makes up the remaining 25%
of the instances. The splitting process is performed randomly, distributing
the classes homogeneously across the training and test sets. Therefore, as
they would be computationally expensive and would not give useful infor-
mation about the model, there is no need to use techniques to evaluate the
distribution of the datasets or to homogenize the model in the validation
process.

4.6. Model

The model is the main step of the machine learning process. Many ma-
chine learning algorithms exist to create a model for performing tasks such
as recommending. Each algorithm displays better results depending on the
type of problem. For instance, the Transformer is a novel algorithm used
mainly for natural language classification problems. Embedding and the
Transformer are used in our work to build the recommender. An Embedding
layer is applied to compact the vectors into low-dimensional space, and the
Transformer is used on the dataset as the main algorithm of our solution.
Using the Transformer is to study whether this novel algorithm can resolve
IoT and WoT classification problems. This paper also studies whether the
Transformer can improve previous IoT and WoT research results.

(a) Embedding: Natural language features are represented as high-dimensional
vectors. To ease the operation process and obtain better results when
applying the Transformer layer, an Embedding layer for both tokens
and the token index is created before using the Transformer layer, com-
pacting the high-dimensional vectors into a low-dimensional space. The
selected dataset has an Embedding layer of output dimension equal to
128, input dimension of the tokens equal to the vocabulary size used,
that is 250; and input dimension of the position equal to the maximum
length of the vectors, that is 9, for the experiment using hashing; and
40 for the experiment using Tokenizer.

(b) Transformer: The Transformer is an attention-based sequence trans-
duction model and has been used for natural language problems (5).

21

Our proposal is based on matching between WoT devices and sentences,
a natural language problem. In that regard, the Transformer is used
as the main layer of the model. The low-dimensional vector obtained
from the Embedding layer is used for the encoder-decoder structure
of the Transformer architecture. For the Transformer encoder and de-
coder, 2 attention heads are used. Furthermore, the hidden layer size
of the feedforward network is 128, and the size of each attention head
for the query and the key is the output dimension of the Embedding
layer (128).

Attention(Q,K, V) = softmax(
QKT

√
dk

)V . (5)

4.7. Recommendations

The model learns from the input data using the algorithms selected. How-
ever, the result for the model must be adapted to extract useful information,
and there are transformation techniques for this, two of which are Sigmoid
and Softmax. In this paper, ReLU (6) and Softmax (7) are used as activa-
tion functions in fully connected layers (Dense) to extract useful information
from the result provided by the model. ReLU is used at intermediate layers,
giving outputs of 0 if the input is negative and returning the input value if
it is positive. In addition, the softmax function takes an input vector and
returns a probability distribution over the classes, it has the effect of scaling
the values such that they all fall within the range [0, 1] and sum to 1. The
highest value is returned in the Softmax function as the device best suits the
user’s request. However, the Softmax function is modified to create a list
providing all the results instead of just the best result. The modification of
the Softmax function allows a list of the top-k results to be returned. This
modification prevents the return of a non-precise value because if the first
result is under 0.75, the user gets a sorted list in descending order of the
top-k results to select the device that best suits the user’s request.

f(x) = max(0, x). (6)

σ(−→z)i =
ezi∑K
j=1 e

zj
. (7)

22

The Softmax function is applied to 170 neurons, representing each pos-
sible device that can match the user’s sentence. Finally, the value or vector
of values is returned, decoding the value to get the matched device. In the
case of a single device, the service obtained is executed automatically. On
returning a vector of values, the top-k values are returned, allowing the user
to select the device among the recommended devices.

5. Results

This section shows the results of the proposed model using different con-
figurations. The experiments aim to study whether the model could return
relevant recommendations of devices or services to the users by processing
natural language queries. The number of neurons, the dropout, and variables
such as the batch size or epochs were modified for the experiments. Further-
more, two configurations were carried out, one using hashing to encode the
user’s sentences and another using tokenization to pre-process the user’s sen-
tences. Finally, a validation scenario was created using the proposed models
and compared with the current search system to validate the results.

5.1. Experimentation

Table 4 shows the layers and the accuracy of the models trained for the
experimentation of the Hash Encoding model. The first four layers used of
the models are the same for each model: an Embedding layer, the Trans-
former layer, a GlobalAveragePooling1D layer, and a Dropout of 0.1. The
embedding layer is required to use the Transformer algorithm. The model
uses these layers because of the increased accuracy and to compact the high-
dimensional vectors into a low-dimensional space. The last two columns
describe the validation and final accuracy of the models.

Figure 5 shows the final configuration selected from the experimentation,
marked in Table 4, in which validation accuracy was higher than the testing
accuracy, and the value loss was lower than the testing loss. The reason
for this result is the use of Dropout, a regularization method that drops or
ignores neurons from the neural network (e.g., Dropout(0.5), which means
that 50% of the neurons are dropped). Dropout avoids overfitting in the
training process, leading to a more robust model and higher accuracy.

Regarding the hyperparameters of the selected model, Table 5, shows the
hyperparameters used in the training process. For selecting the best configu-
ration, different hyperparameters were used to keep a high value of accuracy

23

while avoiding overfitting in the model. After not getting improvements in
the results, the model with the highest accuracy was selected.

Our best result using hashing reaches a value of 79.62%, which is a good
result bearing in mind that the sentence is created using the available fea-
tures from the original dataset. Figure 6 and Table 5 show the accuracy
results in the training and validation process. The results with different hy-
perparameters show similar results. Using a relatively low batch size (5000)
to train the model delivers better and faster results than a high batch size,
reaching the peak accuracy value using less number of epochs.

A problem that may appear is overfitting due to the feature creation be-
ing applied to the dataset, meaning the model might not be able to classify
new sentences. Regarding this possible problem, we have to take into ac-
count that sentences can be created following the proposed schema using the
information available from the request: (a) operation, (b) service, and (c)

5.Layer 6.Layer 7.Layer 8.Layer 9.Layer 10.Layer
Output

Layer
AV ACC

Dense(512,

ReLU)

Dropout

(0.5)

Dense(256,

ReLU)

Dropout

(0.5)
- -

Dense(170,

Softmax)
78.37% 78.24%

Dense(512,

ReLU)

Dropout

(0.8)

Dense(256,

ReLU)

Dropout

(0.5)
- -

Dense(170,

Softmax)
76.08% 76.18%

Dense(128,

ReLU)

Dropout

(0.8)

Dense(64,

ReLU)

Dropout

(0.5)

Dense(32,

ReLU)

Dropout

(0.1)

Dense(170,

Softmax)
75.94% 75.96%

Dense(256,

ReLU)

Dropout

(0.8)

Dense(128,

ReLU)

Dropout

(0.5)
- -

Dense(170,

Softmax)
75.85% 75.96%

Dense(128,

ReLU)

Dropout

(0.8)

Dense(64,

ReLU)

Dropout

(0.5)
- -

Dense(170,

Softmax)
72.79% 72.86%

Dense(128,

ReLU)

Dropout

(0.8)

Dense(64,

ReLU)

Dropout

(0.5)
- -

Dense(170,

Softmax)
58.27% 58.05%

Table 4: Layer configurations of the Hash Encoding model experimentation (AV: Valida-
tion Accuracy; ACC: Accuracy)

Figure 5: Diagram of the proposed model.

24

location. The information can be extracted from the original user’s sentence
to create sentences matching the devices. A validation scenario is explained
in the next subsection to validate the model and check whether an overfitting
problem exists.

The first experiment was performed using the whole sentence for the
model creation. Each sentence is transformed to numerical values using hash-
ing and vocabulary size. Another solution is to create the model using each
word from each sentence, similar to One-Hot encoding. To split each sen-
tence into words, tokenization is used. With a tokenizer, each sentence is
represented as a vector of numerical values, where each value represents the
number of times a word is used in the sentence. The tokenization configura-
tion’s accuracy value is higher than the experiment using hashing, 80%. The
configuration used is the same as that used in the hashing experiment. In
the dataset, the vector’s length is lower than the number of observations (40)
because the sentences are created following a schema. Accordingly, the same
words are repeated in all the sentences, i.e., smaller vocabulary size, the four
words used to build the schema: (a) I, (b) need, (c) to, and (d) in; and the
three features used: (i) operation (5 classes), (ii) destinationServiceType
(8 classes) and (iii) destinationLocation (21 classes). This result shows
that encoding each word instead of each sentence in datasets with a small
vocabulary may increase the accuracy value. However, the accuracy may be
compromised for datasets with an extensive vocabulary. Finally, the model
is used in the validation scenario, and the result is compared to the model
created using hashing to check whether overfitting exists in the experiments.

EO FFS B E AV ACC

128 128 5000 10 79.83% 79.62%

128 128 5000 50 79.31% 79.51%

128 128 2000 5 79.71% 79.52%

128 128 10000 20 79.49% 79.59%

128 128 30000 20 79.52% 79.39%

64 64 5000 10 79.50% 79.58%

64 64 2000 5 79.44% 79.57%

64 64 10000 20 79.44% 79.57%

Table 5: Results for the selected layer of the Hash Encoding model (EO: Embedding
Output; FFS: Feed Forward Size; B: Batch Size; E: Epochs; AV: Validation Accuracy;
ACC: Accuracy)

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

Epochs

loss
accuracy

val loss

val accuracy

(a) Accuracy in the hashing model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

Epochs

loss
accuracy

val loss

val accuracy

(b) Accuracy in the tokenization model.

Figure 6: Accuracy results in training and validation process using a batch size of 5000.

5.2. Validation

In the previous subsection, a configuration for each experiment was se-
lected, bearing in mind the accuracy. The validation was considered to select
the best configuration in the case of configurations with the same accuracy. In
this subsection, a validation scenario is described for the validation process.
When evaluating models, the accuracy has to be evaluated using another
metric, the reason being is because the accuracy can mislead the researcher,
for instance, having a high level of accuracy in the creation of the model, but
the opposite in real-life situations or classifying new data.

The Softmax function’s output value is used as a metric to evaluate the
recommender, indicating the confidence level that the model is about the
recommended devices. However, this metric is not a valid evaluation metric
for the performance of the recommender. Thus, in addition to this metric,
Precision@n, Recall@n, and Coverage are calculated to measure the quality
of the suggestions. For Precision@n and Recall@n, the evaluation can be
around the relevant recommendations [37] or around the number of positives
and negatives returned [38, 39]. In the case of using positives and negatives,

26

Precision@n and Recall@n measure the relevant recommendations returned
(true positive), the nonrelevant recommendations returned (false positive),
and the relevant recommendations not returned (false negative). As in our
scenario, the number of recommendations returned is preordained; we used
Precision@n [40], where the set of recommendations returned can be relevant
recommendations for the user, defined as N = {N1, N2, .., Ni}, that is a
subset of the possible relevant recommendations that the user can receive,
R = {R1, R2, .., Rr}, defined as N ⊆ R.

The Precision@n is a metric that measures the number of relevant rec-
ommendations produced (8) that can be defined as follows:

Precision@n =
i

t
. (8)

where,

i is the number of relevant recommendations |N |.
r is the number of possible relevant recommendations |R|.
t is the number of devices returned in the recommendation |T |.
T is a set of devices returned in the recommendation T = {T1, T2, .., Tt}.
D is a set of available devices D = {D1, D2, .., Dd}.
d is the number of available devices |D|, being d in our case of study 170.

In our case study, t is 4. T is a subset of the available devices (T ⊆ D).
The Recall@n is a metric that evaluates the number of recommended relevant
devices (9) that can be defined as follows:

Recall@n =
i

r
. (9)

Finally, Coverage is the percentage of devices that are recommended (10).
With a low value of Coverage, it is harder for the recommender to have high
values for Precision@n and Recall@n. Coverage can be defined as follows:

Coverage =
t

d
. (10)

For the validation, a pertinent scenario is created, in which the user can
select the model that will process the request. After the user introduces the
request, the system matches the request using the selected model with the
available devices. In the validation scenario, the matching process returns a

27

sorted list in descending order of the four devices that best suit the user’s
request. The idea is only to return the first and execute the service attached
to the device when the accuracy value for the returned device is over 75%.
However, for the validation, despite the high accuracy value of the first device,
the four first devices and their accuracy are returned to study the matching
process for each configuration. That means the Coverage of the recommender
is 0.024 (4/170), because four devices are recommended out of 170 available
devices. With this low Coverage value, it will be difficult for the Precision@n
and Recall@n to have high values.

New sentences and sentences from the dataset are used to validate the
recommender for new and known environments. Furthermore, sentences
adapted to the dataset and simple sentences are used to validate the models
in every scenario. While simple sentences measure the model’s performance
for entirely new situations, sentences adapted to the dataset measure the
model’s performance in situations similar to those used to train the model.

All these sentences were used to validate the proposal for different sce-
narios. For instance, in a Smart Home, a user can send complex sentences
to the system completely different from those used in the training model.
Furthermore, in an industrial environment, a machine can send requests to
the system following a common schema used by the system to create the
model, but requesting different information to that known by the system, for
instance, requesting a new type of device that was included in the manufac-
turing system.

Tables 6 and 7 show some of the sentences used for the validation in the
hashing model and in the Tokenization model, respectively, considering the
dataset, the matching result, the accuracy of the recommender, the Preci-
sion@n and Recall@n values; and whether the sentence is new for the model.
The same sentences are used for the hashing and the tokenization models.

For the hashing model, sentences from the dataset are matched with the
correct device at an accuracy rate close to 100%. Furthermore, for new
sentences, if the sentence includes the device name used to train the model,
the model can match the sentence to the correct device with an accuracy
close to 100%. However, if the device name differs from that used to train
the model, or if a complex sentence is used, the model cannot always match
the correct device in the top-4 returned list. For instance, the system can’t
return the correct device in abstract instructions where the desired device
is not defined, e.g., Did you sense any movement?. In addition, multiple
devices perform the same actions, even when they can be located in different

28

S
e
n
t
e
n
c
e

F
ir
s
t
d
e
v
ic
e

S
e
c
o
n
d

d
e
v
ic
e

T
h
ir
d

d
e
v
ic
e

F
o
u
r
t
h

d
e
v
ic
e

P
r
e
c
is
io

n
@

nR
e
c
a
ll
.

N
e
w

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m
ch

il
d
re
n

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
li
g
h
tO

n
(4

4
.0
9
%
)

/
a
g
e
n
t1

/
te
m
p
in
1
(1

1
.7
5
%
)

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n
(1

0
.2
4
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(9

.9
3
%
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)
✓

T
u
rn

o
n

th
e
li
g
h
t
in

th
e
b
e
d
ro

o
m

/
a
g
e
n
t1

3
/
m
o
v
e
m
e
n
t1

3
/
la
st
C
h
a
n
g
e
(2

6
.6
9
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(2

5
.8
0
%
)

/
a
g
e
n
t1

3
/
te
m
p
in
1
3
(1

1
.9
9
%
)

/
a
g
e
n
t1

3
/
m
o
v
e
m
e
n
t1

3
/
m
o
v
e
m
e
n
t(
1
0
.3
0
%
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)
✓

D
id

y
o
u

se
n
se

a
n
y

m
o
v
e
m
e
n
t?

/
a
g
e
n
t2

/
te
m
p
in
2
(4

5
.6
9
%
)

/
a
g
e
n
t1

/
te
m
p
in
1
(1

9
.6
8
%
)

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n
(1

8
.9
4
%
)

/
a
g
e
n
t4

/
te
m
p
in
4
(1

4
.0
6
%
)

0
/
4
(0

%
)

0
/
2
1
(0

%
)

✓

D
id

th
e
m
o
v
e
m
e
n
t

se
n
so

r
re
a
d

a
n
y

m
o
v
e
m
e
n
t?

/
a
g
e
n
t1

4
/
m
o
v
e
m
e
n
t1

4
/
m
o
v
e
m
e
n
t(
9
1
.2
1
%
)

/
a
g
e
n
t4

/
m
o
v
e
m
e
n
t4

/
m
o
v
e
m
e
n
t(
4
.7
3
%
)

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
m
o
v
e
m
e
n
t(
1
.1
9
%
)

/
a
g
e
n
t1

/
m
o
v
e
m
e
n
t1

/
m
o
v
e
m
e
n
t(
1
.0
3
%
)

4
/
4
(1

0
0
%
)
4
/
2
1
(1

9
%
)
✓

S
to

p
th

e
w
a
sh

in
g

m
a
ch

in
e

/
a
g
e
n
t2

/
te
m
p
in
2
(8

1
.3
6
%
)

/
a
g
e
n
t1

/
te
m
p
in
1
(3

.9
7
%
)

/
a
g
e
n
t6

/
te
m
p
in
6
(3

.7
5
%
)

/
a
g
e
n
t6

/
m
o
v
e
m
e
n
t6

/
m
o
v
e
m
e
n
t(
3
.2
3
%
)

0
/
4
(0

%
)

0
/
4
(0

%
)

✓

S
to

p
th

e
w
a
sh

in
g
se
rv

ic
e
in

th
e
S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t1

4
/
w
a
sh

in
g
m
a
ch

in
e
3

/
w
a
sh

in
g
(9

9
.2
6
%
)

/
a
g
e
n
t1

4
/
m
o
v
e
m
e
n
t1

4
/
m
o
v
e
m
e
n
t(
0
.2
4
%
)

/
a
g
e
n
t1

4
/
te
m
p
in
1
4
(0

.1
9
%
)

/
a
g
e
n
t1

4
/
li
g
h
tc
o
n
tr
o
l1
4

/
li
g
h
tO

n
(0

.0
7
%
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)
✓

C
lo
se

th
e
e
n
tr
a
n
c
e

d
o
o
rl
o
ck

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
m
o
v
e
m
e
n
t(
5
8
.5
5
%
)

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
la
st
C
h
a
n
g
e
(1

7
.4
9
%
)

/
a
g
e
n
t1

2
/
li
g
h
tc
o
n
tr
o
l1
2

/
li
g
h
tO

n
(7

.2
4
%
)

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n
(4

.9
4
%
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)
✓

C
lo
se

th
e

d
o
o
rl
o
ck

se
rv

ic
e

e
n
tr
a
n
c
e

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n
(9

9
.9
9
%
)

/
a
g
e
n
t4

/
te
m
p
in
4
(-
)

/
a
g
e
n
t2

/
te
m
p
in
2
(-
)

/
a
g
e
n
t1

/
te
m
p
in
1
(-
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)
✓

I
n
e
e
d

to
w
ri
te

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(9

9
.1
4
%
)

/
a
g
e
n
t1

3
/
m
o
v
e
m
e
n
t1

3
/
la
st
C
h
a
n
g
e
(0

.5
6
%
)

/
a
g
e
n
t1

3
/
te
m
p
in
1
3
(0

.0
7
%
)

/
a
g
e
n
t2

0
/
li
g
h
tc
o
n
tr
o
l2
0

/
li
g
h
tO

n
(0

.0
6
%
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)

I
n
e
e
d

to
re
a
d

m
o
v
e
m
e
n
tS

e
n
so

r
in

B
e
d
ro

o
m
P
a
re
n
ts

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
m
o
v
e
m
e
n
t(
9
9
.9
9
%
)

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
la
st
C
h
a
n
g
e
(-
)

/
a
g
e
n
t2

/
te
m
p
in
2
(-
)

/
a
g
e
n
t6

/
m
o
v
e
m
e
n
t6

/
m
o
v
e
m
e
n
t(
-)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)

I
n
e
e
d

to
w
ri
te

w
a
sh

in
g
se
rv

ic
e
in

S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t1

4
/
w
a
sh

in
g
m
a
ch

in
e
3

/
w
a
sh

in
g
(9

9
.9
9
%
)

/
a
g
e
n
t1

4
/
te
m
p
in
1
4
(0

.0
1
%
)

/
a
g
e
n
t3

/
te
m
p
in
3
(-
)

/
a
g
e
n
t1

4
/
li
g
h
tc
o
n
tr
o
l1
4

/
li
g
h
tO

n
(-
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)

I
n
e
e
d

to
o
p
e
n

d
o
o
rl
o
ck

se
rv

ic
e
in

e
n
tr
a
n
c
e

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n
(9

9
.9
9
%
)

/
a
g
e
n
t1

0
/
d
o
o
rl
o
ck

2
/
o
p
e
n
(-
)

/
a
g
e
n
t4

/
te
m
p
in
4
(-
)

/
a
g
e
n
t5

/
te
m
p
in
5
(-
)

1
/
4
(2

5
%
)

1
/
1
(1

0
0
%
)

Table 6: Sentences used for validation in the hashing model.

29

S
e
n
t
e
n
c
e

F
ir
s
t
d
e
v
ic
e

S
e
c
o
n
d

d
e
v
ic
e

T
h
ir
d

d
e
v
ic
e

F
o
u
r
t
h

d
e
v
ic
e

P
r
e
c
.

R
e
c
a
ll
.

N
e
w

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m
ch

il
d
re
n

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(5

5
.7
3
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(4

3
.2
9
%
)

/
a
g
e
n
t6

/
te
m
p
in
6

(0
.9
6
%
)

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
li
g
h
tO

n
(0

.0
1
%
)

0
/
4

(0
%
)

0
/
1

(0
%
)

✓

T
u
rn

o
n

th
e
li
g
h
t
in

th
e

b
e
d
ro

o
m

/
a
g
e
n
t6

/
te
m
p
in
6

(9
4
.1
8
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(3

.4
5
%
)

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
li
g
h
tO

n
(1

.1
3
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(0

.4
3
%
)

1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

✓

D
id

y
o
u

se
n
se

a
n
y

m
o
v
e
m
e
n
t?

/
a
g
e
n
t6

/
te
m
p
in
6

(4
3
.6
5
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(2

8
.9
2
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(2

5
.0
6
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(1

.6
9
%
)

0
/
4

(0
%
)

0
/
2
1

(0
%
)

✓

D
id

th
e
m
o
v
e
m
e
n
ts
e
n
so

r
re
a
d

a
n
y
m
o
v
e
m
e
n
t?

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(3

1
.9
0
%
)

/
a
g
e
n
t6

/
te
m
p
in
6

(3
0
.1
6
%
)

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
m
o
v
e
m
e
n
t
(1

5
.4
4
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(9

.7
2
%
)

1
/
4

(2
5
%
)

1
/
2
1

(4
.7
6
%
)

✓

S
to

p
th

e
w
a
sh

in
g

m
a
ch

in
e

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(4

0
.7
3
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(3

5
.1
3
%
)

/
a
g
e
n
t6

/
te
m
p
in
6

(2
3
.8
7
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(0

.1
7
%
)

0
/
4

(0
%
)

0
/
4

(0
%
)

✓

S
to

p
th

e
w
a
sh

in
g
se
rv

ic
e

in
th

e
S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t6

/
te
m
p
in
6

(6
9
.4
7
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(1

6
.6
4
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(4

.3
9
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(4

.2
9
%
)

0
/
4

(0
%
)

0
/
1

(0
%
)

✓

C
lo
se

th
e
e
n
tr
a
n
c
e

d
o
o
rl
o
ck

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(5

5
.3
4
%
)

a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(4

3
.7
1
%
)

/
a
g
e
n
t6

/
te
m
p
in
6

(0
.9
4
%
)

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
m
o
v
e
m
e
n
t(
-)

0
/
4

(0
%
)

0
/
1

(0
%
)

✓

C
lo
se

th
e

d
o
o
rl
o
ck

se
rv

ic
e
e
n
tr
a
n
c
e

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(5

5
.9
5
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(4

3
.4
7
%
)

/
a
g
e
n
t6

/
te
m
p
in
6

(0
.5
7
%
)

/
a
g
e
n
t1

2
/
m
o
v
e
m
e
n
t1

2
/
m
o
v
e
m
e
n
t(
-)

0
/
4

(0
%
)

0
/
1

(1
0
0
%
)

✓

I
n
e
e
d

to
w
ri
te

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m

/
a
g
e
n
t6

/
te
m
p
in
6

(6
9
.8
4
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(1

1
.7
9
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(1

0
.7
5
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(5

.0
7
%
)

1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

I
n
e
e
d

to
re
a
d

m
o
v
e
m
e
n
tS

e
n
so

r
in

B
e
d
ro

o
m
P
a
re
n
ts

/
a
g
e
n
t6

/
te
m
p
in
6

(8
1
.4
3
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(1

0
.8
6
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(2

.3
2
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(2

.2
1
%
)

0
/
4

(0
%
)

0
/
1

(0
%
)

I
n
e
e
d

to
w
ri
te

w
a
sh

in
g
se
rv

ic
e
in

S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t6

/
te
m
p
in
6

(7
6
.3
7
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(1

7
.1
6
%
)

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
li
g
h
tO

n
(2

.7
8
%
)

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
m
o
v
e
m
e
n
t
(2

.1
8
%
)

0
/
4

(0
%
)

0
/
1

(0
%
)

I
n
e
e
d

to
o
p
e
n

d
o
o
rl
o
ck

se
rv

ic
e
in

e
n
tr
a
n
c
e

/
a
g
e
n
t6

/
te
m
p
in
6

(8
5
.9
7
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

e
(5

.3
1
%
)

/
a
g
e
n
t4

/
b
a
tt
e
ry

3
/
ch

a
rg

in
g
(5

.1
5
%
)

/
a
g
e
n
t1

3
/
li
g
h
tc
o
n
tr
o
l1
3

/
li
g
h
tO

n
(1

.8
5
%
)

0
/
4

(0
%
)

0
/
1

(0
%
)

Table 7: Sentences used for validation in the Tokenization model.

30

places around the house, which makes finding a suitable device even harder.
However, new sentences using the complete device name (although this is

not the way we colloquially refer to the devices) are matched correctly with
high accuracy; for instance, Close the doorlockservice entrance, is matched
correctly with the entrance door at an accuracy rate of 99.9%. Conversely,
new sentences with a different device name, are rarely matched correctly; for
instance, Close the entrance doorlock returns the correct device in the fourth
position with an accuracy of 4.9%.

The problem of matching sentences that have different device names can
be achieved by pre-processing the sentence and simplifying the names, using
names like door lock or doorlock instead of doorlockservice. Another solution
is to increase the Coverage, i.e., returning more devices in the recommended
list. Currently, 170 possible devices are to be matched, and only 4 devices
are returned. However, the accuracy value for these devices is very low, and
returning many devices may not be helpful for a recommendation.

For the Precision@n and Recall@n measurement, most of the sentences
have a Precision@n of 25% with a Recall@n of 100%, which means that
when only one device is relevant to the user, that device is returned in the
recommended list of devices. Returning the first device when the accuracy is
higher than 75% can increase the Precision@n value in these scenarios. When
just one device is available, it is directly returned, increasing the Precision@n
to 100%. However, when requesting multiple devices, the recommender has
a Precision@n of 100% but a low Recall@n value, because the Coverage of
the recommender is low. To increase the Recall@n value in these scenarios,
a possible solution could be to increase the Coverage; if increasing, it will
cause the Recall@n to increase too. For instance, if returning four devices,
the recommender has a Recall@n value of 25%. Still, if returning 10 devices,
the recommender has a Recall@n value of 75%, the Coverage value will be
increased to return ten devices for that request, increasing the Recall@n value
from 25% to 75%.

Regarding the distribution of services shown in Figure 3, in most rec-
ommendations, the system returns, in the top positions, services related to
the battery, the temperature, or the movement. For new sentences like Did
you sense any movement? or Stop the washing machine, unknown by the
model, it returns one of the most frequent services in the dataset. Further-
more, for services with a low frequency in the dataset compared to other
services with the same name, the model cannot match them correctly. For
instance, the sentence I need to registerService lightcontroler in Bedroom-

31

Children has to return the base service /agent1/lightcontrol1 that ap-
pears only once in the dataset. However, the model, instead of return-
ing the base service, returns the service related to turning the light on,
/agent1/lightcontrol1/lightOn. The same applies to other services with
a low frequency in the dataset, like /agent21/doorlock5.

Figure 7 represents the confusion matrix of the most frequent classes,
which account for 98.74% of the recommendations. We have selected the
most frequent classes because the visualization of the confusion matrix us-
ing the 170 classes would be very large and difficult to interpret. The color
indicates the number of times the model recommends in the first position
the service in the x-axis, being the darker the most frequent and the white
the less frequent. As shown in the confusion matrix, when the model re-
turns a service that is not the requested one, the service returned is from
the same device or a similar one. In the context of a Smart Home, it
would be returning other light from the same room. For instance, the
model returns /agent12/battery6/charge instead of returning the services
/agent12/battery5/charge, /agent12/battery5/charging or /agent12/
battery6/charging. Another thing to remember is that the model is a
recommender, thus it will return a list of recommendations to help when
searching for devices and not a single device. Therefore, a list of similar
devices would be useful in the result of the recommendation.

Using the tokenization model, despite it having a higher degree of accu-
racy, the results are worse than with the hashing model. For known sentences,
the tokenization model cannot match the correct device in the top 1 position;
in the best case, a relevant device is in the top 4 positions. Furthermore, the
tokenization model can’t correctly classify new sentences. This is due to an
incorrect implementation of the tokenizer or because a model that works with
complete sentences is better than models that work with each word of the
sentence for this problem.

Finally, the model with better results is compared with the current search
system. The search system is based on syntactic queries; the user builds a
query to retrieve the available CPS devices. To compare both approaches, as
the current system is unable to use natural language sentences, each sentence
is divided into two words, the name of the CPS and the location of the device,
i.e., lightcontroler and bedroomchildren; and these sentences are used in the
validation of the current system and represented in Table 8.

Figure 8 shows the comparison between the Precision@n and Recall@n
results of the hashing model and the current search system. The hashing

32

Figure 7: Confusion matrix of the most frequent devices.

33

model has better results than the current search system in two of the sen-
tences used (S2 and S9) and worse results for one of the sentences (S3). For
sentences 2 and 9 hashing model has better results because the name of the
location (bedroom) is similar to the name of other locations (bedroomchildren
and bedroomparents), causing the current search system to return devices
in bedroomchildren and bedroomparents instead of bedroom. However, the
hashing model has worse results in Sentence 3 because the model cannot
understand the sentence. At the same time, the current search system can
query the word movement to retrieve CPSs with a similar name.

Both systems have similar results, with the same Precision@n and Re-
call@n in most of the sentences. However, the current system is unable
to process and understand natural language sentences. To get the results
presented in this section, a system capable of dividing a sentence into the
location and the device used has to be implemented, thus searching for de-
vices with a location name similar to the requested location or with a device
name similar to the requested device. Furthermore, the current system can-
not learn synonyms for searching for devices. For instance, the proposed
model can search for a light using words such as bulb, light, and ikea, while
the current system can only search for devices with similar names to those
stored in the database.

6. Discussion

The previous section presented a validation scenario to compare the rec-
ommender system based on Transformer with our current search system.
For the validation, the system returned the top-4 devices instead of using
a threshold to manage the number of returned devices. The top-4 devices
were returned because, in the experimentation, returning the top-4 devices
bearer in good results. The experimental scenario has 170 possible devices.
Therefore, returning a fixed number of devices avoids overloading the user
with too much information. For instance, using a threshold to return devices
whose combination is 80% or higher can bear in returning lots of devices with
a low percentage value (returning 100 devices with the value of 0.08%).

6.1. Limitations

The results of the validation scenario showed that both approaches have
similar results for recommending CPSs using natural language sentences.
However, our current search system has some limitations. For our current

34

S
e
n
t
e
n
c
e

F
ir
s
t
d
e
v
ic
e

S
e
c
o
n
d

d
e
v
ic
e

T
h
ir
d

d
e
v
ic
e

F
o
u
r
t
h

d
e
v
ic
e

P
r
e
c
.

R
e
c
a
ll
.

N
e
w

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m
ch

il
d
re
n

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
li
g
h
tO

n
-

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

✓

T
u
rn

o
n

th
e
li
g
h
t
in

th
e
b
e
d
ro

o
m

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
li
g
h
tO

n
/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
li
g
h
tO

n
0
/
4

(0
%
)

0
/
1

(0
%
)

✓

D
id

y
o
u

se
n
se

a
n
y

m
o
v
e
m
e
n
t?

/
a
g
e
n
t4

/
m
o
v
e
m
e
n
t4

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
a
g
e
n
t1

/
m
o
v
e
m
e
n
t1

/
a
g
e
n
t3

/
m
o
v
e
m
e
n
t3

4
/
4

(1
0
0
%
)
4
/
2
1

(1
9
%
)

✓

D
id

th
e
m
o
v
e
m
e
n
t

se
n
so

r
re
a
d

a
n
y

m
o
v
e
m
e
n
t?

/
a
g
e
n
t4

/
m
o
v
e
m
e
n
t4

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
a
g
e
n
t1

/
m
o
v
e
m
e
n
t1

/
a
g
e
n
t3

/
m
o
v
e
m
e
n
t3

4
/
4

(1
0
0
%
)
4
/
2
1

(1
9
%
)

✓

S
to

p
th

e
w
a
sh

in
g

m
a
ch

in
e

-
-

-
-

0
/
4

(0
%
)

0
/
4

(0
%
)

✓

S
to

p
th

e
w
a
sh

in
g
se
rv

ic
e
in

th
e

S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t1

4
/

w
a
sh

in
g
m
a
ch

in
e
3
/
w
a
sh

in
g

/
a
g
e
n
t1

4
/
w
a
sh

in
g
m
a
ch

in
e
3-

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

✓

C
lo
se

th
e
e
n
tr
a
n
c
e

d
o
o
rl
o
ck

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
-

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

✓

C
lo
se

th
e

d
o
o
rl
o
ck

se
rv

ic
e

e
n
tr
a
n
c
e

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
-

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

✓

I
n
e
e
d

to
w
ri
te

li
g
h
tc
o
n
tr
o
le
r
in

b
e
d
ro

o
m

/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
a
g
e
n
t1

/
li
g
h
tc
o
n
tr
o
l1

/
li
g
h
tO

n
/
a
g
e
n
t2

/
li
g
h
tc
o
n
tr
o
l2

/
li
g
h
tO

n
0
/
4

(0
%
)

0
/
1

(0
%
)

I
n
e
e
d

to
re
a
d

m
o
v
e
m
e
n
tS

e
n
so

r
in

B
e
d
ro

o
m
P
a
re
n
ts

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
m
o
v
e
m
e
n
t

/
a
g
e
n
t2

/
m
o
v
e
m
e
n
t2

/
la
st
C
h
a
n
g
e

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

I
n
e
e
d

to
w
ri
te

w
a
sh

in
g
se
rv

ic
e
in

S
h
o
w
e
rr
o
o
m

/
a
g
e
n
t1

4
/
w
a
sh

in
g
m
a
-

ch
in
e
3
/
w
a
sh

in
g

/
a
g
e
n
t1

4
/

w
a
sh

in
g
m
a
ch

in
e
3

-
-

1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

I
n
e
e
d

to
o
p
e
n

d
o
o
rl
o
ck

se
rv

ic
e
in

e
n
tr
a
n
c
e

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
/
o
p
e
n

/
a
g
e
n
t1

2
/
d
o
o
rl
o
ck

3
-

-
1
/
4

(2
5
%
)

1
/
1

(1
0
0
%
)

Table 8: Sentences used for validation in our current system.

35

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
0

20

40

60

80

100

Sentences

P
re
c
is
io
n
@
n

(%
)

Hashing Model

Current System

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
0

20

40

60

80

100

Sentences

R
e
c
a
ll
@
n

(%
)

Hashing Model

Current System

Figure 8: Comparison between Precision@n and Recall@n for the validation.

search system to work as presented in the validation scenario, the system
has to get the word that defines the CPS and the word that defines the loca-
tion where the CPSs are deployed. Developing a system that extracts that
information from predefined sentences is possible, but the research is about
natural language sentences; each sentence can be structured differently, in-
creasing the complexity of the development. Furthermore, the current search
system cannot search CPSs using synonyms, while the Transformer-based
recommender system can learn the synonyms to retrieve the correct CPS.
Another difference between the current search system and the proposed ap-
proach is that the Transformer-based recommender system can be trained
to work with different languages. In contrast, the current search system can
only work with the language of the device information. For instance, if the
device’s information is stored in English, the current search system can only
search using sentences written in English.

From our point of view, with the results of the validation scenario, the
proposed approach improves our current search system. The Transformer-
based recommender system is more dynamic than the current search system;
it can understand sentences with different structures and in different lan-
guages. However, the proposed approach lacks a generalization feature; it

36

has to be trained with sentences related to the new CPSs added to the sys-
tem. Therefore, new CPSs cannot be recommended when they are deployed.
The recommender system can support the current search system to solve this
problem. When a new device is added, the current search system is used,
storing the natural language sentences used by the user to train the recom-
mender system. After the recommender system has enough natural language
sentences, it is trained to recommend the new CPS. Furthermore, as shown
in the paper, the proposed approach can also generate sentences to train the
recommender system until it gets enough natural language sentences used by
the user. With both approaches, we can ensure that the system can adapt
to dynamic environments where devices are frequently added.

One limitation regarding the generation of sentences is that the sentences
have been generated using the description of IoT devices or services in the
WoT. This is a good way to save time and resources. It also facilitates the
deployment of new facilities but can also introduce bias into the system.
This bias can be mitigated by learning how users interact with the devices
and services. The system can learn from the user’s feedback and adjust its
recommendations accordingly in future deployments.

Another limitation is that the recommender system may suffer from Con-
textual Bias, and it should be considered if the readers want to reproduce
the model. Our model might inadvertently learn biases present in the text or
context it is trained on. For example, our model is trained based on a dataset
where the use of temperature devices is very frequent, but others, such as
light bulbs, are not frequently used, so it may develop a skewed understand-
ing of certain kinds of devices. When reproducing the model with another
dataset, the practitioners should be mindful of their data and context to
minimize this bias.

Finally, to create the recommender, we use the Transformer architec-
ture and the attention mechanisms. It has a complex and highly parallel
structure. The lack of interpretability in the Transformer architecture is a
limitation because of understanding and explaining the reasoning behind the
model predictions (or, in this case, recommendations). It frequently happens
when using Deep Learning algorithms. There are some recent visualization
techniques based on the attention weights in the transformer, but they are
still under development, and it remains an ongoing research challenge

37

6.2. Threats to validity

The proposed validation scenario suffers from a series of threats to va-
lidity, such as:

(a) Real scenario. The proposed recommender system is validated using a
simulated dataset from Kaggle. A set of new and known natural lan-
guage sentences are used to evaluate the performance of the proposed
approach using Precision@n. However, the validation lacks a deploy-
ment in a real scenario. Deploying the recommender system in a real
scenario can help validate the proposed approach better; the use of
simulated data differs from the use of subjects participating in the ex-
periment. In addition, the proposed recommender must be validated by
including additional datasets different from the one selected to prevent
the recommender from being effective only in a single scenario.

(b) Reliable dataset. A reliable dataset is required to train the model.
Finding or creating valuable datasets is a difficult task. For this pa-
per, a dataset from Kaggle was adapted to fit the problem presented,
linking natural language sentences with devices deployed in a Smart
Home. As an initial scenario, this dataset can be used for evaluation
and validation to answer the proposed research questions. Still, future
research must create a dataset with real-world information to ensure a
reliable dataset that can be used for real-world problems.

(c) Comparison with other techniques. To validate research, it must be
compared with similar research in the same environment using the
same features. Comparing the proposal with other techniques helps
to identify the improvements and limitations of the proposed model.
In the validation scenario, the proposed recommender system is com-
pared with the search system used currently by our research group.
This comparison helps to identify the improvements of the proposed
recommender system over the current search system and the proposal’s
limitations over a traditional search system. However, as related work
about recommenders in IoT scenarios, the proposed recommender sys-
tem must be compared with current research about recommender sys-
tems in IoT environments. The reason for not comparing the proposed
recommender system with these works is that there is not enough infor-
mation in the papers to replicate the research using the same scenario
and features of our validation scenario.

38

To mitigate threats (a) and (b), validating the recommender system in a
real scenario would be necessary, creating a dataset using natural language
sentences used by the subjects participating in the scenario. A possible Smart
scenario to validate the recommender system would be garbage collection,
where garbage trucks and containers must be located and monitored.

To mitigate threat (c), it would be necessary to replicate the experiment,
using other algorithms to train the model, such as TF-IDF, and comparing
the results with the results obtained using Transformer.

7. Conclusion and future work

This paper addressed the problem of using deep learning to match user
queries in natural language with Web of Things devices or services. Fol-
lowing the steps and processes, we created a recommender system using the
Transformer. We used a dataset of devices deployed in a Smart Home with
features representing the services of these devices. With this dataset, we
could study how our recommender would work with auto-generated descrip-
tions by using the Thing Description despite not having sufficient ones to
create a deep learning model. The dataset was pre-processed using feature
engineering techniques to add and remove features, encoding techniques to
transform categorical data into numerical data, and normalization to homog-
enize the data before creating the proposed model. After pre-processing the
data, the model was created using an embedding and a Transformer layer.
Finally, Softmax was used as an activation function to extract useful infor-
mation from the result provided by the model. Creating the model resulted
in a list of recommended devices sorted in descending order.

To validate the model, a scenario was established in which the selected
models from the experimentation were used with a set of sentences intro-
duced by the user. For the evaluation, three metrics were used: Coverage,
Precision@n, and Recall@n. The hashing model delivered good results; if
the relevant device was returned as the first solution, it was returned with
a high grade of confidence (high accuracy). Furthermore, in most of the
cases, it had the highest possible value of Precision@n and Recall@n (e.g.,
1/4 of Precision@n with only one relevant device available). However, the
Tokenization model showed worse results in the validation than the experi-
mentation results. This poor accuracy in the validation could have been due
to a bad configuration in the model creation.

39

As such, we created a Transformer-based Recommender model to match
user queries in natural language sentences with WoT devices or services. The
proposed model is compared with the current search system, giving similar
results in the Precision@n and Recall@n metrics when the traditional search
system can extract information from natural language sentences to search for
devices. However, with sufficient training, the proposed model can under-
stand synonyms and different languages, giving better results than traditional
search systems capable of extracting information from sentences. On top of
this, the first research question addressed in Section 1 has been answered af-
firmatively. Regarding the second research question, the proposal can aid the
decision-making process for different smart scenarios, affirmatively answer-
ing the second research question due to the validation results. Furthermore,
using the auto-generated information extracted from the Thing Description,
the system can recommend the correct device when users send a non-precise
sentence that includes multiple devices, e.g., Did the movement sensor read
any movement?. However, the system can’t correctly match abstract sen-
tences sent by the user, e.g., Did you sense any movement?, thus partially
answering the third research question affirmatively. Finally, in the valida-
tion, returning a list of devices instead of providing a fixed query component
resulted in both a higher Precision@n and a higher Recall@n value. Some
scenarios had the relevant service returned in the second or fourth position
of the list, and in other scenarios, there was more than one relevant device
available. Therefore, the fourth research question is answered affirmatively.

In future work, the recommender system could be improved by applying
the recommender system, along with the services, to other sections of the
Thing Description, focusing on aiding decision-making. Another future work
we would like to explore is comparing the proposed model using the Trans-
former with models using other algorithms for natural language problems,
such as TF-IDF. Finally, we intend to develop a system that uses the pro-
posed model for device recommendations in a real Smart scenario of the Web
of Things, for instance, in Industry 4.0, for a garbage collection scenario.

Additionally, as the number and complexity of IoT devices and services
continue to increase, users may need to use more complex and detailed nat-
ural language queries to find the devices and services they need. To provide
better recommendations, the system could leverage contextual information
to understand better the intent behind a user’s query, such as geolocation
or timestamp information, making it easier for users to identify the devices
they need in complex environments.

40

Acknowledgments

Anonymous

References

[1] V. Sima, I. G. Gheorghe, J. Subić, D. Nancu, Influences of the Indus-
try 4.0 Revolution on the Human Capital Development and Consumer
Behavior: A Systematic Review, Sustainability 12 (10) (2020) 4035.
doi:10.3390/su12104035.

[2] M. Hartmann, B. Halecker, Management of Innovation in the Industrial
Internet of Things, in: Conference Proceedings, The International Soci-
ety for Professional Innovation Management (ISPIM), 2015, pp. 1–17.

[3] G. Fortino, C. Savaglio, C. E. Palau, J. S. d. Puga, M. Ganzha, M. Pa-
przycki, M. Montesinos, A. Liotta, M. Llop, Towards multi-layer inter-
operability of heterogeneous IoT platforms: The INTER-IoT approach,
in: Integration, interconnection, and interoperability of IoT systems,
Springer, Cham, 2018, pp. 199–232. doi:10.1007/978-3-319-61300-0 10.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, Attention Is All You Need, in: Proc. of the
NIPS’17: Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, p. 6000–6010. arXiv:1706.03762.

[5] S. Chaudhari, V. Mithal, G. Polatkan, R. Ramanath, An Attentive Sur-
vey of Attention Models, ACM Trans. Intell. Syst. Technol. 12 (5) (oct
2021). doi:10.1145/3465055.

[6] H. K. Azad, A. Deepak, Query expansion techniques for information
retrieval: A survey, Information Processing & Management 56 (5) (2019)
1698–1735. doi:10.1016/j.ipm.2019.05.009.

[7] C. Carpineto, G. Romano, A Survey of Automatic Query Expansion
in Information Retrieval, ACM Computing Surveys 44 (1) (jan 2012).
doi:10.1145/2071389.2071390.

[8] D. Guinard, V. Trifa, E. Wilde, A resource oriented architecture for the
Web of Things, 2010, pp. 1–8. doi:10.1109/IOT.2010.5678452.

41

[9] V. Charpenay, S. Käbisch, H. Kosch, Introducing Thing Descriptions
and Interactions: An Ontology for the Web of Things, in: Proceedings of
the 1st Semantic Web Technologies for the Internet of Things Workshop,
Vol. 1783, 2016, pp. 55–66.
URL http://ceur-ws.org/Vol-1783/\#paper-06

[10] V. Charpenay, S. Käbisch, On Modeling the Physical World as a Collec-
tion of Things: The W3C Thing Description Ontology, in: The Semantic
Web, Vol. 12123, Springer International Publishing, 2020, pp. 599–615.
doi:10.1007/978-3-030-49461-2 35.

[11] B. Pourghebleh, V. Hayyolalam, A. Aghaei Anvigh, Service discovery in
the Internet of Things: review of current trends and research challenges,
Wireless Networks 26 (7) (2020) 5371–5391. doi:10.1007/s11276-020-
02405-0.

[12] I. Lopez-Arevalo, E. Aldana-Bobadilla, A. Molina-Villegas, H. Galeana-
Zapién, V. Muñiz-Sanchez, S. Gausin-Valle, A Memory-Efficient En-
coding Method for Processing Mixed-Type Data on Machine Learning,
Entropy 22 (12) (2020). doi:10.3390/e22121391.

[13] J. Weston, F. Ratle, R. Collobert, Deep Learning via Semi-Supervised
Embedding, in: Proceedings of the 25th International Conference on
Machine Learning, ICML’08, Association for Computing Machinery,
New York, NY, USA, 2008, p. 1168–1175. doi:10.1145/1390156.1390303.

[14] M. Meissa, S. Benharzallah, O. Kazar, A Personalized Recommen-
dation for Web API Discovery in Social Web of Things, The Inter-
national Arab Journal of Information Technology 18 (2021) 438–445.
doi:10.34028/iajit/18/3A/7.

[15] L. Sciullo, L. Gigli, A. Trotta, M. D. Felice, WoT Store: Managing
resources and applications on the web of things, Internet of Things 9
(2020) 100164. doi:10.1016/J.IOT.2020.100164.

[16] G. Bovet, J. Hennebert, Distributed semantic discovery for web-of-
things enabled smart buildings, in: 2014 6th International Conference
on New Technologies, Mobility and Security (NTMS), IEEE Computer
Society, 2014, pp. 1–5. doi:10.1109/NTMS.2014.6814015.

42

[17] T. Iggena, E. B. Ilyas, M. Fischer, et al., IoTCrawler: Challenges and
Solutions for Searching the Internet of Things, Sensors 21 (5) (2021)
1559. doi:10.3390/S21051559.

[18] W. G. Hatcher, C. Qian, W. Gao, F. Liang, K. Hua, W. Yu, Towards
Efficient and Intelligent Internet of Things Search Engine, IEEE Access
9 (2021) 15778–15795. doi:10.1109/ACCESS.2021.3052759.

[19] W. T. Lunardi, E. D. Matos, R. Tiburski, L. A. Amaral, S. Marczak,
F. Hessel, Context-based search engine for industrial IoT: Discovery,
search, selection, and usage of devices, IEEE International Confer-
ence on Emerging Technologies and Factory Automation, ETFA 2015-
October (2015) 1–8. doi:10.1109/ETFA.2015.7301477.

[20] F. Zhao, Z. Sun, H. Jin, Topic-centric and semantic-aware retrieval
system for Internet of Things, Information Fusion 23 (2015) 33–42.
doi:10.1016/j.inffus.2014.01.001.

[21] M. Younan, E. H. Houssein, M. Elhoseny, A. A. Ali, Chal-
lenges and recommended technologies for the industrial Internet of
Things: A comprehensive review, Measurement 151 (2020) 1–16.
doi:10.1016/j.measurement.2019.107198.

[22] D. Cai, W. Lam, Graph transformer for graph-to-sequence learning, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34,
2020, pp. 7464–7471. doi:10.1609/aaai.v34i05.6243.

[23] C.-F. Yeh, J. Mahadeokar, K. Kalgaonkar, Y. Wang, D. Le, M. Jain,
K. Schubert, C. Fuegen, M. L. Seltzer, Transformer-Transducer: End-to-
End Speech Recognition with Self-Attention (2019). arXiv:1910.12977,
doi:10.48550/arXiv.1910.12977.

[24] K. Miyazaki, T. Komatsu, T. Hayashi, S. Watanabe, T. Toda,
K. Takeda, Weakly-Supervised Sound Event Detection with
Self-Attention, in: IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2020, Institute
of Electrical and Electronics Engineers Inc., 2020, pp. 66–70.
doi:10.1109/ICASSP40776.2020.9053609.

43

[25] J. Ángel González, L. F. Hurtado, F. Pla, Self-attention for Twitter
sentiment analysis in Spanish, Journal of Intelligent & Fuzzy Systems
39 (2020) 2165–2175. doi:10.3233/JIFS-179881.

[26] W. Zhang, D. Yang, Y. Xu, X. Huang, J. Zhang, M. Gid-
lund, DeepHealth: A Self-Attention Based Method for Instant In-
telligent Predictive Maintenance in Industrial Internet of Things,
IEEE Transactions on Industrial Informatics 17 (2021) 5461–5473.
doi:10.1109/TII.2020.3029551.

[27] A. J. Fernández-Garćıa, L. Iribarne, A. Corral, J. Criado, J. Z. Wang,
A recommender system for component-based applications using ma-
chine learning techniques, Knowledge-Based Systems 164 (2019) 68–84.
doi:10.1016/j.knosys.2018.10.019.

[28] A. J. Fernández-Garćıa, R. Rodŕıguez-Echeverŕıa, J. C. Preci-
ado, J. M. C. Manzano, F. Sánchez-Figueroa, Creating a Recom-
mender System to Support Higher Education Students in the Sub-
ject Enrollment Decision, IEEE Access 8 (2020) 189069–189088.
doi:10.1109/ACCESS.2020.3031572.

[29] I. Mashal, O. Alsaryrah, T.-Y. Chung, Performance evaluation of
recommendation algorithms on Internet of Things services, Physica
A: Statistical Mechanics and its Applications 451 (2016) 646–656.
doi:10.1016/j.physa.2016.01.051.

[30] M. A. Torad, B. Bouallegue, A. M. Ahmed, A voice controlled smart
home automation system using artificial intelligent and Internet of
Things, TELKOMNIKA Telecommunication, Computing, Electronics
and Control 20 (4) (2022). doi:10.12928/telkomnika.v20i4.23763.

[31] F. Corno, L. De Russis, A. Monge Roffarello, RecRules: Recommending
IF-THEN Rules for End-User Development, ACM Trans. Intell. Syst.
Technol. 10 (5) (sep 2019). doi:10.1145/3344211.

[32] J. A. Llopis, A. J. Fernández-Garćıa, J. Criado, L. Iribarne, Matching
user queries in natural language with Cyber-Physical Systems using deep
learning through a Transformer approach, in: 2022 International Confer-
ence on INnovations in Intelligent SysTems and Applications (INISTA),
2022, pp. 1–6. doi:10.1109/INISTA55318.2022.9894230.

44

[33] H. El-Amir, M. Hamdy, Feature selection and feature engineering, in:
Deep Learning Pipeline: Building a Deep Learning Model with Tensor-
Flow, Apress, Berkeley, CA, 2020, pp. 233–276. doi:10.1007/978-1-4842-
5349-6 8.

[34] J. T. Hancock, T. M. Khoshgoftaar, Survey on categorical data
for neural networks, Journal of Big Data 7 (28) (2020) 1–41.
doi:10.1186/s40537-020-00305-w.

[35] K. Potdar, T. S. Pardawala, C. D. Pai, A Comparative Study of
Categorical Variable Encoding Techniques for Neural Network Classi-
fiers, International Journal of Computer Applications 175 (2017) 7–9.
doi:10.5120/ijca2017915495.

[36] N. T. Nam, P. D. Hung, Padding Methods in Convolutional Sequence
Model: An Application in Japanese Handwriting Recognition, in: Pro-
ceedings of the 3rd International Conference on Machine Learning and
Soft Computing, ICMLSC 2019, Association for Computing Machinery,
New York, NY, USA, 2019, p. 138–142. doi:10.1145/3310986.3310998.

[37] M. Junker, R. Hoch, A. Dengel, On the evaluation of document analysis
components by recall, precision, and accuracy, in: Proceedings of the
Fifth International Conference on Document Analysis and Recognition.
ICDAR ’99, 1999, pp. 713–716. doi:10.1109/ICDAR.1999.791887.

[38] E. Mena-Maldonado, R. Cañamares, P. Castells, Y. Ren, M. Sanderson,
Agreement and Disagreement between True and False-Positive Metrics
in Recommender Systems Evaluation, in: Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, Association for Computing Machinery, New York,
NY, USA, 2020, p. 841–850. doi:10.1145/3397271.3401096.

[39] A. Gunawardana, G. Shani, A Survey of Accuracy Evaluation Metrics
of Recommendation Tasks, J. Mach. Learn. Res. 10 (2009) 2935–2962.

[40] G. Shani, A. Gunawardana, Evaluating recommendation systems, in:
F. Ricci, L. Rokach, B. Shapira, P. B. Kantor (Eds.), Recommender
Systems Handbook, Springer US, Boston, MA, 2011, pp. 257–297.
doi:10.1007/978-0-387-85820-3 8.

45

