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Abstract
Mobility and continuous connection entail the emergence of heterogeneous devices with multiple forms of interaction. 
However, it is challenging for developers and corporations to keep up with the devices and provide applications adapted to 
them. Besides, better user experiences attuned to users’ needs and desires are increasingly in demand. User interfaces play a 
major role because they must be distributed through different devices and offer a customized experience for each user–device 
combination. We take advantage of the component-based applications easiness to build customized interfaces that can give 
optimal solutions to fulfill the requirements for adapting themselves to cross-device applications with multiple forms of 
interaction. User interaction on mashup interfaces can generate a great deal of data, which can be analyzed for improving the 
interaction and usefulness of the applications. In our paper, we have created a microservice-based architecture that generates 
datasets which contain the user behavior for further analysis. Therefore, the user experience and usability in distributed user 
interfaces may be improved through prediction models generated from the data. Each microservice autonomously fetches 
its own data and performs consistently so that it can transform datasets optimally by using feature engineering techniques. 
Thus, data analysis and algorithms can create accurate yet simple prediction models that provide useful knowledge to enhance 
the user experience. A REST API web service is added to each microservice to facilitate their communication with other 
microservices and/or third-party clients. The entire microservice architecture, including feature engineering and RESTful 
API web services for each microservice, offers an infrastructure to handle and process data interaction of cross-devices 
applications with multiple forms of interaction. This approach has been deployed in a real mashup application where new 
datasets have been created, processed and validated.

Keywords  Cross-device applications · Multiform interaction · Distributed interfaces · Microservice architectures · Feature 
engineering · Mashup user interfaces

1  Introduction

Nowadays, it is nearly impossible to find a successful soft-
ware application that only works with one type of device. 
Actually, mobility has become extremely important and peo-
ple need to be continuously connected not only in a work 
environment but also in their social lives, free time and 
leisure activities. Desktop computers and laptops are not 
enough to provide such an ongoing connection and users 
therefore access to software applications through heteroge-
neous devices such as tablets, phablets, smartphones or even 
wearables like smartwatches and smartbands, or any other 
smart home devices such as lighting systems and some home 
automation devices. The number of heterogeneous devices 
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that access software applications is continuously growing, 
and it seems that this trend continues upwards [20].

The appearance of these new devices entails developing 
software applications that they will not be used in a concrete 
device, but instead will have to be designed to be accessed 
from many different kinds of devices. This cross-device 
development requires design decisions and implementation 
effort on different layers, involving the adaptation, distribu-
tion and migration of user interfaces and data across devices 
[25].

User interfaces (UI) play a prominent role in that respect 
since they are present in multi-device environments [8]. The 
same UI must be distributed through different devices with 
multiple forms of interaction (see Fig. 1), by means of a 
clear customized approach to each one of them without alter-
ing the essence and functionality of the application.

The nature of these devices is diverse, and they are 
accessed in different environments. Considering this, the 
access to the software application through a specific device 
also implies that the user is looking for certain function-
alities that may, or may not, coincide from one device to 
another. This is known as context awareness, that is, the 
ability of a device to gather information about its context, 
environment, location and other nearby resources to behave 
accordingly. For that, the device relies on its sensors and 
nature, i.e., the purpose for which it was designed, to deter-
mine how its processes should operate and enhance the user 
experience.

Furthermore, software applications can offer differ-
ent forms of interaction or user interface layout to users, 
depending on the type of device and the circumstances in 
which it is accessed. For instance, a smartphone usually 

is handled via touch screen, but it can be also handled via 
voice recognition. How users interact with interfaces is 
called human–computer interaction (HCI). Traditionally, 
this interaction has been performed by means of keyboard 
and mouse. Nowadays, other types of actions related to 
natural user interfaces (NUIs) are widely used, such as 
touch interfaces, gestural interface, voice recognition, vir-
tual reality, wearables or Internet of things (IoT) solutions 
[38].

Ubiquitous computing (also called pervasive computing) 
[29] deals with all these heterogeneous, constantly available 
and connected devices where data and user interfaces are 
distributed. Within this concept, different types of devices 
from distinct locations use their computational capabilities 
to even determine their own behavior or to communicate 
with other devices everywhere. Thus, human-centered 
design (HCD) makes possible self-governed devices that 
operate autonomously without human interaction. A com-
bination of human interaction and self-governed software 
applications could optimize the user experience and how 
users interact with devices through their UI.

This paper focuses on the aforementioned context and 
concepts. Users expect applications to be accessible via any 
device regardless of the screen size, the type of interaction 
or the technologies involved in it. They also expect the user 
interfaces to adapt to them so they can work and interact 
with the UI as intuitively as possible. It is therefore desired 
that a UI performs dynamic adaptation and evolves to the 
user’s needs through the discovery of behavioral patterns 
based on the user’s interaction with the interface.

To achieve that goal, we focus on mashup user interfaces 
[7]. Due to their granularity (coarse-grained) the mashup 
user interface facilitates the adaptation of their internal 
structure to any UI through any device. In previous works, 
we created a number of web services to support component-
based architectures of mashup UI [9]. In these works we 
presented a methodology for dynamically evolving compo-
nent-based architectures in order to best adapt to the user’s 
requirements. Here, every adjustment made in the system 
is based on a number of adaptation rules stored in a rule 
repositories. Based on the users’ behavior interacting with 
the user interface, we update the rule repositories so that the 
application can evolve over time.

Therefore, based on mashup UI distributed through dif-
ferent devices, we collect data about users’ interaction. The 
kind of device and the form of interaction are important 
characteristics because they affect the way in which users 
handle a device. We plan to analyze the data collected to 
gain some knowledge about how users interact with the 
UI. Obtaining these data is not an easy task because the 
UI is distributed across many devices. We have designed 
an infrastructure with different microservices that work 
together in order to collect all the interactions performed 

Fig. 1   Users accessing cross-device applications with multiple form 
of interaction
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over distributed mashup UI (regardless of the type of device 
and the kind of interaction) and store them in a relational 
database.

This infrastructure is now extended to create a new 
microservice architecture that queries the relational data-
base which contains every interaction performed by users in 
order to retrieve datasets. These datasets contain the users’ 
interactions with concrete aspects of the UI, such as the 
components used by new users, how users customize their 
interfaces or which components are frequently used together, 
among others.

On the other hand, feature engineering techniques have 
been performed over datasets to optimize their performance, 
helping data analysis algorithms to create accurate and sim-
ple prediction models, which means better results [23]. 
Although feature engineering is usually treated lightly, it 
definitely plays an important role in the success of a machine 
learning experiment. We will go through a deep process of 
applying feature engineering for optimizing raw datasets. 
The knowledge inferred by these techniques will create new 
rules for self-adapting of distributed mashup user inter-
faces at runtime. These rules can suggest, for instance, the 
appropriate component that the user needs depending on 
the device used; redistribute the components in the UI to 
provide a better user experience; allow users to discover new 
components that can be appealing to them; or automatically 
optimize the components appearance according to the inter-
action, and so on.

Thereby, in this paper, we present a microservice archi-
tecture that creates datasets from a relational database that 
contains data about interactions performed on mashup UIs. 
Furthermore, these data can be generated from cross-device 
applications with distributed user interfaces in multi-device 
environments. The data gathered are optimized by using 
feature engineering techniques for further data analysis 
purposes.

To validate the creation process of datasets, an empiri-
cal case study is provided. An implementation has been 
deployed over the ENIA Project [9], a mashup user interface 
for environmental management used by the Andalusian envi-
ronmental information network (REDIAM, Spain) [34]. The 
ENIA mashup user interface can be simultaneously acces-
sible via heterogeneous devices, such as laptops, computers, 
smartphones and tablets by using mouse, keyboard, gesture 
or voice interfaces. Thus, multiple ENIA sessions can be 
established at the same time, by different devices at differ-
ent locations. ENIA has been implemented under a software 
as-a-service cloud infrastructure.

The rest of the paper is organized as follows. Section 2 
describes the multi-device mashup morphology and the data-
base design for storing the interactions. Section 3 describes 
the microservice architecture deployed to create the inter-
action datasets. Section 4 explains how the architecture has 

been applied to ENIA and how some specific datasets have 
been created and optimized by using feature engineering 
techniques. Section 5 reviews some related projects that 
include cross-device developments in heterogeneous fields. 
Finally, Sect. 6 concludes and provides future directions.

2 � Storing the mashup UI interaction

This section aims to introduce the mashup concept and illus-
trates its morphology through ENIA, the mashup application 
used in our case study. We will use the ENIA case study for 
that purpose because, after all, it provides a vision similar to 
regular mashup (being even slightly more advanced), and at 
the same time it introduces important particular characteris-
tics to understand the overall work presented on this paper.

Once we have studied the ENIA mashup morphology, 
we will describe the operations that can be performed on 
the mashup UI. We must bear in mind that ENIA is a multi-
device application and, as a result, some operations might 
not be available on some devices. For example, in smart-
watch applications it is not possible to resize a component 
because they can only be full screen visualized on these 
devices. This is because the ENIA UI is distributed across 
multiple devices and adapted to each one of them with its 
peculiarities.

Likewise, an interaction could be performed differently 
depending on the type of interaction and device used. For 
example, opening a map in a laptop is usually done by using 
a mouse and a keyboard but with smartphones, it could be 
performed by using a voice recognition system (maybe 
because the user is driving). This will be taken into account 
when storing data because, although the operation is the 
same, the form in which it is carried out is different. We 
will also consider the environment in which an operation is 
performed, as the context awareness is a significant factor in 
distributed interfaces and ubiquitous computing.

Finally, we propose a relational database schema to store 
the interaction in ENIA. We describe the data acquisition 
process, and we show how the user interaction is stored 
in the database containing the HCI data from users across 
multi-devices. This information is subsequently used in 
the post-storage process to infer knowledge that can help 
to evolve the mashup UI and enhance the user experience.

2.1 � Mashup UI morphology

As a definition, mashups are said to be a specific type of 
software that is intended to group services from different 
sources in the same application. Mashup user interfaces 
(mashup UI) integrate one or more components from one or 
more sources to create a unique UI that combines different 
components that might or might not have relationship among 
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them [18, 21]. Figure 2 shows a screenshot of ENIA, our 
mashup case study. ENIA [9] is a component-based graphi-
cal user interface for the management of environmental 
information n.

As mentioned above, ENIA has been developed for the 
Andalusian environmental information network [34]. Dif-
ferent user profiles and several categories of components 
exist in the ENIA interface. Examples of these user profiles 
include tourist, farmer or politicians. In addition, there are 
several categories of components in the ENIA interface. It 
is possible to distinguish three main types of components 
in ENIA, even though mashup applications are very open 
in that sense since they can incorporate any kind of content 
by placing it in a component. In ENIA, components are cat-
egorized as follows:

•	 OGC services. Open geospatial consortium (OGC) [27] 
services components have geospatial information that 
is placed into a map. Examples of these components 
include natural areas, wetlands or biosphere reserves, 
positioned within maps, among other kinds of OGC 
components.

•	 Social networks. These components contain social 
information which may be useful for users. Examples of 
these components include Facebook, Twitter, RSS feeds, 
among others.

•	 Applications. Other applications are registered in ENIA 
to be offered to users. ENIA allows third-party develop-
ers to create their own component and register it in ENIA 
so that users can access them. The REDIAM has a sub-
category to register its own components such as beaches 
temperature or orthophotography images. Other exam-
ples from third-party developers are weather or clock 
components.

Figure 2 locates the main parts that make up the ENIA 
mashup UI:

(a)	 Services menu Contains the list of Services offered by 
the mashup. This menu is organized in categories and 
subcategories to facilitate the search of Services.

(b)	 Services Describe the capacities provided by the 
mashup UI. These capacities are offered to users and 
ready to be included in their workspaces. When a ser-
vice is incorporated to the workspace, it is instantiated 
and managed as a Component.

(c)	 Components Correspond to Services which have been 
added to the Workspace and, consequently, instantiated 
for their use. These components are deployed inside 
COTSgets.

(d)	 COTSgets COTSgets are containers of Components. 
These elements have a set of attributes (e.g., width, 

Fig. 2   ENIA mashup UI conceptual design
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height or position). COTSgets are used to group Com-
ponents with common properties, for example, com-
ponents with geospatial information represented in a 
map. The name COTSget comes from a combination 
of COTS (commercial off the shelf components) and 
gadgets (a software element that encapsulates the func-
tionality needed to perform a task).

(e)	 COTSget menus Provides some capabilities to interact 
with the COTSgets. Menus are toolbars placed at the 
top displaying some actions that can be performed over 
the COTSgets, for example, a button to remove them 
from the Workspace.

(f)	 Workspace Constitutes the work area where COTSgets 
are deployed and users can interact with them.

(g)	 Operations Are formed by a subset of actions that can 
be performed over the mashup UI and which are rel-
evant for learning about the interaction.

Therefore, the ENIA mashup (  ) is summarized in the fol-
lowing manner  = { , ,,, ,} . Thus,  is com-
prised of a set of services  , a service menu   , a set of 
COTSgets   , a set of components  , a workspace  and 
a set of operations  . The sets of Services  are defined 
as  = {S1, S2,… , SN where N is the number of Services 
registered in ENIA. The sets of COTSget  are defined as 
 = {C1,C2,… ,CL} where L is the number of COTSget 
created in the Workspace .

A concrete COTSget Ci has some properties, so it could 
be defined as Ci = {PosX,PosY ,Width,Height} . All the 
components contained in that specific COTSget share the 
values of PosX,PosY ,Width and Height properties. Finally, 
the sets of operations are defined as  = {Add , Delete, 
Move, ResizeBigger, ResizeSmaller, ResizeShape, Group, 
Ungroup, AddGroup, UngroupDelete, UngroupGroup, 
Maximize, Minimize}.

2.2 � ENIA mashup UI operations

The operations that can be performed over the ENIA mashup 
UI are described below. A distinction is made to clear up 
whether the operation is standard for all mashups or specific 
to the ENIA mashup UI.

•	 Add. Mashup standard operation. Consists in adding a 
service to the workspace from the services menu, so it 
is instantiated into a component. When instantiating in 
ENIA, a new COTSget is created and the new component 
is placed into it. Some properties such as position in the x 
axis, position in the y axis, width and height are assigned 
to the COTSget.

•	 AddGroup. Exclusively from ENIA. Consists in adding 
a service to the workspace from the services menu, so it 
is instantiated into a component, placing it in an exist-

ing COTSget. When instantiating the component, it takes 
the properties previously assigned to the COTSget that 
contains it.

•	 Group. Exclusively from ENIA. Consists in placing a 
component that is alone in a COTSget, in another exist-
ing COTSget. The original COTSget is deleted because 
it is empty.

•	 Ungroup. Exclusively from ENIA. Consists in placing a 
component of an existing COTSget with more than one 
component, in a new COTSget that will be created spe-
cifically to that end; hence, the component will be the 
only one that populates the new COTSget container.

•	 Delete . Mashup standard operation. Consists in 
removing the last Component of a COTSget from the 
workspace. The COTSget that contains the components 
is also removed because it is empty now. More than one 
component can be deleted at the same time if they are all 
contained in the same COTSget and the user deletes the 
COTSget itself.

•	 UngroupDelete. Exclusively from ENIA. Consists in 
deleting a component from a COTSget and leaves one or 
more components inside it.

•	 UngroupGroup. Exclusively from ENIA. Consists 
in placing a component that is inside of a COTSget 
with more than one component, into another existing 
COTSget.

•	 Resize . Mashup standard operation. Consists in 
changing the size assigned to a COTSget and conse-
quently, every component contained therein. It modifies 
the ‘width,’ ‘height’ or both properties.

•	 Move. Mashup standard operation. Consists in chang-
ing the position of a COTSget and therefore, to all the 
components that contain. It modifies the properties PosX, 
PosY or both of them.

•	 Maximize. Exclusively from ENIA. Consists in increas-
ing the size of a COTSget to show it at full screen. It 
applies to all the components contained in a COTSget.

•	 Minimize. Exclusively from ENIA. Consists in giv-
ing back the width, height, posX and posY values to a 
COTSget that was previously maximized. The COTSget 
and all the components contained in it go back to their 
original position and they are no longer shown at full 
screen.

2.3 � Database design for storing interactions in ENIA

When an interaction occurs in the mashup application, a 
data acquisition process is triggered in order to save all the 
information regarding that interaction. This information is 
the basis for further post-storage processes which will be 
explained later.
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Together with the operation performed that triggers the 
interaction, it is convenient to save the information about the 
user that generates it, as well as the affected components. 
Since the mashup UI is distributed in different devices it is 
necessary to store the device that hosts the operation (laptop, 
smartphone, tablet, etc.) and also the form of interaction 
(touch, gestural, voice, etc.). It is likewise advisable to save 
the state that remains in the workspace after the operation. 
Although storing all the workspace might seem rather costly, 
it would make it possible to rebuild all the users’ behavior 
step by step through the interfaces in case further analysis, 
not considered at design time, is required.

In order to store interaction data performed by users on 
the mashup UI, it is necessary to define a relational database 
model that would be able to store all the relevant information 

of the interaction. This relational database should be as 
complete as possible to have a good understanding of the 
interaction itself and the circumstances that surround it. Fig-
ure 3 shows the relational database schema that stores all 
the interactions performed as well as the size and position 
of each COTSget in the workspace after the operations are 
performed. Notice the presence of indexes in every table to 
facilitate the efficiency when querying the databases.

Each row of the Interactions table corresponds 
to an interaction performed by the user. The opera-
tionPerformed field saves the kind of operation per-
formed, and the dateTime field saves both date and time 
when the interaction happened. Moreover, a wide range 
of fields are included to store the context information, for 
instance: latitude, longitude, city, country, 

Fig. 3   Database schema to storage interaction in ENIA
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weatherDescription, weatherSubdescrip-
tion, temperature, pressure, humidity, cloud-
Percentage, windSpeed and windDirection.

The Interactions table is related to the Sessions 
table; thus, all the operations performed in the same session 
are grouped. Note that, the deviceType and the inter-
actionForm fields are in the Sessions table. ENIA is 
prepared to work through different devices simultaneously 
with multiple forms of interaction; besides the classical 
mouse and the keyboard, we can add smartphones, tablets 
and other devices with gesture or voice form of interaction.

The Users table, which is related to the Interac-
tions table, stores information of all users registered. In 
ENIA, guest users are allowed to have access the applica-
tion. For that kind of users, there is a specific row in the 
Users table that identifies them as guests. ENIA saves 
extra information about Users that should enter in order 
to be registered in the application. That extra information is: 
name, surname, birthDate, address, city, coun-
try and email. The userType and userSubType 
fields are used to categorize users, as it has been previously 
discussed.

The Cotsgets  table includes all COTSgets that 
populate the workspace after an interaction has been per-
formed. The Components table, which is related to the 
Cotsgets table, stores information about all components 
in the workspace and indicates in which COTSget they are 
contained. With the information retrieved from these tables, 
it is possible to rebuild the workspace exactly the same as 
it was before the interaction was performed. The attributes 
posx, posy, width and height are enough to locate 
each COTSget in the workspace.

The Services table, which is related to the Compo-
nents table, stores the information about all services regis-
tered in ENIA. The category, section and subsec-
tion fields represent the different kinds of services. That 
makes them easy to find, locate and use in the ENIA user 
interface.

It is important to identify the component on which the 
operation is performed because this is the component that 
provokes the interaction. Hosting together more than one 
component is not an easy task in ENIA due to the use of 
COTSgets. Sometimes, specific operations are not per-
formed on just one component but on a set of components 
contained in a COTSget. Furthermore, components that are 
not included in an operation can play a second role, because 
they can be directly affected by the operation. For exam-
ple, it happens when a component is grouped in a COTSget 
with more components or when a component is ungrouped 
from a COTSget where at least a component is left. To suc-
cessfully store all that kind of interactions that happen, we 
make use of the ActionComponents, GroupedCom-
ponents and UngroupedComponents tables, which 

are all related to the Interactions table. The first one 
gathers the components that provoke the interaction. The 
second one gathers all components that had previously been 
in a COTSget before an Add or AddGroup operation was 
performed. The last one gathers the components that are left 
in a COTSget, when an Ungroup or DeleteUngroup 
operation has been performed.

There is also the registeredApiKeys table that has 
no relations with other tables of the database. This table is 
not necessary to capture the interaction, but it takes a role in 
the security of the stored data.

2.4 � Data acquisition process

Once the relational database model is designed, it is neces-
sary to create a process to store the interaction performed 
over the distributed user interfaces in the database. A data 
acquisition process has been created and implemented to 
collect the HCI interaction from the distributed mashup user 
interfaces and store it in the database. The stored informa-
tion, in a structured form, can be exploited in future works 
for different purposes such as data searching, data mining, 
marketing, security (user access and behavior analysis), 
accessibility, usability or traceability, among others. In our 
concrete case, this database will be exploited to create UIs 
that will evolve over time by using data mining techniques. 
Figure 4 shows the steps that are necessary to complete the 
data acquisition process.

The first step (#1) in the data acquisition process is to 
create a web service (called getInteraction) to receive 
all the interactions produced in the mashup UI. The mashup 
UI client is responsible for calling this web service when 
an interaction occurs, sending all the data that are needed 
to be stored. A JSON Schema is provided to the mashup 
UI client. This schema describes the data structure needed. 
Thus, clients can send JSON files and validate them against 
the schema, to guarantee that they are both ‘well-formed’ 
and ‘valid.’

In the event that further data about a user, a service or 
any other aspect of the mashup UI is needed, the next step 
is to get to that data (#2). For that, it is commonly necessary 
to check the mashup application to see whether it provides 
web services and connect with them, if there are any. If so, 
the request to the web services for the data needed should be 
implemented in the data acquisition process.

Sometimes there is also some context information 
that contributes to useful data. When designing the data 
acquisition process is highly advisable to study the envi-
ronment of the mashup UI and define which data would 
be worthy to obtain from the context. Usually, access to 
context awareness involves connecting with third-party 
web services. When the context data are defined and the 
services that provide such context awareness are identified, 
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the request for these external web services must be imple-
mented in the data acquisition process (#3).

When all these steps are completed and all the required 
data are gathered, it should be stored in a database (#4). 
It is required to serialize the database operations in order 
to avoid integration conflicts when adding relations to the 
data.

Once the data are stored in a structured database, the ways 
to use that information are as follow (#5):

(a)	 Data searching The actions performed by users are 
always preserved, and they can be accessed at any time, 
but they are not likely to be modified.

(b)	 Data mining Discovering of patterns in large data-
sets created from the stored interaction data is highly 
advisable. Through artificial intelligence, statistics or 
machine learning algorithms, the user behavior can be 
analyzed.

(c)	 Marketing Data can be handled for marketing purposes 
such as promotional activities, analysis, surveys or 
advertising.

(d)	 Security The data stored can be secured by using role-
based access control as well as it can provide users 
with identification for every action performed in the 
information system. Also, intrusion defense systems 
(IDS) and intrusion prevention systems (IPS) can be 
set up based on the storage data.

(e)	 Accessibility Through the interaction data stored, we 
can know how to develop an accessible design or to 
create assistive technology so that disable people can 
benefit from it.

(f)	 Usability Usability improves the design and features of 
the information systems to increase the effectiveness of 
the application when interacting with users.

(g)	 Traceability Traceability verifies all the steps per-
formed by users when interacting with the information 
system. It allows chronologically reconstructing the 
actions performed by users.

As previously mentioned, our aim is to exploit this data-
base to infer knowledge for creating a seamless process that 
could work autonomously toward the evolution of distrib-
uted multi-device mashups user interfaces by using data 
mining techniques.

3 � Architecture of microservices 
and datasets

Once we have stored the interaction data, and the data 
acquisition process is autonomously working, feeding con-
tinuously the database with new interaction data from the 
mashup user interface, we will focus on processing that data.

It is worth remembering that the database schema to store 
the interaction was designed with the aim of losing none of 
the nuances of the interaction performed. With these data, 
it is possible to fully recreate the interactions made by users 
in the application step by step. For that reason, in case of 
using the data for a concrete purpose, it is necessary to query 
the relational database and retrieve the data we need for a 
specific goal.

Given that there are many possibilities to exploit the 
stored data, which may be complementary or not, a micros-
ervice-based architecture is proposed. The microservice-
based architecture structures the application as a modular set 
of services that collaborate together avoiding the monolithic 
applications difficulty of decomposing or scaling. In this 
architecture, microservices [12, 24, 35] are independently 
deployable services where each component in the system 
is a stand-alone entity that interacts with others across a 
network with a well-defined interface. Each microservice 
added to the pool has a concrete purpose, significantly dif-
ferent from others.

We are interested in analyzing the user’s behavior and 
for that reason; we want to obtain the interaction data for 
addressing the creation of datasets, each dataset focusing 
on a specific part of the HCI that we want to enhance. For 

Fig. 4   Steps of the data acquisition process
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example, if we want to facilitate the use of the application to 
new users, the system can suggest them components when 
they are newly registered in the information system. To do 
this, it makes sense to retrieve from the database the first 
interactions performed from previous users (especially users 
that have something in common) and create a dataset that 
contains that data.

This architecture of microservices will allow developers 
(or groups of developers) creating datasets to work in paral-
lel at any time. This architecture also facilitates continuous 
integration (CI) and continuous delivery (CD), as it allows 
us to produce software in short cycles. This will ensure that 
the software can be reliably released at any time [3, 19]. 
The whole pool of microservices has defined boundaries 
and complies with the interface segregation principle (ISP), 
one of the SOLID [2, 13] principles, which states that clients 
should not be forced to depend on methods that they do not 
use. This is really useful when it is necessary to refactor, 
change or redeploy the system. Also, due to the microser-
vice-based architecture granularity, this architecture is well 
oriented to distributed approaches. The coarse- and medium-
grained granularity of components in mashup applications 
enables us to manipulate components and easily adapt them 
to multi-device distributed user interfaces.

Furthermore, this architecture allows us to have concrete 
microservices to serve one specific purpose coded with that 
focus. This is highly aligned with the single responsibility 
principle (SRP) from SOLID, which says that every module 
should be responsible for a single part of the functionality, 
which should be entirely encapsulated by the class. If one 
microservice fails, the others will continue working properly 
because the functionality of each microservice is isolated.

Additionally, each microservice may have their own web 
service; thus, they can expose their functionality to others 
services or third-party clients, if allowed. In the case we pur-
sue, they can be accessed through their web service (further 
explained) for creating datasets, which could be the input 
for machine learning algorithms or ways of data analysis. 
Establishing a connection with the work presented on this 
paper, some of the purposes we are interested to cover that 
can be encapsulated in microservices can be (a) discover the 
components most commonly used by new users, (b) analyze 
how the use of a particular device impacts on the usage of 
a component or (c) suggest the usage of some specific com-
ponents depending on the form of interaction employed to 
manipulate the device, among others examples.

Figure 5 shows the datasets creation process, through a 
microservice-based architecture. There is a pool of micros-
ervices, in which each microservice can connect to the data-
base through the database controller in order to obtain the 
data that it needs for its purpose (which is the first part of 
the process, the data acquisition).

Usually, the acquired data are not optimized to be ana-
lyzed; therefore, a feature engineering process is applied, 
whereby the datasets are optimized to be the best possible 
input for applying the algorithm that is intended in each 
specific case.

4 � ENIA, microservices and datasets

Once the microservice-based architecture has been theoreti-
cally described and its suitability to create datasets has been 
discussed, we are going to explain now how this architecture 

Fig. 5   Microservices-based 
architecture for addressing the 
creation of datasets
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has been deployed in ENIA. In order to illustrate that, we 
are going to create a microservice and add it to the pool of 
microservices.

The ENIA user interface case study is an implementa-
tion already deployed [9] where approximately a dozen users 
from the REDIAM (Andalusian environmental information 
network) are continuously using the application. Further-
more, the application is not only used for these users, but it 
is an open framework available for any citizen with differ-
ent profile of using in the system. The main kinds of users 
(profiles) defined in ENIA are the following:

(a)	 Rediam staff In their daily work they internally exploit 
information contained in ENIA components for differ-
ent purposes.

(b)	 Farmers Use components for agriculture purposes such 
as looking up types of soil, weather forecast or locating 
wetlands.

(c)	 Politicians Use components to analyze data for different 
purposes according to their needs.

(d)	 Tourists Use components for touristic purposes such as 
finding touristic spots or to know the water temperature 
in beaches.

(e)	 Guests Users that are not registered in ENIA can access 
and use it freely.

In this section, we are going to deeply describe how a 
microservice works in the architecture, as well as describe 
each one of the processes that have to be attended when 
deploying a microservice into production. In this case, 
microservices are going to be built to generate datasets. 
These datasets can be used for multiple purposes such as 
data analysis, reports or logs. The main processes of these 
microservices are:

•	 Obtain the interaction data needed by querying the rela-
tional database.

•	 Apply feature engineering to optimize the dataset for fur-
ther analysis.

•	 Create a web service that enables the microservice to 
communicate with other microservices or entities. It 
allows us to potentially scale the system functionality by 
improving the collaboration between parts in a distrib-
uted and ubiquitous system.

•	 Automatize the execution of the microservice (if it is 
required).

•	 Enable an interface to receive feedback from other ser-
vices (it can be integrated into the web service).

In the second part of this section, the feature engineer-
ing process will be deeply explained. We will cover many 
aspects of great importance in the process with the aim 
of optimizing the datasets and getting better results when 

using machine learning algorithms. Some of these aspects 
are cleaning data, discretization of features or splitting 
instances, among others.

To illustrate the process, through this section we will 
focus on a concrete microservice that enhances the user 
experience. The goal of the new microservice will be the 
suggestion of useful components to new registered user 
when they interact with the mashup. By doing that, we want 
to increase the number of add and addGroup operations that 
a user carry out and he/she may find it interesting when 
interacting with the mashup user interface through heteroge-
neous devices with multiple forms of interaction. Thus, the 
user’s engagement with the user interface (UI) will increase, 
enhancing the user experience.

4.1 � Deploying a new microservice 
in the architecture

The steps taken to deploy a new microservice in the micros-
ervice-based architecture are shown in Fig. 6 and described 
in this subsection.

First of all, a dataset has to be obtained from the original 
source. It can be done by querying the origin database or 
by acquiring the dataset through a web service or data files 
(CSV, XLS...). Usually, this dataset has too raw data, and 
feature engineering techniques are applied to optimize it. 
A REST web service may be included in each microservice 
of the system to communicate and send data to the machine 
learning algorithms. In addition, this REST service can be 
also useful to provide access to third-party applications, and 
to facilitate the communication with other available micros-
ervices, or even to receive some feedback from the machine 
learning algorithms.

After that, the methodology proposes the creation of an 
automatized process that periodically generates accessible 
and updated datasets without the need for generating them 
in real time. Finally, feedback from the machine learning 
algorithms can be obtained and saved through the REST 
web service. Further details about the steps of the process 
are explained in the next subsections (for that, each step of 
the process will be explained in a separate subsection).

4.1.1 � Acquiring data

The first step of the process is to acquire from the relational 
database the user’s interaction data to build the dataset. To 
explain this issue, let us suppose the following target sen-
tence that will be used through the paper as a running exam-
ple and starting point:

“Suggest components to new registered users”

This previous sentence would require the following type 
of data from the database:
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•	 Interaction data type. The idInteraction, oper-
ationPerformed and actionComponents 
fields of the interactions table contain the opera-
tion performed as well as the components over which 
the interaction has affected. Note that actionCom-
ponents is an array that contains one or more values 
because an operation can be performed in COTSgets 
that could contain more than one component at the 
same time.

•	 Cross-device, form of interaction and simultaneous ses-
sions. Data about the simultaneous sessions in which 
the interaction has been performed (which include the 
device type and the form of interaction used) can be 
retrieved from the idSession, deviceType and 
interactionForm fields in the sessions table 
(see Fig. 3).

•	 Data about the user that performs the operation. The 
user information and the user profile (for instance, a 
farmer, a politician, a tourist, among others) can be 
accessed from the fields idUserClient, birth-
Date, country, userType and userSubType in 
the users table (Fig. 3).

•	 Data about the context awareness. Data such as date, 
time, location or weather can be retrieved from the 
dateTime, latitude, longitude, tempera-
ture and weatherDescription fields in the 
interactions table (see Fig. 3).

Therefore, it is meaningful to acquire the following infor-
mation in terms of a dataset: 

Dataset = {
idInteration,
operationPerformed,
actionComponents[],
idSesstion,
deviceType,
interactionForm,
idUserClient,
birthDate,
country,
userType,
userSubType,
dateTime,
latitude,
longitude,
temperature,
weatherDescription

}

In order to facilitate the explanation of further steps the 
dataset will be summarized in the next fields: 

Fig. 6   Process inside a microservice
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Dataset = {
idUserClient,
userType,
idSession,
idInteraction,
operationPerformed,
deviceType,
interactionForm,
dateTime,
latitude,
longitude,
actionComponents[]

}

The dataset with these fields can be seen in Table 1, 
included at the end of the paper. It contains the necessary 
data about the interactions and the components affected; 
the sessions, devices and forms of interaction related to the 
mashup UI in which the interactions have been performed; 
information about the users that performs such interactions; 
as well as information about the context surrounding each 
interaction.

4.1.2 � Feature engineering

Usually, data are too raw for learning and the dataset 
retrieved directly from the database must be processed 
before applying data analysis. Feature engineering is a pro-
cess that transforms these raw data to create features that 
have better representation and thus be able to create better 
predictive models [30]. The quality of the predictions mod-
els created with machine learning algorithms depends on the 
feature engineering approach that has been followed where 
usually better features mean better prediction models.

Feature engineering gets the most of the data available 
by creating pieces of information (features), which might be 
useful for prediction. The quantity and quality of the features 
can define how good the model obtained by the algorithm 
is. Since algorithms are pretty standard, it is worth spend-
ing time doing a good feature engineering work to get good 
results. To successfully perform feature engineering over 
data, a domain understanding of the problem as well as a 
deep algorithm understanding is needed.

This is an important issue to be considered, and later in 
this section we will explain in depth how feature engineering 
is applied to the case study dataset. For that, we will trans-
form the dataset shown in Table 1 and optimize it to increase 
the success of machine learning algorithms.

4.1.3 � Microservice REST web services

As previously commented, microservices have to expose 
their functionality to others. In our case, every microservice 

developed to create datasets, at least, has to provide access to 
the dataset when generated. Moreover, on many occasions, 
there are communications between microservices and we 
have to provide the way for this to happen. For that reason, 
some microservices implement a REST web service.

We decided to use REST against SOAP [33] protocol 
because it is more prevalent in the industry due to its flexibil-
ity and simplicity [39]. REST has a better performance and 
scalability, in general, and SOAP requires more bandwidth 
and resources than REST. Besides, REST permits different 
data formats such as plain-text, JSON, XML, HTML, among 
others, and SOAP permits XML data format only.

In addition, the microservices could expose its func-
tionality via a REST API to be used by third-party applica-
tions. There could be a problem with this because typically, 
microservices provide fine-grained APIs. It implies that cli-
ents who need to interact with several datasets may find it a 
bit tricky to get to know how to access each of them. Con-
sequently, a gateway is proposed as a solution. The gateway 
will be the single entry point for all clients when accessing 
to the microservices architecture; we prevent them from 
knowing what everyone offers. They just directly access to 
the API gateway that canalizes the architecture web services 
to third-party entities. We do not strictly need this because 
we can access directly to the REST API of the microservices 
(although it may be useful).

In our case study, datasets can directly be accessed 
through a URL. Additionally, we decided to implement a 
web service that can request in real time a new dataset. If the 
time generating the dataset is considerable, the client can be 
notified when the dataset is ready.

4.1.4 � Automating the process of creating datasets

Datasets can be generated on demand by other microservices 
or by third-party clients accessing the REST API. Usually, 
it is not necessary to generate the datasets at the moment of 
the request, in real time, due to mainly two reasons. First, the 
generation of a dataset can consume a long time that could 
provoke a delay in the answer. Second, usually, accessing to 
datasets from a few hours ago or even a few days ago poses 
no appreciable inconvenience when treating with this kind 
of data, unless otherwise indicated.

In ENIA, to automatize this process, a daemon is peri-
odically requested to call the APIs of each microservice 
and generates updated datasets. By default, in ENIA, each 
microservice generates the datasets once a day. Datasets can 
be generated in many formats such as HTML, JSON, XML, 
CSV, Excel, HTML or whatever format may be appropriate. 
In our implementation, when the datasets are being gener-
ated, we create a CSV file that contains all the data. These 
CSV datasets are stored in the cloud, and they are accessible 
to whoever wants to make use of them via the microservice 
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REST API or even directly using a URL. When accessing 
through the web service, it returns directly the CSV file. 
When accessing through a URL, clients directly access a 
public repository that contains public datasets. We find it 
appropriate to use CSV files because they are widely used 
for these cases and all major machine learning and data 
analysis solutions manage them easily. Certainly, besides 
the auto-generated datasets, it is possible to request the crea-
tion of updated datasets in real time on demand, if needed, 
through the microservices web services.

4.1.5 � Feedback from algorithms

Occasionally, microservices can receive feedback from 
the algorithms or the data analysis process when executed. 
That can happen for many reasons, one of them could be 
that some inferred knowledge wanted to be stored from the 
microservices in order to offer it to other microservices or 
third-party applications that can make use of it. Although it 
is not the purpose of this paper to talk deeply about concrete 
machine learning algorithms (it will be a further research), 
it will be useful to illustrate a situation in which this can 
happen.

Consider a microservice that creates datasets to be the 
input of a clustering machine learning algorithm. Cluster 
analysis consists in given a collection of unlabeled data, 
finding groups of them with a meaningful homogeneous 
structure and grouping them into clusters. If a dataset served 
by a microservice contains information of all ENIA users, 
the output of the algorithm will likely present clusters where 
the ENIA users are grouped according to some features that 
capture similarities between them. In that case, the micros-
ervice could be interested in incorporating a web service in 
its API to expose this knowledge to other microservices or 
third-party clients. The new web service, given a user, can 
return the cluster where it has been categorized.

4.2 � Applying feature engineering

As mentioned above, feature engineering can effectively 
optimize the datasets and it plays a key role in machine 
algorithms success. To do it properly, it is crucial to study 
the data domain and the algorithms that process the dataset 
in order to work optimally with it. By knowing the data 
domain, some significant changes can be done in the features 
that will improve the overall performance of the machine 
learning algorithms that will process the data to create pre-
dictive models.

In this subsection, the applied feature engineering tech-
niques are explained. We will make use of the raw dataset 
previously acquired from the database to apply the feature 
engineering process. The microservice of the case study 
had the purpose of creating a dataset that contains the 

user interaction with the mashup application UIs that are 
distributed across multiple devices with multiples form 
of interaction. The dataset will be optimized in order to 
be applied in machine learning algorithms; thus, a predic-
tive model for suggesting components to new users can be 
built. By suggesting components to new registered users, 
we expect that the user experience when interacting with 
the mashup UIs will improve. We also expect that these 
suggestions of new components can be customized to the 
user profile and given the device he/she is using.

The raw dataset directly acquired from the relational 
database is: 

Dataset = {
idUserClient,
userType,
idSession,
idInteraction,
operationPerformed,
deviceType,
interactionForm,
dateTime,
latitude,
longitude,
actionComponents[]

}

This dataset has thousands of instances that contain the 
HCI with the mashup client application from hundreds 
of users, most of them registered in the application and 
classified in categories. In these instances, the interaction 
performed in the mashup UIs via multiple devices and 
forms of interaction is gathered.

A representation of the dataset with some real instances 
retrieved from ENIA is shown in Table 1. Each column 
represents a feature, i.e., a piece of information that might 
be useful for prediction. Each row of the table represents 
an instance, i.e., a record in form of a vector that contains 
values for each feature. The number of instances and fea-
tures is simplified in order to easily illustrate the feature 
engineering process.

The last column of the table has a special feature usually 
referred as objectiveField. In supervised machine learning 
algorithms, this field is the one that wants to be predicted. 
In unsupervised machine learning algorithms, the objective-
Field does not exist. Through different tables, we will easily 
see how feature engineering steps transform the dataset.

The parts that compound the feature engineering process 
implemented in this approach are as follows: (a) cleaning 
data to avoid errors and empty values; (b) discretizing fea-
tures; (c) creating new features by splitting existing ones; (d) 
creating new features by merging existing ones; (e) splitting 
instances; (f) filtering instances; (g) adding features from 
algorithms feedback; (h) splitting the dataset.



Universal Access in the Information Society	

1 3

Figure  7 illustrates the feature engineering pipeline 
that we have applied. In addition, the detailed process is 
explained in the next subsection.

The data in Table 1 (at the end of the paper) contain real 
user interactions. As commented, we want to suggest com-
ponents to new registered users. For that reason, actionCom-
ponents will be the objective field.

4.2.1 � Cleaning data

Data may contain errors. Some errors are easy to detect, 
and they will probably come up by themselves sooner or 
later. Examples of this kind of error could be that text values 
appear where numeric values were expected or, in general, 
that the format does not match with the required one. On the 
other hand, some errors are very difficult to find and context 
information is needed in order to find them. Imagine we 
have been reading data from a sensor which has not been 
working properly for a few hours. The received values are as 
expected, but they cannot be trusted. It is necessary to check 
if the values read by sensors are consistent.

Table  1 has an instance containing an error. In the 
instance #3, the feature #10 (longitude) contains a value 
that is not as it is expected. It contains the value ES.8235, 
which clearly does not have the format of a coordinate. A 
decision must be made, remove the value of this field or 
delete the entire instance.

Data also may contain empty values. This problem 
is easy to detect since features do not have any data at 
all. The instance #8 of Table  1 contains three empty 
features: #9 (latitude), #10 (longitude) and #11 
(weather). This may have happened because the smart-
phone where the interaction was performed could not 
access to the location at that precise moment or it was 
not allowed by the user. The weather is obtained from a 
third-party web service that receives as inputs the latitude 
and longitude. As these two variables, latitude and 
longitude, could not be provided, the weather feature 
is empty. Note that feature #11 (weather) in instance #3 

is also empty, probably because this instance contained 
an error in the #10 (longitude) field, and that made 
it impossible to obtain the weather from the third-party 
web service.

Some algorithms deal with empty values (so it is impor-
tant to know in advance the algorithm that will be used 
later to analyze the dataset). If the algorithm that will be 
used does not manage empty values, it is possible either 
omit the instances that contain empty values or estimate 
them, if possible. In our case, we have decided to omit 
them, since we consider that we have enough instances 
for data analysis and we can afford to delete them. Table 2 
shows how the dataset looks like after cleaning data.

4.2.2 � Discretization of continuous features

Discretization allows constructing a meaningful range for 
a continuous feature according to the domain. The result-
ing features have better semantics, and the algorithms get 
out more meaningful information from them.

Feature #8 (dateTime) in Table 2 is a good exam-
ple of this situation. Instead of raw data like 6/5/2016 
12:10:03, it is useful to transform it to a new discrete 
feature like partOfTheDay with morning, after-
noon, evening, night as possible values. As we are 
familiar with the domain, we already assume with a high 
degree of certainty that, for analyzing the behavior of 
users like farmers or tourists, the new proposed feature 
has better semantics than the feature as it was before. In 
the same way, the same Feature #8 (dateTime) can also 
be discretized in a new feature called season with fall, 
winter, spring, summer as possible values.

We know beforehand that a tourist will more likely visit 
the beach on summer afternoons than on winter nights. 
We also know beforehand, that a farmer will more likely 
pick up oranges on winter mornings than on summer after-
noons. Thus, we know that by transforming features as 
suggested, we are bound to obtain better results than with 
the raw dateTime feature.

Fig. 7   Feature engineering pipeline
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4.2.3 � Creation of new features by splitting

Sometimes there are features rich enough to be trans-
formed in more than one feature, helping us to create bet-
ter prediction models. Sometimes there are features that, 
for a specific domain, contain great information. In these 
cases, a feature could be split in more than one, creating 
better prediction models.

Feature #8 (dateTime) in Table 2 is a good example 
of this situation, as it has hinted previously. The feature 
contains information about date and time. With the time 
information, we can create the new feature partOfThe-
Day with morning, afternoon, evening, night as 
possible values; similarly, with information about date, we 
can create the new feature season with fall, winter, 
spring, summer as possible values.

4.2.4 � Creation of new features by merging

Like the previous case, there are some features that just by 
themselves do not contribute much to add value. However, 
by merging them with others features, it is possible to 
create meaningful features that help to the global perfor-
mance of the algorithms.

In this scenario, we are looking to find components to 
suggest to new users in the mashup application. For that 
reason, it is interesting to know in our dataset if the user 
that has performed the interaction is a new user in the 
system, or not. Feature #3 (idSession) and feature #4 
(idInteraction) in Table 2 provide information about 
the session and interaction of users, but it is too raw. By 
analyzing and merging these features it is possible to cre-
ate a new feature isNewUser. This feature can also be 
discretized to be a boolean feature with {yes, no} as 
possible values. To determine whether a user is new or 
not, it is necessary to have knowledge of the domain and 
decide the number of sessions and/or interactions needed 
to demarcate the threshold between new users and old 
users.

There are other features that make sense to merge. 
Features #9 (latitude) and #10 (longitude) can 
be merged and discretized to a new feature: country. 
This new feature has as possible values a finite list with 
the names of all countries in the world. It contributes to 
the dataset with valuable information because users may 
behave differently according to their country of origin.

The new dataset after applying ‘the discretization of 
continuous features,’ ‘the creation of features by splitting 
the existing ones’ and ‘the creation of new features by 
merging the existing’ tasks is shown in Table 3 (at the end 
of the paper).
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4.2.5 � Splitting instances

It can occur that certain values of features in some 
instances, as retrieved from the database, can contain mul-
tiple values. Even though they are correct and can be ana-
lyzed, it is advisable to separate them in several instances, 
due to its important contribution.

The data type of feature #4 (actionComponents) 
of Table 3 is an array. It can contain more than one value, 
in fact, instance #14 of that table contains the value Cut-
tleRoads, Wetlands. This instance should be split 
into two parts. Both instances will contain the same data 
except for the feature #4 (actionComponents) field. 
One of them will contain the value CuttleRoads and 
the other one the value Wetlands. The new dataset after 
having applied ‘the split of instances’ task can be seen in 
Table 4, included at the end of the paper.

4.2.6 � Filtering instances

There are some occasions in which all the instances that 
are retrieved from the database are not required for the 
problem which is being addressed. For that reason, some 
instances have to be deleted according to the values of one 
or more features.

Our goal is to suggest components to add to users. 
Therefore, looking at Table 4 the only values allowed for 
the feature #4 (operationPerformed) should be add 
or addGroup. In the following instances, the operation 
performed is not add or addGroup and they must be 
deleted: #2, #6, #11, #14A and #14B. The new dataset 
after applying the filtering of instances task can be seen 
in Table 5.

4.2.7 � One purpose, multiple datasets

There are some scenarios where it makes sense having a 
microservice that creates more than one dataset. It can often 
happen because the datasets can be decomposed by applying 
some filters.

In this way, datasets can be decomposed into multiple 
datasets that have the same features, but the number of 
instances is filtered according to some values. Hence, tak-
ing into account the domain, it is possible to send several 
datasets to the same algorithm, each one aiming to obtain a 
specific knowledge.

In ENIA, users are categorized in profiles. At first, users 
categorized in the same profile should have some similari-
ties. Therefore, it makes sense the suggestion of new com-
ponents can rely not only on interactions from all users, but 
those performed by users from the same category, and why Ta
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not, even those performed by the user in previous interac-
tions. Some cases can be found:

•	 Analysis of components added by all users. One dataset 
will be obtained with information about all users. This 
is the dataset we already have and can be seen in Table 5 
(at the end of the paper).

•	 Analysis of components added by users with the same 
category. N datasets will be obtained where N is the 
number of profiles that exists in ENIA. The knowledge 
inferred by the machine learning algorithm when analyz-
ing a dataset will only be valid for users from which the 
profile is analyzed. Table 6 shows the datasets created 
for each user profile. In this situation, feature #2 (user-
Type) must be deleted because it is a ‘constant’ in each 
dataset; Nevertheless, this feature has been presented in 
the table for clarity.

•	 Analysis of components added by a specific user. M data-
sets will be obtained where M is the number of users 
that exists in ENIA system. The knowledge inferred by 
the machine learning algorithm when analyzing a dataset 
will be valid only for the user analyzed. Table 7 shows 
the datasets created for each specific user. Note that in 
this situation the feature #1 (idUser) must be deleted 
because it is a constant in each dataset, although, for clar-
ity, is still present in the table.

Datasets have been divided according to the users cat-
egory and concrete users, but they could also be divided by 
means of the feature #5 (deviceType) in case we want 
to suggest concrete components for specific devices, or 
by means of the feature #6 (interactionForm) if we 
want to suggest concrete components for a specific form of 
interaction.

4.2.8 � Feedback from algorithms

As previously discussed in this section, there could be 
some occasions where microservices could be interested in 
receiving feedback from the machine learning algorithms. 
Although it is not the purpose of this paper to talk about 
machine learning algorithms in depth, to understand this, 
it helps to know that the case study dataset we are working 
on will serve as input of a decision tree algorithm. Decision 
trees are supervised algorithms that use a tree-like model 
of decisions. The goal is to create a model that predicts the 
value of a feature by analyzing several input features.

As can be seen in Table 5 (shown at the end of the paper), 
feature #11 (actionComponents) is the objective field. 
In this case, we would like to know which components are 
suggested to new users so they can add them in the ENIA 
mashup application workspace. This microservice does not 
need any feedback from the decision tree algorithm. Ta
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There could be more microservices interested in receiv-
ing feedback from algorithms. Specifically, there is another 
microservice that creates a dataset with data of users’ inter-
actions over the mashup and seeks to categorize the users in 
accordance with some similarities. Clearly, the datasets will 
serve as an input for a clustering analysis algorithm. Cluster 
analysis is unsupervised algorithm that, given a set of users, 
tries to group them into clusters. All users in a cluster are 
similar to each other. For this microservice it is interesting 
to receive the algorithm feedback. This way, it can be offered 
in a web service how users are categorized according to 
the clustering analysis to other microservices or third-party 
clients. The microservice ‘suggesting components to new 
users’ could be interested in the feedback from the clustering 
analysis algorithms that is stored in the microservice that 
prepares the inputs for that algorithm.

As previously advanced, a dataset can be divided into 
several datasets conforming to the user profile. Now, users 
are also categorized on the basis of the clustering algorithms 
and it is possible to know in which cluster each user is con-
tained by making a request to the microservice REST API. 
In Table 8 (at the end of the paper) we can see that a new 
feature #0 (cluster) has been added and two datasets have 
been created given such categorization. 

As can be seen, the initial dataset acquired from the data-
base has been strongly transformed by the feature engineer-
ing process. The new datasets are optimized to obtain the 
best possible results when applying machine learning algo-
rithms and to create the best possible prediction models. 
Table 9 synthesizes the transformation that has been taken 
place in each feature.

•	 Feature idUser is kept (except in those datasets in 
which the components added by specific users had been 
analyzed).

•	 Feature userType is also kept (again, except in those 
datasets in which the components had been analyzed).

•	 Features idSession and idInteraction have 
been transformed in a new boolean feature isNewUser.

•	 Feature operationPerformed has been kept, but the 
instances with values of that feature different than add, 
addGroup have been deleted.

•	 Feature dateTime has been split into the features 
partofTheDay and season, both of which are also 
discrete features.

•	 Latitude and Longitude features have been merged 
into a new discrete feature called country.

•	 Feature idComponents which is an array has been 
transformed into a simple feature idComponent, and, 
as a consequence, the instances that had more than one 
value of this feature has been split into several instances.

•	 Finally, a new feature called cluster has been cre-
ated and added to the dataset after a request to another Ta
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microservice who was informed about users categorized 
by the feedback from a clustering analysis algorithm.

5 � Related works

The popularity of cross-device applications has led to an 
increase in works related to manage and to improve the 
accessibility and usability of distributed user interfaces in 
different contexts. Existing works focus on different kinds 
of applications. For instance, Han et al. [17] studied web 
searches where people initialized them in one device but 
completed them in another (PC to mobile or vice versa). 
This article is mainly focused on mobile touch interactions, 
whereas we intend to cover any type of interaction in differ-
ent kinds of devices.

Kane et al. [22] also focused on the mobile platform and 
studied web browsing activities between PCs and mobile 
devices to enhance the user experience in mobile devices by 
facilitating fast access to URLs visited in PCs. However, the 
information obtained from the users’ activities is not stored 
in a structured database and it is not processed by using 
feature engineering mechanisms.

Albertos-Marco et al. [1] describe how to distribute the 
interaction over cross-device applications, especially in 
Internet of things (IoT) related applications, by using respon-
sive web design user interfaces. Regarding this study, our 
approach can be related to the producer-consumer and paral-
lel patterns within the responsive cross-device applications 
(RCDA) domain, since the interactions are produced in the 
UIs and consumed by our microservice-based architecture, 
and many devices are coordinated for simultaneous use [32].

The interactions over mashups and users’ behavior can be 
analyzed to improve the interface customization, task auto-
mation and the selection of the most suitable components, 
among other applications [16]. But there is still a need for a 
complete and personalized user interaction, where specific 
solutions can be provided to the users needs [28]. In [36], the 
authors present some facilities to find out the potential and 
actual behavior loops in publish-subscribe-based mashup 
UIs, solving the analysis of the direct and indirect inter-
action. Direct interaction refers to those events activated 
by the component itself; indirect interaction is initiated by 
other components. In our approach, we manage both types 
of interactions since the storage of the information related 
to the interaction can be done both by the component itself 
and by external elements, whenever the call is made to the 
corresponding microservice.

Research opportunities have arisen in order to manage the 
huge increase in cross-device applications over the last years 
by creating architectures that support these applications. 
Sanctorum et al. [31] propose an approach that empow-
ers end users to create, modify and configure their own Ta
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distributed user interfaces by an architecture that provides 
the functionality for the synchronization of UIs on different 
devices using a distributed model-view-controller (MVC); 
however, the approach is limited to the analysis and design 
stages, and it lacks a real implementation. Fehling et al. 
[10] cover different possibilities of architectural patterns 
in cloud environments. These architectural patterns allow 
us to design and build multi-devices applications shared by 
multiple customers that can be offered as configurable cloud 
services on elastic infrastructures. In our case, we combine 
the advantages of cloud infrastructures and service-oriented 
architectures to propose an architecture that manages user 
interaction with distributed cross-device user applications.

Finally, mashups are widespread nowadays in several 
scopes. Some commercial examples are Geckoboard [15], a 
KPI (key performance indicator, i.e., a business metric for 
evaluating factors that are crucial to the success of an organi-
zation) dashboard where users can visualize and work with 
their most important business data in real time; Cyfe [6], that 
allows users to build their own dashboard adding pieces of 
information through social media, analytics, sales or project 
management components among others; Freeboard [14], a 
customizable dashboard focused on the IoT devices; and 
Netvibes [26], that analyzes data through customized com-
ponents. Although they can be deployed on different devices 
and platforms, the components of these mashups are isolated 
from each other. In contrast, our application domain ENIA 
provides mashup UIs with interrelated components, which 
implies going further in the analysis of the interaction.

6 � Conclusions and future work

This paper has presented a microservice-based architecture 
that exploits the interaction data generated by users when 
interacting with cross-device mashup applications through 
multiple forms of interaction. Each microservice of this 
architecture has a concrete purpose and queries a relational 
database that contains data about the user behavior. Usually, 
the interaction data fetched are too raw and, in order to create 

optimal datasets for further analysis with machine learning 
algorithms, a deep feature engineering work is performed.

The new optimized datasets increase the possibilities 
of creating accurate prediction models that might help to 
improve the user experience when using the mashup appli-
cation through heterogeneous devices. This can be done by 
stepping to the users’ needs and providing them with a cus-
tomized user experience. It is not only considered the user 
device and form of interaction in a concrete moment, but 
the customization carried out according to the study of the 
user behavior and some other user’s behavior in the mashup 
application.

Microservices are equipped with REST API web services 
for exposing their functionalities to other microservices, 
receiving feedback from algorithms or other sources, and 
communicate with third-party clients. The process of cre-
ating datasets by the proposed architecture is autonomous 
and continuous; hence, datasets are always updated with the 
latest interaction data.

An interesting forthcoming in the microservices archi-
tecture would be the development of an API gateway that 
facilitates the access of third-party clients to the function-
ality offered by the microservices. Also, it will help other 
microservices to explore and discover functionalities that 
already exist in the architecture.

The set of benefits of the proposed approach include (they 
are not limited to, though):

•	 Multiple devices accessing simultaneously to the applica-
tion by using concurrent sessions are supported.

•	 Multiples forms of interaction are also supported. This is 
important due to the fact that each device can present a 
different form of interaction and even some devices can 
have several of them.

•	 The architecture that supports the cross-device interac-
tion run in the cloud so that many users can simultane-
ously access the application from everywhere at anytime 
and the scalability is guaranteed.

•	 It is ready to work with new devices that incorporate 
natural user interfaces (NUIs) since the device and form 
of interaction are taken into consideration.

Table 9   Features transformation in the feature engineering process
Before FE After FE Consideration

resUdIresUdI Feature kept or deleted
UserType UserType Feature kept or deleted
IdSession IsNewUser New boolean feature created
IdInteraction
OperationPerformed OperationPerformed Feature kept (filter = add or addGroup)
DeviceType DeviceType Feature kept
InteractionForm InteractionForm Feature kept
DateTime Season New discrete feature created

PartOfTheDay New discrete feature created
yrtnuoCedutitaL New discrete feature created

Longitude
Clustering feedback Cluster New discrete feature created
IdComponentArray IdComponent Objective field
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•	 Different user profiles and categories can be handled as 
well as there can be guest users. This classification sig-
nificantly influences on predictive models.

•	 It can handle the context awareness capability of some 
devices in ubiquitous computing system which is taken 
care of to enhance the user experience.

•	 The microservice granularity allows us to easily design, 
implement and deploy microservices that obtain datasets 
with different purposes that easily escalate according to 
their needs.

•	 The microservice-based architecture allows developer 
teams to simultaneously implement new functionalities 
independently. Also, each team can use the technologies 
that best adapt to solve the problem and should easily be 
integrated in the system.

•	 Even when the proposed architecture may be general, it 
is specially designed for component-based user interfaces 
that are trendy today due to its easiness of being config-
ured by users and filled with cloud stored-services.

•	 Communication between microservices is solved by 
including a set of API REST web services.

•	 To prevent third-party applications or entities from 
accessing the internal microservices structure of the 
architecture, an API gateway can be implemented to 
canalize communications with other parties.

•	 Datasets are always updated thanks to an automated 
system that periodically generates new datasets. Also, 
datasets can be generated on demand by calling a web 
service in each microservice.

•	 Due to the fact that datasets are always updated, if the 
machine learning prediction models are periodically re-
trained the system can evolve over time, providing adap-
tation to new users, components, devices and forms of 
interaction.

A future development includes the use of datasets generated 
by the microservice architecture as input for machine learn-
ing experiments. From the exploitation of these data, some 
new insights can arise, such insights might be inferred into 
knowledge which can be applied over the work shown at 
Criado et al. [4, 5], where component-based interfaces are 
adapted at run time by using model transformation according 
to a set of rules. The new knowledge inferred by the experi-
ments can update the rules repository, allowing the mashup 
application to autonomously evolve over time [11] and lead-
ing to a better user experience. As future work we plan to 
perform a study to measure and analyze the improvement of 
the user experience and usability.
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