
Vol.:(0123456789)1 3

Universal Access in the Information Society
https://doi.org/10.1007/s10209-017-0606-0

LONG PAPER

A microservice‑based architecture for enhancing the user experience
in cross‑device distributed mashup UIs with multiple forms
of interaction

Antonio Jesús Fernández‑García1 · Luis Iribarne1 · Antonio Corral1 · Javier Criado1  · James Z. Wang2

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
Mobility and continuous connection entail the emergence of heterogeneous devices with multiple forms of interaction.
However, it is challenging for developers and corporations to keep up with the devices and provide applications adapted to
them. Besides, better user experiences attuned to users’ needs and desires are increasingly in demand. User interfaces play a
major role because they must be distributed through different devices and offer a customized experience for each user–device
combination. We take advantage of the component-based applications easiness to build customized interfaces that can give
optimal solutions to fulfill the requirements for adapting themselves to cross-device applications with multiple forms of
interaction. User interaction on mashup interfaces can generate a great deal of data, which can be analyzed for improving the
interaction and usefulness of the applications. In our paper, we have created a microservice-based architecture that generates
datasets which contain the user behavior for further analysis. Therefore, the user experience and usability in distributed user
interfaces may be improved through prediction models generated from the data. Each microservice autonomously fetches
its own data and performs consistently so that it can transform datasets optimally by using feature engineering techniques.
Thus, data analysis and algorithms can create accurate yet simple prediction models that provide useful knowledge to enhance
the user experience. A REST API web service is added to each microservice to facilitate their communication with other
microservices and/or third-party clients. The entire microservice architecture, including feature engineering and RESTful
API web services for each microservice, offers an infrastructure to handle and process data interaction of cross-devices
applications with multiple forms of interaction. This approach has been deployed in a real mashup application where new
datasets have been created, processed and validated.

Keywords  Cross-device applications · Multiform interaction · Distributed interfaces · Microservice architectures · Feature
engineering · Mashup user interfaces

1  Introduction

Nowadays, it is nearly impossible to find a successful soft-
ware application that only works with one type of device.
Actually, mobility has become extremely important and peo-
ple need to be continuously connected not only in a work
environment but also in their social lives, free time and
leisure activities. Desktop computers and laptops are not
enough to provide such an ongoing connection and users
therefore access to software applications through heteroge-
neous devices such as tablets, phablets, smartphones or even
wearables like smartwatches and smartbands, or any other
smart home devices such as lighting systems and some home
automation devices. The number of heterogeneous devices

 *	 Javier Criado
	 javi.criado@ual.es

	 Antonio Jesús Fernández‑García
	 ajfernandez@ual.es

	 Luis Iribarne
	 luis.iribarne@ual.es

	 Antonio Corral
	 acorral@ual.es

	 James Z. Wang
	 jwang@ist.psu.edu

1	 Applied Computing Group, University of Almeria, Almería,
Spain

2	 College of Information Sciences and Technology, The
Pennsylvania State University, State College, PA, USA

http://orcid.org/0000-0002-8035-5260
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-017-0606-0&domain=pdf

	 Universal Access in the Information Society

1 3

that access software applications is continuously growing,
and it seems that this trend continues upwards [20].

The appearance of these new devices entails developing
software applications that they will not be used in a concrete
device, but instead will have to be designed to be accessed
from many different kinds of devices. This cross-device
development requires design decisions and implementation
effort on different layers, involving the adaptation, distribu-
tion and migration of user interfaces and data across devices
[25].

User interfaces (UI) play a prominent role in that respect
since they are present in multi-device environments [8]. The
same UI must be distributed through different devices with
multiple forms of interaction (see Fig. 1), by means of a
clear customized approach to each one of them without alter-
ing the essence and functionality of the application.

The nature of these devices is diverse, and they are
accessed in different environments. Considering this, the
access to the software application through a specific device
also implies that the user is looking for certain function-
alities that may, or may not, coincide from one device to
another. This is known as context awareness, that is, the
ability of a device to gather information about its context,
environment, location and other nearby resources to behave
accordingly. For that, the device relies on its sensors and
nature, i.e., the purpose for which it was designed, to deter-
mine how its processes should operate and enhance the user
experience.

Furthermore, software applications can offer differ-
ent forms of interaction or user interface layout to users,
depending on the type of device and the circumstances in
which it is accessed. For instance, a smartphone usually

is handled via touch screen, but it can be also handled via
voice recognition. How users interact with interfaces is
called human–computer interaction (HCI). Traditionally,
this interaction has been performed by means of keyboard
and mouse. Nowadays, other types of actions related to
natural user interfaces (NUIs) are widely used, such as
touch interfaces, gestural interface, voice recognition, vir-
tual reality, wearables or Internet of things (IoT) solutions
[38].

Ubiquitous computing (also called pervasive computing)
[29] deals with all these heterogeneous, constantly available
and connected devices where data and user interfaces are
distributed. Within this concept, different types of devices
from distinct locations use their computational capabilities
to even determine their own behavior or to communicate
with other devices everywhere. Thus, human-centered
design (HCD) makes possible self-governed devices that
operate autonomously without human interaction. A com-
bination of human interaction and self-governed software
applications could optimize the user experience and how
users interact with devices through their UI.

This paper focuses on the aforementioned context and
concepts. Users expect applications to be accessible via any
device regardless of the screen size, the type of interaction
or the technologies involved in it. They also expect the user
interfaces to adapt to them so they can work and interact
with the UI as intuitively as possible. It is therefore desired
that a UI performs dynamic adaptation and evolves to the
user’s needs through the discovery of behavioral patterns
based on the user’s interaction with the interface.

To achieve that goal, we focus on mashup user interfaces
[7]. Due to their granularity (coarse-grained) the mashup
user interface facilitates the adaptation of their internal
structure to any UI through any device. In previous works,
we created a number of web services to support component-
based architectures of mashup UI [9]. In these works we
presented a methodology for dynamically evolving compo-
nent-based architectures in order to best adapt to the user’s
requirements. Here, every adjustment made in the system
is based on a number of adaptation rules stored in a rule
repositories. Based on the users’ behavior interacting with
the user interface, we update the rule repositories so that the
application can evolve over time.

Therefore, based on mashup UI distributed through dif-
ferent devices, we collect data about users’ interaction. The
kind of device and the form of interaction are important
characteristics because they affect the way in which users
handle a device. We plan to analyze the data collected to
gain some knowledge about how users interact with the
UI. Obtaining these data is not an easy task because the
UI is distributed across many devices. We have designed
an infrastructure with different microservices that work
together in order to collect all the interactions performed

Fig. 1   Users accessing cross-device applications with multiple form
of interaction

Universal Access in the Information Society	

1 3

over distributed mashup UI (regardless of the type of device
and the kind of interaction) and store them in a relational
database.

This infrastructure is now extended to create a new
microservice architecture that queries the relational data-
base which contains every interaction performed by users in
order to retrieve datasets. These datasets contain the users’
interactions with concrete aspects of the UI, such as the
components used by new users, how users customize their
interfaces or which components are frequently used together,
among others.

On the other hand, feature engineering techniques have
been performed over datasets to optimize their performance,
helping data analysis algorithms to create accurate and sim-
ple prediction models, which means better results [23].
Although feature engineering is usually treated lightly, it
definitely plays an important role in the success of a machine
learning experiment. We will go through a deep process of
applying feature engineering for optimizing raw datasets.
The knowledge inferred by these techniques will create new
rules for self-adapting of distributed mashup user inter-
faces at runtime. These rules can suggest, for instance, the
appropriate component that the user needs depending on
the device used; redistribute the components in the UI to
provide a better user experience; allow users to discover new
components that can be appealing to them; or automatically
optimize the components appearance according to the inter-
action, and so on.

Thereby, in this paper, we present a microservice archi-
tecture that creates datasets from a relational database that
contains data about interactions performed on mashup UIs.
Furthermore, these data can be generated from cross-device
applications with distributed user interfaces in multi-device
environments. The data gathered are optimized by using
feature engineering techniques for further data analysis
purposes.

To validate the creation process of datasets, an empiri-
cal case study is provided. An implementation has been
deployed over the ENIA Project [9], a mashup user interface
for environmental management used by the Andalusian envi-
ronmental information network (REDIAM, Spain) [34]. The
ENIA mashup user interface can be simultaneously acces-
sible via heterogeneous devices, such as laptops, computers,
smartphones and tablets by using mouse, keyboard, gesture
or voice interfaces. Thus, multiple ENIA sessions can be
established at the same time, by different devices at differ-
ent locations. ENIA has been implemented under a software
as-a-service cloud infrastructure.

The rest of the paper is organized as follows. Section 2
describes the multi-device mashup morphology and the data-
base design for storing the interactions. Section 3 describes
the microservice architecture deployed to create the inter-
action datasets. Section 4 explains how the architecture has

been applied to ENIA and how some specific datasets have
been created and optimized by using feature engineering
techniques. Section 5 reviews some related projects that
include cross-device developments in heterogeneous fields.
Finally, Sect. 6 concludes and provides future directions.

2 � Storing the mashup UI interaction

This section aims to introduce the mashup concept and illus-
trates its morphology through ENIA, the mashup application
used in our case study. We will use the ENIA case study for
that purpose because, after all, it provides a vision similar to
regular mashup (being even slightly more advanced), and at
the same time it introduces important particular characteris-
tics to understand the overall work presented on this paper.

Once we have studied the ENIA mashup morphology,
we will describe the operations that can be performed on
the mashup UI. We must bear in mind that ENIA is a multi-
device application and, as a result, some operations might
not be available on some devices. For example, in smart-
watch applications it is not possible to resize a component
because they can only be full screen visualized on these
devices. This is because the ENIA UI is distributed across
multiple devices and adapted to each one of them with its
peculiarities.

Likewise, an interaction could be performed differently
depending on the type of interaction and device used. For
example, opening a map in a laptop is usually done by using
a mouse and a keyboard but with smartphones, it could be
performed by using a voice recognition system (maybe
because the user is driving). This will be taken into account
when storing data because, although the operation is the
same, the form in which it is carried out is different. We
will also consider the environment in which an operation is
performed, as the context awareness is a significant factor in
distributed interfaces and ubiquitous computing.

Finally, we propose a relational database schema to store
the interaction in ENIA. We describe the data acquisition
process, and we show how the user interaction is stored
in the database containing the HCI data from users across
multi-devices. This information is subsequently used in
the post-storage process to infer knowledge that can help
to evolve the mashup UI and enhance the user experience.

2.1 � Mashup UI morphology

As a definition, mashups are said to be a specific type of
software that is intended to group services from different
sources in the same application. Mashup user interfaces
(mashup UI) integrate one or more components from one or
more sources to create a unique UI that combines different
components that might or might not have relationship among

	 Universal Access in the Information Society

1 3

them [18, 21]. Figure 2 shows a screenshot of ENIA, our
mashup case study. ENIA [9] is a component-based graphi-
cal user interface for the management of environmental
information n.

As mentioned above, ENIA has been developed for the
Andalusian environmental information network [34]. Dif-
ferent user profiles and several categories of components
exist in the ENIA interface. Examples of these user profiles
include tourist, farmer or politicians. In addition, there are
several categories of components in the ENIA interface. It
is possible to distinguish three main types of components
in ENIA, even though mashup applications are very open
in that sense since they can incorporate any kind of content
by placing it in a component. In ENIA, components are cat-
egorized as follows:

•	 OGC services. Open geospatial consortium (OGC) [27]
services components have geospatial information that
is placed into a map. Examples of these components
include natural areas, wetlands or biosphere reserves,
positioned within maps, among other kinds of OGC
components.

•	 Social networks. These components contain social
information which may be useful for users. Examples of
these components include Facebook, Twitter, RSS feeds,
among others.

•	 Applications. Other applications are registered in ENIA
to be offered to users. ENIA allows third-party develop-
ers to create their own component and register it in ENIA
so that users can access them. The REDIAM has a sub-
category to register its own components such as beaches
temperature or orthophotography images. Other exam-
ples from third-party developers are weather or clock
components.

Figure 2 locates the main parts that make up the ENIA
mashup UI:

(a)	 Services menu Contains the list of Services offered by
the mashup. This menu is organized in categories and
subcategories to facilitate the search of Services.

(b)	 Services Describe the capacities provided by the
mashup UI. These capacities are offered to users and
ready to be included in their workspaces. When a ser-
vice is incorporated to the workspace, it is instantiated
and managed as a Component.

(c)	 Components Correspond to Services which have been
added to the Workspace and, consequently, instantiated
for their use. These components are deployed inside
COTSgets.

(d)	 COTSgets COTSgets are containers of Components.
These elements have a set of attributes (e.g., width,

Fig. 2   ENIA mashup UI conceptual design

Universal Access in the Information Society	

1 3

height or position). COTSgets are used to group Com-
ponents with common properties, for example, com-
ponents with geospatial information represented in a
map. The name COTSget comes from a combination
of COTS (commercial off the shelf components) and
gadgets (a software element that encapsulates the func-
tionality needed to perform a task).

(e)	 COTSget menus Provides some capabilities to interact
with the COTSgets. Menus are toolbars placed at the
top displaying some actions that can be performed over
the COTSgets, for example, a button to remove them
from the Workspace.

(f)	 Workspace Constitutes the work area where COTSgets
are deployed and users can interact with them.

(g)	 Operations Are formed by a subset of actions that can
be performed over the mashup UI and which are rel-
evant for learning about the interaction.

Therefore, the ENIA mashup (  ) is summarized in the fol-
lowing manner  = { , ,,, ,} . Thus,  is com-
prised of a set of services  , a service menu   , a set of
COTSgets   , a set of components  , a workspace  and
a set of operations  . The sets of Services  are defined
as  = {S1, S2,… , SN where N is the number of Services
registered in ENIA. The sets of COTSget  are defined as
 = {C1,C2,… ,CL} where L is the number of COTSget
created in the Workspace .

A concrete COTSget Ci has some properties, so it could
be defined as Ci = {PosX,PosY ,Width,Height} . All the
components contained in that specific COTSget share the
values of PosX,PosY ,Width and Height properties. Finally,
the sets of operations are defined as  = {Add , Delete,
Move, ResizeBigger, ResizeSmaller, ResizeShape, Group,
Ungroup, AddGroup, UngroupDelete, UngroupGroup,
Maximize, Minimize}.

2.2 � ENIA mashup UI operations

The operations that can be performed over the ENIA mashup
UI are described below. A distinction is made to clear up
whether the operation is standard for all mashups or specific
to the ENIA mashup UI.

•	 Add. Mashup standard operation. Consists in adding a
service to the workspace from the services menu, so it
is instantiated into a component. When instantiating in
ENIA, a new COTSget is created and the new component
is placed into it. Some properties such as position in the x
axis, position in the y axis, width and height are assigned
to the COTSget.

•	 AddGroup. Exclusively from ENIA. Consists in adding
a service to the workspace from the services menu, so it
is instantiated into a component, placing it in an exist-

ing COTSget. When instantiating the component, it takes
the properties previously assigned to the COTSget that
contains it.

•	 Group. Exclusively from ENIA. Consists in placing a
component that is alone in a COTSget, in another exist-
ing COTSget. The original COTSget is deleted because
it is empty.

•	 Ungroup. Exclusively from ENIA. Consists in placing a
component of an existing COTSget with more than one
component, in a new COTSget that will be created spe-
cifically to that end; hence, the component will be the
only one that populates the new COTSget container.

•	 Delete . Mashup standard operation. Consists in
removing the last Component of a COTSget from the
workspace. The COTSget that contains the components
is also removed because it is empty now. More than one
component can be deleted at the same time if they are all
contained in the same COTSget and the user deletes the
COTSget itself.

•	 UngroupDelete. Exclusively from ENIA. Consists in
deleting a component from a COTSget and leaves one or
more components inside it.

•	 UngroupGroup. Exclusively from ENIA. Consists
in placing a component that is inside of a COTSget
with more than one component, into another existing
COTSget.

•	 Resize . Mashup standard operation. Consists in
changing the size assigned to a COTSget and conse-
quently, every component contained therein. It modifies
the ‘width,’ ‘height’ or both properties.

•	 Move. Mashup standard operation. Consists in chang-
ing the position of a COTSget and therefore, to all the
components that contain. It modifies the properties PosX,
PosY or both of them.

•	 Maximize. Exclusively from ENIA. Consists in increas-
ing the size of a COTSget to show it at full screen. It
applies to all the components contained in a COTSget.

•	 Minimize. Exclusively from ENIA. Consists in giv-
ing back the width, height, posX and posY values to a
COTSget that was previously maximized. The COTSget
and all the components contained in it go back to their
original position and they are no longer shown at full
screen.

2.3 � Database design for storing interactions in ENIA

When an interaction occurs in the mashup application, a
data acquisition process is triggered in order to save all the
information regarding that interaction. This information is
the basis for further post-storage processes which will be
explained later.

	 Universal Access in the Information Society

1 3

Together with the operation performed that triggers the
interaction, it is convenient to save the information about the
user that generates it, as well as the affected components.
Since the mashup UI is distributed in different devices it is
necessary to store the device that hosts the operation (laptop,
smartphone, tablet, etc.) and also the form of interaction
(touch, gestural, voice, etc.). It is likewise advisable to save
the state that remains in the workspace after the operation.
Although storing all the workspace might seem rather costly,
it would make it possible to rebuild all the users’ behavior
step by step through the interfaces in case further analysis,
not considered at design time, is required.

In order to store interaction data performed by users on
the mashup UI, it is necessary to define a relational database
model that would be able to store all the relevant information

of the interaction. This relational database should be as
complete as possible to have a good understanding of the
interaction itself and the circumstances that surround it. Fig-
ure 3 shows the relational database schema that stores all
the interactions performed as well as the size and position
of each COTSget in the workspace after the operations are
performed. Notice the presence of indexes in every table to
facilitate the efficiency when querying the databases.

Each row of the Interactions table corresponds
to an interaction performed by the user. The opera-
tionPerformed field saves the kind of operation per-
formed, and the dateTime field saves both date and time
when the interaction happened. Moreover, a wide range
of fields are included to store the context information, for
instance: latitude, longitude, city, country,

Fig. 3   Database schema to storage interaction in ENIA

Universal Access in the Information Society	

1 3

weatherDescription, weatherSubdescrip-
tion, temperature, pressure, humidity, cloud-
Percentage, windSpeed and windDirection.

The Interactions table is related to the Sessions
table; thus, all the operations performed in the same session
are grouped. Note that, the deviceType and the inter-
actionForm fields are in the Sessions table. ENIA is
prepared to work through different devices simultaneously
with multiple forms of interaction; besides the classical
mouse and the keyboard, we can add smartphones, tablets
and other devices with gesture or voice form of interaction.

The Users table, which is related to the Interac-
tions table, stores information of all users registered. In
ENIA, guest users are allowed to have access the applica-
tion. For that kind of users, there is a specific row in the
Users table that identifies them as guests. ENIA saves
extra information about Users that should enter in order
to be registered in the application. That extra information is:
name, surname, birthDate, address, city, coun-
try and email. The userType and userSubType
fields are used to categorize users, as it has been previously
discussed.

The Cotsgets table includes all COTSgets that
populate the workspace after an interaction has been per-
formed. The Components table, which is related to the
Cotsgets table, stores information about all components
in the workspace and indicates in which COTSget they are
contained. With the information retrieved from these tables,
it is possible to rebuild the workspace exactly the same as
it was before the interaction was performed. The attributes
posx, posy, width and height are enough to locate
each COTSget in the workspace.

The Services table, which is related to the Compo-
nents table, stores the information about all services regis-
tered in ENIA. The category, section and subsec-
tion fields represent the different kinds of services. That
makes them easy to find, locate and use in the ENIA user
interface.

It is important to identify the component on which the
operation is performed because this is the component that
provokes the interaction. Hosting together more than one
component is not an easy task in ENIA due to the use of
COTSgets. Sometimes, specific operations are not per-
formed on just one component but on a set of components
contained in a COTSget. Furthermore, components that are
not included in an operation can play a second role, because
they can be directly affected by the operation. For exam-
ple, it happens when a component is grouped in a COTSget
with more components or when a component is ungrouped
from a COTSget where at least a component is left. To suc-
cessfully store all that kind of interactions that happen, we
make use of the ActionComponents, GroupedCom-
ponents and UngroupedComponents tables, which

are all related to the Interactions table. The first one
gathers the components that provoke the interaction. The
second one gathers all components that had previously been
in a COTSget before an Add or AddGroup operation was
performed. The last one gathers the components that are left
in a COTSget, when an Ungroup or DeleteUngroup
operation has been performed.

There is also the registeredApiKeys table that has
no relations with other tables of the database. This table is
not necessary to capture the interaction, but it takes a role in
the security of the stored data.

2.4 � Data acquisition process

Once the relational database model is designed, it is neces-
sary to create a process to store the interaction performed
over the distributed user interfaces in the database. A data
acquisition process has been created and implemented to
collect the HCI interaction from the distributed mashup user
interfaces and store it in the database. The stored informa-
tion, in a structured form, can be exploited in future works
for different purposes such as data searching, data mining,
marketing, security (user access and behavior analysis),
accessibility, usability or traceability, among others. In our
concrete case, this database will be exploited to create UIs
that will evolve over time by using data mining techniques.
Figure 4 shows the steps that are necessary to complete the
data acquisition process.

The first step (#1) in the data acquisition process is to
create a web service (called getInteraction) to receive
all the interactions produced in the mashup UI. The mashup
UI client is responsible for calling this web service when
an interaction occurs, sending all the data that are needed
to be stored. A JSON Schema is provided to the mashup
UI client. This schema describes the data structure needed.
Thus, clients can send JSON files and validate them against
the schema, to guarantee that they are both ‘well-formed’
and ‘valid.’

In the event that further data about a user, a service or
any other aspect of the mashup UI is needed, the next step
is to get to that data (#2). For that, it is commonly necessary
to check the mashup application to see whether it provides
web services and connect with them, if there are any. If so,
the request to the web services for the data needed should be
implemented in the data acquisition process.

Sometimes there is also some context information
that contributes to useful data. When designing the data
acquisition process is highly advisable to study the envi-
ronment of the mashup UI and define which data would
be worthy to obtain from the context. Usually, access to
context awareness involves connecting with third-party
web services. When the context data are defined and the
services that provide such context awareness are identified,

	 Universal Access in the Information Society

1 3

the request for these external web services must be imple-
mented in the data acquisition process (#3).

When all these steps are completed and all the required
data are gathered, it should be stored in a database (#4).
It is required to serialize the database operations in order
to avoid integration conflicts when adding relations to the
data.

Once the data are stored in a structured database, the ways
to use that information are as follow (#5):

(a)	 Data searching The actions performed by users are
always preserved, and they can be accessed at any time,
but they are not likely to be modified.

(b)	 Data mining Discovering of patterns in large data-
sets created from the stored interaction data is highly
advisable. Through artificial intelligence, statistics or
machine learning algorithms, the user behavior can be
analyzed.

(c)	 Marketing Data can be handled for marketing purposes
such as promotional activities, analysis, surveys or
advertising.

(d)	 Security The data stored can be secured by using role-
based access control as well as it can provide users
with identification for every action performed in the
information system. Also, intrusion defense systems
(IDS) and intrusion prevention systems (IPS) can be
set up based on the storage data.

(e)	 Accessibility Through the interaction data stored, we
can know how to develop an accessible design or to
create assistive technology so that disable people can
benefit from it.

(f)	 Usability Usability improves the design and features of
the information systems to increase the effectiveness of
the application when interacting with users.

(g)	 Traceability Traceability verifies all the steps per-
formed by users when interacting with the information
system. It allows chronologically reconstructing the
actions performed by users.

As previously mentioned, our aim is to exploit this data-
base to infer knowledge for creating a seamless process that
could work autonomously toward the evolution of distrib-
uted multi-device mashups user interfaces by using data
mining techniques.

3 � Architecture of microservices
and datasets

Once we have stored the interaction data, and the data
acquisition process is autonomously working, feeding con-
tinuously the database with new interaction data from the
mashup user interface, we will focus on processing that data.

It is worth remembering that the database schema to store
the interaction was designed with the aim of losing none of
the nuances of the interaction performed. With these data,
it is possible to fully recreate the interactions made by users
in the application step by step. For that reason, in case of
using the data for a concrete purpose, it is necessary to query
the relational database and retrieve the data we need for a
specific goal.

Given that there are many possibilities to exploit the
stored data, which may be complementary or not, a micros-
ervice-based architecture is proposed. The microservice-
based architecture structures the application as a modular set
of services that collaborate together avoiding the monolithic
applications difficulty of decomposing or scaling. In this
architecture, microservices [12, 24, 35] are independently
deployable services where each component in the system
is a stand-alone entity that interacts with others across a
network with a well-defined interface. Each microservice
added to the pool has a concrete purpose, significantly dif-
ferent from others.

We are interested in analyzing the user’s behavior and
for that reason; we want to obtain the interaction data for
addressing the creation of datasets, each dataset focusing
on a specific part of the HCI that we want to enhance. For

Fig. 4   Steps of the data acquisition process

Universal Access in the Information Society	

1 3

example, if we want to facilitate the use of the application to
new users, the system can suggest them components when
they are newly registered in the information system. To do
this, it makes sense to retrieve from the database the first
interactions performed from previous users (especially users
that have something in common) and create a dataset that
contains that data.

This architecture of microservices will allow developers
(or groups of developers) creating datasets to work in paral-
lel at any time. This architecture also facilitates continuous
integration (CI) and continuous delivery (CD), as it allows
us to produce software in short cycles. This will ensure that
the software can be reliably released at any time [3, 19].
The whole pool of microservices has defined boundaries
and complies with the interface segregation principle (ISP),
one of the SOLID [2, 13] principles, which states that clients
should not be forced to depend on methods that they do not
use. This is really useful when it is necessary to refactor,
change or redeploy the system. Also, due to the microser-
vice-based architecture granularity, this architecture is well
oriented to distributed approaches. The coarse- and medium-
grained granularity of components in mashup applications
enables us to manipulate components and easily adapt them
to multi-device distributed user interfaces.

Furthermore, this architecture allows us to have concrete
microservices to serve one specific purpose coded with that
focus. This is highly aligned with the single responsibility
principle (SRP) from SOLID, which says that every module
should be responsible for a single part of the functionality,
which should be entirely encapsulated by the class. If one
microservice fails, the others will continue working properly
because the functionality of each microservice is isolated.

Additionally, each microservice may have their own web
service; thus, they can expose their functionality to others
services or third-party clients, if allowed. In the case we pur-
sue, they can be accessed through their web service (further
explained) for creating datasets, which could be the input
for machine learning algorithms or ways of data analysis.
Establishing a connection with the work presented on this
paper, some of the purposes we are interested to cover that
can be encapsulated in microservices can be (a) discover the
components most commonly used by new users, (b) analyze
how the use of a particular device impacts on the usage of
a component or (c) suggest the usage of some specific com-
ponents depending on the form of interaction employed to
manipulate the device, among others examples.

Figure 5 shows the datasets creation process, through a
microservice-based architecture. There is a pool of micros-
ervices, in which each microservice can connect to the data-
base through the database controller in order to obtain the
data that it needs for its purpose (which is the first part of
the process, the data acquisition).

Usually, the acquired data are not optimized to be ana-
lyzed; therefore, a feature engineering process is applied,
whereby the datasets are optimized to be the best possible
input for applying the algorithm that is intended in each
specific case.

4 � ENIA, microservices and datasets

Once the microservice-based architecture has been theoreti-
cally described and its suitability to create datasets has been
discussed, we are going to explain now how this architecture

Fig. 5   Microservices-based
architecture for addressing the
creation of datasets

	 Universal Access in the Information Society

1 3

has been deployed in ENIA. In order to illustrate that, we
are going to create a microservice and add it to the pool of
microservices.

The ENIA user interface case study is an implementa-
tion already deployed [9] where approximately a dozen users
from the REDIAM (Andalusian environmental information
network) are continuously using the application. Further-
more, the application is not only used for these users, but it
is an open framework available for any citizen with differ-
ent profile of using in the system. The main kinds of users
(profiles) defined in ENIA are the following:

(a)	 Rediam staff In their daily work they internally exploit
information contained in ENIA components for differ-
ent purposes.

(b)	 Farmers Use components for agriculture purposes such
as looking up types of soil, weather forecast or locating
wetlands.

(c)	 Politicians Use components to analyze data for different
purposes according to their needs.

(d)	 Tourists Use components for touristic purposes such as
finding touristic spots or to know the water temperature
in beaches.

(e)	 Guests Users that are not registered in ENIA can access
and use it freely.

In this section, we are going to deeply describe how a
microservice works in the architecture, as well as describe
each one of the processes that have to be attended when
deploying a microservice into production. In this case,
microservices are going to be built to generate datasets.
These datasets can be used for multiple purposes such as
data analysis, reports or logs. The main processes of these
microservices are:

•	 Obtain the interaction data needed by querying the rela-
tional database.

•	 Apply feature engineering to optimize the dataset for fur-
ther analysis.

•	 Create a web service that enables the microservice to
communicate with other microservices or entities. It
allows us to potentially scale the system functionality by
improving the collaboration between parts in a distrib-
uted and ubiquitous system.

•	 Automatize the execution of the microservice (if it is
required).

•	 Enable an interface to receive feedback from other ser-
vices (it can be integrated into the web service).

In the second part of this section, the feature engineer-
ing process will be deeply explained. We will cover many
aspects of great importance in the process with the aim
of optimizing the datasets and getting better results when

using machine learning algorithms. Some of these aspects
are cleaning data, discretization of features or splitting
instances, among others.

To illustrate the process, through this section we will
focus on a concrete microservice that enhances the user
experience. The goal of the new microservice will be the
suggestion of useful components to new registered user
when they interact with the mashup. By doing that, we want
to increase the number of add and addGroup operations that
a user carry out and he/she may find it interesting when
interacting with the mashup user interface through heteroge-
neous devices with multiple forms of interaction. Thus, the
user’s engagement with the user interface (UI) will increase,
enhancing the user experience.

4.1 � Deploying a new microservice
in the architecture

The steps taken to deploy a new microservice in the micros-
ervice-based architecture are shown in Fig. 6 and described
in this subsection.

First of all, a dataset has to be obtained from the original
source. It can be done by querying the origin database or
by acquiring the dataset through a web service or data files
(CSV, XLS...). Usually, this dataset has too raw data, and
feature engineering techniques are applied to optimize it.
A REST web service may be included in each microservice
of the system to communicate and send data to the machine
learning algorithms. In addition, this REST service can be
also useful to provide access to third-party applications, and
to facilitate the communication with other available micros-
ervices, or even to receive some feedback from the machine
learning algorithms.

After that, the methodology proposes the creation of an
automatized process that periodically generates accessible
and updated datasets without the need for generating them
in real time. Finally, feedback from the machine learning
algorithms can be obtained and saved through the REST
web service. Further details about the steps of the process
are explained in the next subsections (for that, each step of
the process will be explained in a separate subsection).

4.1.1 � Acquiring data

The first step of the process is to acquire from the relational
database the user’s interaction data to build the dataset. To
explain this issue, let us suppose the following target sen-
tence that will be used through the paper as a running exam-
ple and starting point:

“Suggest components to new registered users”

This previous sentence would require the following type
of data from the database:

Universal Access in the Information Society	

1 3

•	 Interaction data type. The idInteraction, oper-
ationPerformed and actionComponents
fields of the interactions table contain the opera-
tion performed as well as the components over which
the interaction has affected. Note that actionCom-
ponents is an array that contains one or more values
because an operation can be performed in COTSgets
that could contain more than one component at the
same time.

•	 Cross-device, form of interaction and simultaneous ses-
sions. Data about the simultaneous sessions in which
the interaction has been performed (which include the
device type and the form of interaction used) can be
retrieved from the idSession, deviceType and
interactionForm fields in the sessions table
(see Fig. 3).

•	 Data about the user that performs the operation. The
user information and the user profile (for instance, a
farmer, a politician, a tourist, among others) can be
accessed from the fields idUserClient, birth-
Date, country, userType and userSubType in
the users table (Fig. 3).

•	 Data about the context awareness. Data such as date,
time, location or weather can be retrieved from the
dateTime, latitude, longitude, tempera-
ture and weatherDescription fields in the
interactions table (see Fig. 3).

Therefore, it is meaningful to acquire the following infor-
mation in terms of a dataset:

Dataset = {
idInteration,
operationPerformed,
actionComponents[],
idSesstion,
deviceType,
interactionForm,
idUserClient,
birthDate,
country,
userType,
userSubType,
dateTime,
latitude,
longitude,
temperature,
weatherDescription

}

In order to facilitate the explanation of further steps the
dataset will be summarized in the next fields:

Fig. 6   Process inside a microservice

	 Universal Access in the Information Society

1 3

Dataset = {
idUserClient,
userType,
idSession,
idInteraction,
operationPerformed,
deviceType,
interactionForm,
dateTime,
latitude,
longitude,
actionComponents[]

}

The dataset with these fields can be seen in Table 1,
included at the end of the paper. It contains the necessary
data about the interactions and the components affected;
the sessions, devices and forms of interaction related to the
mashup UI in which the interactions have been performed;
information about the users that performs such interactions;
as well as information about the context surrounding each
interaction.

4.1.2 � Feature engineering

Usually, data are too raw for learning and the dataset
retrieved directly from the database must be processed
before applying data analysis. Feature engineering is a pro-
cess that transforms these raw data to create features that
have better representation and thus be able to create better
predictive models [30]. The quality of the predictions mod-
els created with machine learning algorithms depends on the
feature engineering approach that has been followed where
usually better features mean better prediction models.

Feature engineering gets the most of the data available
by creating pieces of information (features), which might be
useful for prediction. The quantity and quality of the features
can define how good the model obtained by the algorithm
is. Since algorithms are pretty standard, it is worth spend-
ing time doing a good feature engineering work to get good
results. To successfully perform feature engineering over
data, a domain understanding of the problem as well as a
deep algorithm understanding is needed.

This is an important issue to be considered, and later in
this section we will explain in depth how feature engineering
is applied to the case study dataset. For that, we will trans-
form the dataset shown in Table 1 and optimize it to increase
the success of machine learning algorithms.

4.1.3 � Microservice REST web services

As previously commented, microservices have to expose
their functionality to others. In our case, every microservice

developed to create datasets, at least, has to provide access to
the dataset when generated. Moreover, on many occasions,
there are communications between microservices and we
have to provide the way for this to happen. For that reason,
some microservices implement a REST web service.

We decided to use REST against SOAP [33] protocol
because it is more prevalent in the industry due to its flexibil-
ity and simplicity [39]. REST has a better performance and
scalability, in general, and SOAP requires more bandwidth
and resources than REST. Besides, REST permits different
data formats such as plain-text, JSON, XML, HTML, among
others, and SOAP permits XML data format only.

In addition, the microservices could expose its func-
tionality via a REST API to be used by third-party applica-
tions. There could be a problem with this because typically,
microservices provide fine-grained APIs. It implies that cli-
ents who need to interact with several datasets may find it a
bit tricky to get to know how to access each of them. Con-
sequently, a gateway is proposed as a solution. The gateway
will be the single entry point for all clients when accessing
to the microservices architecture; we prevent them from
knowing what everyone offers. They just directly access to
the API gateway that canalizes the architecture web services
to third-party entities. We do not strictly need this because
we can access directly to the REST API of the microservices
(although it may be useful).

In our case study, datasets can directly be accessed
through a URL. Additionally, we decided to implement a
web service that can request in real time a new dataset. If the
time generating the dataset is considerable, the client can be
notified when the dataset is ready.

4.1.4 � Automating the process of creating datasets

Datasets can be generated on demand by other microservices
or by third-party clients accessing the REST API. Usually,
it is not necessary to generate the datasets at the moment of
the request, in real time, due to mainly two reasons. First, the
generation of a dataset can consume a long time that could
provoke a delay in the answer. Second, usually, accessing to
datasets from a few hours ago or even a few days ago poses
no appreciable inconvenience when treating with this kind
of data, unless otherwise indicated.

In ENIA, to automatize this process, a daemon is peri-
odically requested to call the APIs of each microservice
and generates updated datasets. By default, in ENIA, each
microservice generates the datasets once a day. Datasets can
be generated in many formats such as HTML, JSON, XML,
CSV, Excel, HTML or whatever format may be appropriate.
In our implementation, when the datasets are being gener-
ated, we create a CSV file that contains all the data. These
CSV datasets are stored in the cloud, and they are accessible
to whoever wants to make use of them via the microservice

Universal Access in the Information Society	

1 3

Ta
bl

e 
1  

D
at

as
et

 b
ef

or
e

fe
at

ur
e

en
gi

ne
er

in
g

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
#1

2
O

bj
ec

tiv
e

fie
ld

id
U

se
r

us
er

Ty
pe

id
Se

ss
id

In
te

r
op

er
at

io
nP

er
f

de
vi

ce
Ty

pe
in

te
rF

or
m

da
te

Ti
m

e
La

tit
ud

e
Lo

ng
it

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

#1
43

2
Fa

rm
er

21
31

57
41

61
A

dd
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
4:

53
40

.7
93

86
2

−
 7

7.
86

78
8

C
lo

ud
s

C
ut

tle
Ro

ad
s

#2
43

2
Fa

rm
er

21
31

57
42

01
D

el
et

e
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
4:

59
40

.7
93

86
2

−
 7

7.
86

78
8

C
lo

ud
s

Tw
itt

er
#3

43
2

Fa
rm

er
21

31
57

42
21

Re
si

ze
B

ig
ge

r
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
5:

03
40

.7
93

86
2

ES
.8

23
5

C
ut

tle
Ro

ad
s

#4
43

2
Fa

rm
er

21
31

57
43

61
A

dd
G

ro
up

La
pt

op
M

ou
se

5/
5/

20
16

 7
:4

5:
12

40
.7

93
86

2
−

 7
7.

86
78

8
C

lo
ud

s
B

io
sp

he
re

Re
se

rv
es

#5
51

1
Po

lit
ic

ia
n

28
11

57
46

01
A

dd
Sm

ar
tp

ho
ne

To
uc

h
6/

5/
20

16
 1

2:
10

:0
3

37
.3

94
21

1
−

 5
.9

85
90

1
C

le
ar

W
or

dH
er

ita
ge

#6
51

1
Po

lit
ic

ia
n

28
11

57
46

21
Re

si
ze

Sm
ar

tp
ho

ne
To

uc
h

6/
5/

20
16

 1
2:

10
:0

8
37

.3
94

21
1

−
 5

.9
85

90
1

C
le

ar
W

or
dH

er
ita

ge
#7

51
1

Po
lit

ic
ia

n
28

11
57

46
01

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
6/

5/
20

16
 1

2:
10

:1
5

37
.3

94
21

1
−

 5
.9

85
90

1
C

le
ar

G
eo

Pa
rk

s
#8

51
1

Po
lit

ic
ia

n
28

11
57

58
21

un
gr

ou
pD

el
et

e
Sm

ar
tp

ho
ne

To
uc

h
6/

5/
20

16
 1

2:
20

:5
3

W
or

dH
er

ita
ge

#9
17

To
ur

ist
43

28
57

79
91

A
dd

Ta
bl

et
Vo

ic
e

6/
5/

20
16

 1
6:

22
:3

6
36

.8
37

06
7

−
 2

.4
36

46
3

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
#1

0
17

To
ur

ist
43

28
57

82
21

A
dd

Ta
bl

et
Vo

ic
e

6/
5/

20
16

 1
6:

22
:4

6
36

.8
37

06
7

−
 2

.4
36

46
3

Su
nn

y
W

ea
th

er
#1

1
17

To
ur

ist
43

28
57

82
81

Re
si

ze
Ta

bl
et

Vo
ic

e
6/

5/
20

16
 1

6:
24

:0
8

36
.8

37
06

7
−

 2
.4

36
46

3
Su

nn
y

B
ea

ch
Te

m
pe

ra
tu

re
s

#1
2

17
To

ur
ist

43
28

57
96

21
A

dd
Ta

bl
et

Vo
ic

e
6/

5/
20

16
 1

6:
31

:3
2

36
.8

37
06

7
−

 2
.4

36
46

3
Su

nn
y

Fa
ce

bo
ok

#1
3

12
0

Fa
rm

er
58

76
58

00
51

A
dd

G
ro

up
La

pt
op

M
ou

se
7/

5/
20

16
 6

:5
1:

53
40

.7
93

86
2

−
 7

7.
86

78
8

R
ai

n
W

et
la

nd
s

#1
4

12
0

Fa
rm

er
58

76
58

00
71

Re
si

ze
Sh

ap
e

La
pt

op
M

ou
se

7/
5/

20
16

 6
:5

2:
12

40
.7

93
86

2
−

 7
7.

86
78

8
R

ai
n

C
ut

tle
Ro

ad
s,

W
et

la
nd

s
#1

5
12

0
Fa

rm
er

58
76

58
01

21
A

dd
La

pt
op

M
ou

se
7/

5/
20

16
 7

:0
2:

07
40

.7
93

86
2

−
 7

7.
86

78
8

R
ai

n
W

ea
th

er

	 Universal Access in the Information Society

1 3

REST API or even directly using a URL. When accessing
through the web service, it returns directly the CSV file.
When accessing through a URL, clients directly access a
public repository that contains public datasets. We find it
appropriate to use CSV files because they are widely used
for these cases and all major machine learning and data
analysis solutions manage them easily. Certainly, besides
the auto-generated datasets, it is possible to request the crea-
tion of updated datasets in real time on demand, if needed,
through the microservices web services.

4.1.5 � Feedback from algorithms

Occasionally, microservices can receive feedback from
the algorithms or the data analysis process when executed.
That can happen for many reasons, one of them could be
that some inferred knowledge wanted to be stored from the
microservices in order to offer it to other microservices or
third-party applications that can make use of it. Although it
is not the purpose of this paper to talk deeply about concrete
machine learning algorithms (it will be a further research),
it will be useful to illustrate a situation in which this can
happen.

Consider a microservice that creates datasets to be the
input of a clustering machine learning algorithm. Cluster
analysis consists in given a collection of unlabeled data,
finding groups of them with a meaningful homogeneous
structure and grouping them into clusters. If a dataset served
by a microservice contains information of all ENIA users,
the output of the algorithm will likely present clusters where
the ENIA users are grouped according to some features that
capture similarities between them. In that case, the micros-
ervice could be interested in incorporating a web service in
its API to expose this knowledge to other microservices or
third-party clients. The new web service, given a user, can
return the cluster where it has been categorized.

4.2 � Applying feature engineering

As mentioned above, feature engineering can effectively
optimize the datasets and it plays a key role in machine
algorithms success. To do it properly, it is crucial to study
the data domain and the algorithms that process the dataset
in order to work optimally with it. By knowing the data
domain, some significant changes can be done in the features
that will improve the overall performance of the machine
learning algorithms that will process the data to create pre-
dictive models.

In this subsection, the applied feature engineering tech-
niques are explained. We will make use of the raw dataset
previously acquired from the database to apply the feature
engineering process. The microservice of the case study
had the purpose of creating a dataset that contains the

user interaction with the mashup application UIs that are
distributed across multiple devices with multiples form
of interaction. The dataset will be optimized in order to
be applied in machine learning algorithms; thus, a predic-
tive model for suggesting components to new users can be
built. By suggesting components to new registered users,
we expect that the user experience when interacting with
the mashup UIs will improve. We also expect that these
suggestions of new components can be customized to the
user profile and given the device he/she is using.

The raw dataset directly acquired from the relational
database is:

Dataset = {
idUserClient,
userType,
idSession,
idInteraction,
operationPerformed,
deviceType,
interactionForm,
dateTime,
latitude,
longitude,
actionComponents[]

}

This dataset has thousands of instances that contain the
HCI with the mashup client application from hundreds
of users, most of them registered in the application and
classified in categories. In these instances, the interaction
performed in the mashup UIs via multiple devices and
forms of interaction is gathered.

A representation of the dataset with some real instances
retrieved from ENIA is shown in Table 1. Each column
represents a feature, i.e., a piece of information that might
be useful for prediction. Each row of the table represents
an instance, i.e., a record in form of a vector that contains
values for each feature. The number of instances and fea-
tures is simplified in order to easily illustrate the feature
engineering process.

The last column of the table has a special feature usually
referred as objectiveField. In supervised machine learning
algorithms, this field is the one that wants to be predicted.
In unsupervised machine learning algorithms, the objective-
Field does not exist. Through different tables, we will easily
see how feature engineering steps transform the dataset.

The parts that compound the feature engineering process
implemented in this approach are as follows: (a) cleaning
data to avoid errors and empty values; (b) discretizing fea-
tures; (c) creating new features by splitting existing ones; (d)
creating new features by merging existing ones; (e) splitting
instances; (f) filtering instances; (g) adding features from
algorithms feedback; (h) splitting the dataset.

Universal Access in the Information Society	

1 3

Figure 7 illustrates the feature engineering pipeline
that we have applied. In addition, the detailed process is
explained in the next subsection.

The data in Table 1 (at the end of the paper) contain real
user interactions. As commented, we want to suggest com-
ponents to new registered users. For that reason, actionCom-
ponents will be the objective field.

4.2.1 � Cleaning data

Data may contain errors. Some errors are easy to detect,
and they will probably come up by themselves sooner or
later. Examples of this kind of error could be that text values
appear where numeric values were expected or, in general,
that the format does not match with the required one. On the
other hand, some errors are very difficult to find and context
information is needed in order to find them. Imagine we
have been reading data from a sensor which has not been
working properly for a few hours. The received values are as
expected, but they cannot be trusted. It is necessary to check
if the values read by sensors are consistent.

Table 1 has an instance containing an error. In the
instance #3, the feature #10 (longitude) contains a value
that is not as it is expected. It contains the value ES.8235,
which clearly does not have the format of a coordinate. A
decision must be made, remove the value of this field or
delete the entire instance.

Data also may contain empty values. This problem
is easy to detect since features do not have any data at
all. The instance #8 of Table 1 contains three empty
features: #9 (latitude), #10 (longitude) and #11
(weather). This may have happened because the smart-
phone where the interaction was performed could not
access to the location at that precise moment or it was
not allowed by the user. The weather is obtained from a
third-party web service that receives as inputs the latitude
and longitude. As these two variables, latitude and
longitude, could not be provided, the weather feature
is empty. Note that feature #11 (weather) in instance #3

is also empty, probably because this instance contained
an error in the #10 (longitude) field, and that made
it impossible to obtain the weather from the third-party
web service.

Some algorithms deal with empty values (so it is impor-
tant to know in advance the algorithm that will be used
later to analyze the dataset). If the algorithm that will be
used does not manage empty values, it is possible either
omit the instances that contain empty values or estimate
them, if possible. In our case, we have decided to omit
them, since we consider that we have enough instances
for data analysis and we can afford to delete them. Table 2
shows how the dataset looks like after cleaning data.

4.2.2 � Discretization of continuous features

Discretization allows constructing a meaningful range for
a continuous feature according to the domain. The result-
ing features have better semantics, and the algorithms get
out more meaningful information from them.

Feature #8 (dateTime) in Table 2 is a good exam-
ple of this situation. Instead of raw data like 6/5/2016
12:10:03, it is useful to transform it to a new discrete
feature like partOfTheDay with morning, after-
noon, evening, night as possible values. As we are
familiar with the domain, we already assume with a high
degree of certainty that, for analyzing the behavior of
users like farmers or tourists, the new proposed feature
has better semantics than the feature as it was before. In
the same way, the same Feature #8 (dateTime) can also
be discretized in a new feature called season with fall,
winter, spring, summer as possible values.

We know beforehand that a tourist will more likely visit
the beach on summer afternoons than on winter nights.
We also know beforehand, that a farmer will more likely
pick up oranges on winter mornings than on summer after-
noons. Thus, we know that by transforming features as
suggested, we are bound to obtain better results than with
the raw dateTime feature.

Fig. 7   Feature engineering pipeline

	 Universal Access in the Information Society

1 3

4.2.3 � Creation of new features by splitting

Sometimes there are features rich enough to be trans-
formed in more than one feature, helping us to create bet-
ter prediction models. Sometimes there are features that,
for a specific domain, contain great information. In these
cases, a feature could be split in more than one, creating
better prediction models.

Feature #8 (dateTime) in Table 2 is a good example
of this situation, as it has hinted previously. The feature
contains information about date and time. With the time
information, we can create the new feature partOfThe-
Day with morning, afternoon, evening, night as
possible values; similarly, with information about date, we
can create the new feature season with fall, winter,
spring, summer as possible values.

4.2.4 � Creation of new features by merging

Like the previous case, there are some features that just by
themselves do not contribute much to add value. However,
by merging them with others features, it is possible to
create meaningful features that help to the global perfor-
mance of the algorithms.

In this scenario, we are looking to find components to
suggest to new users in the mashup application. For that
reason, it is interesting to know in our dataset if the user
that has performed the interaction is a new user in the
system, or not. Feature #3 (idSession) and feature #4
(idInteraction) in Table 2 provide information about
the session and interaction of users, but it is too raw. By
analyzing and merging these features it is possible to cre-
ate a new feature isNewUser. This feature can also be
discretized to be a boolean feature with {yes, no} as
possible values. To determine whether a user is new or
not, it is necessary to have knowledge of the domain and
decide the number of sessions and/or interactions needed
to demarcate the threshold between new users and old
users.

There are other features that make sense to merge.
Features #9 (latitude) and #10 (longitude) can
be merged and discretized to a new feature: country.
This new feature has as possible values a finite list with
the names of all countries in the world. It contributes to
the dataset with valuable information because users may
behave differently according to their country of origin.

The new dataset after applying ‘the discretization of
continuous features,’ ‘the creation of features by splitting
the existing ones’ and ‘the creation of new features by
merging the existing’ tasks is shown in Table 3 (at the end
of the paper).

Ta
bl

e 
2  

D
at

as
et

 a
fte

r c
le

an
in

g
fe

at
ur

e
en

gi
ne

er
in

g

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
#1

2
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

id
Se

ss
id

In
te

r
op

er
at

io
nP

er
f

de
vi

ce
Ty

pe
in

te
rF

or
m

da
te

Ti
m

e
La

tit
ud

e
Lo

ng
it

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

#1
43

2
Fa

rm
er

21
31

57
41

61
A

dd
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
4:

53
40

.7
93

86
2

−
 7

7.
86

78
8

C
lo

ud
s

C
ut

tle
Ro

ad
s

#2
43

2
Fa

rm
er

21
31

57
42

01
D

el
et

e
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
4:

59
40

.7
93

86
2

−
 7

7.
86

78
8

C
lo

ud
s

Tw
itt

er
#4

43
2

Fa
rm

er
21

31
57

43
61

A
dd

G
ro

up
La

pt
op

M
ou

se
5/

5/
20

16
 7

:4
5:

12
40

.7
93

86
2

−
 7

7.
86

78
8

C
lo

ud
s

B
io

sp
he

re
Re

se
rv

es
#5

51
1

Po
lit

ic
ia

n
28

11
57

46
01

A
dd

Sm
ar

tp
ho

ne
To

uc
h

6/
5/

20
16

 1
2:

10
:0

3
37

.3
94

21
1

−
 5

.9
85

90
1

C
le

ar
W

or
dH

er
ita

ge
#6

51
1

Po
lit

ic
ia

n
28

11
57

46
21

Re
si

ze
Sm

ar
tp

ho
ne

To
uc

h
6/

5/
20

16
 1

2:
10

:0
8

37
.3

94
21

1
−

 5
.9

85
90

1
C

le
ar

W
or

dH
er

ita
ge

#7
51

1
Po

lit
ic

ia
n

28
11

57
46

01
A

dd
G

ro
up

Sm
ar

tp
ho

ne
To

uc
h

6/
5/

20
16

 1
2:

10
:1

5
37

.3
94

21
1

−
 5

.9
85

90
1

C
le

ar
G

eo
Pa

rk
s

#9
17

To
ur

ist
43

28
57

79
91

A
dd

Ta
bl

et
Vo

ic
e

6/
5/

20
16

 1
6:

22
:3

6
36

.8
37

06
7

−
 2

.4
36

46
3

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
#1

0
17

To
ur

ist
43

28
57

82
21

A
dd

Ta
bl

et
Vo

ic
e

6/
5/

20
16

 1
6:

22
:4

6
36

.8
37

06
7

−
 2

.4
36

46
3

Su
nn

y
W

ea
th

er
#1

1
17

To
ur

ist
43

28
57

82
81

Re
si

ze
Ta

bl
et

Vo
ic

e
6/

5/
20

16
 1

6:
24

:0
8

36
.8

37
06

7
−

 2
.4

36
46

3
Su

nn
y

B
ea

ch
Te

m
pe

ra
tu

re
s

#1
2

17
To

ur
ist

43
28

57
96

21
A

dd
Ta

bl
et

Vo
ic

e
6/

5/
20

16
 1

6:
31

:3
2

36
.8

37
06

7
−

 2
.4

36
46

3
Su

nn
y

Fa
ce

bo
ok

#1
3

12
0

Fa
rm

er
58

76
58

00
51

A
dd

G
ro

up
La

pt
op

M
ou

se
7/

5/
20

16
 6

:5
1:

53
40

.7
93

86
2

−
 7

7.
86

78
8

R
ai

n
W

et
la

nd
s

#1
4

12
0

Fa
rm

er
58

76
58

00
71

Re
si

ze
Sh

ap
e

La
pt

op
M

ou
se

7/
5/

20
16

 6
:5

2:
12

40
.7

93
86

2
−

 7
7.

86
78

8
R

ai
n

C
ut

tle
Ro

ad
s,

W
et

la
nd

s
#1

5
12

0
Fa

rm
er

58
76

58
01

21
A

dd
La

pt
op

M
ou

se
7/

5/
20

16
 7

:0
2:

07
40

.7
93

86
2

−
 7

7.
86

78
8

R
ai

n
W

ea
th

er

Universal Access in the Information Society	

1 3

4.2.5 � Splitting instances

It can occur that certain values of features in some
instances, as retrieved from the database, can contain mul-
tiple values. Even though they are correct and can be ana-
lyzed, it is advisable to separate them in several instances,
due to its important contribution.

The data type of feature #4 (actionComponents)
of Table 3 is an array. It can contain more than one value,
in fact, instance #14 of that table contains the value Cut-
tleRoads, Wetlands. This instance should be split
into two parts. Both instances will contain the same data
except for the feature #4 (actionComponents) field.
One of them will contain the value CuttleRoads and
the other one the value Wetlands. The new dataset after
having applied ‘the split of instances’ task can be seen in
Table 4, included at the end of the paper.

4.2.6 � Filtering instances

There are some occasions in which all the instances that
are retrieved from the database are not required for the
problem which is being addressed. For that reason, some
instances have to be deleted according to the values of one
or more features.

Our goal is to suggest components to add to users.
Therefore, looking at Table 4 the only values allowed for
the feature #4 (operationPerformed) should be add
or addGroup. In the following instances, the operation
performed is not add or addGroup and they must be
deleted: #2, #6, #11, #14A and #14B. The new dataset
after applying the filtering of instances task can be seen
in Table 5.

4.2.7 � One purpose, multiple datasets

There are some scenarios where it makes sense having a
microservice that creates more than one dataset. It can often
happen because the datasets can be decomposed by applying
some filters.

In this way, datasets can be decomposed into multiple
datasets that have the same features, but the number of
instances is filtered according to some values. Hence, tak-
ing into account the domain, it is possible to send several
datasets to the same algorithm, each one aiming to obtain a
specific knowledge.

In ENIA, users are categorized in profiles. At first, users
categorized in the same profile should have some similari-
ties. Therefore, it makes sense the suggestion of new com-
ponents can rely not only on interactions from all users, but
those performed by users from the same category, and why Ta

bl
e 

3  
D

at
as

et
 a

fte
r d

is
cr

et
iz

e,
 sp

lit
 a

nd
 m

er
ge

 fe
at

ur
e

en
gi

ne
er

in
g

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

is
N

ew
U

se
r

op
er

at
io

nP
er

f
de

vi
ce

Ty
pe

in
te

rF
or

m
pa

rtO
fT

he
D

ay
Se

as
on

C
ou

nt
ry

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

#1
43

2
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

C
ut

tle
Ro

ad
s

#2
43

2
Fa

rm
er

N
o

D
el

et
e

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

Tw
itt

er
#4

43
2

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

B
io

sp
he

re
Re

se
rv

es
#5

51
1

Po
lit

ic
ia

n
Ye

s
A

dd
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
W

or
dH

er
ita

ge
#6

51
1

Po
lit

ic
ia

n
Ye

s
Re

si
ze

Sm
ar

tp
ho

ne
To

uc
h

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
C

le
ar

W
or

dH
er

ita
ge

#7
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
G

eo
Pa

rk
s

#9
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
#1

0
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
W

ea
th

er
#1

1
17

To
ur

ist
Ye

s
Re

si
ze

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

B
ea

ch
Te

m
pe

ra
tu

re
s

#1
2

17
To

ur
ist

Ye
s

A
dd

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

Fa
ce

bo
ok

#1
3

12
0

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

et
la

nd
s

#1
4

12
0

Fa
rm

er
N

o
Re

si
ze

Sh
ap

e
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

C
ut

tle
Ro

ad
s,

W
et

la
nd

s
#1

5
12

0
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

ea
th

er

	 Universal Access in the Information Society

1 3

Ta
bl

e 
4  

D
at

as
et

s a
fte

r s
pl

itt
in

g
an

d
fil

te
rin

g
in

st
an

ce
s f

ea
tu

re
 e

ng
in

ee
rin

g

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

is
N

ew
U

se
r

op
er

at
io

nP
er

f
de

vi
ce

Ty
pe

in
te

rF
or

m
pa

rtO
fT

he
D

ay
Se

as
on

C
ou

nt
ry

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

#1
43

2
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

C
ut

tle
Ro

ad
s

#2
43

2
Fa

rm
er

N
o

D
el

et
e

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

Tw
itt

er
#4

43
2

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

B
io

sp
he

re
Re

se
rv

es
#5

51
1

Po
lit

ic
ia

n
Ye

s
A

dd
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
W

or
dH

er
ita

ge
#6

51
1

Po
lit

ic
ia

n
Ye

s
Re

si
ze

Sm
ar

tp
ho

ne
To

uc
h

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
C

le
ar

W
or

dH
er

ita
ge

#7
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
G

eo
Pa

rk
s

#9
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
#1

0
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
W

ea
th

er
#1

1
17

To
ur

ist
Ye

s
Re

si
ze

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

B
ea

ch
Te

m
pe

ra
tu

re
s

#1
2

17
To

ur
ist

Ye
s

A
dd

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

Fa
ce

bo
ok

#1
3

12
0

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

et
la

nd
s

#1
4A

12
0

Fa
rm

er
N

o
Re

si
ze

Sh
ap

e
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

C
ut

tle
Ro

ad
s

#1
4B

12
0

Fa
rm

er
N

o
Re

si
ze

Sh
ap

e
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

W
et

la
nd

s
#1

5
12

0
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

ea
th

er

Ta
bl

e 
5  

D
at

as
et

 a
fte

r fi
lte

r i
ns

ta
nc

es
 fe

at
ur

e
en

gi
ne

er
in

g

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

is
N

ew
U

se
r

op
er

at
io

nP
er

f
de

vi
ce

Ty
pe

in
te

rF
or

m
pa

rtO
fT

he
D

ay
Se

as
on

C
ou

nt
ry

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

#1
43

2
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

C
ut

tle
Ro

ad
s

#4
43

2
Fa

rm
er

N
o

A
dd

G
ro

up
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
C

lo
ud

s
B

io
sp

he
re

Re
se

rv
es

#5
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

Sm
ar

tp
ho

ne
To

uc
h

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
C

le
ar

W
or

dH
er

ita
ge

#7
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
G

eo
Pa

rk
s

#9
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
#1

0
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
W

ea
th

er
#1

2
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
Fa

ce
bo

ok
#1

3
12

0
Fa

rm
er

N
o

A
dd

G
ro

up
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

W
et

la
nd

s
#1

5
12

0
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

ea
th

er

Universal Access in the Information Society	

1 3

not, even those performed by the user in previous interac-
tions. Some cases can be found:

•	 Analysis of components added by all users. One dataset
will be obtained with information about all users. This
is the dataset we already have and can be seen in Table 5
(at the end of the paper).

•	 Analysis of components added by users with the same
category. N datasets will be obtained where N is the
number of profiles that exists in ENIA. The knowledge
inferred by the machine learning algorithm when analyz-
ing a dataset will only be valid for users from which the
profile is analyzed. Table 6 shows the datasets created
for each user profile. In this situation, feature #2 (user-
Type) must be deleted because it is a ‘constant’ in each
dataset; Nevertheless, this feature has been presented in
the table for clarity.

•	 Analysis of components added by a specific user. M data-
sets will be obtained where M is the number of users
that exists in ENIA system. The knowledge inferred by
the machine learning algorithm when analyzing a dataset
will be valid only for the user analyzed. Table 7 shows
the datasets created for each specific user. Note that in
this situation the feature #1 (idUser) must be deleted
because it is a constant in each dataset, although, for clar-
ity, is still present in the table.

Datasets have been divided according to the users cat-
egory and concrete users, but they could also be divided by
means of the feature #5 (deviceType) in case we want
to suggest concrete components for specific devices, or
by means of the feature #6 (interactionForm) if we
want to suggest concrete components for a specific form of
interaction.

4.2.8 � Feedback from algorithms

As previously discussed in this section, there could be
some occasions where microservices could be interested in
receiving feedback from the machine learning algorithms.
Although it is not the purpose of this paper to talk about
machine learning algorithms in depth, to understand this,
it helps to know that the case study dataset we are working
on will serve as input of a decision tree algorithm. Decision
trees are supervised algorithms that use a tree-like model
of decisions. The goal is to create a model that predicts the
value of a feature by analyzing several input features.

As can be seen in Table 5 (shown at the end of the paper),
feature #11 (actionComponents) is the objective field.
In this case, we would like to know which components are
suggested to new users so they can add them in the ENIA
mashup application workspace. This microservice does not
need any feedback from the decision tree algorithm. Ta

bl
e 

6  
D

at
as

et
s c

re
at

ed
 fo

r e
ac

h
us

er
 p

ro
fil

e

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

is
N

ew
U

se
r

op
er

at
io

nP
er

f
de

vi
ce

Ty
pe

in
te

rF
or

m
pa

rtO
fT

he
D

ay
Se

as
on

C
ou

nt
ry

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

D
at

as
et

 1
: F

ar
m

er
s

 #
1

43
2

Fa
rm

er
N

o
A

dd
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
C

lo
ud

s
C

ut
tle

Ro
ad

s
 #

2
43

2
Fa

rm
er

N
o

A
dd

G
ro

up
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
C

lo
ud

s
B

io
sp

he
re

Re
se

rv
es

 #
3

12
0

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

et
la

nd
s

 #
4

12
0

Fa
rm

er
N

o
A

dd
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

W
ea

th
er

D
at

as
et

 2
: P

ol
iti

ci
an

s
 #

1
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

Sm
ar

tp
ho

ne
To

uc
h

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
C

le
ar

W
or

dH
er

ita
ge

 #
2

51
1

Po
lit

ic
ia

n
Ye

s
A

dd
G

ro
up

Sm
ar

tp
ho

ne
To

uc
h

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
C

le
ar

G
eo

Pa
rk

s
D

at
as

et
 3

: T
ou

ris
ts

 #
1

17
To

ur
ist

Ye
s

A
dd

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

B
ea

ch
Te

m
pe

ra
tu

re
s

 #
2

17
To

ur
ist

Ye
s

A
dd

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

W
ea

th
er

 #
3

17
To

ur
ist

Ye
s

A
dd

Ta
bl

et
Vo

ic
e

A
fte

rn
oo

n
Sp

rin
g

Sp
ai

n
Su

nn
y

Fa
ce

bo
ok

	 Universal Access in the Information Society

1 3

There could be more microservices interested in receiv-
ing feedback from algorithms. Specifically, there is another
microservice that creates a dataset with data of users’ inter-
actions over the mashup and seeks to categorize the users in
accordance with some similarities. Clearly, the datasets will
serve as an input for a clustering analysis algorithm. Cluster
analysis is unsupervised algorithm that, given a set of users,
tries to group them into clusters. All users in a cluster are
similar to each other. For this microservice it is interesting
to receive the algorithm feedback. This way, it can be offered
in a web service how users are categorized according to
the clustering analysis to other microservices or third-party
clients. The microservice ‘suggesting components to new
users’ could be interested in the feedback from the clustering
analysis algorithms that is stored in the microservice that
prepares the inputs for that algorithm.

As previously advanced, a dataset can be divided into
several datasets conforming to the user profile. Now, users
are also categorized on the basis of the clustering algorithms
and it is possible to know in which cluster each user is con-
tained by making a request to the microservice REST API.
In Table 8 (at the end of the paper) we can see that a new
feature #0 (cluster) has been added and two datasets have
been created given such categorization.

As can be seen, the initial dataset acquired from the data-
base has been strongly transformed by the feature engineer-
ing process. The new datasets are optimized to obtain the
best possible results when applying machine learning algo-
rithms and to create the best possible prediction models.
Table 9 synthesizes the transformation that has been taken
place in each feature.

•	 Feature idUser is kept (except in those datasets in
which the components added by specific users had been
analyzed).

•	 Feature userType is also kept (again, except in those
datasets in which the components had been analyzed).

•	 Features idSession and idInteraction have
been transformed in a new boolean feature isNewUser.

•	 Feature operationPerformed has been kept, but the
instances with values of that feature different than add,
addGroup have been deleted.

•	 Feature dateTime has been split into the features
partofTheDay and season, both of which are also
discrete features.

•	 Latitude and Longitude features have been merged
into a new discrete feature called country.

•	 Feature idComponents which is an array has been
transformed into a simple feature idComponent, and,
as a consequence, the instances that had more than one
value of this feature has been split into several instances.

•	 Finally, a new feature called cluster has been cre-
ated and added to the dataset after a request to another Ta

bl
e 

7  
D

at
as

et
s c

re
at

ed
 fo

r e
ac

h
us

er
 p

ro
fil

e

In
st.

#1
#2

#3
#4

#5
#6

#7
#8

#9
#1

0
#1

1
ob

je
ct

iv
e

fie
ld

id
U

se
r

us
er

Ty
pe

is
N

ew
U

se
r

op
er

at
io

nP
er

f
de

vi
ce

Ty
pe

in
te

rF
or

m
pa

rtO
fT

he
D

ay
Se

as
on

C
ou

nt
ry

W
ea

th
er

ac
tio

nC
om

po
ne

nt
s

Fe
at

ur
es

D
at

as
et

 1
: U

se
r 1

7
 #

1
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
 #

2
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
W

ea
th

er
 #

3
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
Fa

ce
bo

ok
D

at
as

et
 2

: U
se

r 1
20

 #
1

12
0

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

et
la

nd
s

 #
2

12
0

Fa
rm

er
N

o
A

dd
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

W
ea

th
er

D
at

as
et

 3
: U

se
r 4

32
 #

1
43

2
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

C
ut

tle
Ro

ad
s

 #
2

43
2

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

B
io

sp
he

re
Re

se
rv

es
D

at
as

et
 3

: T
ou

ris
ts

 #
1

51
1

Po
lit

ic
ia

n
Ye

s
A

dd
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
W

or
dH

er
ita

ge
 #

2
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
G

eo
Pa

rk
s

Universal Access in the Information Society	

1 3

microservice who was informed about users categorized
by the feedback from a clustering analysis algorithm.

5 � Related works

The popularity of cross-device applications has led to an
increase in works related to manage and to improve the
accessibility and usability of distributed user interfaces in
different contexts. Existing works focus on different kinds
of applications. For instance, Han et al. [17] studied web
searches where people initialized them in one device but
completed them in another (PC to mobile or vice versa).
This article is mainly focused on mobile touch interactions,
whereas we intend to cover any type of interaction in differ-
ent kinds of devices.

Kane et al. [22] also focused on the mobile platform and
studied web browsing activities between PCs and mobile
devices to enhance the user experience in mobile devices by
facilitating fast access to URLs visited in PCs. However, the
information obtained from the users’ activities is not stored
in a structured database and it is not processed by using
feature engineering mechanisms.

Albertos-Marco et al. [1] describe how to distribute the
interaction over cross-device applications, especially in
Internet of things (IoT) related applications, by using respon-
sive web design user interfaces. Regarding this study, our
approach can be related to the producer-consumer and paral-
lel patterns within the responsive cross-device applications
(RCDA) domain, since the interactions are produced in the
UIs and consumed by our microservice-based architecture,
and many devices are coordinated for simultaneous use [32].

The interactions over mashups and users’ behavior can be
analyzed to improve the interface customization, task auto-
mation and the selection of the most suitable components,
among other applications [16]. But there is still a need for a
complete and personalized user interaction, where specific
solutions can be provided to the users needs [28]. In [36], the
authors present some facilities to find out the potential and
actual behavior loops in publish-subscribe-based mashup
UIs, solving the analysis of the direct and indirect inter-
action. Direct interaction refers to those events activated
by the component itself; indirect interaction is initiated by
other components. In our approach, we manage both types
of interactions since the storage of the information related
to the interaction can be done both by the component itself
and by external elements, whenever the call is made to the
corresponding microservice.

Research opportunities have arisen in order to manage the
huge increase in cross-device applications over the last years
by creating architectures that support these applications.
Sanctorum et al. [31] propose an approach that empow-
ers end users to create, modify and configure their own Ta

bl
e 

8  
D

at
as

et
s c

re
at

ed
 fo

r e
ac

h
cl

us
te

r i
de

nt
ifi

ed
 in

 c
lu

ste
rin

g
an

al
ys

is

In
st.

#0
#1

#2
#3

#4
#5

#6
#7

#8
#9

#1
0

#1
1

ob
je

ct
iv

e
fie

ld
C

lu
ste

r
id

U
se

r
us

er
Ty

pe
is

N
ew

U
se

r
op

er
at

io
nP

er
f

de
vi

ce
Ty

pe
in

te
rF

or
m

pa
rtO

fT
he

D
ay

Se
as

on
C

ou
nt

ry
W

ea
th

er
ac

tio
nC

om
po

ne
nt

s

Fe
at

ur
es

D
at

as
et

 1
: C

lu
ste

r 1
 #

1
C

lu
ste

r 1
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
B

ea
ch

Te
m

pe
ra

tu
re

s
 #

2
C

lu
ste

r 1
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
W

ea
th

er
 #

3
C

lu
ste

r 1
17

To
ur

ist
Ye

s
A

dd
Ta

bl
et

Vo
ic

e
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

Su
nn

y
Fa

ce
bo

ok
 #

4
C

lu
ste

r 1
12

0
Fa

rm
er

N
o

A
dd

G
ro

up
La

pt
op

M
ou

se
M

or
ni

ng
Sp

rin
g

U
ni

te
d

St
at

es
R

ai
n

W
et

la
nd

s
 #

5
C

lu
ste

r 1
12

0
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

R
ai

n
W

ea
th

er
 #

6
C

lu
ste

r 1
43

2
Fa

rm
er

N
o

A
dd

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

C
ut

tle
Ro

ad
s

 #
7

C
lu

ste
r 1

43
2

Fa
rm

er
N

o
A

dd
G

ro
up

La
pt

op
M

ou
se

M
or

ni
ng

Sp
rin

g
U

ni
te

d
St

at
es

C
lo

ud
s

B
io

sp
he

re
Re

se
rv

es
D

at
as

et
 2

: C
lu

ste
r 2

 #
1

C
lu

ste
r 2

51
1

Po
lit

ic
ia

n
Ye

s
A

dd
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
W

or
dH

er
ita

ge
 #

2
C

lu
ste

r 2
51

1
Po

lit
ic

ia
n

Ye
s

A
dd

G
ro

up
Sm

ar
tp

ho
ne

To
uc

h
A

fte
rn

oo
n

Sp
rin

g
Sp

ai
n

C
le

ar
G

eo
Pa

rk
s

	 Universal Access in the Information Society

1 3

distributed user interfaces by an architecture that provides
the functionality for the synchronization of UIs on different
devices using a distributed model-view-controller (MVC);
however, the approach is limited to the analysis and design
stages, and it lacks a real implementation. Fehling et al.
[10] cover different possibilities of architectural patterns
in cloud environments. These architectural patterns allow
us to design and build multi-devices applications shared by
multiple customers that can be offered as configurable cloud
services on elastic infrastructures. In our case, we combine
the advantages of cloud infrastructures and service-oriented
architectures to propose an architecture that manages user
interaction with distributed cross-device user applications.

Finally, mashups are widespread nowadays in several
scopes. Some commercial examples are Geckoboard [15], a
KPI (key performance indicator, i.e., a business metric for
evaluating factors that are crucial to the success of an organi-
zation) dashboard where users can visualize and work with
their most important business data in real time; Cyfe [6], that
allows users to build their own dashboard adding pieces of
information through social media, analytics, sales or project
management components among others; Freeboard [14], a
customizable dashboard focused on the IoT devices; and
Netvibes [26], that analyzes data through customized com-
ponents. Although they can be deployed on different devices
and platforms, the components of these mashups are isolated
from each other. In contrast, our application domain ENIA
provides mashup UIs with interrelated components, which
implies going further in the analysis of the interaction.

6 � Conclusions and future work

This paper has presented a microservice-based architecture
that exploits the interaction data generated by users when
interacting with cross-device mashup applications through
multiple forms of interaction. Each microservice of this
architecture has a concrete purpose and queries a relational
database that contains data about the user behavior. Usually,
the interaction data fetched are too raw and, in order to create

optimal datasets for further analysis with machine learning
algorithms, a deep feature engineering work is performed.

The new optimized datasets increase the possibilities
of creating accurate prediction models that might help to
improve the user experience when using the mashup appli-
cation through heterogeneous devices. This can be done by
stepping to the users’ needs and providing them with a cus-
tomized user experience. It is not only considered the user
device and form of interaction in a concrete moment, but
the customization carried out according to the study of the
user behavior and some other user’s behavior in the mashup
application.

Microservices are equipped with REST API web services
for exposing their functionalities to other microservices,
receiving feedback from algorithms or other sources, and
communicate with third-party clients. The process of cre-
ating datasets by the proposed architecture is autonomous
and continuous; hence, datasets are always updated with the
latest interaction data.

An interesting forthcoming in the microservices archi-
tecture would be the development of an API gateway that
facilitates the access of third-party clients to the function-
ality offered by the microservices. Also, it will help other
microservices to explore and discover functionalities that
already exist in the architecture.

The set of benefits of the proposed approach include (they
are not limited to, though):

•	 Multiple devices accessing simultaneously to the applica-
tion by using concurrent sessions are supported.

•	 Multiples forms of interaction are also supported. This is
important due to the fact that each device can present a
different form of interaction and even some devices can
have several of them.

•	 The architecture that supports the cross-device interac-
tion run in the cloud so that many users can simultane-
ously access the application from everywhere at anytime
and the scalability is guaranteed.

•	 It is ready to work with new devices that incorporate
natural user interfaces (NUIs) since the device and form
of interaction are taken into consideration.

Table 9   Features transformation in the feature engineering process
Before FE After FE Consideration

resUdIresUdI Feature kept or deleted
UserType UserType Feature kept or deleted
IdSession IsNewUser New boolean feature created
IdInteraction
OperationPerformed OperationPerformed Feature kept (filter = add or addGroup)
DeviceType DeviceType Feature kept
InteractionForm InteractionForm Feature kept
DateTime Season New discrete feature created

PartOfTheDay New discrete feature created
yrtnuoCedutitaL New discrete feature created

Longitude
Clustering feedback Cluster New discrete feature created
IdComponentArray IdComponent Objective field

Universal Access in the Information Society	

1 3

•	 Different user profiles and categories can be handled as
well as there can be guest users. This classification sig-
nificantly influences on predictive models.

•	 It can handle the context awareness capability of some
devices in ubiquitous computing system which is taken
care of to enhance the user experience.

•	 The microservice granularity allows us to easily design,
implement and deploy microservices that obtain datasets
with different purposes that easily escalate according to
their needs.

•	 The microservice-based architecture allows developer
teams to simultaneously implement new functionalities
independently. Also, each team can use the technologies
that best adapt to solve the problem and should easily be
integrated in the system.

•	 Even when the proposed architecture may be general, it
is specially designed for component-based user interfaces
that are trendy today due to its easiness of being config-
ured by users and filled with cloud stored-services.

•	 Communication between microservices is solved by
including a set of API REST web services.

•	 To prevent third-party applications or entities from
accessing the internal microservices structure of the
architecture, an API gateway can be implemented to
canalize communications with other parties.

•	 Datasets are always updated thanks to an automated
system that periodically generates new datasets. Also,
datasets can be generated on demand by calling a web
service in each microservice.

•	 Due to the fact that datasets are always updated, if the
machine learning prediction models are periodically re-
trained the system can evolve over time, providing adap-
tation to new users, components, devices and forms of
interaction.

A future development includes the use of datasets generated
by the microservice architecture as input for machine learn-
ing experiments. From the exploitation of these data, some
new insights can arise, such insights might be inferred into
knowledge which can be applied over the work shown at
Criado et al. [4, 5], where component-based interfaces are
adapted at run time by using model transformation according
to a set of rules. The new knowledge inferred by the experi-
ments can update the rules repository, allowing the mashup
application to autonomously evolve over time [11] and lead-
ing to a better user experience. As future work we plan to
perform a study to measure and analyze the improvement of
the user experience and usability.

Acknowledgements  This work has been funded by the EU ERDF and
the Spanish Ministry of Economy and Competitiveness (MINECO)
under Project TIN2013-41576-R. A.J. Fernandez-Garcia has been
funded by a FPI Grant BES-2014-067974. J.Z. Wang was funded by
the US National Science Foundation under Grant No. 1027854.

References

	 1.	 Albertos-Marco, F., Penichet, V.M.R., Gallud, J.A.: Distribut-
ing interaction in responsive cross-device applications. In: Cur-
rent Trends in Web Engineering ICWE 2016. LNCS 9881, pp.
174–178. Springer (2016)

	 2.	 Beck, K., et al.: Manifesto for agile software development.
http://agilemanifesto.org

	 3.	 Chen, L.: Continuous delivery: huge benefits, but challenges
too. IEEE Softw. 32(2), 50–54 (2015)

	 4.	 Criado, J., Rodríguez-Gracia, D., Iribarne, L., Padilla, N.:
Toward the adaptation of component-based architectures by
model transformation: behind smart user interfaces. Softw.
Pract. Exp. 45(12), 1677–1718 (2015)

	 5.	 Criado, J., Vicente-Chicote, C., Padilla, N., Iribarne, L.: A
model-driven approach to graphical user interface runtime adap-
tation. In: 5th International Workshop on Models, CEUR-WS,
vol. 641, pp. 49–59 (2010)

	 6.	 Cyfe: Business mashup to manage social media, analytics, mar-
keting, sales, support and infrastructure components. http://
www.cyfe.com/

	 7.	 Daniel, F., Matera, M.: Mashups: Concepts, Models and Archi-
tectures. Springer, Berlin (2014)

	 8.	 Elmqvist, N.: Distributed User Interfaces: State of the Art,
Distributed User Interfaces, Human–Computer Interaction, pp.
1–12. Springer, London (2011)

	 9.	 ENIA: The Environmental Information Agent Project. http://
acg.ual.es/projects/enia/ui/

	10.	 Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter,
P.: Cloud application architecture patterns. In: Cloud comput-
ing patterns: fundamentals to design, build, and manage cloud
applications, pp. 151–238. Springer, Vienna (2014). https://doi.
org/10.1007/978-3-7091-1568-8_4

	11	 Fernández-García, A.J., Iribarne, L., Corral, A., Wang, J.Z.:
Evolving mashup interfaces using a distributed machine learn-
ing and model transformation methodology. In: OTM 2015.
LNCS 9416, pp. 401–410. Springer (2015)

	12	 Fernández-Villamor, J.I., Iglesias, C.A., Garijo, M.: Microser-
vices—lightweight service descriptions for REST architectural
style. ICAART 2010, 576–579 (2010)

	13	 Fowler, M.: Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

	14	 Freeboard: Dashboards for the internet of things. http://free-
board.io/

	15	 Geckoboard: KPI mashup dashboard software for businesses.
https://www.geckoboard.com/

	16	 Ghiani, G., Paternò, F., Spano, L.D., Pintori, G.: An environ-
ment for end-user development of web mashups. Int. J. Hum.
Comput. Stud. 87, 38–64 (2016)

	17	 Han, S., He, D., Yue, Z., Brusilovsky, P.: Supporting cross-
device web search with social navigation-based mobile touch
interactions. In: User Modeling, Adaptation and Personalization
UMAP 2015. LNCS 9146, pp. 143–155. Springer (2015)

	18	 Hoyer, V., Fischer, M.: Market overview of enterprise mashup
tools. In: Service-Oriented Computing ICSOC 2008. LNCS,
vol. 5364, pp. 708–721. Springer (2008)

	19	 Humble, J., Farley, D.: Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation.
Addison-Wesley, Reading (2011)

	20	 Inc: Cisco Systems. Cisco Visual Networking Index: Forecast
and Methodology, 2015–2020. Technical Report, Cisco Sys-
tems, Inc. (2016)

	21	 Iribarne, L., Padilla, N., Criado, J., Vicente-Chicote, C.: Meta-
modeling the structure and interaction behavior of cooperative

http://agilemanifesto.org
http://www.cyfe.com/
http://www.cyfe.com/
http://acg.ual.es/projects/enia/ui/
http://acg.ual.es/projects/enia/ui/
https://doi.org/10.1007/978-3-7091-1568-8_4
https://doi.org/10.1007/978-3-7091-1568-8_4
http://freeboard.io/
http://freeboard.io/
https://www.geckoboard.com/

	 Universal Access in the Information Society

1 3

component-based user interfaces. J. Univ. Comput. 18(19),
2669–2685 (2012)

	22	 Kane, S.K., Karlson, A.K., Meyers, B.R., Johns, P., Jacobs, A.,
Smith, G.: Exploring cross-device web use on PCs and mobile
devices. In: Human–Computer Interaction INTERACT 2009.
LNCS, vol. 5726, pp. 722–735. Springer, Berlin (2009)

	23	 Kantardzic, M.: Data Mining: Concepts, Models, Methods and
Algorithms. Wiley, London (2002)

	24	 Lewis, J., Fowler, M.: Microservices: a definition of this new
architectural term. http://martinfowler.com/articles/microservices.
html (2014)

	25	 Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.E., Norrie,
M.C.: Information concepts for cross-device applications. In: 3rd
Work. on Distributed User Interfaces: Models, Methods and Tools
(DUI 2013), pp. 14–17 (2013)

	26	 Netvibes: Mashup application for analyze and act on all the data
that matters to a brand or business. https://www.netvibes.com/

	27	 OGC: The open geospatial consortium. http://www.opengeospa-
tial.org/

	28	 Paredes-Valverde, M.A., Alor-Hernández, G., Rodríguez-
González, A., Valencia-García, R., Jiménez-Domingo, E.: A sys-
tematic review of tools, languages, and methodologies for mashup
development. Softw. Pract. Exp. 45(3), 365–397 (2015)

	29	 Poslad, S.: Ubiquitous Computing: Basics and Vision, pp. 1–40.
Wiley, London (2009)

	30	 Ramasubramanian, K., Singh, A.: Feature Engineering, pp. 181–
217. Apress, Berkeley (2017)

	31	 Sanctorum, A., Signer, B.: Towards user-defined cross-device
interaction. In: Current Trends in Web Eng. ICWE 2016. LNCS,
vol. 9881, pp. 179–187. Springer (2016)

	32	 Santosa, S., Wigdor, D.: A field study of multi-device workflows
in distributed workspaces. In: The ACM Int. Joint Conf. on Per-
vasive and Ubiquitous Computing (UbiComp 2013), pp. 63–72.
ACM, New York (2013)

	33	 SOAP (Simple Object Access Protocol) W3C Standard. https://
www.w3.org/TR/soap12/

	34	 REDIAM network. The Andalusian Environmental Information
Network, Spain. http://www.juntadeandalucia.es/medioambiente/
site/rediam/

	35	 Thönes, J.: Microservices. IEEE Softw. 32(1), 113–116 (2015)
	36	 Tschudnowsky A., Gaedke M.: Loop discovery in publish-sub-

scribe-based user interface mashups. In: Engineering the Web
in the Big Data Era ICWE 2015. LNCS, vol. 9114, pp. 683–686.
Springer (2015)

	37	 Vallecillos, J., Criado, J., Fernández-García, A.J., Padilla, N.,
Iribarne, L.: A web services infrastructure for the management
of mashup interfaces. In: Workshop on Engineering Service-Ori-
ented Applications (WESOA 2015). LNCS, vol. 9586, pp. 64–75,
Springer (2016)

	38	 Velosa, A., Schulte, W.R, Lheureux, B.J.: Hype cycle for the
internet of things. https://www.gartner.com/doc/3371743/
hype-cycle-internet-things- (2016)

	39	 zur Muehlen, M., Nickerson, J., Swenson, K.D.: Developing web
services choreography standards: the case of REST vs. SOAP.
Decis. Supp. Syst. 40(1), 9–29 (2005)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.netvibes.com/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
https://www.w3.org/TR/soap12/
https://www.w3.org/TR/soap12/
http://www.juntadeandalucia.es/medioambiente/site/rediam/
http://www.juntadeandalucia.es/medioambiente/site/rediam/
https://www.gartner.com/doc/3371743/hype-cycle-internet-things-
https://www.gartner.com/doc/3371743/hype-cycle-internet-things-

	A microservice-based architecture for enhancing the user experience in cross-device distributed mashup UIs with multiple forms of interaction
	Abstract
	1 Introduction
	2 Storing the mashup UI interaction
	2.1 Mashup UI morphology
	2.2 ENIA mashup UI operations
	2.3 Database design for storing interactions in ENIA
	2.4 Data acquisition process

	3 Architecture of microservices and datasets
	4 ENIA, microservices and datasets
	4.1 Deploying a new microservice in the architecture
	4.1.1 Acquiring data
	4.1.2 Feature engineering
	4.1.3 Microservice REST web services
	4.1.4 Automating the process of creating datasets
	4.1.5 Feedback from algorithms

	4.2 Applying feature engineering
	4.2.1 Cleaning data
	4.2.2 Discretization of continuous features
	4.2.3 Creation of new features by splitting
	4.2.4 Creation of new features by merging
	4.2.5 Splitting instances
	4.2.6 Filtering instances
	4.2.7 One purpose, multiple datasets
	4.2.8 Feedback from algorithms

	5 Related works
	6 Conclusions and future work
	Acknowledgements
	References

