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Abstract—Automatic retrieval and interpretation of satellite im-
ages is critical for managing the enormous volume of environmen-
tal remote sensing data available today. It is particularly useful
in oceanography and climate studies for examination of the spa-
tio-temporal evolution of mesoscalar ocean structures appearing
in the satellite images taken by visible, infrared, and radar sensors.
This is because they change so quickly and several images of the
same place can be acquired at different times within the same day.
This paper describes the use of filter measures and the Bayesian
networks to reduce the number of irrelevant features necessary
for ocean structure recognition in satellite images, thereby im-
proving the overall interpretation system performance and reduc-
ing the computational time. We present our results for the Na-
tional Oceanographic and Atmospheric Administration satellite
Advanced Very High Resolution Radiometer (AVHRR) images.
We have automatically detected and located mesoscale ocean phe-
nomena of interest in our study area (North–East Atlantic and the
Mediterranean), such as upwellings, eddies, and island wakes, us-
ing an automatic selection methodology which reduces the features
used for description by about 80%. Finally, Bayesian network clas-
sifiers are used to assess classification quality. Knowledge about
these structures is represented with numeric and nonnumeric
features.

Index Terms—Automatic image interpretation, feature selec-
tion, ocean image analysis, pattern classification, sea surface
temperature.

I. INTRODUCTION

CONSIDERING the increasing number and size of satellite
image databases, automatic processing is becoming nec-

essary for retrieving and coding useful environmental informa-
tion from these databases. We are particularly interested in the
analysis of mesoscale ocean structures in satellite images. New
methodologies have been proposed for the automatic estimation
of ocean surface currents using AVHRR and MODIS imagery
in [1] and [2]. In these cases, the main goal is to obtain a
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coarse structure segmentation and achieve the maximum detail
of the structure. The problem is knowledge extraction. One of
our goals is to be able to select the fewest segmented ocean
region features in satellite images which still retain most of
the knowledge necessary to compare the relevance of selected
feature data sets [3]–[5]. In general, support vector machines
(SVMs) do not require a dimensionality reduction for remote
sensing data classification. However, in [6], a study with two
hyperspectral sensor data sets shows that the classification
accuracy using an SVM with a small training data set depends
mainly of the addition of new features. In fact, the accuracy
of classification by an SVM depends on the dimensionality of
the data. For this reason, it is important to include a feature
selection.

The most common framework for feature selection is to
define the criteria for measuring the goodness of a set of
features [7] and then use a search algorithm to find the optimal
or suboptimal feature set [8]. Other authors use an evolutionary
algorithm for the classification of hyperspectral images that
estimates the set of Pareto-optimal solutions [9]. In [10], a
sparse conditional random field model is used to select relevant
features. Focusing on spectral sensors with overlapping and
noisy bands, a canonical correlation-based feature selection
(CFS) algorithm was used in [11].

In this paper, we have used filter measures and Bayesian
classifiers to select features for ocean structure recognition in
satellite images [12], [13].

In the rest of this section, we describe the mesoscale ocean
phenomena of interest for classification that appear in infrared
satellite images. We will also introduce the symbolic and nu-
meric features used for classification.

A. Ocean Phenomena

The AVHRR sensor has been a powerful tool in environmen-
tal, climate, and geophysical and geographical research tasks
for more than three decades. This sensor, onboard the Tiros
and National Oceanographic and Atmospheric Administration
(NOAA) satellite series, covers five channels (second version:
AVHRR-2) in the infrared and visible spectra. Infrared infor-
mation, in particular, has been used in ocean structure identifi-
cation [14]–[18].

This study was carried out in the Canary Island, Iberian
Atlantic, and Mediterranean Seacoast regions. A detailed
oceanographic description of this area can be found in
[19]–[23]. In this area, there are several different significant
mesoscale ocean structures: upwellings, cold eddies, warm
eddies, and wakes (Fig. 1).
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Fig. 1. AVHRR scene (08/10/1993). (a) Original in grayscale. (b) Ocean structure map. Yellow (1): Upwelling. Dark green (2): Warm eddy. Other colors (3):
Wakes.

Upwelling is the term used by oceanographers to describe
cool nutrient-rich water from the lower layers of the ocean
which rises to the surface. Brought into the light, such water is
very fertile and a rich feeding ground for fish. For an upwelling
to occur, there must be a divergence of the surface currents,
and this usually happens as a result of the wind field causing
surface-water drift in the presence of topographic constraints.
Alongshore winds blowing in the Northern Hemisphere with a
coastline to the left of the direction of travel set up a geostrophic
flow away from the coast and produce an upwelling. This
upwelling is a regular occurrence off the North–West African
coast (Fig. 1) and others, like the Peruvian coast, where wind
conditions are suitable. Nonetheless, upwellings may well be
intermittent, depending on both the weather [20] and, to a
certain extent, ocean-wide thermohaline circulation. Because of
their importance for commercial fisheries, much oceanographic
research has been done to understand and predict upwellings.
Remote sensing from satellites has been a powerful tool for
such studies.

Eddies are highly morphologically and contextually variable
structures difficult to define. Eddy water is different from the
surrounding water in temperature and salinity. In addition, an
eddy can travel long distances for long periods of time without
mixing with the surrounding water [21], [22]. On the other
hand, the movement and shape of cold and warm eddies in our
region of study are controlled by the trade winds. The cool
eddies are more intense under calm conditions, whereas the
warm eddies are intensified by strong winds (Fig. 1). In cool

eddies, the vertical movement is ascending; cold water, rich in
nutrients, rises to the surface [23]. However, warm eddies accu-
mulate and sink warm water, carrying organic matter downward
toward the ocean depths.

Wakes are warm oceanic structures associated with islands
[20], [21]. Wakes have been observed leeward of the Canary
Islands, generated by the obstacle that the islands present to
the predominant North–East trade winds in this region. This
implies that the intensity of winds is lowered southwest of the
islands and the sea surface is warmed in these zones (Fig. 1).
These wakes are very thin and warmer than surrounding water.

These ocean structures are shown in Fig. 1(a) (an equalized
AVHRR scene) and classified and labeled in Fig. 1(b).

B. Data Set

The original data set used in this study was a symbolic and
numeric feature database computed from previously segmented
mesoscale ocean regions in AVHRR images. AVHRR data
used for calculating these features come from Channel 4 (far
infrared). The symbolic database was built from the knowledge
of human experts and the competitive high-level knowledge
processor networks used in our previous works [14]. Ordinary
symbolic logic handles only features which are present (true) or
absent (false). The symbolic feature set used in this work can be
divided into two categories: morphological features described
in Table I and contextual features described in Table II (as
explained in [14]).
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TABLE I
MORPHOLOGICAL FEATURES

Table I shows the pixel value and measurements relating
a pixel to its neighbors, for example, above/below average
regional temperature. One of the more relevant features is the
variability measurement, because it is used to detect clouds in
AVHRR images [24].

Table II gives the geographic position of segmented regions
and features related to the region position in the image [16].

Furthermore, a numeric feature database (Table III) was ex-
tracted from the same set of satellite images. The main features
used were the invariant moments [25]–[28], which are basically
statistical data carrying information about the frequency com-
ponents of the image in the moment space (in this case, image
intensities) and are an effective and compact image feature set
that can be used to represent the ocean features in the feature
space. Tables I and II show discrete features, and Table III
shows continuous features.

C. Main Contributions of the Work

In this paper, we illustrate a novel and effective way of
extracting relevant features in the ocean satellite image recog-
nition using filter methods and Bayesian networks. Specifically,
by successfully integrating different distances and techniques,
our method achieves the following.

1) Remove the irrelevant features: This method gets a rank-
ing of features and tries to find the optimum subset of
features. The idea is to choose a ranking feature subset
by different thresholds and to evaluate the accuracy by
means of Bayesian networks.

2) Identify the relationships between features: Bayesian net-
works define the conditional dependence of features.

3) Reduce the computational cost.
a) Filter methods are simplest and fastest to get a ranking

of features.
b) Bayesian classifiers used are easy to design and fast to

evaluate.
The method was evaluated with different classi-

fiers. Experimental results show that our method is
advantageous.

TABLE II
CONTEXTUAL FEATURES USING A GIS DATABASE

TABLE III
NUMERIC FEATURES

D. Outline of This Paper

In Section II, we provide a description of the methodology
used for feature selection. Experimental results are presented
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and discussed in Section III using several feature sets. We
conclude and suggest further improvements in Section IV.

II. METHODOLOGY FOR FEATURE SELECTION

Feature selection is determined, in general, by three factors.
1) Available data set: In our study, the features are mixed

(discrete and continuous).
2) Algorithms used: This can be defined in terms of evalu-

ation measures (e.g., distance, information, dependence,
and consistency) and search strategies (e.g., exhaustive,
complete, heuristic, and random). An optimal feature
subset is always relative to a certain evaluation measure,
i.e., an optimal subset, chosen using one evaluation mea-
sure, may not be the same as that using another. In this
study, the distance and dependence measures are used.
Moreover, algorithms with a heuristic search strategy are
used, because they are very simple to implement and
produce very fast results.

3) Performance required: In this case, accuracy and optimal-
ity were considered.

Methods of feature selection are divided into three cate-
gories. Wrapper methods require evaluation of each subset
of features by a classifier. These methods are black boxes
with some parameters. The problem is NP-complete since the
number of all subsets grows exponentially with the number of
features. The next category is embedded methods that perform
feature selection in the training process. The third category of
methods is filter methods based on evaluation of individual
features independently from the classifier used.

We believe that the third option is suitable for this task,
mainly because these methods are independents, faster than
other options while getting similar results.

Filter methods are useful for a high-cardinality data set.
We measure the similarity between any feature and class.
The similarity is represented by the ranking results. We have
chosen six distance measures, which are the classic measures
used in several papers. In this case, it does not get the real
relationships between any features. For this purpose, we have
included correlation measure that allows the comparison of any
two features and classes at the same time.

The goal of this work was to reduce the search area of the
relevant feature space. This methodology consists of several
steps (Fig. 2). The step of feature selection orders the features
by information relevance. The whole cycle allows us to find the
best feature subset that is close to the number of features and
accuracy rate specified.

This methodology tries to combine filter methods and
Bayesian classifiers. One advantage of these classifiers is
that they allow several kinds of causal reasoning: in-
ductive, deductive–predictive, and intercausal. The different
steps and their relationships are described in the following
sections.

A. Feature Adaptation

Discretization should significantly reduce the number of
possible values of continuous features, since a large number

Fig. 2. Methodology of feature selection.

of possible feature values contribute to a slow and ineffective
process of inductive machine learning. Thus, a supervised
discretization algorithm should seek the minimum number of
discrete intervals while not weakening the interdependence
between the feature values and the class label.

Discretization algorithms can be divided into two cate-
gories [29].

1) Unsupervised (class-blind) algorithms discretize at-
tributes without taking class labels into account. The
representative algorithm is the equal-frequency (EF) dis-
cretization [30].

2) Supervised algorithms discretize attributes by taking into
account class-attribute interdependence. The representa-
tive algorithm is the K-Means method [31]. This algo-
rithm finds K groups from a data set, where the goal
is to minimize the distance between the data in each
group.

The main problem in discretization is to choose the opti-
mal number of intervals (EF algorithm) or number of groups
(K-Means algorithm). We performed an iterative evaluation
of different intervals and groups in which we used two pa-
rameters, the number of relevant features and the accuracy
rate. The number of features was calculated by means of CFS
(Section II-B) because it is actually a filter method that provides
good results. On the other hand, the accuracy rate was estimated
by the Naive Bayes (NB) network (Section II-C) because it is
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Fig. 3. Discretization evaluation process. (a) EF. (b) K-Means.

the simplest classifier and has produced good results in other
studies [32].

Fig. 3 shows the relationship between the accuracy rate and
the number of features used to determine the optimal number
of intervals (using the EF method) and the optimal number of
groups (by the K-Means method) in the discretization process.
In Fig. 3(a), there are 100 optimal intervals and 16 features
selected with 89% accuracy. Fig. 3(b) shows that 100 groups
would be reasonable for discretization by the K-Means method,
because only 14 features are necessary for an 89% accuracy
rate.

Moreover, we use the expectation maximization (EM) al-
gorithm [33] to automatically find the optimal number of
groups. EM is a statistical model that makes use of the fi-
nite Gaussian mixture model. It is similar to the K-Means
in that a set of parameters is computed until a desired con-
vergence is achieved. We therefore use the optimal number
of groups found by the EM algorithm for discretizing the
continuous features and the K-Means algorithm to check its
efficiency.

B. Feature Selection

Dimension reduction is often used in clustering, classifica-
tion, and many other machine-learning and data-mining ap-
plications. It usually retains the more important dimensions
(features), removes noisy dimensions (irrelevant features), and
reduces computational cost.

Filtering methods, which are functions returning a relevance
index estimating the efficiency of a feature subset for classifi-
cation, are based on performance evaluation metrics calculated
directly from the data. These methods are computationally less
costly than wrapped methods [34].

The relevance index assigned to each feature should be pos-
itively correlated with the accuracy rate found by the classifier.
One of the problems is that this is not always the case, and it
is rather difficult to argue the theory that filtering methods are
better than a classifier. In this case, Bayesian networks have
been chosen as the experimental classifier because of the good
results found with them and their simplicity.

In our study, the filtering methods used for experimental
testing can be divided into two groups, i.e., those based on
distance measures and those based on correlation measures or
feature dependence.

Distance Measures are used for a two-class problem [35].
A feature X is preferred to another feature Y if X induces
a greater difference than Y between the two-class conditional
probabilities. If the difference is zero, then X and Y are indis-
tinguishable. These measures have been adapted for multiple
classes.

There are many ways to measure feature and class depen-
dence based on evaluating differences between the probability
distributions. Six univariate metrics were chosen in this work.
Detailed discussions on six univariate metrics are in [35]. To
help the readers understand our work which applies these
techniques in image analysis, we include here a brief summary.

The metric Euclidean distance (ED) is based on the classic
two-class evaluation formula, modified for multiclass evalua-
tion (1). To work with Bayesian nets by means of probability
distribution, the expression used is

ED(XC) =

⎡
⎣ m∑

i=1

n∑
j=1

k<j∑
k=1

P (ci)P (cj)|P (xi|ck) − P (xi|cj)|2
⎤
⎦

1
2

(1)

where m is the maximum number of states X (i.e., discretize
variable with one specific number of intervals), n is the max-
imum number of states C (or classes), P (X|C) is the condi-
tional probability distribution function of X given C, and P (C)
is the marginal probability distribution function of C.

The Bhattacharya distance metric (BD) measures the dis-
tance between two probability distributions (2) (in this case, it
measures the dependence between a feature and a class)

BD(XC) =
n∑

j=1

− log

[
P (ci)

m∑
i=1

√
P (xi|cj)P (xi)

]
(2)

where P (X) and P (C) are the marginal probability distribution
functions of X and C, respectively.

The Jeffries–Matusita distance metric (MD) is similar to the
BD, as it measures the distance between two probability distri-
butions (3). The difference is that it measures the dependence
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for each feature and the class, considering the mean distance of
the conditional distributions

MD(XC) =
M∑
i=1

k<i∑
k=1

P (ci)P (ck)

⎡
⎣ n∑

j=1

√
P (xj |ci)P (xj |ck)

⎤
⎦

(3)

where P (C|X) is the conditional probability distribution func-
tion of C given X and P (C) is the marginal probability
distribution function of C.

The Mutual information (MI) is the measure of the amount
of information that one feature contains about another [36].
Formally, the MI of two discrete random variables X and Y
can be defined as

MI(XC) =
m∑

i=1

n∑
j=1

P (xi, cj) log
P (xi, cj)

P (xi)P (cj)
(4)

where P (X,C) is the joint probability distribution function of
X and C, and P (X) and P (C) are the marginal probability
distribution functions of X and C, respectively.

The Kullback–Leibler divergence (KL) measures the dis-
tance between two probability distributions, which makes it
possible to measure the dependence of each feature and the
class [36]. The idea is to select the feature with the highest
dependence with respect to the class variable.

P typically represents data or observations on the probability
distributions. Q represents a theory, a model, a description, or
an approximation of P . For probability distributions P and
Q of a discrete random variable, the KL of Q from P is
defined by

D (P (X), Q(X)) =
∑
xi

P (xi) log
P (xi)
Q(xi)

. (5)

The probability distributions to be used had to be decided.
The prior marginal probability distribution was chosen because
it produces good results. The expressions are

KLij(XC)= D(P (X|ci), P (X))+D(P (X|cj), P (X)) (6)

KLD(XC)=
m∑

i=1

j<i∑
j=1

P (ci)P (cj)KLij(XC). (7)

The Shannon entropy metric (SE) is the most popular for
measuring the relevance of a feature. For the multiclass prob-
lem, this metric is [36]

SEij(X) = −
m∑

i=1

P (xi|ci) log2 P (xi|cj)

+ P (xi|cj) log2 P (xi|ci) (8)

SE D(XC) =
m∑

i=1

j<i∑
j=1

P (ci)P (cj)SEij(XC). (9)

Dependence or correlation measures predict the relationship
between features. Correlation measures can be used to find the
correlation between a feature and a class [37]. If the correlation
of feature X with class C is higher than the correlation of
feature Y with C, then feature X is preferred to Y because
X recognizes C (classes) better than Y . The CFS method is
described in [37]. The CFS measures the relevance of a feature
when classifying an object class in two ways individually (only
taking the feature and the class into account) and by correlating
with other features (taking into account a group of features and
the class). The main difference between the distance and de-
pendence measures is that the distance measures only consider
the relationship between one feature and the class; however,
the dependence measures consider the relationship among two
or more features and the class. This is very important since it
allows one to consider the relationships among features that,
in the distance measures, are not considered. The dependence
method uses a heuristic search strategy based on the greedy
hill-climbing algorithm, which constructs a search tree with all
the features and generates all the possible combinations of one
feature with the rest. In each step, the algorithm selects the next
features having a higher correlation with the feature subset and
the class to be included. The dependence expression is

H =
krci√

k + k(k − 1)rii

(10)

where k is the number of features in the subset, rci is the
average class correlation, and rii is the average intercorrelation
between features in the subset. The numerator represents the
classification efficiency, and the denominator measures feature
redundancy.

The conditional entropy measures the correlation between
features and classes. If X and Y are discrete random variables
with ranges Rx and Ry , the next expressions show, respectively,
the entropies of Y before and after X is found in (11) and (12).

H(Y ) = −
∑

y∈Ry

P (y) log (P (y)) (11)

H(Y |X) = −
∑

x∈Rx

P (x)
∑

y∈Ry

P (y|x) log (P (y|x)) (12)

The measurement of the correlation between Y and X is
defined by

C(Y |X) =
H(Y ) − H(Y |X)

H(Y )
. (13)

C. Bayesian Network Constructions

The last step in the proposed methodology is the use of
a classifier to test the goodness of each feature previously
selected. Bayesian networks [38] have been successfully used
as models for representing uncertainty in knowledge data-
bases. The uncertainty is represented in terms of a probability
distribution with induced independence relationships encoded
by the network structure.
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A Bayesian network for a set of variables X = X1, . . . , Xn

formally consists of a directed acyclic graph where each node is
labeled with a variable in X , and a set of probability conditional
distributions for each variable Xi given its parents in the graph,
which is denoted as P (Xi|Xpai

).
A Bayesian network can be used as a classifier. One of its

variables represents the class, and the others are the features
that describe the object to be classified. Classification is done by
instantiating the value of the feature variables and probability
propagation [38] over the class variable, which consists of
computing the posterior probability of each class given the
features observed. Afterward, the class assigned is the one with
the highest posterior probability.

We tested two simple methods for training the Bayesian
network with a set of numeric data.

1) NB is based on the assumption that all the features are
conditionally independent when the class is known. This
assumption implies that the network structure is rather
simple, since only the arcs in the network link the class
variable with each feature, and there are no arcs among
feature variables. The advantage of this naive approach
is the small number of parameters to be learned from the
data, thereby improving the estimation accuracy [39].

2) Tree Augmented Naive Bayes Classifier (TAN): TAN
models are a restricted family of Bayesian networks in
which the class variable has no parents and the parents of
each feature are the class variable and another feature at
most [40].

D. Evaluation of the Best Bayesian Classifier

The classification experiments were performed with tenfold
cross-validation. This means that the whole data set was parti-
tioned into ten subsets, of which nine were used as training sets
and the remaining one was first set aside as a test set, and then
used to evaluate second stage results. This was done for the ten
subsets.

Several different Bayesian classifiers were constructed for
this methodology. Instead of selecting them based only on accu-
racy, it may often be more effective to select for simplicity. We
therefore considered how much they reduced the size (number
of relevant features) and feature dependence relationships (in
NB, all of the features are conditionally independent of the
class, and in TAN, dependence relationships may be established
between two features and the class).

III. EXPERIMENTAL RESULTS

To test the methodology performance in our system, we
have processed a set of 30 ocean images, where one of the
major problems for the automatic interpretation is the high
morphological variability in the shapes of the ocean structures.
Fig. 4 shows the upwelling structure with different levels of
segmentation.

In many cases, the problem with the segmentation is to
decide which is the best region, because there is not a well-
defined boundary for the ocean structures, even for the oceanog-

Fig. 4. AVHRR image (02/17/1990). (a) Channel 4. (b) Different levels of
upwelling segmentations (black line).

raphers. For this reason, we have included in the data set all the
regions segmented that agree with the size, shape, and position
conditions imposed for the expert system that segment the
whole image [41] [Fig. 4(b)]. This introduces more information
about the shapes improving the classification process.

To mask the clouds, we have used a cloud masking developed
in previous works in our group. This masking process was built
using CH2 and CH4 of AVHRR and two coupled neural nets
[24]. We have used this cloudy masking in data set of Tables I
and II. However, we have not used cloudy masking in the data
set of Table III, but we have included a new class set based on
mixed structures. The mixed structures include clouds in their
shapes. Some examples are shown in Figs. 5 and 6.

We used about 1000 cases of real ocean structures
(472 upwellings, 119 cloudy upwelling, 180 wakes, 10 an-
ticyclonic eddies, 40 cyclonic eddies, and 180 misclassified
regions) and 15 classes (3 upwelling classes, 3 cloudy up-
welling classes, 2 eddy classes, 6 wake classes, and 1 class
of misclassified regions) [Fig. 7(a)]. The upwelling region has
been divided into three classes (Fig. 7(a); id class 2: upwellings
between Cape Jubi and Cape Bojador, id class 3: upwellings
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Fig. 5. AVHRR image (07/21/1990) (a) Original. (b) Cloud and land mask
(white color), cloudy upwelling (light blue color-1), cyclonic eddy (blue
color-2), and wake (pink color-3).

south of Cape Bojador, and id class 4: upwellings in both coast
regions). This solution introduces more knowledge about this
big structure within noise or clouds. Classification results of an
AVHRR scene are shown in Fig. 7(b).

Bayesian networks were constructed using the Elvira tool
[42]1 running in an AMD Athlon (tm) 64 Processor 3200
(2.20 GHz) with 1.5-GB RAM.

The results of Bayesian classifier evaluation of symbolic
features are shown in Table IV, where the average number
of relevant features used and the classification accuracy of
each filter can be seen. The best accuracy rate was found
using SE, although it retains a large number of features. Other
options are BD and CFS, which yield approximately the same
accuracy rate, but with a smaller number of features than
the SE.

1Available at http://leo.ugr.es/~elvira

Fig. 6. AVHRR image (05/26/1990) (a) Original. (b) Cloud and land mask
(white color), cloudy upwelling (yellow color-1), and wakes (blue and green
colors-2).

The numeric feature accuracy rate is shown in Table V (EF
discretization) and in Tables VI and VII (K-Means discretiza-
tion). Nine optimal groups were found by EM (Table VI). The
best discretization was produced by K-Means with k = 100.
CFS results were the best, because it reduced the size from
80 features to 14 and 16 features with an accuracy rate of
around 90%.

On the other hand, the accuracy rate is better in NB than
in TAN. This is because NB assumes fewer errors in feature
dependence relationships than TAN. Examples of the networks
found in the best experiments in Table VII (Filter: CFS) can be
seen in Fig. 8.

After selecting the most relevant features, we used this
feature selection methodology with a group of several different
classifiers: MLP (multilayer perceptron network), One R (one-
rule classification), C4.5 (classification tree), NNGE (nearest
neighbor with generalization), NB, TAN, hybrid system (ra-
dial basis function network and fuzzy system TSK-Sugeno),
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Fig. 7. (a) Ocean structure identifiers (0 no figure; 1 water; 2–4 upwelling;
5–10 wake; 11–12 eddy). (b) AVHRR image (08/02/1993): Classification
results are 5, 7, 8, 9, and 10—wakes and 4—cloudy upwelling (cloud and land
mask—white color).

TABLE IV
EVALUATION WITH SYMBOLIC FEATURES

neuro-fuzzy system (NEFCLASS and NEFPROX), and adap-
tive neuro-based fuzzy inference system (ANFIS) [43], [44]
to find out the efficiency of other classifiers compared with
Bayesian networks in evaluating the features extracted by this
methodology. These classifiers were used with numeric fea-
tures only.

TABLE V
EVALUATION WITH NUMERIC FEATURES BY EF (100 INTERVALS)

TABLE VI
EVALUATION WITH NUMERIC FEATURES BY

K-MEANS (K = 9 GROUPS BY EM)

TABLE VII
EVALUATION WITH NUMERIC FEATURES BY

K-MEANS (K = 100 GROUPS)

Table VIII shows only the best results, although all dis-
cretization algorithms studied (with 100 intervals for EF and 9
and 100 groups for K-Means) were analyzed. The % accuracy
column (M) is the accuracy rate with the methodology, while
% accuracy (WM) is when it was not used (for 80 features).
In almost all cases, the proposed methodology improves the
accuracy rate and reduces the number of features necessary to
get a good ocean structure classification.

IV. CONCLUSION AND FUTURE WORK

We have explored the use of filter methods as a feature
selection mechanism in an automatic ocean AVHRR satellite
image recognition system. The use of this methodology has
been beneficial for reducing the number of relevant features and
in finding the knowledge structure, in terms of the conditional
independence relationships of the features. The computational
cost has been reduced, because filter methods are the sim-
plest and fastest solution for feature selection. Moreover, the
Bayesian classifiers used are very easy to build and train and
have produced good results in many real application fields. The
methodology was evaluated with different classifiers and was
found to be advantageous.

In the future, we plan to improve the systems accuracy rate
by including more features. Furthermore, we expect to use
models like mixtures of truncated exponentials [45] to avoid the
discretization of continuous features during Bayesian network
training.
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Fig. 8. Examples of Bayesian networks in Table VII—CFS. (a) NB CFS, numeric features. (b) TAN CFS, numeric features.

TABLE VIII
EVALUATION WITH DIFFERENT CLASSIFIER

(CFS 14 NUMERIC FEATURES)
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