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Abstract—Numerical precipitation prediction plays a crucial
role in weather forecasting and has broad applications in public
services including aviation management and urban disaster early
warning systems. However, Numerical Weather Prediction (NWP)
models are often constrained by a systematic bias due to coarse
spatial resolution, lack of parametrizations, and limitations of
observation and conventional meteorological models, including
constrained sample size and long-tail distribution. To address
these issues, we present a data-driven deep learning model,
named the Ordinal Distribution Autoencoder (ODA), which
principally includes a Precipitation Confidence Network and a
combinatorial network that contains two blocks, i.e., a Denoising
Autoencoder block and an Ordinal Distribution Regression block.
As an expert-free model for bias correction of precipitation, it
can effectively correct numerical precipitation prediction based
on meteorological data from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and SMS-WARMS, an
NWP model used in East China. Experiments in the two
NWP models demonstrate that, compared with several classical
machine learning algorithms and deep learning models, our
proposed ODA generally performs better in bias correction.

Index Terms—Precipitation bias correction, ordinal distribu-
tion autoencoder, weather prediction, deep learning.

I. INTRODUCTION

As an indispensable public service, reliable forecasting of
precipitation is significant in many aspects of society such as
emergency management and disaster early warning. Providing
accurate meteorological predictions for the coming six hours
can greatly help to warn local people and to make better
decisions.

Numerical weather prediction (NWP) estimates the incom-
ing state of the various weather components, including precipi-
tation, from several minutes to several days quantitatively with
aerodynamic and thermodynamic models. However, NWP
models always contain two kinds of biases: 1) systematic
bias due to coarse spatial resolution and imperfectness of
parameterizations, and 2) observation bias due to systematic
representativeness errors in surface observations [1]1.

To reduce the bias, postprocessing of the model output
is important for further usage of models. Several statistical
methods have been used for the bias correction of prediction
produced from NWP models [2], [3]. These techniques have
been applied to NWP models in several countries to improve
performance.

Corresponding author: Junping Zhang
1According to the prediction time range, weather prediction can be catego-

rized into nowcasting (0-2 hours), and very short-range (0-12 hours), short-
range (12-72 hours), medium-range (72-240 hours), extended-range (10-30
days), and long-range (>30 days) forecasting.

ANNs, as opposed to traditional methods in meteorology,
are based on self-adaptive mechanisms that learn from the ex-
amples and capture functional relationships between data, even
if the relationships are unknown or difficult to describe [4].

In this experimental study, we use a set of real-world data
from hundreds of meteorological stations located in Southeast
China as labeled precipitation and try to enhance the 6-hour
precipitation prediction from ECMWF and SMS-WARMS
with 37 physical predicted parameters as input which also
suffer from noise. Besides, treating this task as a regression
problem would be less effective due to the highly imbalanced
data distribution and a large span between the maximum and
minimum precipitations.

To address the aforementioned issues, we transform the
original regression problem into a classification one. We
propose a novel deep convolutional framework named Or-
dinal Distribution Autoencoder (ODA) for bias correction
of precipitation prediction through effective designing deep
model architecture and corresponding loss function, the focal
loss [5]. Compared with the conventional regression strategy,
the proposed network is superior in tasks with long-span data
and can take full advantage of the majority of factors that may
influence precipitation.

The main contributions of this paper are summarized as
follows:

1) We propose a novel deep learning model to solve the
bias-correction problem instead of conventional machine
learning methods or ensemble models, and achieves
better correcting performance and meteorological index.

2) The Ordinal Distribution Regression transfers the regres-
sion problem into several binary classification subprob-
lems, greatly alleviating the impact of the large span.
To the best of our knowledge, it is the first time to
introduce an ordinal regression model to correct the bias
of EC precipitation models. Meanwhile, a focal loss in
this block is introduced to address the issue of the long-
tail distribution of rainfall.

3) The evaluation in different areas and different NWP
models shows the robustness and effectiveness of our
proposed network in correcting the 6-hour precipitation
prediction.

II. RELATED WORK

A. Bias Correction of Numerical Weather Prediction

The most commonly used bias-correction methods in the
precipitation prediction fields are the Model Output Statistics
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(MOS) and Kalman Filter (KF) techniques. As a statistical
post-processing method, MOS is frequently used to improve
the forecast of NWP models through applying a statistical
model (mostly multi-linear regression), to correct the NWP
model output according to the past model results and obser-
vation data [2]. However, linear regression restricts the perfor-
mance of MOS methods. As an alternative recursive nonlinear
algorithm, KF can estimate a signal from noisy measurements,
which has been widely used in bias-correcting the prediction
of NWP models [3]. Although these conventional methods are
feasible based on few features, they cannot construct models
for a variety of stations. Without spatial information, further,
the performance of these models is limited.

To address these issues, machine learning techniques have
been applied to improve the prediction accuracy under vari-
ous types of high-impact weather phenomena. For example,
Support Vector Regression (SVR) and Random Forest (RF)
are two typical methods for bias correction [6]. Different
from MOS and KF, these machine learning methods are
less sensitive to the correlation among input features and
can deal with multiple input variables as well as utilize the
spatial distributions of parameters from several stations for
bias correction.

It is worth noting that the bias-correcting ability of a
single machine learning method is limited due to complex
atmosphere surface interactions. Although ensemble models
can take advantage of different machine learning approaches
and make the bias correction more accurate [7], this kind of
combination greatly relies on expert experience and thus works
only in some specific scenarios.

In recent years, Deep Neural Network (DNN) has been used
as an effective technique for the prediction or correction of
precipitation [8]. Because of its end-to-end manner, deep learn-
ing can automatically extract representative features to assist
estimation, less depending on expert knowledge than those in
(ensemble) machine learning methods. For example, Snderby
et al. used sequences of maps of precipitation to predict
future precipitation. Besides, axial self-attention is utilized to
aggregate the global context [9]. Wang et al. [10] focused on
prediction through using precipitation from different stations in
the past 9 days to predict the precipitation of the next 1/2/.../9
days, NLE loss is proposed in this paper to improve the
generalization of point estimation. However, these prediction
methods are to forecast the precipitation instead of bias-
correcting the precipitation, greatly restricting the performance
of these methods to output corrected precipitation. Moreover,
few parameters taking as input also limits the performance.

For bias correction, Tao et al. proposed a DNN framework
with a denoising Autoencoder and FCN with four layers to
improve the accuracy of satellite precipitation products by
reducing the bias and false alarms [11]. Zjavka found that a
polynomial neural network could successfully bias-correct the
National Oceanic and Atmospheric Administration (NOAA)
mesoscale model [12]. However, these methods can hardly
correct the precipitation of different levels at the same time,
as they both treat the correction problem as a regression one
and suffer from the large span of precipitation.

B. Ordinal Regression

Ordinal Regression aims at finding a function to predict the
labels in ordinal variables. Most ordinal regression algorithms
are derived from conventional classification algorithms. For
instance, Herbrich et al. [13] proposed a support vector method
for ordinal regression. And Shashua and Levin [14] developed
a novel support vector machine to handle multiple thresholds.

An alternative way is to regard ordinal regression as a series
of binary classification problems. Ordinal regression is proved
useful in different areas, Niu et al. [15] combined ordinal
regression with Convolutional Neural Networks (CNNs) to
estimate facial age. Fu et al. [16] adopted a similar strategy
for monocular depth estimation. Considering the uneven dis-
tribution of precipitations, we thus utilize ordinal regression
for better precipitation prediction correction.

III. THE FRAMEWORK

In this section, we present the ODA for bias correction
of numerical precipitation prediction. After defining this task,
we introduce our datasets, the preprocessing method, and the
framework of the proposed DNN. Then we describe the design
for handling the noisy features. To ease the impact of the
large span and uneven distribution of precipitation, further, an
Ordinal Distribution Regression block is implemented, which
will be described in detail in Section III-E2.

A. Problem Definition

Generally, bias correction of numerical precipitation pre-
diction can be regarded as a regression problem. Specifically,
let X and Y denote the input and output spaces, respec-
tively. Each input sample x ∈ X consists of N features
{M1,M2, · · · ,MN} which are predicted by NWP for the
coming 6-th hour. Here, each Mk is a 2-D matrix with size
l× l, with each element recording a value of the k-th feature
on the corresponding latitude and longitude. Each output
y ∈ Y is a scalar representing the corrected accumulative total
precipitation for 6-hour.

All features in x are the multiple predicted meteorological
parameters generated by the NWP model (i.e., ECMWF or
SMS-WARMS) including predicted precipitation. The task is
to correct the predicted prediction by learning a mapping
function g : x→ y.

B. Data Preprocessing

We evaluate ODA on a 6-hour Integrated Forecasting Sys-
tem (IFS) data provided by the ECMWF and SMS-WARMS
V2 [17], which is collected from Shanghai Central Meteo-
rological Observatory (SCMO). The data from ECMWF are
filled in a chart of the world with latitude-longitude grid
cells of 0.125◦ of latitude by 0.125◦ of longitude, and the
frequency is one sample every three hours. And the precise
precipitation y is provided by SCMO, precisely, collected from
the ground stations every six hours. Although the geographical
coordinates of the ground stations mismatch those of the grid
data, given the high density of the grid, we make a reasonable
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Fig. 1. An overview of the proposed approach for bias correction of numerical precipitation prediction. ‘AP’ represents Average Pooling and ‘FC’ is the
abbreviation of the Fully Connection Layers. Squared blocks represent input data or feature maps of convolutional blocks in our model, while circles are the
output scalars of different sub-nets. The output vectors of the Ordinal Distribution Regression blocks form the ordinal distribution histogram.

assumption that the precise precipitation inside a grid cell is
static.

For bias correction, we first filter out some meteorological
parameters according to the ranks of correlation with pre-
cipitation, which are calculated with the Pearson correlation
coefficient as the input features. The picking threshold is set
as 0.2, and for parameters with the same name but different
heights, we retain the one with the highest coefficient. Then,
considering the spatial impact of rainfalls, we slice the entire
grid matrix to several smaller ones centering at the ground
observatory with the slicing window of 2.0◦ latitude by 2.0◦

longitude. After pre-processing the entire grid, we choose 37
different features, and every input sample for the model is
resized to 37 ∗ 17 ∗ 17.

Besides, when preprocessing the data from SMS-WARMS,
some of the parameters used in ECMWF are replaced with
other similar parameters because of the different data provided.

In our experiment, the whole dataset consists of 237,498
samples of Eastern China collecting from July to September
in both 2016 and 2017. We got 4 samples one day in the
training process as the output of ground stations is utilized
as the label, and when being used online or for testing, this
model would output the corrected predicted results 8 times per
day. The ratio of the training set to the testing set is 4:1, and
samples are randomly selected without overlapping.

C. Framework Design

The framework shown in Fig. 1 includes two parts: a
Precipitation Confidence Network as a binary classifier to
judge whether precipitation exists, and a combinatorial net-
work consisting of two blocks: a Denoising Autoencoder for
robust features extraction, and multiple Ordinal Distribution
Regression blocks for ordinal distribution.
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Fig. 2. The distribution of ground-truth precipitation in our dataset. The y-
axis represents the logarithm of the number of each precipitation, while the
x-axis represents the range of the ground-truth precipitation.

The Precipitation Confidence Network is a 4-layer Convo-
lution Network with an average pooling and a full connection
with an output of 0/1 as O1.

The combinatorial network consists of a Denoising Autoen-
coder block for feature generation and an Ordinal Distribution
Regression block for precipitation correction, which is the
main body of our framework. This part is trained with the
multiplication of construction loss from Autoencoder and focal
loss from distribution classification with the output of accurate
classification of precipitation as O2, which can be seen as
corrected precipitation value. The final output should be

O = O1 ×O2 . (1)
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D. Precipitation Confidence Network

As shown in Fig. 2, nearly 78% of samples in our dataset are
non-precipitation, and in only 1% of samples, the precipitation
is larger than 10 mm. Because of the imbalanced distribu-
tion of precipitation, we create the Precipitation Confidence
Network to identify non-precipitation and precipitation. Then,
the Ordinal Distribution Regression module can focus on the
finer classification of precipitation for achieving better bias-
correction performance.

The Precipitation Confidence Network is a 4-layer Convo-
lution Network, while its details are described in Table I. This
part is trained individually using binary classification error
(BCE) and aims at distinguishing whether precipitation exists.
Then, we can only send the rainfall samples to the Ordinal
Regression module when training.

E. Combinatorial Network

The combinatorial network aims at correcting the predicted
precipitation. With input x, the Denoising Autoencoder first
extracts noisy robust features as bottleneck output. Then,
Ordinal Distribution Regression takes this output as input to
generate corrected precipitation.

1) Denoising Autoencoder: If input features contain obser-
vational and systematic errors, it will mislead the regression
model to generate precipitation with bias. To address this
problem, we refine a Denoising Autoencoder with a fully
convolutional neural network by introducing a noisy level, and
formulate it as follows:

zi = gE1
(xi + ε ‖ θ) , (2)

hi = gE2
(zi ‖ θ′) , (3)

x̂i = gD (hi ‖ θ′′) , (4)

where ε ∼ N (µ, σ) is random normal noise. gEi
(·) denotes

each part of the enhanced denoising encoder, gD (·) denotes
the enhanced denoising decoder, and θ, θ′, and θ′′ denote their
respective parameters. zi is a feature map of the perturbation
layer with random normal noise added which only works when
training. hi is the bottleneck output of Denoising Autoencoder.
Besides, to ensure the bottleneck output hi precisely represents
the input x, the gap between x and the output of Decoder
x̂i should be as small as possible. With such a setting,
the objective function of the Denoising Encoder-Decoder is
formulated as

θ∗, θ′∗, θ′′∗ = argmin
θ,θ′,θ′′

N∑
i

Ex ‖xi − x̂‖22 . (5)

During the test, we take original samples xi as inputs and
remove the perturbation layer. hi can be regarded as noise-
free and squeezed features utilized in the Ordinal Distribution
Regression block to correct the precipitation.

2) Ordinal Distribution Regression: As a regression prob-
lem, one common objective function is the least square loss:

1

N

N∑
i=1

(yi − ŷi)2 . (6)

However, due to the large span and long-tail distribution of
rainfall, learning such a distribution with Eq. (6) forces the
regression model to favor small precipitation, while the large
precipitation still produces a large loss, making a model hard
to converge to a global optimum.

Furthermore, precipitation is a typical ordinal variable
having an obvious ordering relation on an arbitrary scale.
Therefore, we adopt multiple Ordinal Distribution Regression
blocks to correct precipitation. Similar to [15], we transform
a regression problem into a series of binary classification
problems. In our work, we partition the 6-hour cumula-
tive precipitation ranging from ymin to ymax into K ranks
ri ∈ {r1, r2, · · · , rK−1} followed by training K − 1 binary
classifiers with an interval 0.5 to judge what the rank of the
predicted values of sample xi belongs to.

More concretely, we first transform the continuous ground-
truth precipitation yi to discrete binary vectors yi =
{d1, d2, · · · , dK−1}, where di is calculated as follows:

di =

{
1, if yi > rk
0, otherwise (7)

Then, we directly utilize K − 1 four-layers CNNs as the
distribution subnets, each of which generates a scalar pi
representing the probability of di = 1. The details of each
distribution subnet will be shown in Section IV-B. Finally,
the Ordinal Distribution Regression blocks calculate the bias-
corrected predicted precipitation of sample xi as follows:

ỹi = η ∗
K−1∑
i

(pi ≥ ξ) , (8)

where η is the partitioning interval 0.5 and ξ is a threshold
that is set to 0.5 in our experiment. In such a setting, the
samples with larger precipitation contribute equally to the
ordinal regression model as those models with smaller values.
As a result, the impact of the large span issue is alleviated. It
is worth noting that the partitioning interval is larger than the
minimal ranging interval in some cases, resulting in inevitable
gaps between the predicted and ground-truth precipitation.
Therefore, the partitioning interval is an important hyperpa-
rameter in our approach and will be discussed further in
Section V-B.

3) Loss Function: The distribution of precipitation of sam-
ples that are larger than 10 mm is long-tail which further
causes the ordinal ranked-classes ri to be imbalanced. Focal
loss, stemming from the cross-entropy loss function, is thus
adopted in our approach for addressing such an imbalance
issue. Similar to [5], we introduce two hyperparameters in
cross-entropy loss function and rewrite it as:

LFOR =
1

N

N∑
i=1

(1−α)pγi yi log(1− pi)+

α(1− pi)
γ(1− yi) log(pi) ,

(9)

where both yi and pi are vectors representing the labels and
probabilities of each ordinal rank class ri, respectively. γ is
a scalar for differentiating the samples and α is a vector to
balances each ri rank class.
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Therefore, the final loss function of the combinatorial net-
work would be:

L = LCons + LFOR =

N∑
i

Ex ‖xi − x̂‖22 + LFOR , (10)

where LCons represents the construction loss of denoising
autoencoder.

IV. EXPERIMENTAL RESULTS

In this section, we describe the evaluation metrics followed
by model configurations and training details. After that, We
report the experiments to validate the effectiveness of ODA in
bias correction tasks.

A. Evaluation Metrics

We report the mean average error (MAE, Eq. (11)) and the
mean positive average error (MPAE, Eq. (12)) as accuracy
assessments:

MAE =

n∑
1

|ŷ − yi|
n

, (11)

MPAE =

n∑
1

|ŷpositive − yi|
n

, (12)

where yi is the corrected precipitation, ŷi is the ground truth
precipitation, and n is the number of samples.

As an important meteorological index for precipitation
prediction, the Threat Score (Ts) is calculated as:

Tsδ =
TPδ

TPδ + FPδ + FNδ
, (13)

where the parameter δ defines the boundary between positive
and negative samples. With different δ we can evaluate the
model in a different range of precipitation as drizzle or
torrential rain have different characteristics and models can
hardly predict or correct both of them well, so we determined
δ as 0.1, 1, and 10.

B. Model Configurations and Training Process

Details of model configurations are shown in Table I and
each Conv block is equipped with a convolutional layer, a
batch normalization layer, and a leaky ReLU with a negative
slope of 0.01.

The Denoising Encoder contains four Conv blocks and one
noise perturbation layer. We generate random noise from a
normal distribution with µ = 0 and σ = 0.001 during the
training phase and remove them during the testing phase. The
decoder consists of three up-sampling Conv blocks, whose
sampling operation is bilinear interpolation with stride 2.

Although all of the Ordinal Distribution Regression subnets
share one common configuration, their parameters are com-
pletely independent. Each ordinal subnet contains one skip
connection to accelerate the training procedure and dropout
with a ratio of 0.2 is used for relieving the overfitting of the
fully connected layers (FC).

We adopt feature normalization before features are fed
into the models and use the Adaptive moment estimation

TABLE I
THE MODEL DETAILS OF THE FRAMEWORK

Network Input: 37 × 17 × 17

Bonded
Network

Encoder

Conv Block
[
32, 1× 1
32, 3× 3

]
× 1

Noise N (0, 1e− 3)
Conv Block

[
64, 3× 3

]
× 2

Ordinal Subnets

Conv Block

128, 3× 3
128, 3× 3
32, 1× 1
32, 1× 1

× 1

Down Sampler
[
32, 1× 1

]
× 1

Binary Classifier Average pooling, 1-D FC

Decoder

Conv Block
[
64, 3× 3

]
× 1

Upsampling Bilinear (17 × 17)

Conv Block
[
32, 3× 3
37, 1× 1

]
× 1

Precipitation Confidence
Network

Conv Block

 64, 3× 3
64, 3× 3
128, 3× 3
128, 3× 3

× 1

Down Sampler
[
128, 1× 1

]
× 1

Rainfall Classifier Average pooling, 1-D FC

(Adam) [18] with a mini-batch of 256. The learning rate of
the Denoising Autoencoder starts from 1e − 3 with a weight
decay of 1e − 2. Both the learning rate and weight decay of
the Ordinal Distribution Regression blocks are set to 1e− 4.

In testing, for comparison with other methods, we adopt
standard 5-fold cross-validation in which the dataset is divided
into 5 folds. Each time we choose one fold to test, and
the other four folds to train, repeating this until 5 folds
are all tested. And we repeat the experiment with different
dataset divisions. Noted that all experiments in Section V are
implemented with a fixed dataset of 80% for training and 20%
for testing without overlapping.

C. Validation on 6−hour IFS

We validate ODA on a 6−hour IFS dataset by comparing
it with several baseline methods. Original input provided
by ECMWF and SMS-WARMS is the basic comparison.
Bilinear interpolation (BI) means that we directly interpolate
each sliced predicted precipitation grid to the corresponding
ground observatory. Linear regression (LR) and Support Vec-
tor Regression (SVR) are commonly used machine-learning
methods.

FPN [19] is one baseline deep learning model, in which
the precipitation and other features are taken as different
channels. As another baseline, the Convolutional Long Short-
Term Memory (ConvLSTM) model [20] predicts meteorolog-
ical features with spatiotemporal sequence forecasting. Fur-
thermore, the networks of [8] and [11] are employed as two
baseline deep learning models, which both use Denoising
Autoencoder as a feature generator. Note that [8] used a
Multilayer perceptron (MLP-A) with one hidden layer as the
core module and [11] used a fully convolutional network with
four Conv blocks as the core module (FC-A). Besides, we
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Fig. 3. Visualization of two examples of our correction results. Each row represents one example. While different circles mean different performance parts.
First column: the raw ECMWF precipitation grid data. Second column: corrected precipitation of Single Regression Autoencoder. Third column: corrected
precipitation of Ordinal Distribution Autoencoder. Last column: the ground-truth(GT) precipitation.

TABLE II
COMPARISON OF OUR PROPOSED MODEL AGAINST BASELINE METHOD ON 6−HOUR PREDICTION OF ECMWF

Methods MAE MPAE Ts0.1 Ts1 Ts10
BI 1.31± 0.01 4.53± 0.1 0.44± 3e− 4 0.44± 4e− 4 0.24± 1e− 4
LR 1.6± 8e− 3 4.43± 0.08 0.31± 7e− 4 0.36± 4e− 4 0.21± 1e− 4

SVR 1.35± 7e− 3 4.98± 0.13 0.23± 5e− 4 0.34± 4e− 4 0.00± 0.00
FPN [19] 1.21± 8e− 4 4.31± 0.03 0.41± 3e− 4 0.47± 4e− 4 0.25± 2e− 4

ConvLSTM [20] 3.09± 0.02 5.46± 0.2 0.23± 3e− 3 0.21± 5e− 3 0.27± 3e− 3
MLP-A [8] 1.18± 1e− 3 4.00± 0.1 0.40± 4e− 4 0.46± 5e− 4 0.26± 2e− 4
FCN-A [11] 1.28± 0.01 4.40± 0.09 0.38± 4e− 4 0.44± 4e− 4 0.26± 7e− 3

SR-A 1.27± 5e− 4 4.47± 0.13 0.39± 9e− 4 0.45± 4e− 4 0.26± 1e− 4
ODA (ours) 1.04± 1e− 3 3.88± 0.1 0.59± 2e− 4 0.52± 3e− 4 0.28± 6e− 4

TABLE III
COMPARISON OF OUR PROPOSED MODEL AGAINST BASELINE METHOD ON 6−HOUR PREDICTION OF SMS-WARMS

Methods MAE MPAE Ts0.1 Ts1 Ts10
BI 2.97± 0.15 7.45± 0.12 0.16± 2e− 4 0.11± 1e− 4 0.03± 2e− 5
LR 2.64± 0.03 6.1± 0.05 0.27± 4e− 4 0.21± 3e− 4 0.01± 4e− 5

SVR 1.81± 0.03 6.4± 0.05 0.24± 6e− 4 0.12± 1e− 4 0.0± 0.0
FPN [19] 1.93± 0.02 6.1± 0.04 0.32± 4e− 4 0.27± 3e− 4 0.06± 4e− 5

ConvLSTM [20] 5.82± 0.07 9.25± 0.3 0.12± 0.01 0.10± 1e− 3 0.06± 3e− 4
MLP-A [8] 1.9± 0.02 6.0± 0.04 0.31± 3e− 4 0.27± 3e− 4 0.058± 5e− 5
FCN-A [11] 1.95± 0.03 6.1± 0.03 0.286± 3e− 4 0.28± 4e− 4 0.06± 5e− 5

SRA 2.0± 0.02 6.0± 0.03 0.28± 3e− 4 0.26± 3e− 4 0.06± 5e− 5
ODA (ours) 1.81± 0.02 6.0± 0.04 0.38± 5e− 4 0.32± 5− e5 0.065± 5e− 5

deploy a Single Regression Autoencoder (SR-A) in which a
single regression block is used instead of an ordinal regression
block for comparison.

We summarize the results of ODA and other algorithms in
Table II with the ECMWF model and in Table III with the
SMS-WARMS model where the result is repeated more than
20 times and presented by ‘mean ± standard deviation’. From
the tables, it can be seen that ODA is stable and outperforms
others on all metrics in either ECMWF or SMS-WARMS. The
result of ConvLSTM shows that focusing on prediction rather
than bias correction could limit its correction performance.
The results of MLP-A, FC-A, and SR-A indicate that by trans-
forming the regression problem to several binary classification

problems, the proposed ODA could achieve better performance
in correcting the biased precipitation.

We visualize examples of precipitation bias correction re-
sults in Fig. 3. The ODA model correctly revises prediction in
the non-precipitation region, as illustrated in the red circles.
Meanwhile, ODA successfully corrects small rainfall into large
rainfall, as indicated by the black circles. Besides, the blue
circles show a more interesting circumstance, where multiple
areas are small rainfall in the ground truth, while the output
of ODA is mostly 0.5mm.

Note that in the real world, when a region has a small
amount of rainfall, the minimal precipitation would be 0.1mm.
While in the ODA algorithm, we set the most fine-grained pre-
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cipitation prediction value to 0.5 mm. When the Precipitation
Confidence Network indicates that the region has a high prob-
ability of rainfall, as a result, the minimal prediction generated
by ODA would be 0.5 mm. Although this limitation can result
in a higher MAE or MSE, such a prediction is acceptable
because, in a real-world application, the region indeed has
a high probability to rain and such a small difference has a
negligible influence on the rainfall level.

As a comparison, these examples show that even if some
imperfectness of ODA, it still effectively corrects the biased
precipitation and rearranges the non-precipitation and precip-
itation.
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Fig. 4. Performance changes by varying (a) two types of standard deviation
and (b) partition interval.

V. DISCUSSION

A. Ablation Study

We analyze the effectiveness of the two novel parts of our
approach by ablation experiments and show the results as in
Fig. 4(a).

1) The impact of Ordinal Distribution Regression: The
orange line in Fig. 4 (a) represents the results of a single
regression model and the blue one represents the results of
ODA. The comparison of the two lines shows that the MAE
of using the Ordinal Distribution Regression model is always
less than that of the single regression model. The main reason
for this improvement is that converting a regression problem to
multiple classification problems alleviates the negative impact
of the large span of the training labels.

2) Influence of the Noise Perturbation: For analyzing the
influence of the noise perturbation, we vary the standard
deviation σ of the normal distribution. As shown in Fig. 4(a),
the MAE of our ODA goes down first and then up with
the increase of σ. When the σ is set as 0, the Denoising
Autoencoder is degraded to a simple autoencoder and the
features of its bottleneck layer are squeezed without noise
handling. Therefore, the features with noise lead to the worst
performance among all of the σ settings. With the increase of
σ, the Denoising Autoencoder starts to learn how to deal with
the noise and the performance of our model begins to improve.
However, owing to features having been normalized, the noise
contained in the features is normalized as well. With the σ
going larger, as a result, Enhanced Denoising Autoencoder
cannot remove noise, even may regard useful information as
noise.

B. Comparison of Different Partition Intervals

Unlike regarding the partition interval of ages on facial
images as only one region, we split precipitation into several
finer ranging intervals in this task. And the partition interval
decides not only how many binary classifiers are necessary,
but also the number of parameters. Therefore, it is crucial to
choose a suitable partition interval for ordinal regression in the
bias correction task. It can be seen from Fig. 4(b) that when η
is set to 0.5, the best partition interval can be obtained. We also
notice that the minimum ranging interval cannot obtain the
best partition interval. A possible reason is that some neighbor
rank classes contain the same training samples when choosing
the minimum ranging interval as the partition interval. This
situation causes some samples to be incorrectly classified as
positive in these neighbor rank classes, leading to inaccurate
ordinal regression results.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel Ordinal Distribution Autoencoder to
correct the bias of the NWP model in precipitation prediction.
The ODA can extract more robust features from the highly
noisy predictive data, and correct the biased precipitation
against the uneven distribution and a large span of the labels.

Experiments on the ECMWF and SMS-WARMS datasets
indicate that compared with several NWP correction baseline
methods and three deep learning methods, ODA achieves
the best correcting performance as well as robustness. Dif-
ferent from the past works, the proposed ODA change the
regression problem into several binary classification problems
with ordinal distribution regression. Meanwhile, denoising
autoencoder and focal loss are utilized for solving highly noisy
and imbalanced data distribution. In summary, ODA is shown
to be effective through both quantitative indices and qualitative
visualization with little help from experts.

However, when correcting heavy rainfall, the advantages
of ODA compared with other models are not significant,
which still needs to be improved. The reasons are that: 1)
in Shanghai, the amount of heavy rainfall cases in our used
dataset is sporadic, resulting in an under-fitting problem to our
model, and 2) the design of our ordinal distribution regression
limits the performance when correcting heavy rainfall.

In the future, we will explore how to utilize finer partition
intervals to obtain more precise bias correction performance,
especially for heavy rainfall. It is also interesting to study how
to combine the timing information of the predictive weather
data with ordinal regression for bias correction of numerical
weather prediction.
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