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Thin Cloud Detection of All-Sky Images
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Abstract—Thin cloud detection for all-sky images is a challenge
in ground-based sky-imaging systems because of low contrast
and vague boundaries between cloud and sky regions. We treat
cloud detection as a labeling problem based on the Markov
random field model. In this model, each pixel is represented by
a combined-feature vector that aims at improving the disparity
between thin cloud and sky. The distribution of each label in the
feature space is defined as a Gaussian model. Spatial information
is coded by a generalized Potts model. During the estimation,
thin cloud is detected by minimizing the posterior energy with
an iterative procedure. Both subjective and objective evaluation
results demonstrate higher accuracy of the algorithm compared
with some other algorithms.

Index Terms—All-sky cloud image, cloud detection, Markov
random fields (MRFs).

I. INTRODUCTION

C LOUDS are crucially important in the atmospheric energy
balance and the hydrological cycle. Most cloud-related

research and applications require some ground-based cloud
observations [1], such as cloud cover. Conventionally, the cloud
cover is determined by human observers. Manual observation
is often subjective and inconsistent. The shortcomings have led
to the development of automatic cloud observation techniques,
which utilize sky-imaging systems to capture sky visual condi-
tions and to analyze cloud characteristics.

A typical sky-imaging system includes two main parts: a
sky imager and an image analysis module. A sky imager is an
optical device that automatically takes series of hemispheric
sky images, called all-sky images, with a set time interval.
Examples include the whole-sky imager series [2] and the total-
sky imager series [1]. Fig. 1(a) shows the sky imager used
in our study. Fig. 1(b) shows an all-sky image produced. An
image analysis module processes all-sky images and determines
cloud characteristics, e.g., cloud cover and cloud type. In this
module, cloud detection, which is a process to classify each
pixel of an all-sky image into “cloud” or “sky” elements, is a
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Fig. 1. Sky imager and all-sky cloud images. (a) WSC used in this study.
(b) All-sky image produced by the WSC. (c) Cropped thin cloud image.

fundamental task because it is a precondition to determining
cloud characteristics [1].

Existing cloud detection techniques are generally based on
thresholding techniques, in which an red–green–blue (RGB)
cloud image is transformed into a single-channel feature im-
age and each pixel is classified by thresholding the feature.
Common features for fixed thresholding algorithms include the
ratio of red over blue (or blue over red) [1], saturation [3], and
Euclidean geometric distance (EGD) [4]. Fixed thresholding
methods, however, are not flexible for different sky conditions
and sky imagers [1]. Alternatively, an adaptive thresholding
method based on the Otsu algorithm was investigated [5]. In
addition, Cazorla et al. proposed a model based on a neural net-
work for cloud detection [6]. Although these methods achieved
good performance in their corresponding circumstances, they
mostly acknowledged that thin cloud detection remained a
challenge [1], [3]–[6].

Thin cloud refers to a form of cloud that is light and
somewhat transparent with low optical depth, such as a cirrus
cloud. Fig. 1(c) shows an example of a thin cloud image.
Thin cloud images have the following characteristics. First, thin
cloud images have relatively low contrast between cloud and
sky elements, unlike many other cloud genera. There is often
an overlap between the distribution of sky and that of cloud
within a single feature space. We compute the distribution of
cloud and that of sky in our ground-truth data set (details about
the data set are in Section IV) for the three features, namely,
normalized blue/red ratio [5], saturation [3], and EGD [4], and
show the distributions in Fig. 2. We observe notable overlaps
between cloud and sky in all the three feature spaces. It implies
that linear thresholding algorithms are not capable of accurately
detecting thin cloud. As a result, nonlinear discriminative mod-
els in a higher feature space should be considered.

Second, thin cloud images are often piecewise smooth with
a small number of regions, although there can be outliers
caused by complicated sky conditions and electronic noise. In
a piecewise smooth image, a pixel is not independent of others.
On the contrary, it tends to have the same class (referring to
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Fig. 2. Distributions of cloud and sky in three feature spaces. (a) Normalized
blue/red ratio, (b) saturation, and (c) EGD.

cloud or sky in our context) with its neighboring pixels. Such
a spatial constraint, usually modeled by Markov random fields
(MRFs) [7], is proved to be useful for image segmentation, such
as synthetic aperture radar image segmentation [8]. Therefore,
we argue that thin cloud detection should take advantage of a
smoothness constraint.

Cloud detection is essentially an application of image seg-
mentation. Many sophisticated methodologies for image seg-
mentation have been proposed recently, including maximum
a posteriori (MAP)–maximum-likelihood (ML) estimation [9],
hidden MRFs [7], Gaussian mixture model (GMM) [10], nor-
malized cut (NC) [11], and level set (LS) method [12]. Their
usefulness for cloud detection needs to be explored. In the
MAP–ML estimation approach [9], data penalty for observed
pixel features and smoothness penalty for hidden class labels
of pixels are used together to model the probability of an
image, and the MAP estimation and the ML estimation are
iteratively applied to optimize the image segmentation. This
method provides an effective resolution for image segmentation
under the MRF framework.

Motivated by the challenges of thin cloud images and in-
spired by the principle of MAP–ML estimation [9], our work
proposes a thin cloud detection algorithm under the MAP–MRF
framework. In this algorithm, each pixel of a cloud image is
characterized by combined features and modeled by a multi-
variate Gaussian model. The smoothness constraint is coded by
an MRF model as a priori. Thin cloud is finally detected by
minimizing the posterior energy with the iterative MAP–ML
estimation.

The remainder of this letter is organized as follows. The
feature representation is described in Section II. The cloud
detection algorithm is proposed in Section III. Experimental
results are presented in Section IV. Finally, we conclude in
Section V.

II. COMBINED-FEATURE REPRESENTATION

Feature representation of pixels is a fundamental factor
for thin cloud detection. Three features, covering the phys-

ical, visual, and statistical properties, are used together in
this work.

The first feature, denoted ro, is the normalized blue/red
ratio, defined as ro(s) = (b− r)/(b+ r), where b and r are the
intensities of the blue and red channels in the RGB color space
and s is the pixel. While this feature is similar to the popular
blue/red (or red/blue) ratio in [1] and [6], it is more suitable for
adaptive thresholding algorithms [5]. The underlying principle
of this feature comes from the scattering difference between air
molecules and cloud particles. Clear sky is molecular Rayleigh
scattering and scatters more blue light than red light, whereas
cloud particles scatter the blue and red light almost equally
[13]. Therefore, clear sky appears blue with high ro, and cloud
appears white or gray with low ro.

The second feature takes the value of the saturation com-
ponent of the hue–saturation–intensity color space as used in
[3]. It is defined as sa(s) = 1− 3×min(r, g, b)/(r + g + b).
Generally, cloud has low sa, whereas clear sky often has high
sa according to human visual perception.

The third feature is EGD defined as the distance between the
color vector (r, g, b) of a pixel and the diagonal of the RGB
cube [4]. EGD ed(s) is given by

ed(s) =

√
r2 + g2 + b2 − (r + g + b)2

3
.

This feature is supported by a statistical observation that
cloud pixels distribute linearly and closely parallel to the di-
agonal of the RGB cube, whereas sky pixels locate farther from
the diagonal. That is, cloud often has low ed while clear sky has
high ed.

As shown in Fig. 2, a single feature was incapable of dis-
tinguishing cloud from sky for thin cloud images. Hence, we
combine the three features and characterize a pixel s by a 3-D
vector

F (s) = (ro(s), sa(s), ed(s)) . (1)

Note that ro(s), sa(s), and ed(s) range in [−1, 1], [0, 1],
and [0, 208], respectively. They are all linearly rescaled to the
interval [0, 255].

III. CLOUD DETECTION BASED ON MRF MODEL

We describe the other aspects of cloud detection: the proba-
bility model of cloud images under the MAP–MRF framework
and the cloud detection algorithm using MAP–ML estimation.

A. Probability Model of Cloud Images

Let S be a finite index set corresponding to N pixels of an all-
sky image. Let F = {Fs|s ∈ S} denote any family of observed
pixel features and C = {Cs|s ∈ S} be an unknown configura-
tion of class labels of pixels with Cs ∈ {0, 1} in which label 1
represents cloud and label 0 represents sky. According to the
MAP–MRF principle [7], the posterior probability P (C|F ) of
a configuration C given the image features F can be written
as P (C|F ) ∝ P (F |C)P (C), where P (F |C) is the likelihood
function and P (C) denotes the prior probability modeled by
MRFs in the next.
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Likelihood function P (F |C) is modeled by a Gaussian dis-
tribution. We adopt the typical assumption that random feature
vectors Fs are conditionally independent given their class labels
Cs, i.e.,

P (F |C) =
∏
s∈S

P (Fs|Cs). (2)

The conditional distribution P (Fs|Cs) is defined using the
data penalty function [9] as follows:

P (Fs|Cs) ∝ exp (−D (Fs, φ(Cs))) (3)

where φ(Cs) is the parameter vector denoting class features of
label Cs and is described by a 3-D vector

φ(Cs) =
(
ro(Cs), sa(Cs), ed(Cs)

)
. (4)

The data penalty function D(Fs, φ(Cs)), which measures the
penalty of a pixel s labeled with Cs for a given φ(Cs), is defined
as

D (Fs, φ(Cs)) = ‖Fs − φ(Cs)‖2

= (ro(s)− ro(Cs))
2 + (sa(s)− sa(Cs))

2

+
(
ed(s)− ed(Cs)

)2
. (5)

The data penalty function essentially measures the Euclidean
distance between the pixel feature Fs and the class feature
φ(Cs). A larger distance leads to a lower probability of des-
ignating pixel s to a class Cs. Substituting (5) into (3), we find
that P (Fs|Cs) is a Gaussian distribution which takes the mean
φ(Cs) and the unit covariance.

Second, we assume that a class configuration C is an MRF
since all-sky images are almost piecewise smooth. Based on
the Potts model and the eight connectivities [7], we describe
the distribution of MRF C as

P (C) ∝ exp

⎛
⎝−

∑
s∈S

∑
t∈N(s)

Vs,t(Cs, Ct)

⎞
⎠ (6)

where N(s) is the eight-pixel neighborhood of the pixel s.
Vs,t(Cs, Ct) denotes the clique potential function, which de-
fines a smoothness penalty [9] of the clique (s, t) using a
generalized Potts model as

Vs,t(Cs, Ct)=c

(
exp

(
−D(Fs, Ft)

μ

))
(1−δ(Cs, Ct)) (7)

where D(Fs, Ft) denotes the Euclidean distance between fea-
tures of s and t as in (5) and μ denotes the mean of the
distance of neighboring pixels in the whole image. δ(·) is the
Kronecker delta function, i.e., δ(Cs, Ct) is one if Cs = Ct and
zero if otherwise. As a result, the penalty function Vs,t(Cs, Ct)
enforces the spatial smoothness. If Cs and Ct are not equal, a
penalty will be imposed. However, if the distance D(Fs, Ft) is
larger, the penalty will be smaller. Therefore, s and t tend to be
labeled differently and form a boundary.

In terms of weight c that is used to tune the significance of
the smoothness penalty, it is not easy to determine directly [7].

Based on our experiments, we determine that it can be a good
choice to adaptively set c in order to put the smoothness penalty
the same significance as the data penalty and set

c =

∑
s∈S

|D (Fs, φ(0))−D (Fs, φ(1))|

αN
(8)

where α is a positive constant.
Finally, the posterior probability of P (C|F,Φ) given the ob-

served features F can be derived by (2), (3), and (6) according
to Bayes’ rule as

P (C|F,Φ) ∝
∏
s∈S

exp (−D (Fs, φ(Cs)))

× exp

⎛
⎝−

∑
s∈S

∑
t∈N(s)

Vs,t(Cs, Ct)

⎞
⎠ . (9)

Taking the negative logarithm of (9), we get the following
posterior energy function:

E(C,Φ) =
∑
s∈S

D (Fs, φ(Cs)) +
∑
s∈S

∑
t∈N(s)

Vs,t(Cs, Ct).

(10)

Under the MAP framework, the goal of cloud detection is,
given the features F , to determine the class configuration C that
maximizes the posterior probability in (9). It can be shown that
maximizing P (C|F,Φ) is equivalent to minimizing the poste-
rior energy E(C,Φ). In the next section, we will present the
cloud detection algorithm by minimizing the posterior energy.

B. Cloud Detection Algorithm Using MAP–ML Estimation

Class labels C and model features Φ = {φ(0), φ(1)} in (10)
are unknown, and they are strongly interdependent. In the
literature, parameter estimation for such model is regarded
as “incomplete-data” problem. Many techniques have been
proposed to address this problem, such as the expectation–
maximization algorithm [10] and iterative MAP–ML estima-
tions [9]. Here, the MAP–ML estimation is adopted because it
is more suitable for energy minimization.

First, if Φ is known, the optimal class configuration Ĉ, which
minimizes the posterior energy in (10) according to the MAP
principle, is given by

Ĉ = argmin
C

E(C,Φ). (11)

It is difficult to achieve the global optimal Ĉ. Usually, it is
obtained using a Markov-chain Monte Carlo method [7] and
a graph cut algorithm [9]. Such methods, however, require a
large amount of computation. Alternatively, approximate op-
timal solution can be efficiently achieved by well-established
methods [7]. We adopt the iterated conditional mode (ICM)
algorithm [14], which uses a greedy strategy in the iterative
local minimization procedure and often achieves a convergence
after only a few iterations.

Second, if the class configuration C is given, the optimal Φ
should minimize E(C,Φ) with the principle of ML estimation.
Since D(Fs, φ(Cs)) is a quadratic function and Vs,t(Cs, Ct) is
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Fig. 3. Class configurations are updated during the iterative optimization.
(From left) Original image, initial class configuration by adaptive thresholding,
middle class configuration, and final class configuration.

independent of Φ, a closed-form solution for Φ can be obtained
as follows:

φ(i) =
1

Cnt(i)

∑
Cs=i

F (s) (12)

where Cnt(i) denotes the number of pixels labeled with i.
Finally, given the estimation Cn and Φn for the nth iteration,

Cn+1 and Φn+1 can be iteratively estimated by

Φn+1 = argmin
Φ

E(Cn,Φ) (13)

Cn+1 = argmin
C

E(C,Φn+1). (14)

Note that initialization of C can be obtained by thresholding
algorithms [1], [3]–[5].

As a summary, the cloud detection algorithm, based on the
combined features and the MAP–ML estimation, is described
as follows. In our experiment, T = 0, and Itmax = 50.

Algorithm 1 Cloud Detection
Input: an RGB cloud image, the convergence threshold T ,
and the maximum number of iterations Itmax.
1) Extract the features F according to (1).
2) Initialize C0 using the Otsu thresholding algorithm [5].
3) Iterative optimization.
3.1) Update Φn+1 in (13) using (12) and the current Cn.
3.2) Estimate Cn+1 in (14) using the ICM algorithm [14] and
the updated Φn+1.
If Ham(Cn+1, Cn) ≤ T , where Ham(·) denotes the
Hamming distance and T is the convergence threshold, or
Itmax is reached, go to the output step; otherwise, go to
step 3.
Output: the class configuration C.

Fig. 3 shows examples of class configurations C for the
initial, midpoint, and final estimations. This figure demonstrates
that our algorithm can refine cloud regions with the assistance
of the spatial smoothness constraint and the Gaussian model in
the 3-D feature space.

TABLE I
SUBJECTIVE EVALUATION ON THE DATA SET

IV. EXPERIMENTAL RESULTS

The all-sky images used in this experiment were obtained
by the whole-sky cameras (WSCs) [shown in Fig. 1(a)] which
are located in Beijing (39.80◦ N, 116.47◦ E) and Conghua
(23.57◦ N, 113.62◦ E), China, during the periods of May
2009 to June 2010. Because we focus on the cloud detection
algorithm for thin cloud images, the zenith square area which
is recognized as typical thin cloud by an expert is considered
and cropped. In addition, some thin cloud images, which are
manually acquired by several photographers with regular digital
cameras, are also considered to increase the diversity of the
image set. A data set with 200 images (resized to 200 ×
200) is constructed to evaluate the performance; furthermore,
40 typical thin cloud images are selected and manually seg-
mented into binary masks by the expert, and these 40 images
are utilized as the ground truth.

The algorithms that we compared in our experiments include
the following: fixed thresholding [1], adaptive thresholding [5],
GMM [10], LS method [12], and NC [11]. The feature used in
fixed thresholding, adaptive thresholding, and LS is ro defined
earlier; the features defined by (4) are applied for GMM, NC,
and our method. The threshold in the fixed thresholding method
is set to 0.20 that is the best value after an exhaustive search in
[0.1, 0.5] with a step of 0.02. The GMM and LS are initialized
with the adaptive thresholding [5] just as our algorithm. The
NC algorithm keeps the same as in [11] except that the features
are replaced by (4) and the parameters are set as σI = 1, σX =
15, and r = 10. The parameters of LS are the default values in
[12], and the number of iterations is 300. In our algorithm, the
parameter α is set to α = 8. Note that similar results can be
achieved with α ∈ [6, 10].

A. Subjective Evaluation

We first visually evaluate the detection results. There are two
reasons to estimate subjectively. First, some thin cloud images
are too wispy to precisely generate ground truth, for example,
cirrus fibratus is such a kind of clouds that are fibrous and
curved like a mare’s tail. Second, it is better to allow variation of
criteria for cloud detection since thin cloud images have rather
vague boundaries. Three experts who are experienced in cloud
observation are asked to estimate the detection results. Each
evaluator marks every detected result in the data set with a
label, namely, good, medium, or bad, and records the number of
results labeled with good (Ng), medium (Nm), and bad (Nb).
The average numbers Ng , Nm, and N b of the three evaluators
are applied to measure the performance of the algorithms.

The values of Ng , Nm, and N b for the six algorithms are
given in Table I. From these results, we can see that our algo-
rithm outperforms the other approaches because it obtains the
largest Ng and the smallest N b. Among the other algorithms,
LS and adaptive thresholding achieve a close performance to
our algorithm, and NC is the worst.
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Fig. 4. Examples of the detection results with the six methods. The results
of our method in the top three rows are labeled with good, while those of the
fourth and the fifth rows are graded with medium and bad, respectively.

TABLE II
AVERAGE ACCURACY FOR THE SIX ALGORITHMS ON THE DATA SET

Fig. 4 shows some examples of the detection results. We have
the following observations. The fixed thresholding method is
not flexible for thin clouds. For example, the threshold is too
small for the image in the first row, whereas it is too large for the
one in the second row. NC tends to partition an image into re-
gions of similar sizes and gives the worst segmentation mostly.
The results generated by LS, adaptive thresholding, and GMM
are exaggerated and noisy, although they visually obtain better
results than fixed thresholding and NC. This is because adaptive
thresholding and GMM ignore the spatial information, and LS
takes only one feature into account although it considers spatial
information. Our method takes spatial constraint and combined
features into account and achieves compact and precise cloud
regions in most cases as the top three rows. We noticed that our
method has a risk of shrinking the cloud elements when they
are too thin, as shown in the fifth image.

B. Objective Evaluation

To quantitatively compare the detection results, accuracy is
applied to measure the performance of the algorithms. Accu-
racy is defined as Ac = (TP + TN)/Nall, where TP denotes
the number of correctly detected cloud pixels, TN shows the
number of correctly detected sky pixels, and Nall is the number
of pixels in the detected image.

The average of the accuracy values for the six algorithms
is given in Table II. We can observe that, by taking advan-
tage of both the combined-feature space and spatial contextual
information, our method is more accurate than the other five
approaches. Among the other algorithms, LS, adaptive thresh-

olding, and GMM achieve close accuracy to our method, and
NC gives the worst performance.

V. CONCLUSION

This letter has put forward a thin cloud detection algorithm
based on the MAP–MRF framework, taking combined fea-
tures and spatial contextual information into account. In this
algorithm, each pixel is represented by the combined features,
including normalized blue/red ratio, saturation, and EGD, and
the distribution of the observed features for a class is modeled
by a multivariate Gaussian distribution. In addition, the spatial
contextual information is coded with a generalized Potts model
in the MRF framework. Cloud detection is formulated as a
labeling problem, for which thin cloud is detected by minimiz-
ing the posterior energy with the MAP–ML estimation. Both
the subjective and objective evaluation results verify that our
algorithm is more accurate than some other methods.
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