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Abstract—Weather forecasting is a problem where an enor-
mous amount of data must be processed. Severe storms cause a
significant amount of damages and loss every year in part due to
the insufficiency of the current techniques in producing reliable
forecasts. We propose an algorithm that analyzes satellite images
from the vast historical archives to predict severe storms. Con-
ventional weather forecasting involves solving numerical models
based on sensory data. It has been challenging for computers to
make forecasts based on the visual patterns from satellite images.
In our system we extract and summarize important visual storm
evidence from satellite image sequences in a way similar to how
meteorologists interpret these images. Particularly, the algorithm
extracts and fits local cloud motions from image sequences to
model the storm-related cloud patches. Image data of an entire
year are adopted to train the model. The historical storm reports
since the year 2000 are used as the ground-truth and statistical
priors in the modeling process. Experiments demonstrate the
usefulness and potential of the algorithm for producing improved
storm forecasts.

Keywords—satellite image; storm weather forecast; optical flow;
vorticity; random forest.

I. INTRODUCTION

Weather forecasting is a big data task. Different types
of sensors are continuously collecting meteorological mea-
surements globally, e.g., temperature, air pressure, and wind
speed, making the data to be analyzed enormous. Additionally,
there are large archives of past meteorological observations. If
both the current and the past data can be properly leveraged,
weather forecasting can be made more reliable and accurate.
However, it is challenging for computers to interpret the
meteorological data and eventually transform them to weather
forecasts because the weather system is highly complex and
chaotic. In this work, we focus on the prediction of severe
storms based on the processing and analysis of current and
past satellite image data. The system we develop can efficiently
process a very large quantity of satellite data and provide
suggestions for storm weather forecasts, aiming at producing
better storm weather forecasts.

A. Background

Extreme weather events, such as thunderstorms, hails, hur-
ricanes, and tornadoes, cause a significant amount of damage
every year worldwide. In the United States, it is reported by the

National Climate Data Center (NCDC)' that there are eleven
extreme weather events with at least a billion dollars’ loss in
2012, causing a total of 377 deaths, which is the second most
disastrous year in the recorded history. That said, much of the
loss was due to a lack of proper precautions and could be
avoided with a reliable severe weather warning system.

Though meteorologists dedicate to making accurate
weather forecasts with advanced computational technologies,
the long-term prediction of severe storms is still not sufficiently
accurate or reliable. In weather forecasting, computers are
commonly applied to solve numerical models about weather
systems, which are in essence partial differential equations
(PDEs) that calculate the future conditions of a weather system
from an initial condition. Due to the nonlinear and chaotic
nature of numerical models, some tiny noises in the initial
values can result in large differences in the predictions. This
is commonly known as the butterfly effect. As a result, although
nowadays powerful computers are used to run complex numer-
ical models, it is difficult to get accurate predictions, especially
in mid-to-long-term forecasting.

The numerical methods can efficiently process large
amounts of meteorological measurements. However a major
drawback of such methods is that they do not interpret the
data from a global point of view at a high cognitive level.
For instance, meteorologists can make good judgments of the
future weather conditions by looking at the general cloud
layout and developing trend from a sequence of satellite cloud
images using domain knowledge and experience. Numerical
methods do not capture such high-level clues. Additionally,
historical weather records provide valuable references for
making weather forecasts, but numerical methods do not make
good use of them. To address the weakness of numerical mod-
els, we develop a computational weather forecasting method
that takes advantage of both the global visual clues of satellite
data and the historical records.

We analyze the satellite imagery because it provides im-
portant clues for meteorologists as they manually inspect
global weather systems. Unlike conventional meteorological
measures such as temperature, humidity, air pressure, and wind
speed, which directly reflect the physical conditions at the
sensors’ locations, the visual information in the satellite images
is captured remotely from the orbit, which offers a larger
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geographic coverage and finer resolution. The brightness in
a satellite image indicates the reflectivity (or transparency)
of the atmosphere, hence reveals the cloud appearance and
distribution above the observed area. Manually interpreting
such visual information, meteorologists can trace the evidence
corresponding to certain weather patterns, particularly those
related to severe storms. Moreover, many storm patterns are
perceptible in the early stage of the storm development. As
a result, the satellite imagery is highly helpful in weather
forecasting.

Human eyes can effectively capture the visual patterns
related to different types of weather events. The interpretation
requires high-level understanding of the related meteorological
knowledge, making it difficult for computers. However, there
is an emerging need for a computerized way to automatically
analyze the satellite images due to the broad spatial, temporal,
and spectral coverage of the satellite data whose volume is
too large to be processed manually. Researchers are seeking
for computer vision algorithms to automatically process and
interpret visual features from the satellite images, aiming at
helping meteorologists make better weather analysis and fore-
casts. Traditional satellite image analysis techniques include
cloud detection with complex backgrounds [1], cloud type
classification [2], [3], detection of cloud overshooting top [4],
[5], and tracking of cyclone movement [6]. These approaches,
however, only capture local features that reflect the current
condition of weather systems in a relatively small region, and
overlook global visual patterns and their development over
time, which provide powerful clues in weather forecasting.

With the development of advanced computer vision al-
gorithms, some recent techniques put more focus on the
analysis of cloud motion and deformation [7], [8], [9]. In
these approaches, cloud motions are estimated to match and
compare cloud patches between adjacent images in a sequence.
In this paper, our proposed algorithm also applies cloud motion
estimation in image sequences. We believe it is novel because
it extracts and models certain patterns of cloud motion, in
addition to capturing the cloud displacement.

With the support from the domain experts in our team,
we developed a system that extracts some high-level visual
features from satellite image sequences, which simulates me-
teorologists’ cognitive process as they review the satellite
images. In particular, we focus on the detection of mid-latitude
storms in the Continental United States because of the data
availability and emerging demands and interests for reliable
storm prediction in this area. Experiments show these features
we extract can indicate the occurrences of severe storms.

Historical satellite data archives as well as meteorological
observations are available in recent years. Through analyzing
large amount of past satellite images and inspecting the his-
torical weather records, our system takes advantage of the big
data to produce storm alerts based on an image sequence. The
result provides an alternative prediction that can validate and
complement the conventional forecasts. It can be embedded
into an information fusion system, as suggested in [10], to
cooperate with data and decisions from other sources and
produce improved storm forecasts.

B. The Dataset

In our research, we adopt the data of the GOES-M satellite
imagery for the entire year of 20082, which was in an active
severe weather period containing abundant storm cases for us
to analyze. The GOSE-M satellite moves on a geostationary
orbit and was facing to the North America area during that
year. In addition to the imagery data, each record contains
navigation information, which helps us map each image pixel
to its actual geo-location. The data is multi-spectral and con-
tains five channels covering different ranges of wavelengths,
among which we adopt channels 3 (6.5-7.0m) and 4 (10.2-
11.2pm) in our analysis because these two infrared channels
are available all-day. Both channels are of 4 km resolution and
the observation frequency is six records per hour, i.e., about
ten minutes between two adjacent images. In order to let two
adjacent images in a sequence have noticeable differences, we
sample the original sequence and use a subsequence with two-
frames-per-hour frame rate. In the rest of paper, every two
adjacent images in a sequence are assumed to be 30 minutes
apart unless specified otherwise.

Using the imagery and navigation data blocks in each raw
data entry, we reconstruct satellite images by an equirect-
angular projection [11]. The pixel mapping from the raw
imagery data to the map coordinate is computed by the
navigation data with transformation defined in the NOAA
ELUG manual [12]. The map resolution is set to be 4 km
per pixel, which best utilizes the information of the raw data.
We reconstruct the aligned images within the range of 60°W
to 120°W in longitude and 20°N to 50°N in latitude, which
covers the Continental US area. Hereafter all the image-related
computation in our approach is performed on the reconstructed
images, on which the geo-location of each pixel is directly
accessible.

To relate the satellite data with severe storms, we retrieved
the storm report data from the NOAA National Weather
Service?, where the time and locations of all storms inside the
United States since the year of 2000 are listed. The records
act both as the ground-truth data in the training, and provide
geographical and temporal statistical priors for the system in
making decisions.

C. Storm-related Visual Signatures

We selected several days in the year of 2008 that have
frequent storm activities and let meteorologists review the
satellite images on these days. They pointed out several types
of important visual evidence they used to detect and locate
severe storms, particularly during the development of the
storms. We summarize these clues for developing an algorithm
that simulates the cognitive process of the experts.

One important atmospheric activity that the clouds can
imply is the jet stream. Jet streams are the fast flowing of
the air at a high altitude of the atmosphere. They travel along
the boundary between cold and warm air masses, where severe
storms usually happen. A jet stream moves in a meandering
path in the mid-latitude zone from west to east, which is caused

>The satellite imagery is publicly viewable and the raw data archive
can be requested on the website of US National Oceanic and Atmospheric
Administration (NOAA).
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Fig. 1.
on February 5, 2008. The boxed area underwent a severe thunderstorm later
on that day. The jet stream (marked in dashed curve) can be implied from the
distribution of clouds. The storm area is covered by a comma-shaped cloud
patch (surrounded by dashed boundary) in the trough region.

A sample GOES-M satellite channel 4 image taken at 16:02 (GMT)

by the Coriolis effect of the atmospheric circulation [13]. In
the north hemisphere an elongated cold air mass with low
pressure, namely a “trough”, lies in the north side of a jet
stream and to the south side there is warm and humid air
with high pressure called “ridge”. Because jet streams are
flowing eastward, the east side of a trough, which is near
the southwest-northeast directional part of a jet stream, is the
region of active atmospheric activities, where cold and warm
air masses collide. Though jet streams themselves are invisible,
they can be detected by thick cumulus clouds gathering in
trough regions. As a result, an elongated cloud covered area
along the southwest-northeast direction is a useful large-scale
clue for us to locate storms. Fig. 1 shows a GOES-M channel 4
image taken on February 5, 2008. Clearly in the mid-latitude
region the south boundary of the cloud band goes along a
smooth curve, which indicates the jet stream (marked in dashed
line). Usually the cloud-covered areas to the northwest side of
such easily-perceivable jet stream are susceptible to storms.
In this case, a severe thunderstorm started in the boxed area
in the figure two hours after the observation. Based on our
experience, the majority of storms in North America follow
similar cloud appearances to this example. As a result, jet
stream is a basic clue for storm prediction [14].

A jet stream travels along a large-scale meandering path,
whose wavelength is about 60 to 120 degrees of longitude long,
as wide as a whole continent. The path is therefore usually
referred to as the long wave. The trough bounded by the long
wave only tells us a generally-large region that is susceptible
to storms. To locate individual storm cells more precisely,
meteorologists seek for more detailed shape variations, namely
short waves encapsulated in the long wave. Short waves reflect
the local directional variation of a jet stream, usually in a
scale of 1,000 to 4,000 kilometers. In a satellite image, short
waves can be recognized by clouds in “comma shapes” [15],
i.e., such cloud has a round shape due to the circular wind
in its vicinity and a short tail towards the opposite direction
of its translation. A comma-shaped cloud patch indicates an
turbulent area of convection, which may trigger a storm if it
lies on the boundary between cold and warm air masses. In
Fig. 1, the marked storm area lies in the tail of a comma-
shaped cloud patch, where the cold and warm air masses from

both sides of the jet stream interact with each other to create
turbulence and strong convective activities. To sum up, the
short waves, or comma shapes, are the local cloud patterns
that meteorologists utilize to locate and track mid-scale storms
from satellite images.

The aforementioned visual cloud patterns can be detected
from a single satellite image, though they are all results of the
atmospheric motions. However, a single image is insufficient
in delivering all the crucial information about the dynamics of
storm systems. The cloud shapes are not always evident due
to the nonrigid nature of clouds. In addition, the developing
of storm systems, such as the cloud emerging, disappearing,
and deformation, cannot be revealed unless different satellite
images in a sequence are compared.

In practice, meteorologists need to review a series of
images, rather than a single one, to make a forecast. They
use the differences between the key visual clues (e.g., key
points, edges) to track the development of storm systems and
better locate the jet streams and comma shapes. Particularly,
two types of motions are regarded crucial to the storm visual
patterns: the global cloud translation with the jet stream,
and the local cloud rotations producing comma shapes. We
consider both types of motions in our storm detection work.

II. STORM FEATURE EXTRACTION

As introduced above, the cloud motion observed from a
satellite image sequence is crucial for storm prediction. In
our approach, we employ the optical flow between every two
adjacent satellite images to capture the cloud motion and
determine dynamic areas potentially to be hit by a storm. In
particular, the rotation, divergence, and velocity of the flow in
a local area are important to model the occurrence of storms.
Fig. 2 illustrates the workflow of the analysis between two
frames in a satellite image sequence. The system first estimates
a dense optical flow field describing the difference between
these two images. After being smoothed by the Navier-Stokes
equation, the flow field is used to identify local vortex regions,
which are potential storm systems. A descriptor is constructed
for each vortex region based on the visual and optical flow
information and the historical storm records. We describe these
steps in detail in the following subsections.

A. Robust Optical Flow Estimation

Optical flow is a basic technique for motion estimation in
image sequences. Given two images I;(x,y) and I;q(z,vy),
the optical flow Fy(z,y) = {Uy(x,y), Vi(z,y)} defines a map-
ping for cach pixel g : () — (z + Ur(w,y),y + Vi(x.y)),
so that I,(g(z,y)) = Iip1(z,y). The vector field Fy(z,y) can
therefore be regarded as the pixel-wise motions from image
Ii(z,y) to Ity1(z,y). Several approaches for optical flow
estimation have been proposed based on different optimization
criteria [16], [17], [18]. In this work we adopt the Lucas-
Kanade algorithm [19] to estimate a dense optical flow field
between every two neighboring image frames.

Because the image sequences are taken from a geosta-
tionary satellite, what moves along a sequence are actually
the clouds as the background remains static persistently. The
nonrigid and highly dynamic nature of clouds makes the
optical flow estimation noisy and less accurate. Fig. 3(a) shows
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Fig. 2. The workflow of storm signature extraction. Local regions with strong rotational cloud movements are extracted and described. To locate such regions,
for each frame in a satellite image sequence, the optical flow compared with the previous frame is estimated. The optical flow is smoothed and decomposed,
and the properties of the flow field are used to identify vortex cores which are potentially to be storm cells. The visual information from the image and optical
flow, and the historical storm records, are used to build the descriptor for each extracted vortex core.

the optical flow estimation result of a satellite image in respect
to its previous frame in the sequence*. Though the result
correctly reflects the general cloud motion, flows in local
areas are usually noisy and do not precisely describe the local
motions. As to be introduced later, the optical flow properties
adopted in this work involve the gradient operation of the flow
field. Thus it is important to get a reliable and smooth optical
flow estimation. To achieve this goal, we both pre-process
the images and post-process the estimation results. Before
applying the Lucas-Kanade algorithm between two images,
we first enhance both of them by the histogram equalization
technique [20]°. As a result, more fine details on the images
are enhanced for better optical flow estimation.

Then we smooth the estimated optical flow by applying an
iterative update operation based on the Navier-Stokes equation
for modeling fluid motions. Given a flow field F(z,y), the
equation formulates the evolving of the flow over time ¢:

F . _ L
87 (-F-V)F +vV?F + f, )

—

where V = (2,
of the fluid, and
location (z,y).

=

a%) is the gradient operator, v is the viscosity
f(z,y) is the external force applied at the

The three terms in Eq. (1) correspond to the advection,
diffusion, and outer force of the flow field, respectively. In the
method introduced in [21], an initial flow field is updated to a
stable status by iteratively applying these three transformations
one-by-one. Compared with a regular low-pass filtering to the
flow field, this approach takes into account the physical model
of fluid dynamics, therefore better approximates the actual
movements of a flow field. We adopt a similar strategy to
smooth the optical flow in our case. The initial optical flow
field Fi(x,y) is iteratively updated. Within each iteration the

4The optical flow is computed by information from both frames but drawn
on the latter image frame.

SEach channel is enhanced separately. On a certain channel, a same
equalization function (estimated from the first frame of the sequence) is
applied to both images so that they are enhanced by a same mapping.

time is incrergented by a small igterval At, and there are three
steps to get Fiyae(z,y) from Fi(x,y):

1)  Add force: Fi(}r)m = F; + fAt;
2)  Advect: ]5;(?& = adv( _'t(}r)m, —At);
3)  Diffuse: Fyiny = FFT Y FFT(FD,,)e kA1),

The first step is simply a linear increment of the flow
vectors based on the external force. In the second step, the
advection operator adv(-) uses the flow F}, \,(x,y) at each
pixel (z,y) to predict its location (z;— ¢, yr—ar) At time ago,
and updates Ft(i)At(x,y) by F”t(i)m(mt,m,yt,m). The last
diffusion operation is a low-pass filter applied in the frequency
domain, where k is the distance from a point to the origin,
and the bandwidth of the filter is determined by the pre-
defined fluid viscosity value and At. We do not enforce the
mass conservation as the approach in [21] because the two-
dimensional flow field corresponding to the cloud movement
is not necessarily divergence free. In fact we use the divergence
as a feature for storm detection (to be discussed later), so it is
conserved in the estimation process of the stable optical flow.

After several iterations of the above update, the flow field
converges to a stable status and is smoother. The iteration
number is typically not large, and we find that the final result is
relatively insensitive to the parameters v and At. In our system
we set the iteration number to 5, the fluid viscosity v to 0.001,
and time interval At to 1. The noisy optical flow estimation
from the previous stage is treated as the external force field f,
and initially F; = 0. Fig. 3(b) shows the smoothed flow field
(i.e., Fi15A¢) from the noisy estimation (Fig. 3(a)). Clearly the
major motion information is kept and the flow field is smoother
for the subsequent analysis.

B. Flow Field Vortex Signatures

As introduced in Sec. I-C, the rotation and divergence of
local cloud patches are two key signatures for storm detection.
They are computed from the robust flow field estimated based
on two adjacent image frames. In a flow field, these two
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Fig. 3. Sample results of the optical flow analysis. Between two adjacent frames (with 30-minute interval) in a satellite image sequence, the optical flow from
the former frame to the latter one is estimated and processed. The results are plotted on the second frame. (a) The optical flow estimated by the Lucas-Kanade
algorithm. (b) The smoothed optical flow by applying an iterative update based on the Navier-Stokes equation. (c) The divergence-free component of the smoothed
flow field. (d) The vorticity-free component of the smoothed flow field. (e) Visualization of the vorticity. Vorticity vectors of the 2D flow field are perpendicular
to the image plane. Pixels with vorticity vectors toward the viewer (counterclockwise rotations) are tinted in green color; and the pixels with vorticity away
from the viewer (clockwise rotations) are tinted in red color. The saturation of color means the magnitude of the corresponding vorticity vector. (f) Vortex core
regions detected by the -criterion. Vortex cores are drawn in opaque color and stroked in black lines. Surrounding region around each vortex core (tinted in
transparent color) has similar vorticity magnitude to the vortex core and composes a candidate storm system together with the core.

types of motions are embodied by the vorticity and divergence. and the divergence is defined as:
Denote F'(x,y) as the flow field, the vorticity of the field is .= P
defined asg v Y divF(z,y) =V aF(ﬂg Y)
5= x Fe) (3 5) W V)
Y U 1% 0 ou(x,y) | OV (x,y)
<8x»8y7 82) X ( (xay)’ (l’,y), ) (2) = am _|_ ay .
_(V(z,y) OU(zy)\ .
- or oy ’ It is proved that for a rigid body, the magnitude of vorticity

at any point is twice of the angular velocity of its self
rotation [22] (the direction of the vorticity vector indicates
the rotation’s direction). In our case, even though the cloud
is nonrigid, we take the vorticity at a certain point as an



approximate description of the rotation of its neighboring
pixels.

To better reveal the rotation and divergence, we apply
the Helmholtz-Hodge Decomposition [23] to decompose the
flow field to a solenoidal (divergence-free) component and
a irrotational (vorticity-free) component. Figs. 3(c) and 3(d)
visualize these two components respectively. On both figures,
areas where plotted vectors overlap significantly are locations
with high vorticity or divergence because the flows change
directions quickly and collide with the neighboring vectors.

The divergence-free component of the flow field is useful
for detecting vortexes. On this component, we inspect the local
deformation tensor

e aU/aa;
OU/ay

ov /Ba::| 7

OV/ay

which can be decomposed into the symmetric (strain) part
S = %(Vﬁ—&—VﬁT) and the asymmetric (rotation) part
Q = %(Vﬁ — VFT). The Q-criterion introduced by Hunt
et al. [24] takes the difference of their norms:

1 1 1
— QN2 — 2 _ o2 2 2 4
Q = UIQl” = ISI%) = lI=l” = IS0, (4)

where || - || is the Frobenius matrix norm. The ()-criterion
measures the dominance of the vorticity. When @ > 0,
i.e., the vorticity component dominates the local flow, the
corresponding location is regarded to be in a vortex core
region. Fig. 3(e) and Fig. 3(f) visualize the vorticity and Q-
criterion of the flow field in Fig. 3(c). In Fig. 3(e), pixels
are tinted by the corresponding magnitude of vorticity, and
different colors mean different directions of the local rotations.
In Fig. 3(f) the vortex cores where () > 0 are drawn in opaque
colors inside of the surrounding high-vorticity regions. Clearly
only locations with dominant vorticity component are selected
by the Q-criterion. Also it is observed that these locations are
more prone to be inside the storm area highlighted by yellow
boundaries than the removed high-vorticity regions.

C. Storm Candidate Detection and Description

Typically regions where ) > 0 are scattered small cells on
the map. These cells correspond to the locations where rotating
motion is more significant than translation. They are typically
centers of vortexes. In fact, the neighboring pixels of each
cell also have strong vorticity (though not dominant enough
to be recognized as a vortex core) and are part of the vortex
system. We include the neighboring pixels together with each
@ > 0 cell to describe a rotating cloud patch. In Fig. 3(f), we
color the neighboring pixels with similar vorticity intensities
around each vortex core. In practice, the surrounding regions of
vortex cores, which are near the boundaries of storm systems,
are places where storms tend to occur. Expanding each vortex
core in this way, we can better describe a storm system. In
fact, vortex cores with their expansion areas compose comma
shapes described in Sec. I-C, so they are properly regarded as
basic objects for storm detection.

Not all the regions extracted by the ()-criterion are related

TABLE 1L FEATURES USED IN THE VORTEX CELL DESCRIPTOR

Notation! Explanation
Q(z,y,t) Q-criterion (see Eq. (4))
I®) (z,y,t) Image channel 3 brightness
JiS (z,y,t) Image channel 4 brightness
| F(z,y,t)] Magnitude of optical flow
0(x,y,t) Direction of optical flow
w(z,vy, t)2 Vorticity on the solenoidal flow component
div(z, y, t) Divergence on the irrotational flow component
plz,y,t) Storm prior computed from historical records

Note:

I Features have values on every pixel (z,y) and ¢ is the date.

2 The vorticity &(z,y) is a vector perpendicular to the image plane. We
therefore use the scaler w(z,y) to represent the vorticity vector. w(x,y) has
same length as &(z,y) and its sign indicates the direction of the vector.
w(z,y) < 0if &(x,y) is pointing toward the viewer.

to storms®. To improve the detection accuracy, we adopted
several crucial features to describe each candidate storm cell.
These features are listed in Table. I. All features are pixel-wise
(i.e., they have values on every pixel). A certain candidate cell
1, (extracted on date t) contains a set of pixels (extracted by
the (Q-criterion and vorticity expansion). We use the maximal
(for Q) or mean (for the rest features) values of these features
inside the cell as its descriptor:

1
X, =
Y el 2

(z,y)€Ye

Ly, (z,y) , &)

where ||, is the area (i.e., number of pixels) of region v,
and

Ty, (z,y) = ( max  Q(z,y,t), I (z,y,t), IV (z,y,1),
(m,y,t)elbt
|F(x,y,t)|],0(x,y,t),w(x,y,t),div(z,y,t),
p(x,y,t))

is the feature vector for each pixel (the first dimension remains
to be the maximal @ across the region).

The first seven dimensions listed in Table I are all visual
features from the raw image or the optical flow analysis. The
last feature p, on the other hand, is a temporal and geographic
storm prior. It is obtained by inspecting the spatial and tempo-
ral distributions of the storms occurred in the Continental US
from the year 2000 to the year 2013 using all the historical
storm records. On each given date of a year (month and day),
we count the occurrence of storms in each US states in the
past 14 years ranging +/-5 days around the date’. Dividing the
numbers by 154 (14 x 11), we obtain the average daily storm
frequency of each state on that date. Denote the average storm
frequency for state R® on date ¢ as 7(R,t) and the area of the
state as o(R). On date ¢, we assign each pixel (x,y) inside

SIn Fig. 3(f) we have no record out of US, so we are not clear whether the
vortex cores in the Canadian area triggered storms. But in the US continent
there are several extracted regions not overlapping with any storm report.

7We assume the priors to be periodical with a period of one year. The prior
on a given day is an average of all observations of neighboring days in all
available periods (years). For example, all the records between Feb 1 and Feb
11 in the years from 2000 to 2013, totally 14 x 11 = 154 days, are used to
compute the average geographical storm priors for Feb 6.

8Variable R is symbolic with 50 possible values, each of which represents
a state in US.



US with a storm prior
T(Ryy, t)
o(Rey)

where R, , is the state contains pixel (z,y)’. Fig. 4 visualizes
the storm priors (inside US) on twelve selected dates. Evidently
the spatial and temporal distributions of storms are uneven.
Therefore, they should also be considered as priors in the
modeling stage.

plx,y,t) =

With X,’s as defined in (5) for all candidate storm cells
constructed, we use machine learning techniques to classify
them into two classes, storm and stormless cells. Only candi-
dates classified as storm cells are predicted as storms in our
system. The false alarms are therefore suppressed. The details
are specified in the next section.

III. STORM SYSTEM CLASSIFICATION AND DETECTION

The vortex core regions with large ) values correspond
to regions with active rotational cloud movements. However,
they are not necessarily related to the occurrence of storms
because the vorticity is only one aspect of the weather system.
In practice, quite a few extracted vortexes do not trigger
storms and generate unnecessary false alarms if we directly
treat them as storm predictions. To enable computers to make
reliable storm detection, we embed the candidate storm regions
and their descriptors into a machine learning framework,
performing training and classification on them. In fact, the
visual signatures extracted above are already useful as assisting
information for making weather forecasts because the sig-
natures numerically measure some properties meteorologists
perceive implicitly. We hope to further automate the process
to help meteorologists make timely weather forecasts.

A. Construction of Training Data

With the GOES-M satellite data covering the North Amer-
ica area in 2008 and detailed storm reports in the same year, we
can assign each candidate storm region in the Continental US
with a ground-truth label. In each month of the year, we adopt
image sequences on the first ten days as the source of training
data. On each selected day, The satellite image sequence starts
from 12:00 pm GMT (7:00 am US Eastern Time) and spans
8 hours with a 30-minute interval between every two adjacent
frames. For every frame (except the first one), the image is
processed in the way as introduced in Sec. II and a collection
of candidate storm region descriptors are obtained.

The ground-truth label for each candidate region is as-
signed by overlaying it to the historical record. On the day
which the image sequence is from, if the region is overlapping
with any state where severe storms are recorded, it is assigned
with a positive label (+1); otherwise a negative label (-1) is
assigned to that region. Because the storm records are all in the
Continental US, we only keep the candidates inside of US for
the training purpose, and discard the regions in other nearby
areas (e.g., Canada, Mexico, Atlantic Ocean) because we do
not have information to assign ground-truth labels to them.

On the 120 selected dates with 15 image frames spanning
8 hours on each day, our algorithm finds 22,313 vortex cores

9For pixels out of US, the prior is set to zero.

TABLE II. CLASSIFICATION PERFORMANCE AND CONTRIBUTIONS OF

VISUAL FEATURES AND HISTORICAL PRIORS

All features | Visual only | Prior only

o Overall 76.2% 60.7% 71.1%

Training set Sensitivity 80.9% 60.7% 71.3%
(cross validation)

Specificity 71.5% 60.7% 70.9%

Overall 76.4% 57.0% 60.6%

Testing set Sensitivity 78.7% 53.7% 66.4%

Specificity 62.1% 58.1% 58.6%

Note: Training set contains 5,876 storm and 5,876 stormless vortex cells
from 120 days in 2008. 5-fold cross validation is performed in the evaluation.
Testing set contains 2,706 storm cells and 7,773 stormless cells from 60
days far away from the training data. The feature vector for each vortex is
composed by both visual features and storm priors (see Section II-C). Beside
the merged features (results shown in the first column), we test the two types
of features separately (results shown in the second and third columns).

as candidate storm regions. Among them 5,876 are labeled as
positive (storm), and 16,437 are negative (storm-less). In the
training stage, we adopt all the positive cases and randomly
sample 5,876 negative cases in order to ensure balanced
training data.

B. Classification

We train a random forest [25] classifier by the training data.
Random forest is an ensemble learning algorithm that makes
predictions by combining the results of multiple individual
decision trees trained from random subsets of the training data.
We choose this approach because it is found to outperform a
single classifier (e.g., SVM). In fact, this strategy resembles the
ensemble forecasting [26] approach in the numerical weather
prediction, where multiple numerical results with different ini-
tial conditions are combined to make a more reliable weather
forecast. For both numerical and statistical weather forecasting
approaches, the ensemble approaches are helpful to improve
the prediction qualities.

The performance of the classifier is listed in Table II.
We evaluate the classifier both on the training set by 5-fold
cross validation and on a testing set. The testing set are
generated from the eighteenth day to the twenty-second day
of each month in 2008 in the same way the training data are
constructed. These selected dates are far away from the dates
where training samples are extracted, hence the testing data
are not directly correlated with the training data (though the
weather systems might have long-term relations). Evidently
the classifier has consistent performances on both the training
set and the testing set. The performance on the testing set is
slightly weaker due to lack of training data in that time period.

To demonstrate the effect of including historical geographic
storm priors in the classification, we also train and test the
random forest classifiers only on the visual features and the
storm priors respectively. The results are shown in Table II.
Clearly none of the visual features and the priors standalone
performs well. Combing visual features with the storm priors
significantly enhances the classification performance.

It is necessary to emphasize that the classification is
performed on those extracted candidate vortex regions where
local clouds are rotating. Most of the cloud-covered regions
on the satellite images without dominant rotational motions
are already eliminated (or classified as non-storm cases) before
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Fig. 4. Average storm densities (number of storms per 10,000 km?) for the fifth day of each month in US continent. Darker color means higher storm density.
The statistics are based on the historical records from 2000 to 2013. Around each given date (+/-5 days), we count the total number of storms reported in each
state across the past 14 years. The numbers are then divided by the total number of days and the areas of corresponding states to calculate the average densities.

the algorithm proceeds to the classification stage. Therefore,
in practice the system achieves a good overall precision for
detecting the storms. Such fact is reflected by the case studies
in the next subsection. In addition, the classification results for
individual vortex regions can be further corrected and validated
based on their spatial and temporal neighboring relationships.

C. Case Study

Using the vortex core extraction algorithm introduced in
Section II and the classifier trained above, we can automate
the process of storm detection from satellite image sequences.
Here we present three case studies to show the effectiveness
of this approach in different scenarios.

We choose satellite image sequences from three dates for
case studies'?. For all cases, the first three consecutive frames
of storm detection results are shown in Fig. 5. The results
are consistent along the following frames in all cases, hence
these three frames are sufficient to demonstrate the result for
each case. On the displayed images, detected storm systems

are filled in red or green color (based on the vorticity vectors’
directions). Those vortex regions which are detected from the
images but classified as negative samples are not filled in color
but stroked in blue lines.

The first example shown on the first row of Fig. 5 was
from June 18, 2008. Several cloud systems can be seen on the
satellite images. Based on the historical records, almost all of
them caused storms in several states across the country. Our
algorithm captures all the major vortexes in the satellite image
sequence, and correctly categories most of them as storms. As
a result, highlighted storm systems are frequently observed in
all the frames. Storm alerts will therefore be triggered in the
areas covered by them. In fact, based on the storm records
on that day'!, the earliest storm reported is from 16:28 GMT.
The satellite images used in the experiment are several hours
before the beginning of the storms but the visual storm traits
have been already observed. Typically storms occur in the
afternoon or evening due to the lowering of the temperature. If
the proposed approach is applied to the image sequence from
the morning hours of a day, the storm detection results are

10AIl dates are not used for training the classifier

http://www.spc.noaa.gov/climo/reports/080618_rpts.html.



(g) 2008/03/25 12:15 GMT

Fig. 5.

(h) 2008/03/25 12:45 GMT

(i) 2008/03/25 13:15 GMT

Three example cases of applying the proposed algorithm to analyze satellite image sequences. (a-c) Three frames on June 18, 2008. Major storms

occurred in the central, eastern, and southeastern states of US (the states hit by storms are highlighted in yellow boundaries). Multiple vortexes are detected
and classified as storm systems in each frame and the locations of the vortexes well match the ground-truth. (d-f) Image frames on September 18, 2008. The
Continental US area is mostly clear on the day and no vortex is detected. (g-i) Image frames on March 25, 2008. No storm is reported on the day. Though
clouds and their rotational motions are perceived on the image sequence, most of them are categorized as hazardless cloud systems by the classifier. Rejected

vortexes are stroked in blue lines on the images.

valuable for mid-term storm forecasts.

The second case (in the second row of Fig. 5) is a
strongly negative case, in which neither major cloud nor cloud
motion can be detected. On such clear days it is relatively
straightforward for the algorithm to make correct decisions
during the storm feature extraction stage because few vortexes
can be observed and extracted from the image sequence.

Images from March 25, 2008 are shown in the last row of
Fig. 5. In the images we can also observe several cloud systems
above the Continental US area as in the first case. Some
of them look dominant but in fact there is no severe storm
reported on that day based on the historical records. In the
first stage, our algorithm detected several vortex cores from the
optical flow between every two frames. However, most of the
vortex cores are rejected by the classifier and not recognized
as storms in the second stage. Compared to the second case,
evident clouds and their rotations are perceived here, still
our approach makes correct decisions. This demonstrates the
effectiveness and robustness of the algorithm.

IV. CONCLUSIONS AND FUTURE WORK

We presented a new storm detection algorithm that locates
storm visual signatures from satellite images. The algorithm
automatically analyzes the visual features from satellite images
and incorporates the historical meteorological records to make
storm predictions. Different from traditional ways of weather
forecasting, our approach makes use of only the visual infor-
mation from images and attempts to extract high-level storm
signatures as meteorologists do manually. Without using any
sensory measurements commonly used in numerical weather
forecasting, such as temperature or air pressure, the algorithm
instead takes advantage of big data. It uses historical storm
reports and satellite image archives in the recent years to learn
the correspondences between visual image signatures and the
occurrences of current and future storms. Experiments and case
studies indicate that the algorithm is effective and robust.

Properties of optical flows between every two adjacent
images in a sequence are the basic visual clues adopted in our
work. The algorithm can estimate robust and smooth optical
flows between two images, and determine the rotations in the
flow field. Unlike numerical weather forecasting method that
are sensitive to noise and initial conditions, our approach can



consistently detect reliable visual storm clues hours before
the beginning of a storm. Therefore, the results are useful
for weather forecasts, especially the severe storm forecast.
Future work will be done to evaluate the prediction value
of the vision-based approach, i.e., we will quantify how
long in advance the algorithm can make sufficiently confident
predictions.

The application of historical storm records and machine
learning boosts the performance of the storm extraction al-
gorithm. Standalone vortex detection from the optical flow
is insufficient in making reliable predictions. The statistical
model trained from historical meteorological data, together
with the satellite image visual features, further selects the
extracted vortexes and removes vortexes not related to storms.
In the current algorithm, the storm detection are based on
individual vortex regions. In fact, vortexes tend to densely
appear in storm systems both temporally and geographically.
Therefore, taking into account nearby vortexes within a frame
and tracking storm systems across a sequence can improve
the overall reliability of the system. In particular, tracking the
development of a storm system will be helpful for analyzing
the future trend of the storm. This problem is nontrivial
because the storm systems (clouds) are nonrigid and highly
variant, and same vortex cores in a storm system are not always
detectable along a sequence. Future work needs to tackle the
problem of nonrigid object tracking to better make use of the
temporal information in the satellite image sequences.

Finally it should be emphasized that weather systems are
highly complex and chaotic, hence it is always a challeng-
ing task to make accurate weather forecasts. The proposed
algorithm based only on the satellite image’s visual features
is not completely accurate and needs to be further improved.
Still we believe the work is useful and valuable because it
provides forecasts in an aspect independent from the numerical
approaches. The purpose for developing the new algorithm
is not to replace the current weather forecasting models.
Instead it is to produce additional independent predictions that
complement and improve the current forecasts. As a result,
we will also focus in our future work on how to integrate
information from multiple data sources and predictions from
different models to produce more reliable and timely storm
forecasts.
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