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Crowd Counting With Limited Labeling Through
Submodular Frame Selection
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Abstract— Automated crowd counting is valuable for intelligent
transportation systems, as it can help to improve the emergency
planning and prevent congestion in transit hubs such as train
stations and airports. Semi-supervised crowd counting aims to
estimate the number of pedestrians in an ongoing scene using
a combination of a small number of labeled frames and a
large number of unlabeled ones. However, existing methods do
not incorporate ways to effectively select informative frames as
labeled training samples, resulting in low accuracy on unseen
crowd scenes. We propose a submodular method to select the
most informative frames from the image sequences of crowds.
Specifically, the method selects the most representative images to
guarantee the information coverage, by maximizing the similari-
ties between the group of selected images and the image sequence.
In addition, these frames are chosen to avoid redundancies
and preserve diversity. Finally, our semi-supervised method
incorporates graph Laplacian regularization and spatiotemporal
constraints. Extensive experiments on three benchmark data
sets demonstrate that our proposed approach achieves higher
accuracy compared with the state-of-the-art regression methods
and competitive performance with deep convolutional models,
especially when the number of labeled data is exceptionally small.

Index Terms— Intelligent transportation hubs, crowd counting,
submodular subset selection, semi-supervised learning.

I. INTRODUCTION

COUNTING the number of pedestrians in images and
videos has broad applications in intelligent transportation

systems [1], [2]. For instance, in a public event, the event orga-
nizers or the police often need to closely monitor the number
of people using the public transportation or showing up at
a public location to prevent stampede accidents. Businesses
count the crowd in shopping areas to estimate the potential
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Fig. 1. Left to right: Example crowd scenes in the UCSD [3], the Fudan [4]
and the Mall datasets [5], respectively.

revenue. Example crowd scenes captured from video surveil-
lance and included in benchmark datasets, the UCSD [3],
the Fudan [4] and the Mall datasets [5], are shown in Fig. 1.

Roughly speaking, crowd counting techniques can be
categorized into three types: detection-based counting [6]–
[11], regression-based counting [2]–[5], [12]–[22], and deep
learning based density estimation [23]–[29]. Detection-based
methods scan every single person in the images via appear-
ance or motion detection [6]–[11]. The performance of such
methods degrades in complex environments, such as scenes
with pedestrian occlusion or high density. Feature-based
regression methods, on the other hand, aim at learning a
mapping relationship between low-level image features and
the actual crowd count [2]–[5], [12]–[22]. In genaral, these
methods are computationally efficient and able to overcome
the aforementioned drawbacks. A critical weakness is that
training an accurate regression model requires a large num-
ber of labeled crowd images, which are time-consuming to
produce. Recent deep learning based methods [23]–[29] first
predict a density map of the crowd via Convolutional Neural
Networks (CNNs), then the prediction is obtained through
integration of the whole predicted density map. These methods
are usually trained on large-scale training image datasets to
achieve satisfactory performance, because there are millions
of parameters in the deep model. However, existing datasets
contain at most several thousand frames. Training data short-
age is a challenge even when data augmentation and other
tricks [23], [24] are employed.

Among the regression-based methods, semi-supervised
crowd counting necessitates less human labeling [2], [4],
[16], making them more useful for cost- or time-sensititve
applications. The application can be developed and deployed
more quickly to an ongoing situation. Nevertheless, regression-
based crowd counting has two key issues yet to be addressed.
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Fig. 2. The flow of the proposed crowd counting method.

1) The performance is highly sensitive to the quality
of the set of training images. Through exploiting the
most informative crowd images for manual annotation,
we attempt to address this issue.

2) The methods emphasize the utilization of limited labeled
images, while there can be abundant redundancies within
the training set itself. For example, adjacent or nearby
frames within a video sequence often have near-identical
features as well as counts. Removal of redundancies
can ensure that limited human labor or computational
resources are devoted to only necessary tasks.

Because the crowd monitoring videos contain high similar-
ity and redundancy in short periods, we propose a submodular
strategy to select the most informative images as the training
set. Intuitively, the most informative images should be the
best representatives of the input image sequence. That is,
the selected images, as a group, should be closest visually to
the whole image sequence. Certain images, such as occasional
severe occlusions in pedestrians and high-speed passage of
bicycles, cannot represent the whole sequence and thus should
not be selected. Further, preserving diversity is an important
criterion for selecting the informative subset of frames. For
instance, the selected image subset should include both sparse
and dense crowd scenes. The selection of adjacent frames
should be avoided because of their high similarity.

Consequently, the most informative subset of frames should
be both representative and diverse. We propose two sub-
modular functions to measure the representativeness and the
diversity so that the original crowd image selection issue is
transformed into a submodular maximization problem [30].
Finally, these selected images are annotated for the crowd
counting task. Besides the limited labeled images, the abun-
dant remaining unlabeled images are utilized to learn a semi-
supervised model, which exploits both spatial and temporal
structure of the crowd images. The pipeline of our framework
is illustrated in Fig. 2.

The contributions of this work are as follows. First, this
work introduces the idea of employing submodularity to crowd
counting. We propose a submodular objective so that the image
selection task is formulated as a submodular maximization
problem. Second, our proposed semi-supervised method effec-
tively incorporates the spatial and temporal regularizations into
the elastic net [31] formulation, and further improves the per-
formance by utilizing unlabeled images. Third, we effectively

integrate the submodular frame selection method with semi-
supervised regression, so that the model can achieve high
prediction accuracy with small-sized labeled frame datasets.
We also compare our proposed method with the state-of-the-
art deep CNN models, and demonstrate the competitiveness
of our method when exceptionally limited training frames are
available. Moreover, the submodular frame selection method
is not designed for a specific regression method. Experiments
have shown that it can be integrated with other regression
methods and has the potential to be incorporated into other
applications in intelligent transportation systems.

The remainder of this paper is organized as follows.
Section II surveys related work of crowd counting and sub-
modular learning. In Section III we introduce our proposed
submodular maximization method for crowd image selec-
tion. Section IV presents the semi-supervised crowd counting
algorithm. We report and analyze the experimental results in
Section V and conclude our work in Section VI.

II. RELATED WORK

We survey the development of crowd counting by regres-
sion, crowd images selection and submodularity techniques.

Generally, most regression-based crowd counting methods
consist of three steps: 1) extracting foreground from back-
ground in the region of interest (ROI); 2) extracting features
of the foreground pixels, e.g. number of pixels, shape, edge
and texture; and 3) estimating the crowd count or density by
a regression function [2]–[5], [12], [13], [16]–[19]. There are
several state-of-the-art methods, including Gaussian process
regression (GPR) [3], [17], ridge regression (RR) [5], [13],
[16], [21], elastic net (EN) regression [2], [4], support vector
regressor (SVR) [14], and Bayesian regression [12], [18], [19].
Although these methods have achieved promising accuracy,
most require a large number of labeled images to train a
regression model. By penalizing label change among adja-
cent frames, Tan et al. [4] introduced semi-supervised elastic
net regression so that only a small-sized labeled dataset is
required. However, this method relies on the assumption that
the images are sampled at a high frame rate. Loy et al. [16]
introduced semi-supervised ridge regression by utilizing both
spatial and temporal regularization. This method is effective,
but ignores the impact of feature dimensions on performance
with different sample sizes. Xia et al. [2] proposed an
elastic net based semi-supervised method by incorporating
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spatial, temporal, and activity consistencies. However, this
method depends on the effectiveness of extracted local fea-
tures, i.e. detailed spatial and temporal information of each
blob or subgroup of pedestrians. As a result, it involves more
human annotations.

When only a small number of labeled crowd images are
available, the quality of the images is crucial to the prediction
performance. However, limited prior research has addressed
the problem of crowd images selection. Tan et al. [4] used
k-means to perform pre-clustering, then randomly selected
samples from each cluster. This method could select diverse
frames to avoid redundancy to some extent, but it is inca-
pable of finding the most informative images in each cluster
and avoiding the outliers because of its intrinsic Gaussian
assumption. Loy et al. [16] proposed an active learning
style technique, which selects informative points (m-landmark)
through clustering in the crowd marginal distribution structure,
followed by estimating the most informative points as the
cluster centers. However, this method does not adequately
explore the representativeness and diversity of the selected
data, and the number of clusters are fixed to the number of
labeled data, which may risk selecting the outliers.

Selecting optimal subset via submodular optimization meth-
ods have received increasing attention, which is widely inves-
tigated and appied in many domains, including intelligent
transportation, data sampling, speech recognition, and sensor
placement [32]–[36]. Submodular optimization methods give
near-optimal solution to challenging combinatorial optimiza-
tion tasks, which are often NP-complete. These methods first
formulate the task of subset selection as submodular func-
tions which exploiting sub-modularity of information-theoretic
measures such as mutual information and entropy. Then these
functions can be optimized to find the optimal subsets. In par-
ticular, del Arco et al. [32] found sparse selection of wireless
sensor in traffic dynamics reconstruction. Ranieri et al. [35]
and Krause et al. [36] investigated near-optimal sensor place-
ment via submodular analysis. Wei et al. [33] studied the
connection of submodularity with the likelihood functions of
Naïve Bayes and Nearest Neighbor classifiers, then optimized
the submodular functions to find the most informative subset
for these classifiers. Shinohara [34] modeled the utility of
subset for training speech recognition system through submod-
ular functions. None of these submodular methods have been
employed for crowd counting.

III. SUBMODULARITY AND FRAME SELECTION

We now describe our method for extracting the most infor-
mative crowd images to improve counting accuracy.

Given a crowd image sequence V = {x1, x2..., xn}, where
xi contains low-level features of an image. Formally, our
target is to discover the optimal subset of images S from V
with the constraint |S| = T , where T denotes the annotation
budget (i.e. the number of labeled images). We formulate
the task of frame selection as a submodular maximization
problem. Then the proposed semi-supervised regression algo-
rithm in Section IV is applied for the learning process.
The submodular-based frame selection method is useful for

building a practical crowd counting system because it can help
select a collection of informative frames from a large volume
of videos to train the prediction model.

Submodularity: Suppose we are given a set of arbitrary
objects V , and a function F : 2V → R returns a real value for
any subset S ⊆ V . F is submodular if it satisfies:

F(A ∪ {p})− F(A) ≥ F(B ∪ {p})− F(B),

∀A ⊆ B ⊆ V, p ∈ V \ B. (1)

If this is satisfied everywhere with equality, F is called
modular function. This property is called as diminishing
returns [30], stating that the marginal gain of adding an item
p to a set A is greater than to its superset B.

Submodular functions have several important properties: 1)
given a set of submodular functions {F1, F2, ...}, their non-
negative weighted sum is also a submodular [30], i.e. F =∑

i αi Fi , αi ≥ 0 is a submodular; and 2) if f is non-
decreasing concave and F is a non-decreasing submodular,
F ′(S) = f (F(S)) is a non-decreasing submodular [33]. In the
following, we define several submodular terms, each of which
captures the quality of subset S from a specific aspect. Then
we can naturally combine all of these terms and keep our
objective submodular.

A. Unsupervised Data Subset Selection

Before defining our submodular functions, we first con-
sider an unsupervised data subset selection problem. Given
a k-nearest neighbor graph G, the i -th node corresponds to
a crowd image xi . The weighted adjacency matrix of graph
G is the normalized similarity matrix W = (wi j )i, j=1,...,n ,
and each node xi only connects its k-nearest neighborhood
set N (xi) by the nonnegative weight wi j , which reflects the
similarity between xi and x j . The graph G is then cut into K
groups G1,G2, ...,GK via spectral clustering [37]. Each node
xi is given a scalar value gi which indicates the cluster index,
i.e. gi = 1, 2...K , thus these nodes in the same cluster should
have the same index. Finding the best subset S to represent the
whole image set V is equivalent to optimizing the following
data log-likelihood function [33] (for the sake of simplicity,
we use i to represent the sample xi in V):

�(S) =
∑

i∈V
log p(xi, gi )

=
∑

i∈V
log p(xi |gi )+

∑

i∈V
log p(gi), (2)

where p(xi , gi) is the likelihood of sample xi , and p(xi |gi)
and p(gi) are generative likelihood and prior likelihood of
sample xi , respectively. The notation data log-likelihood func-
tion � : 2V → R was first introduced in [33], which maps each
subset S of training set to a log-likelihood evaluated on the
whole data set V . To construct the generative likelihood and
prior likelihood, we extend the assumptions discussed in [33]
as follows:

Assumption 1: If a sample xi belongs to the cluster Gk ,
i.e. gi = k, then the prior probability is estimated as p(gi =
k) = mk(S)

|S| , where mk(S) counts the number of samples in
both subset S and cluster Gk , i.e. mk(S) = |S ∩ Gk |, |S| =
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m1(S)+ ...+mK (S), and obviously each mk(S) is a modular
set function.

Assumption 2: The generative likelihood p(xi |gi = k) is
determined only by the closest sample v in the same cluster Gk ,
i.e. v ← arg max j∈S∩Gk

wi j . It is thus expressed as p(xi |gi =
k) = c max j∈S∩Gk wi j , where c is a constant.

Under these two assumptions, we express �(S) in (2) as

�(S) =
∑

i∈V
log p(xi |gi)+

∑

i∈V
log p(gi)

=
K∑

k=1

∑

i∈Gk

log p(xi |gi = k)+
K∑

k=1

∑

i∈Gk

log p(gi = k)

=
K∑

k=1

∑

i∈Gk

log c max
j∈S∩Gk

wi j +
K∑

k=1

∑

i∈Gk

log
mk(S)

|S|

=
K∑

k=1

∑

i∈Gk

log max
j∈S∩Gk

wi j +
K∑

k=1

|Gk | log mk(S)

− |V| log |S| + C, (3)

where C =∑
i∈V log c is a constant. Because |V| is indepen-

dent of S, given the equality constraint |S| = T , the third
term |V| log |S| in �(S) then becomes a constant. Therefore,
the problem of data log-likelihood function maximization
can be reformulated as a constraint optimization problem as
follows:

max
S :|S|=T

�(S) = max
S :|S|=T

K∑

k=1

∑

i∈Gk

log max
j∈S∩Gk

wi j

+
K∑

k=1

|Gk | log mk(S). (4)

Intuitively, the first term measures the similarity or relevance
of subset S to the whole set V , and the second term is
correlated to the number of samples in each cluster. Next,
we propose our submodular functions, such that the objective
in (4) is equivalent to a submodular maximization problem.

B. Representativeness Term

As stated, the first term measures the similarity of the subset
frames S to the whole set V . A representative subset of crowd
images should be most similar to the whole set, in order to
preserve as much information as possible. Furthermore, select-
ing the most representative images could help eliminate the
outliers, because they are less similar to the whole image set.
Therefore, we propose a localized facility location function,
flfac, to measure the representativeness of subset S to the
whole set V :

flfac(S) =
K∑

k=1

∑

i∈Gk

max
j∈S∩Gk

wi j , (5)

where
∑

i∈Gk
max j∈S∩Gk wi j has a similar form as the facility

location function [38], which measures the similarity between
S and the cluster Gk . Because it is monotonic submodular [38],
by property 1, the representative term is also submodular.
This function is similar to the first term in (4) derived from

the data log-likelihood function. Assuming the second term
is a constant, optimizing the objective in (4) is equivalent to
maximize the representativeness term.

For our crowd image selection task, these images with
similar features should connect with large weights in the
graph, i.e. in a same cluster. Function flfac selects the most
representative samples in each cluster, and it is maximized
only if all the similarities between S and clusters G1, ...,Gk

are maximized. Therefore, the most representative images in
each cluster can be selected via flfac optimization.

C. Diversity Term

An ideal subset of frames for crowd counting should contain
both sparse and dense crowd density. Therefore, selecting
frames from a short range of image sequence or single cluster
is unfavorable for learning a robust regression model, as a
small region of intensive samples where many temporally
adjacent frames may be redundant cannot well represent the
distribution of the whole image set. To formulate this intuition,
we adopt the commonly used diversity reward function [33]
to measure the diversity in the crowd image sequences:

frew(S) =
K∑

k=1

√
r(S ∩ Gk), (6)

where the function r(·) ≥ 0 indicates the rewards of selected
frames in a cluster. The sum of square root scores the quantity
of total rewards given the solution S, which could effectively
find solutions that are more uniformly distributed over the
clusters.

Suppose a collection of frames are available, a direct
assumption is that the quantity of total rewards is correlated
to the number of frames. We thus define the reward function
as a simple formula

r(S ∩ Gk) = |S ∩ Gk |
|Gk | =

mk(S)

|Gk | , (7)

which indicates the proportion of selected frames in cluster
Gk . This function is simple, effective, and modular (|Gk| is
independent of S, thus constant). Furthermore, this function
brings another advantage. For any optimal solution S∗, its
reward frew(S∗) requires the uniformity of rewards r(S ∩
G1), ...r(S ∩GK ), such that the proportions of selected frames
in each cluster are roughly equal. That is, m1(S)

|G1| ≈
m2(S)
|G2| ≈

... ≈ mk (S)
|GK | , then all mk(S), k = 1, 2...K , are forced to be

constant. As a result, the second term in (4) is reduced to
a constant. Optimizing the likelihood function in (2) is then
equivalent to finding the solution S such that the local facility
location function flfac and diversity reward function frew are
maximized.

D. Optimization

By now the frame selection problem is transformed into the
optimization of submodular functions, including the represen-
tativeness term flfac and the diversity term frew. We incor-
porate these two submodular terms into a unified objective
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function:

S∗ = arg max
S :|S|=T

( flfac(S), frew(S)) (8)

Direct maximization of flfac or frew, however, is an NP-hard
problem. Fortunately, submodular functions could be effi-
ciently solved via the greedy algorithm, which gives a (1−1/e)
approximation to the optimal solution [38]. We propose a two-
step greedy algorithm to optimize our submodular objective
functions, including flfac optimization stage and frew opti-
mization stage in each iteration. First, the localized facility
location function is optimized, which could be realized by
performing facility location function optimization in each
cluster Gk . Each cluster maintains a solution Ak and the most
representative frame a∗k , then a candidate set R is obtained
which contains frame a∗k of each cluster, i.e. |R| is a constant
of K . Next, the diversity reward function is optimized by
scoring each frame from R, and a frame p∗ ∈ R that leads
to the largest marginal gain is added to the final solution S.
Then the next representative frame in cluster Gd which p∗
belongs to is selected and used to update the candidate set.
After T iterations, we get a subset S∗ which best represents
and uniformly scatters around the whole set V . Finally, these
frames in subset S∗ are annotated for regression learning. The
pseudocode of our unified algorithm is given in Algorithm 1.

Algorithm 1 Submodular Frame Selection for Crowd Count-
ing
1: Input: crowd image sequence V , number of clusters K ,

rounds T
2: Output: S,β
3: Init: S = A1 = ... = AK = ∅, candidate set R = ∅
4: Dividing the whole set V into K clusters G1,G2...Gk via

spectral clustering
5: for each cluster k = 1, 2...K do
6: a∗k ← arg max

a∈Gk\Ak

ffac(Ak ∪ {a})− ffac(Ak)

7: Ak ← {a∗k }
8: R← R ∪ {a∗k }
9: end for

10: for t = 1, 2...T do
11: p∗ ← arg max

p∈R
frew(S ∪ {p})− frew(S)

12: d ← the index of cluster which p∗ belongs to
13: S ← {S ∪ p∗}
14: R← R \ {p∗}
15: a∗d ← arg max

a∈Gd\Ad

ffac(Ad ∪ {a})− ffac(Ad)

16: Ad ← Ad ∪ {a∗d}
17: R← R ∪ {a∗d}
18: end for
19: Annotating frame set S, then V is divided into labeled

training set L and unlabeled training set U
20: Performing semi-supervised regression on training set.

E. Discussion

The proposed representativeness term in (5) is similar to
the existing facility location function ffac [38] and Nearest

Neighbor submodular function fNN [33] in (9). Here we ana-
lyze the relations and differences among these three functions.

ffac(S) =
∑

i∈V
max
j∈S

wi j ,

fNN(S) =
∑

y∈Y

∑

i∈V y

max
j∈S∩V y

wi j .
(9)

Facility location function ffac is often applied to identify
representative instances from a collection of items. By com-
paring (5) and (9), it can be seen that function ffac views V as
only one cluster, whereas flfac regards V as multiple clusters.
ffac is thus a special case of flfac.

Nearest Neighbor submodular function fNN is designed
for subset selection in k-Nearest Neighbor classifier condi-
tions [33]. flfac can be viewed as an equivalent of fNN
regardless of the conditions. However, fNN is only applied to
classification tasks, and it categorizes each class of instances
as a cluster and maximizes the ffac value for each class.
Moreover, to divide the whole set V into |Y| partitions, this
function needs a labeled training set to estimate the posterior
probability of each sample. Unlike this function, we optimize
the localized facility location function flfac to estimate S
in an unsupervised manner. Furthermore, it can be smoothly
employed in both classification and regression tasks.

IV. SEMI-SUPERVISED REGRESSION FOR

CROWD COUNTING

In this section, we focus on semi-supervised crowd counting
because it requires less labeled images, which is consistent
with the goal of our proposed submodular strategy. Once the
most representative and diverse frames are selected, we can
use these frames to train a regression model. For the task of
crowd counting by regression, the purpose is to find a solution
β = (β1, β2, ..., βp)

T of the linear model f (x) = xβ,
such that the squared loss is minimized. However, when the
number of labeled frames is small or the dimension of low-
level feature x is too large, it is difficult to learn a good
mapping. To address these problems, the elastic net regularized
regression [31] was employed in many tasks and it has shown
promising performance in the recent literature [2], [4], [39],
[40]. It is thus chosen as the base model of our method.

Our goal is to improve the counting accuracy via performing
semi-supervised regression, by fully utilizing the abundant
unlabeled frames. Assume we have a set of annotated frames
L = (XL, yL) = {(xi , yi )}ni=1, where XL is a n × p matrix
where each row xi is a p-dimensional vector of low-level
features, yL is a vector of ground truth, and each entry yi

is the corresponding label of xi . Besides the labeled frames
L, a large number of unlabeled images are available U =
(XU ) = {(xi)}mi=1, and all m + n images X = [XLT , XU T ]T
are obtained from a collection of image sequences in a
video. To formulate our semi-supervised learning objective
function, we introduce an elastic net regression setting with
the following regularization:

β∗ = arg min
β

‖yL − XLβ‖22 + λI ‖ f ‖2I + λA Pα(β), (10)
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where Pα(β) is the elastic net penalty [31], which linearly
combines �1-norm ‖β‖1 and �2-norm ‖β‖22 of the lasso and
ridge methods:

Pα(β) = α‖β‖1 + (1− α)‖β‖22, (11)

and the coefficient α ∈ (0, 1] determines the influence of
the �1 penalty relative to the �2 penalty. Here, ‖ f ‖2I is a
regularization term which reflects the intrinsic structure and
temporal smoothness of data points, and λI is a coefficient of
the regularization.

To learn the intrinsic distribution of training data, we adopt
the widely used graph Laplacian regularization [41]. Fully
characterizing the manifold structure of data points, graph
Laplacian encourages the smoothness of target function f with
respect to the distribution of both labeled and unlabeled data.
In order to compute the graph Laplacian, a directed graph G
is first constructed. For each node xi , it only connects with
the points in its nearest neighborhoods. Then we construct
an affinity matrix W ∈ R

(m+n)×(m+n) defined by wi j =
(1−ε)ws

i j +εwt
i j , where ws

i j captures the similarity in feature
space and wt

i j represents temporal similarity, and ε is the
proportion of temporal similarity relative to spatial similarity.
Here, we use the Gaussian kernel function with constant
bandwidth to define these similarities:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ws
i j = exp(−‖xi − x j‖2) x j ∈ Nk(xi)

ws
i j = 0 otherwise

wt
i j = exp(−‖ti − t j‖2) t j ∈ [ti − b, ti + b]

wt
i j = 0 otherwise,

(12)

where Nk(xi) denotes k nearest neighbors of xi in feature
space, t ∈ {1, 2, ...} is the image index, and b is equivalent
to the number of nearest neighbors in temporal sequence. The
Laplacian matrix L is then computed as L = D−W, where D
is a diagonal matrix with Dii =∑m+n

j wi j . The regularization
is then expressed as

‖ f ‖2I = fT Lf=
∑

i, j

wi j ‖ f (xi)− f (x j )‖22 = 2βT XT LXβ.

(13)

This regularization is reduced to spatial regularization when
ε = 0, or temporal regularization when ε = 1. To simplify the
following computation, we assume the number of temporal
and spatial neighbors are equal, i.e. k = 2b. Then, (13) can
be incorporated into (10) as

β∗ = arg min
β

‖ỹ − X̃β‖22 + λA Pα(β), (14)

X̃ =
[

XL√
2λI L1/2X

]

, ỹ =
[

yL
0

]

. (15)

Because the affinity matrix W may be assymmetrical, we first
formulate W∗ = (W+WT )/2, so that the Laplacian matrix L
is positive semidefinite. (14) has the same form as an elastic
net objective function, which can be solved efficiently via the
least angle regression (LARS) algorithm [42].

Fig. 3. Example data and the corresponding number of pedestrians in each
frame. Those partitions with pink background were selected as training set,
and the rest testing. The three are from the UCSD, the Fudan and the Mall
pedestrian datasets, respectively. As shown in the mini line graphs, frames
from 661 to 690 of the UCSD dataset and frames 1,374 to 1,408 of the
Fudan dataset have identical ground truth.

TABLE I

DATASET DETAILS. R = RESOLUTION, FPS = FRAME PER SECOND,
S = CROWD SIZE, Ntr / Nte = NUMBER OF TRAINING / TEST-

ING FRAMES, NP = NUMBER OF ADJACENT FRAME PAIRS WITH

SAME CROWD SIZE.

V. EXPERIMENTS

We compare our proposed submodular frame selection for
semi-supervised crowd counting in three benchmark datasets.
We also perform a comprehensive comparison with other state-
of-the-art crowd counting algorithms. Finally, we study the
influence of parameters in our proposed algorithm to the
accuracy of crowd counting.

A. Experimental Setting

Three benchmark datasets were used – the UCSD [3],
the Fudan [4], and the Mall dataset [5]. Details of them are
shown in Table I. Fig. 3 shows three example images and the
ground truth of each frame index. The UCSD and the Fudan
datasets were sampled at a high frame rate of 10 frames-per-
second (fps). We observe that they have more than 1,000 pairs
of adjacent frames with identical crowd size. It means that
these two datasets are highly redundant. For example, frames
from 661 to 690 of the UCSD dataset and frames 1,374 to
1,408 of the Fudan dataset have identical ground truth,
as pedestrians in these frames simply walked through the scene
without moving into or out of the region of interest (ROI).
Meanwhile, the Mall dataset is sampled at a relative low fps,
thus has less redundancy. Furthermore, the Mall dataset is
more challenging as the illumination condition changes greatly
and inter-object occlusion is more severe [16]. Each dataset is
split into training and testing sets without overlapping similar
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TABLE II

DESCRIPTION OF EACH LOW LEVEL FEATURE

to other published work [3], [4], [16]. For the UCSD and the
Mall datasets, 800 of the 2,000 frames were selected to form
the training set, and the rest frames for testing. The Fudan
dataset contains five discontinuous image sequences. The first
100 frames of each sequence were selected to form the training
set. The details and the partition of three crowd datasets are
illustrated in Fig. 3.

For each dataset, 29 features are extracted from the ROI
of each image, including area, perimeter, edge, texture fea-
tures, and Minkowski dimension [3]. The description of these
features are shown in Table II. All features are perspective
normalized to compensate for the perspective distortion [3],
[12]. All compared methods adopt the same features.

Our proposed semi-supervised regression algorithm includes
a few free parameters and regularization parameters. The
number of neighbors for the graph Laplacian is fixed to 10.
The proportion of �1 penalty α is automatically selected by
LARS algorithm [42]. For the remaining parameters, λA and
λI , we employ a grid search and the optimal estimations are
selected via 10-fold cross validation on the training set.

The error rate is measured by the mean squared
error (MSE), defined by:

R = 1

N

N∑

i=1

(yi − ŷi )
2, (16)

where N is the number of test frames, ŷi is the count
prediction, and yi is the ground truth. All results are averaged
over 50 trials.

B. Comparison Among Different Regression Methods

We evaluate the accuracy of various crowd counting meth-
ods including blind and selective counting methods, based
on whether the labeled training sets are selected by some
criteria. For the first class of methods, we selected four state-
of-the-art methods introduced in [3], [4], [13], [16], and our
proposed Laplacian regularized elastic net regression (LapEN).
Among these five methods, the Gaussian Process Regres-
sion (GPR) and Cumulative Attribute Ridge Regression (CA-
RR) are supervised methods, while the Semi-Supervised
elastic net (SSEN), Semi-Supervised Regression (SSR), and
LapEN train regression models in a semi-supervised manner.
For the second class, to our knowledge, there are only two

criteria including k-means selection [4] and m-landmark [16].
We compare these methods with our submodular frame selec-
tion algorithm.

For the first subcategory of counting methods, all methods
use the same training-testing split. A total of 50 frames in the
training partition are randomly selected as labeled samples,
and the rest samples in training partition (750 in both the
UCSD and the Mall datasets, 450 in the Fudan dataset) remain
unlabeled. Table III shows that our proposed LapEN achieves
the best performance on the UCSD and the Fudan dataset. For
the Mall dataset, it obtains the second smallest error and has
comparable MSE to the best performance.

For the second class of counting methods, we first randomly
extract 700, 400, and 700 samples from the UCSD, the Fudan,
and the Mall datasets, respectively. Next, each method selects
50 frames for annotation based on its selection criterion, and
the rest samples in training partition remain unlabeled (750,
450, and 750 unlabeled frames for these datasets, respectively).
This strategy keeps the obtained labeled frames in each trial
different. For our submodular frame selection algorithm, we fix
the number of clusters, K , to be 5 and the proportion of
temporal regularization, ε, to be 0.5 for all datasets based
on our experience. We further examine the influence of these
parameters later. Table III shows that our submodular frame
selection algorithm outperforms the other methods signifi-
cantly, because these methods do not sufficiently exploit both
representativeness and diversity for frame selection. Moreover,
the submodular frame selection algorithm achieves notable
improvements on the low redundant Mall dataset, demonstrat-
ing the robustness of the algorithm. Fig 4 shows the predictions
made by submodular and LapEN against the ground truth for
each dataset.

From Table III, it is evident that (1) our proposed Laplacian
regularized elastic net regression shows competitive perfor-
mance against the existing methods, and (2) the integration of
submodular frame selection and LapEN can leverage the per-
formance significantly, and our approach achieves the highest
accuracy on the three datasets.

C. Comparison With Density Estimation Method

Recently proposed deep learning based methods have shown
promising performance by estimating the density maps of
input images [23]–[29], which indicate the crowd density



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE III

THE MSE COMPARISON AGAINST STATE-OF-THE-ART COUNTING METHODS AND FRAME SELECTION METHODS. GPR = GAUSSIAN PROCESS
REGRESSION, SSEN = SEMI-SUPERVISED ELASTIC NET REGRESSION, SSR = SEMI-SUPERVISED REGRESSION, CA-RR = CUMULATIVE

ATTRIBUTE RIDGE REGRESSION, LAPEN = THE PROPOSED LAPLACIAN REGULARIZED ELASTIC NET REGRESSION. FRAME SELECTION

METHODS CONTAIN: k-MEANS, m-LANDMARK AND THE PROPOSED SUBMODULAR METHOD. A SMALLER MSE VALUE IS BETTER.
N/A: THESE RESULTS ARE NOT AVAILABLE.

Fig. 4. The ground truth and the estimates predicted by submodular + LapEN. From left to right: the UCSD, the Fudan, and the Mall datasets.

TABLE IV

COMPARISON BETWEEN MCNN AND OUR PROPOSED METHOD. MCNN
FAILED ON MALL DATASET WHEN DATA AUGMENTATION

TECHNIQUES ARE NOT APPLIED

TABLE V

PERFORMANCE COMPARISON BETWEEN ELASTIC NET (EN) AND THE
PROPOSED LAPEN: WITH SPATIAL REGULARIZATION, TEMPORAL

REGULARIZATION, AND BOTH OF THESE REGULARIZATIONS. S:
SPATIAL, T: TEMPORAL, S+T: BOTH SPATIAL AND TEMPO-

RAL. IN EACH ELEMENT, MSE PLUS OR MINUS STANDARD

DEVIATION IS SHOWN

in each pixel. The final predictions are obtained through
integration of the whole density maps. However, it is nontrivial
for these methods to fit the model with only dozens of
images. In this subsection, we compare our method with
the recently proposed Multi-Column Convolutional Neural
Network (MCNN) [24]. By utilizing multi-scale CNNs for
crowd counting, MCNN achieved state-of-the-art accuracy.
To keep diversity in the training set, 50 frames with equal
intervals are selected to train MCNN model as adopted in [2].
For example, indices in {600, 616, 632, ..., 1368, 1384} of the
UCSD dataset are training samples. We also test the effect of
data augmentation for MCNN, where the horizontal flip and
random position crop of each image are added into the training
sets. Because MCNN only optimizes pixel-wise loss and the

size of the training set is too small, the validation performance
is highly unstable in the training process. We report the
average MSE of the last 100 iterations.

The comparison results are shown in Table IV. When
only 50 images are available, our method attains competitive
performance with MCNN. MCNN attains poor performance on
the Mall dataset in our trials with different uniform indices,
and the MSE on the testing set is difficult to converge
throughout the iterations. A possible reason is that this data is
much more complex than the UCSD and the Fudan datasets,
as aforementioned. And perhaps CNN is much more sensitive
to the change of illumination than handcrafted features. Specif-
ically, handcraft features are extracted from foreground of
images (crowd segmentation), which is generated from videos
by mixture of dynamic texture models [3]. These features are
less sensitive to the change of illumination, whereas CNN
features suffer from this illumination change. When image
augmentation techniques are applied, MCNN achieved lower
MSE than merely training on 50 raw images, and outperforms
our submodular method on the UCSD and the Fudan datasets.

Although predicting the density maps via deep models
attains better performance than regression methods in pre-
vious literature, they are considerably more time-consuming
in figuring out the optimal parameters. In our experiments,
MCNN costs nearly ten hours to fit the model on a single
GPU (NVIDIA Titan X, 6GB RAM), and its performance
also heavily depends on the number of training samples and
data augmentation trick. In contrast, our proposed submodular
selection and LapEN regression method requires less human
annotations and is fast to train (taking only several minutes
on CPUs).

D. The Effects of Spatial and Temporal Regularizations

By design, LapEN allows the regressor to utilize both spatial
and temporal label propagation. We conduct an experiment to
investigate if the regressor takes advantage of this opportunity.
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Fig. 5. Counting performance using four different frame selection methods. The symbol ‘submodular’ is the proposed selection method.

TABLE VI

COMPARISON AMONG DIFFERENT SUBMODULAR TERMS

Table V shows the effects of different regularizations of our
proposed Laplacian regularized elastic net, and their capability
of exploiting unlabeled data distribution and temporal
smoothness. It is evident that the performance improved
remarkably with the usage of unlabeled images. For instance,
with the application of unlabeled data, the MSE in the UCSD,
the Fudan, and the Mall datasets are reduced by nearly 17%,
20%, and 9%, respectively, when both spatial and temporal
regularization are used. Although different datasets favor
different regularizations, the usage of both regularizations
yields best or near-optimal performance. It is also more robust
than using only spatial or temporal regularization. On average,
it achieves the lowest MSE on all three datasets. We conclude
that using both yields the best and robust performance.

E. Comparison Among Frame Selection Methods

In this experiment we compare the performance of our
proposed submodular frame selection method with k-means
landmark selection [4] and m-landmark selection [16], and
we also take the random selection as the baseline. We use
the LapEN to train the model. The number of labeled data is
in {15, 20, 25, 30, 35, 40, 45, 50} and the rest of training
data remain unlabeled. Fig. 5 shows that all these methods
gain more or less improvements, while our submodular method
outperforms its counterparts remarkably. When only 15 labeled
data are available, our method performs comparatively or even
better than other methods with 50 samples.

F. Effects Of Submodular Terms and Parameters

To examine the effects of the proposed representative term
flfac and diversity term frew, we compare them with the
random selection baseline and the facility location function
ffac. As shown in Table VI, the improvements of function ffac
against random selection is limited, because it takes the whole

TABLE VII

COMPARISON AMONG DIFFERENT FRAME SELECTION METHODS

AND REGRESSION METHODS

data set as only one cluster. Functions flfac and frew improve
the performance evidently, and the combination of these two
submodular terms yields the best performance on all datasets.

We further evaluated our approach when different values
of the number of clusters K and the proportion of temporal
regularization ε are selected. As shown in Fig. 6, for the UCSD
and the Mall dataset, the best performance is achieved when
K = 5. And for the Fudan dataset, the best performance
is achieved when K = 2, because the crowd size of the
Fudan dataset is in a smaller range (0 to 15). It can also
be seen that the performance is sensitive to the value of
ε. If ε grows to 1, the performance degrades because only
temporal smoothness is considered. On the other hand, if ε
is set to 0, only spatial regularization does not yield the best
performance. In general, the best performance of the three
datasets is achieved when ε = 0.2, in the range 0.4 to 0.8, and
in the range 0.2 to 0.8, respectively. Although the performance
is sensitive to ε, it is more stable if the appropriate value of K
is determined. Moreover, the optimal value of ε can be attained
via cross validation experimentally, leading to a near-optimal
performance.

G. Generalizability

We further examine the generalizability of these frame
selection methods. To make the low-level features consistent
in frame selection and counting phases, we exclude detection-
based and CNN-based methods and only evaluate regression-
based methods. Each selection method selects 50 frames for
annotation before GPR [3] or SSEN [4] regression model
is employed. Table VII shows that the proposed submodular
frame selection method still achieves competitive performance
on all three datasets, and almost all combinations improve the
performance in contrast to GPR and SSEN in Table III.
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Fig. 6. Effects of parameter selection of K and ε. The horizontal axis denotes different values of ε, while lines with different colors denote different K
values.

VI. CONCLUSIONS

We proposed a submodular algorithm to select informative
frames from videos in crowd counting task. This method
avoids traditional blind and exhaustive annotation by exploit-
ing most representative and diverse images from crowd image
sequences. Semi-supervised regression is performed on the
selected images and the remaining unlabeled images. Exten-
sive experiments with multiple datasets have demonstrated the
effectiveness of the proposed algorithm, and shown the practi-
cal application in intelligent transportation systems. Moreover,
the proposed submodular method can be integrated with other
regression methods, and has the potential to be incorporated
into other applications, for intelligent transportation systems
and beyond.
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