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Abstract: Crowd counting has important applications in public safety and pandemic control. A robust and practical
crowd counting system has to be capable of continuously learning with the newly incoming domain data in real-world
scenarios instead of fitting one domain only. Off-the-shelf methods have some drawbacks when handling multiple
domains: (1) the models will achieve limited performance (even drop dramatically) among old domains after training
images from new domains due to the discrepancies in intrinsic data distributions from various domains, which is
called catastrophic forgetting; (2) the well-trained model in a specific domain achieves imperfect performance among
other unseen domains because of domain shift; (3) it leads to linearly increasing storage overhead, either mixing all
the data for training or simply training dozens of separate models for different domains when new ones are available.
To overcome these issues, we investigate a new crowd counting task in incremental domain training setting called
lifelong crowd counting. Its goal is to alleviate catastrophic forgetting and improve the generalization ability using a
single model updated by the incremental domains. Specifically, we propose a self-distillation learning framework as a
benchmark (forget less, count better, or FLCB) for lifelong crowd counting, which helps the model leverage previous
meaningful knowledge in a sustainable manner for better crowd counting to mitigate the forgetting when new data
arrive. A new quantitative metric, normalized Backward Transfer (nBwT), is developed to evaluate the forgetting
degree of the model in the lifelong learning process. Extensive experimental results demonstrate the superiority of
our proposed benchmark in achieving a low catastrophic forgetting degree and strong generalization ability.

Key words: Crowd counting; Knowledge distillation; Lifelong learning
https://doi.org/10.1631/FITEE.2200380 CLC number: TP391

‡ Corresponding authors
* Project supported by the National Natural Science Foun-
dation of China (Nos. 62176059, 62101136, and U1811463),
the Shanghai Municipal Science and Technology Major Project
(No. 2018SHZDZX01), Zhangjiang Lab, the Shanghai Munici-
pal of Science and Technology Project (No. 20JC1419500), the
Shanghai Sailing Program (No. 21YF1402800), the Natural Sci-

ence Foundation of Shanghai (No. 21ZR1403600), and the Shang-
hai Center for Brain Science and Brain-inspired Technology
# Electronic supplementary materials: The online version of
this article (https://doi.org/10.1631/FITEE.2200380) contains
supplementary materials, which are available to authorized users

ORCID: Jiaqi GAO, https://orcid.org/0000-0003-0910-0801;
Junping ZHANG, https://orcid.org/0000-0002-5924-3360
c⃝ Zhejiang University Press 2023



188 Gao et al. / Front Inform Technol Electron Eng 2023 24(2):187-202

1 Introduction

Crowd counting is to predict the number of per-
sons in an image or a video sequence. Accurate crowd
counting for crowded scenes has important applica-
tions such as traffic control, preventing stampedes
from occurring, and estimating participation in large
public events like parades. For example, during a
pandemic, authorities may need to maintain social
distancing for public spaces to minimize the risk of
infection. Thus, crowd counting systems are usually
deployed in multiple diverse scenarios, such as malls,
museums, squares, and public squares. For one site,
the running system is expected to continually han-
dle the non-stationary data with different densities,
illumination, occlusion, and various head scales. For
multiple sites, the system should also consider dozens
of scenes and perspective information.

As data are increasingly produced and label-
ing is time-consuming, the new domain data avail-
able for training are usually collected and labeled
incrementally. We may ask: how can we sustain-
ably handle the crowd counting problem in multiple
domains using a single model when the newly avail-
able domain data arrive? We try to find the best
potential solution to this question from the following
aspects.

Currently, most crowd counting approaches
(Zhang YY et al., 2016; Sam et al., 2017; Sindagi
and Patel, 2017; Cao et al., 2018; Li YH et al., 2018;
Chen XY et al., 2019; Liu WZ et al., 2019; Ma et
al., 2019, 2020; Tan et al., 2019; Bai et al., 2020;

Jiang XH et al., 2020b; Tian et al., 2020; Song et
al., 2021) concentrate on training an independent
model for each single domain dataset. They heavily
rely on the assumption that images from both the
training set and test set are independent and iden-
tically distributed. Although producing promising
counting performance in the corresponding domain,
such a training strategy, as shown in Fig. 1a, has
drawbacks in dealing with multiple and incremental
new datasets, which are common in the real world,
e.g., when limited labeled data from a new site are
available before applying the model at the site. One
drawback is that these separately trained models of-
ten have low generalization ability when dealing with
new, unseen domain data due to the domain shift
evidenced in Table 1. Another is that saving mul-
tiple different sets of trained parameters from dis-
tinct domains for inference is not economical when

Table 1 The mean absolute error (MAE) scores of our
reproduced DM-Count (Wang BY et al., 2020) model
separately trained in a single dataset and tested over
other datasets, showing obvious performance drop
due to domain discrepancy

Dataset
MAE

SHA SHB QNRF NWPU

SHA 59.7 19.0 143.3 161.1
SHB 124.6 7.0 209.9 179.1
QNRF 69.6 14.0 85.6 124.8
NWPU 74.7 11.7 100.9 88.4
The datasets in the first column are used for training, and
those in the second row for testing. The bold number indi-
cates that the model achieves the best performance when the
training and test datasets are from the same domain

K

K

N

N

NN N

N

Fig. 1 The conceptual differences of four training paradigms: (a) directly training an individual model for each
dataset; (b) training a unified model by mixing all datasets from different domains; (c) leveraging previous
data or models to improve the performance on the target domain dataset; (d) ours: lifelong learning with
incremental domains to improve the performance among all domains. In (c), the dashed lines indicate that the
past domain data may be used repeatedly to improve the performance in the target domain dataset. In (d), our
proposed FLCB (forget less, count better) model does not replay any previous domain data and evaluates all
domain datasets at the training stage. Without storing previous domain data, FLCB itself can still sustainably
handle the crowd counting problem among multiple domains, being updated by the new available domain
dataset only
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deploying them to hundreds of thousands of real-
world sites. Training a shared and universal model
from scratch by mixing all the data (also known as
joint training) or sequential training for each newly
incoming dataset may improve the performance on
the unseen domains (Figs. 1b and 1c). Neverthe-
less, both paradigms still have some limitations. The
joint training strategy (Ma et al., 2021; Yan et al.,
2021) requires storing all training data from previ-
ous domains when the newly available data arrive,
leading to lengthy training time and high storage
overhead. Meanwhile, the sequential training strat-
egy will dramatically deteriorate the model’s perfor-
mance among previous domains after training the
new domain data, i.e., catastrophic forgetting.

To deal with the aforementioned forgetting, gen-
eralization, and storage overhead issues, inspired by
the learning mechanism of mammals, we investigate
a new task of crowd counting in this study, termed
lifelong crowd counting, which can sustainably learn
with the new domain data and concurrently alleviate
catastrophic forgetting and performance drop among
preceding domains under the domain-incremental
training settings (Fig. 1d). Note that the goal of
the proposed lifelong crowd counting task is differ-
ent from that of previous cross- and multi-domain
crowd counting tasks (Chen BH et al., 2021; Ma
et al., 2021; Yan et al., 2021). During the whole
lifelong learning process with incremental training
data, the goal is to maximize the overall performance
among all domains—previously trained, newly ar-
riving, and unseen—instead of focusing only on the
target domain performance. We consider the trade-
off between the forgetting degree and the general-
ization ability of the models. In particular, we de-
velop a novel benchmark of domain-incremental life-
long crowd counting with the help of knowledge self-
distillation techniques. The proposed benchmark
has both strong generalization ability on unseen do-
mains and low forgetting degrees among seen do-
mains. This enables the model to have sustainable
counting capability when new data arrive in the fu-
ture. In our experiments, we use four fruitful crowd
counting backbones, CSRNet (Li YH et al., 2018),
SFANet (Zhu L et al., 2019), DM-Count (Wang BY
et al., 2020), and DKPNet (Chen BH et al., 2021),
to illustrate the effectiveness and superiority of our
proposed framework.

The contributions of this work can be summa-

rized as follows:
1. To the best of our knowledge, this is the

first work to investigate lifelong crowd counting by
considering the catastrophic forgetting and general-
ization ability issues. Our method may serve as a
benchmark for further research in the lifelong crowd
counting community.

2. We design a balanced domain forgetting loss
function (BDFLoss) to prevent the model from dra-
matically forgetting the previous knowledge when
being trained on the newly arriving crowd counting
dataset.

3. We propose a new quantitative metric, nor-
malized Backward Transfer (nBwT) of lifelong crowd
counting, to measure the forgetting degree of trained
models among seen data domains. We treat the
mean absolute error (MAE) as the criterion for
evaluating model generalization on the unseen data
domain.

4. Extensive experiments indicate that our pro-
posed method has a lower degree of forgetting
compared with sequential training and outperforms
the joint training strategy on the unseen domain
with a much lower MAE score and time and space
complexity.

2 Related work

2.1 Crowd counting

Traditional detection- and regression-based
methods extract handcrafted features such as scale
invariant feature transform (SIFT) (Lowe, 1999) and
histogram of oriented gradient (HoG) (Dalal and
Triggs, 2005) to detect individual heads (Dalal and
Triggs, 2005; Leibe et al., 2005; Tuzel et al., 2008;
Dollar et al., 2012) or directly regress the count
number (Chan and Vasconcelos, 2009). Neverthe-
less, these models cannot learn the spatial informa-
tion of person distribution to make accurate predic-
tions in highly congested scenes. Most of the lat-
est crowd counting approaches are built upon deep
learning methods to estimate a density map for a
given image. Many researchers design various archi-
tectures like fully convolutional networks (Wang C
et al., 2015; Zhang C et al., 2015), multi-column net-
works (Boominathan et al., 2016; Zhang YY et al.,
2016; Sam et al., 2017; Sindagi and Patel, 2017),
scale aggregation or scale pyramid networks (Cao
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et al., 2018; Chen XY et al., 2019; Liu LB et al.,
2019; Jiang XH et al., 2020b; Zhao et al., 2020; Song
et al., 2021), and attention mechanisms (Guo et al.,
2019; Liu N et al., 2019; Zhu L et al., 2019; Jiang XH
et al., 2020a; Sindagi and Patel, 2020) to extract the
multi-scale feature representations to deal with scale
variation and non-uniform distribution issues. CSR-
Net (Li YH et al., 2018) points out the multi-scale
feature redundancies among multi-branch architec-
tures and proposes a new deeper single-column con-
volutional neural network (CNN) with dilated con-
volutions to capture different receptive fields. AD-
CNet (Bai et al., 2020) extends the discrete dilated
ratio (integer value) to a continuous value to match
the large-scale variation and self-correct the density
map using the expectation-maximization (EM) algo-
rithm. Local region modeling methods (Liu L et al.,
2020; Jiang SQ et al., 2020) also help correct the local
information. Most off-the-shelf crowd counting mod-
els focus on single domain learning. The models will
be retrained when the new domain data arrive. In
our study, we focus on using a single model to handle
multiple incremental datasets for crowd counting.

2.2 Cross-/multi-domain learning

Many researchers exploit the cross-domain
problems (Wang Q et al., 2019, 2022; Wu et al., 2021;
Zou et al., 2021; Liu WZ et al., 2022) in crowd count-
ing, including cross-scene (Zhang C et al., 2015),
cross-view (Zhang Q et al., 2021), and cross-modal
(Liu LB et al., 2021). The adversarial scoring net-
work (Zou et al., 2021) is applied to adapt to the
target domain from coarse to fine granularity. In ad-
dition, cross-domain features can be extracted by the
message-passing mechanisms based on a graph neu-
ral network (Luo et al., 2020). A semantic extrac-
tor (Han et al., 2020) has been designed to capture
the semantic consistency between the source domain
and target domain to enhance the adapted model. A
large synthetic dataset (GCC) (Wang Q et al., 2019)
has been released to study the transferability from
synthetic data to real-world data. Quite a few re-
searchers (Shi et al., 2019; Xiong et al., 2019; Yang
et al., 2020) investigated similar tasks like vehicle
counting based on the same crowd counting archi-
tectures. Learning with multiple domains simulta-
neously (Chen BH et al., 2021; Ma et al., 2021; Yan
et al., 2021) has also been preliminarily explored, and
is required to mix all the data for training at the same

time. DCANet (Yan et al., 2021) uses a channel-
attention-guided multi-dilation module to assist the
model in learning a domain-invariant representation,
while DKPNet (Chen BH et al., 2021) propagates
the domain-specific knowledge with the help of vari-
ational attention techniques. Ma et al. (2021) devel-
oped a scale alignment component to learn an adap-
tive rescaling factor for each image patch for better
crowd counting. In reality, such cross-domain ap-
proaches need a careful alignment module design and
place more emphasis on the target domain perfor-
mance only, while the multi-domain learning meth-
ods require more storage overhead to save old do-
main data. These methods often achieve limited
performance in previous (source) domains. In con-
trast, our proposed lifelong crowd counting task is
based on training the domains incrementally (one by
one) using a single model, alleviating catastrophic
performance drop of the previous domains (forget
less), and maintaining the overall performance in all
domains (count better). The lifelong crowd count-
ing system can mimic the biological brain to learn
sustainably in its lifetime inspired by the learning
mechanisms of mammals, i.e., integrating the new
knowledge increasingly while maintaining previous
memories.

2.3 Lifelong learning

Lifelong learning attempts to alleviate the catas-
trophic forgetting issues and enhance the model
generalization ability when a system increasingly
faces non-stationary data. The mainstream strate-
gies are applied to image classification (Kirkpatrick
et al., 2017; Lopez-Paz and Ranzato, 2017; Rebuffi
et al., 2017; Li ZZ and Hoiem, 2018; Belouadah and
Popescu, 2019) and numerical prediction tasks (He
YJ and Sick, 2021), which can be categorized into
four groups: model-growth approaches (Rusu et al.,
2016), rehearsal-based techniques (Lopez-Paz and
Ranzato, 2017; Rebuffi et al., 2017), regularization
(Kirkpatrick et al., 2017; Rebuffi et al., 2017), and
distillation mechanisms (Li ZZ and Hoiem, 2018).
Specifically, the model-growth (e.g., product-based
neural network (PNN) (Rusu et al., 2016)) and
rehearsal-based methods (e.g., GEM (Lopez-Paz and
Ranzato, 2017)) require more computational and
memory costs because they either instantiate a new
network or replay old data when learning new classes
or tasks. LwF (Li ZZ and Hoiem, 2018) is a combi-
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nation of the distillation networks and fine-tuning to
boost the overall performance. However, the afore-
mentioned classification-based lifelong learning ap-
proaches cannot migrate to the crowd counting task
directly because counting is an open-set problem
(Xiong et al., 2019) by nature, whose value ranges
from zero to positive infinity in theory. Latent fea-
ture representations with general visual knowledge
together with high-level semantic information at the
output layer play a crucial role in such dense predic-
tion tasks. Therefore, in this paper, we propose a
simple yet effective self-distillation loss at both the
feature level and the output level for lifelong crowd
counting to alleviate catastrophic forgetting with a
low time and space complexity.

3 Methodology

In this section, we will first introduce concrete
formalized definitions of typical crowd counting and
the proposed lifelong crowd counting. After that,
we describe the details of our proposed domain-
incremental self-distillation lifelong crowd counting
benchmark including model architectures and the
proposed loss function.

3.1 Problem formulation

3.1.1 Typical crowd counting

A typical crowd counting task can be regarded
as a density map regression problem, training and
validating in a single domain, as shown in Fig. 1a.
Suppose that one datasetDM = ⟨XM, YM⟩ contains
M training images and the corresponding annota-
tions. Then, a binary map B is easy to obtain given
the coordinates of pedestrian heads per image, which
can be formally defined as follows:

B(i,j) =

{
1, head center (i, j),

0, otherwise.
(1)

The ground truth density map Y is generated
by employing the Gaussian kernel Gσ to smooth the
binary map:

Y = Gσ ~B. (2)

Here, ~ represents the convolution operation. Then,
the typical crowd counting is transformed to regress
the generated density maps. The pixel-level L2 loss is
the most commonly used one to optimize the model

F(·; θ) with parameter θ by minimizing the difference
between predictions and ground truths:

min
θ

1

M

M∑
m=1

L2(F(Xm; θ), Ym) . (3)

3.1.2 Lifelong crowd counting

We propose a new, challenging, yet practi-
cal crowd counting task, i.e., lifelong crowd count-
ing, for investigating the catastrophic forgetting and
model generalization problems in training domain-
incremental datasets. Different from previous works
that maintained good performance only in a single
target domain, the lifelong crowd counting model
could be sustainably optimized over the new incom-
ing datasets to maximize the performance among all
domains.

For convenience, we first define some key no-
tations as follows and introduce the details of the
lifelong crowd counting process. A sequence of N do-
main datasets {D1,D2, . . . ,DN } is prepared to train
the lifelong crowd counter G∗(·;ψ) with parameters
ψ one by one. X(t)

Mt
and Y (t)

Mt
are the training images

and corresponding ground truth density maps with
Mt samples from the tth domain Dt, respectively.
Here, we assume that different datasets are coming
from different domains with their own distinct data
distributions, i.e., p(X(i)) ̸= p(X(j)), i ̸= j, because
they are normally captured from different cameras or
different scenarios like streets, museums, and gym-
nasiums. The model is initially trained from scratch
over the first domain and then trained and optimized
by the rest of the other datasets sequentially. The
optimal object ψ∗ is defined as follows:

argmin
ψ

N∑
t=1

E
(X

(t)
Mt

,Y
(t)
Mt

)
[L(G(t)(X

(t)
Mt

;ψ), Y
(t)
Mt

)],

(4)
where G(t)(·;ψ) represents the tth model for train-
ing the tth dataset X(t)

Mt
with Mt samples. The

ultimate model is expected to achieve decent per-
formance among seen and unseen domains. What
deserves to be pointed out is that lifelong crowd
counting is distinct from cross-domain tasks with dif-
ferent optimization objectives, as well as the train-
ing settings. In lifelong crowd counting, the goal
is to maximize the performance on both seen and
unseen domains instead of maximizing the target
domain performance only. Specifically, when the
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training data from previous domains are absent or
unavailable, lifelong crowd counters could still work
efficiently because they are trained and updated
only by the newly arriving domain dataset one after
another.

3.2 Overview of our proposed framework

Our proposed framework focuses on tackling the
catastrophic forgetting and generalization issues un-
der the circumstances of domain-incremental train-
ing settings. In this study, we simply regard dif-
ferent crowd counting datasets as different domains
because the statistics (mean and variance) of per-
son count are different. The detailed explanations
of the domain concept can be seen in the supple-
mentary materials. To be more specific, we propose
a novel domain-incremental self-distillation lifelong
crowd counting benchmark for sustainable learning
with newly arriving data and without an obvious per-
formance drop among previous domains. The key
factor is how to effectively leverage the previously
learned meaningful knowledge when training over
the data from a new domain for better crowd count-
ing. Inspired by the knowledge distillation technique,
we expect to use a well-trained model among old do-
mains (teacher model) to guide the currently opti-

mized model with new domain data (student model)
to mitigate performance drop among previous do-
mains, considering that the old data may be unavail-
able. The overview of our proposed framework is
illustrated in Fig. 2. We design a self-distillation
mechanism plugged into both feature- and output-
level layers of the network to constrain the output
distribution similarities between the teacher and stu-
dent models, which can reuse the learned knowledge
when facing the new domain data without storing
or training the old data repeatedly. Details will be
given in Section 3.3. The ultimate model is expected
to be deployed to an arbitrary domain to estimate
the person count.

For better understanding, the overall training
pipeline is described in detail as shown in Algo-
rithm 1. A queue Q collects N increasingly arriving
datasets from different domains to be trained one
by one. First, we initialize the first model G(1)(·;ψ)
by training the first available dataset D1 in queue
Q. Another queue P is prepared for future evalu-
ation, receiving the test set popped from Q. After
that, the model will be trained and optimized by the
subsequent datasets from D2 to DN , repeating the
following main steps until queue Q is empty:

1. Pop the tth dataset Dt from queue Q for

· · 

Fig. 2 Overall architecture of our proposed domain-incremental self-distillation learning benchmark (FLCB)
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training.
2. Copy the parameters of the last well-trained

model G(t−1) to model F(·; θ) as a teacher network
for distillation.

3. Train the current tth model G(t)(·;ψ) over the
tth datasetDt via the self-distillation loss we propose.

4. Push the tth dataset Dt into queue P for
evaluation when the model converges.

Note that the parameters θ of model F(·; θ) are
frozen during the lifelong training process. The fixed
model is regarded as a teacher network to guide the
current student network G(t)(·;ψ) with learnable pa-
rameters ψ to remember old meaningful knowledge
for better crowd counting. Eventually, we obtain the
final model with the best parameters ψ∗, which can
continue to be trained using our proposed framework
when the newly coming labeled data are ready in the
future. Because we do need to store any previously
seen training data to be replayed to train our model,

Algorithm 1 FLCB training pipeline
Notations:
X

(t)
Mt

: the tth training dataset with Mt samples.

Y
(t)
Mt

: the corresponding density maps of X(t)
Mt

.
M1,M2, ...,MN : samples of each dataset.
P : a queue containing previously seen datasets.
Q : a queue containing future unseen datasets.
F(t)(·; θ) : teacher model with fixed parameters θ at the tth

step.
G(t)(·;ψ) : student model with updated parameters ψ at the
tth step.
Input: {D1,D2, ...,DN }: a sequence of N domain datasets,
Di = ⟨X

(i)
Mi

, Y
(i)
Mi
⟩.

Output: the optimal model parameters ψ∗.
1: P ← ∅
2: Q← {D1,D2, . . . ,DN }
3: ⟨X(1)

M1
, Y

(1)
M1
⟩ ← Q.top()

4: Q.pop()
5: Train G(1)(X(1)

M1
;ψ)

6: ψ∗ ← argminψ L
(1)
count(·;ψ)

7: P.push(X(1))

8: for t = 2, 3, . . . ,N do
9: F(t−1)(·; θ)← G(t)(·;ψ∗)

10: ⟨X(t)
Mt

, Y
(t)
Mt
⟩ ← Q.top()

11: Train G(t)(X(t)
Mt

;ψ)

12: ψ∗ ← argminψ L
(t)
count(·;ψ) + λL(t)distill(·; θ, ψ)

13: P.push(⟨X(t)
Mt

, Y
(t)
Mt
⟩)

14: Q.pop()

15: Test all seen datasets in P with G(t)(·;ψ∗)

16: end for
17: Return ψ∗

// Time complexity: O(N )

// Space complexity: Ω(M)

// M = max{Mi|i = 1, 2, ...,N}

the time and space complexities are approximately
O(N ) and Ω(M), respectively, superior to O(N 2)

and Ω(N × M) of joint training. M is the maxi-
mum of Mi. Although the distillation mechanism
is required to save an additional model, its storage
overhead is negligible compared to storing the entire
dataset for retraining.

3.3 Balanced domain forgetting loss

To balance the model plasticity (the ability to
learn new data) and stability (the ability to re-
member previous knowledge), we propose a novel
balanced domain forgetting loss function, i.e., BD-
FLoss, consisting of mainly counting loss and self-
distillation loss. We integrate the optimal trans-
port loss in our basic L1 counting loss in this study
because it has tighter generalization error bounds
(Wang BY et al., 2020). L1 counting loss is defined
as follows:

L1(Y, Ŷ ) =
1

M

M∑
i=1

|Yi − Ŷi|, (5)

where L1(·, ·) loss computes the difference between
the predicted and actual counts.

The optimal transport loss LOT is used to min-
imize the distribution discrepancy between the pre-
dicted density maps and the point-annotated binary
maps, defined as follows:

LOT(Y, Ŷ ) = Wc

(
Y

||Y ||1 ,
Ŷ

||Ŷ ||1
; C

)
=

⟨
α∗, Y

||Y ||1

⟩
+
⟨
β∗, Ŷ

||Ŷ ||1

⟩
, (6)

where Wc(µ, v; C) is the optimal transport loss with
the transport cost C. It aims at minimizing the cost
to transform one probability distribution µ to an-
other v. C is defined as the quadratic transport cost
here. α∗ and β∗ are the optimal solutions to its dual
problem:

max
α,β

⟨α, µ⟩+ ⟨β, v⟩ s.t. αi + βj ≤ Cij , ∀i, j. (7)

To improve the approximation of the low-
density regions of images, we embed a normalized
regularization item Lr, defined as follows:

Lr(Y, Ŷ ) =
1

M

M∑
i=1

1

2

∥∥∥ Yi

||Yi||1 − Ŷi

||Ŷi||1

∥∥∥
1
. (8)



194 Gao et al. / Front Inform Technol Electron Eng 2023 24(2):187-202

Thus, the total count loss is made up of the
three aforementioned loss functions with two hyper-
parameters, η and γ, which are set to 0.1 and 0.01,
respectively, in our experiments.

Lcount = L1 + ηLOT + γLr. (9)

When training to the tth domain, the perfor-
mance among previous domains may degrade dra-
matically, i.e., catastrophic forgetting, if no con-
straints are imposed. The self-distillation loss Ldistill

is designed to help the model forget less and count
better during the lifelong learning process. To be
more specific, we regard the current training model
G(t)(·) as the student model, which can be guided
by the teacher model G(t−1)(·) well-trained at the
previous step (Fig. 2). The student model is not
expected to forget some previously learned knowl-
edge when training in the new domain. Normally,
the deep layers of a CNN with a large receptive field
contain task-specific and high-level semantic infor-
mation, while the intermediate layers include general
visual knowledge. They are mutually beneficial and
complementary, and assist the model in remember-
ing the helpful knowledge learned previously, during
the lifelong crowd counting process. Thus, we deploy
the self-distillation loss at both the feature level and
the output level when the tth new domain dataset
arrives for training.

L(t)
distill =

1

Mt

Mt∑
i=1

(
||G(t−1)(X

(t)
i )− G(t)(X

(t)
i )||2︸ ︷︷ ︸

output-level distillation

+ ||H(t−1)(X
(t)
i )−H(t)(X

(t)
i )||2︸ ︷︷ ︸

feature-level distillation

)
, (10)

where H(·) denotes the feature extractor of model
G(·). Since the similarity metric is not our crucial re-
search point in this study, we just choose the L2 loss
for simplicity. To sum up, the BDFLoss is made up
of these two components within the hyper-parameter
λ:

LBDF = Lcount + λLdistill, (11)

where λ is applicable as a trade-off between model
plasticity and stability. It is the same as vanilla
sequential fine-tuning when λ is equal to 0.

3.4 Model architectures

Our proposed domain-incremental self-
distillation lifelong crowd counting benchmark

is model-agnostic. To illustrate its effectiveness,
we integrate it into several state-of-the-art crowd
counting backbone models without the bells and
whistles, CSRNet (Li YH et al., 2018), SFANet (Zhu
L et al., 2019), DM-Count (Wang BY et al., 2020),
and DKPNet (Chen BH et al., 2021). Because the
attention map supervision of SFANet may introduce
some biases in the experimental comparisons and
the source code of DKPNet is not released, we make
the following modifications in our experiments. A
small improvement of SFANet is that we enable
the network to learn the attention map adaptively
based on training images without generating addi-
tional attention maps for supervision. We modify
DKPNet-baseline in our experiments because we
focus only on investigating the effectiveness of our
proposed framework in forgetting and generalization
under different model capacities.

4 Experiment settings

In this section, we will briefly introduce four
datasets used in our experiments, the training set-
tings, and some hyper-parameter selections.

4.1 Datasets

We train and evaluate our model in the pub-
lic crowd counting datasets, i.e., ShanghaiTech
PartA (Zhang YY et al., 2016), ShanghaiTech PartB
(Zhang YY et al., 2016), UCF-QNRF (Idrees et al.,
2018), NWPU-Crowd (Wang Q et al., 2021), and
JHU-Crowd++ (Sindagi et al., 2019) (Table 2).
To illustrate the generalization of different training
paradigms, we have to select one of them as the un-
seen dataset that could never be trained during the
domain-incremental lifelong learning process. In our
experiments, we take the JHU-Crowd++ dataset as
an unseen one because it has a variety of diverse sce-
narios and unconstrained environmental conditions
(Sindagi et al., 2019). The synthetic dataset GCC
(Wang Q et al., 2019) is also used to analyze the
synthetic-to-real generalization performance under
the lifelong crowd counting settings.

4.2 Implementation details

We strictly follow the same basic image prepro-
cessing settings as in most recent literature (Li YH
et al., 2018; Ma et al., 2019; Zhu L et al., 2019; Wang
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BY et al., 2020). The crop size is 256 × 256 for
SHA, and 512 × 512 for SHB, QNRF, and NWPU
datasets. To generate the density map as ground
truth, we just adopt the fixed Gaussian kernel whose
variance σ is set to 15 for all datasets. Several useful
augmentations like random horizontal flipping with
a probability of 0.5 and normalization are applied to
those images before training. The hyper-parameter
λ in the loss function is set to 0.5 to achieve a trade-
off between model plasticity and stability. We use
the fixed learning rate of 1 × 10−5, a simple weight

decay of 5× 10−4, and an Adam optimizer in all our
experiments. We use the PyTorch framework and
NVIDIA GeForce RTX 3090 GPU workstation.

4.3 Evaluation metrics

The catastrophic forgetting phenomenon often
exists in domain-incremental learning. To evaluate
how much old knowledge on earth the model forgets
in the previous domains and make a fair compari-
son with other methods, we propose a new metric,

Table 2 The number of images used to train models on different datasets

Dataset
Number of Number of Number of persons per image

raw/training samples testing samples Minimum Maximum Average

ShanghaiTech PartA 300/300 182 33 3139 501
ShanghaiTech PartB 400/400 316 9 578 123
UCF-QNRF 1201/1201 334 49 12 865 815
NWPU-Crowd 3609/3609 1500 0 20 033 418
JHU-Crowd++ 2772/0 1600 0 25 791 346
GCC 15 212∗ 0 3995 501
∗ The total number of training and testing samples

Table 3 The results with different domain-incremental lifelong learning methods

Model
MAE RMSE

mMAE mRMSE
SHA QNRF SHB NWPU

JHU
SHA QNRF SHB NWPU

JHU
(unseen) (unseen)

LwF* (Li ZZ and Hoiem, 2018) 62.3 81.4 11.5 90.8 90.4 104.4 133.4 18.2 395.2 298.2 61.5 162.8
EwC* (Kirkpatrick et al., 2017) 64.9 88.5 10.2 84.2 85.9 117.2 171.7 17.6 377.7 294.1 62.0 171.1
FLCB (Ours) 68.8 84.3 7.8 76.6 84.8 113.9 160.1 12.2 364.2 264.8 59.4 162.6
∗ represents our reproduced results of modified approaches. The bold number indicates the best performance

Table 4 Quantitative results with different paradigms to compare the forgetting degree and overall performance

Model Method MAE RMSE mMAE mRMSE nBwT #params. MACs

SHA QNRF SHB NWPU SHA QNRF SHB NWPU (×107) (×1010)

CSRNet
BASELINE 98.4 123.9 13.4 114.5 168.1 225.3 19.1 456.5 87.6 217.3 0.424

1.626 2.707(Li YH et al., 2018)
LwF* 71.5 107.4 11.3 123.3 122.4 198.9 16.7 520.3 78.4 214.6 −0.042

FLCB 66.6 112.5 13.0 121.4 100.4 198.6 22.0 473.2 78.4 198.6 −0.102

JOINT 64.0 109.0 14.0 124.8 100.6 199.7 18.6 499.4 78.0 204.6 –

SFANet
BASELINE 85.4 112.6 14.8 106.9 141.3 200.7 18.1 463.7 79.9 206.0 0.545

1.702 2.728(Zhu L et al., 2019)
LwF* 75.0 101.3 11.5 108.3 128.5 177.2 19.0 450.0 74.0 193.7 −0.002

FLCB 69.4 103.7 12.7 108.8 110.9 176.6 20.9 445.0 73.7 188.4 −0.097

JOINT 77.7 136.8 14.0 127.8 124.0 236.3 17.3 458.5 89.1 209.0 –

DM-Count
BASELINE 76.0 94.1 9.6 108.3 122.2 154.1 17.5 481.4 72.0 193.8 0.176

2.150 2.699(Wang BY et al., 2020)
LwF* 74.6 90.2 9.4 86.9 124.1 164.9 14.9 375.4 65.3 169.8 0.049
FLCB 69.2 95.4 9.7 83.6 113.2 166.0 15.6 370.8 64.5 166.4 −0.013

JOINT 78.2 86.7 7.9 88.5 129.3 153.3 13.0 393.8 65.3 172.4 –

DKPNet
BASELINE 92.9 100.1 7.7 90.0 157.8 179.4 12.4 393.6 72.7 185.8 0.371

1.328 1.038(Chen BH et al., 2021)
LwF* 62.3 81.4 11.5 104.4 133.4 18.2 90.8 395.2 61.5 162.8 −0.009

FLCB 68.8 84.3 7.8 76.6 113.9 160.1 12.2 364.2 59.4 162.6 −0.010

JOINT 65.0 86.0 8.4 81.2 108.5 163.3 13.2 357.7 60.2 160.7 –

We take sequential training as our BASELINE and joint training as JOINT for reference. FLCB is our proposed method.
∗ represents our reproduced results of modified approaches. The bold number indicates the best performance among the
lifelong learning methods
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called normalized Backward Transfer (nBwT). With
the help of nBwT, the total forgetfulness over t in-
cremental domains could be measured to determine
whether the model is equipped with the sustainable
learning ability. The normalization operation we in-
troduce in nBwT could eliminate the potential nega-
tive impact because of the different learning difficul-
ties in different domains.

nBwTt =
1

t− 1

t−1∑
i=1

et,i − ei,i
ei,i

, t = 2, 3, ...,N , (12)

where et,i is the test MAE score of the ith dataset
when obtaining the optimal model on the tth dataset,
and i < t. nBwTt is the accumulation of the forget-
ting performance among all previous t − 1 domain
datasets. The non-zero divisor ei,i is a normalization
factor. The larger the nBwT value is, the greater the
model forgetting degree is. A value smaller than
0 indicates that the model has attained a positive
performance improvement among previously trained
datasets. The theoretical lower bound of nBwTt is
− 1
t−1 when et,i equals zero.

Furthermore, we propose two reasonable and
impartial criteria, i.e., mMAE and mRMSE, the re-
spective means of MAE and root mean square error
(RMSE) in N datasets, to evaluate roughly the over-
all counting precision of the lifelong crowd counting
task:

mMAE =
1

N

N∑
i=1

1

Mi

Mi∑
j=1

|Ŷj − Yj |, (13)

mRMSE =
1

N

N∑
i=1

√√√√ 1

Mi

Mi∑
j=1

||Ŷj − Yj ||2, (14)

where Mi denotes the number of images from the
ith test set. Ŷj and Yj are the predicted count and
actual count of the jth image, respectively. mMAE
and mRMSE reduce to standard MAE and RMSE
respectively when N is equal to 1.

In addition, we still use the standard MAE score
on the unseen JHU-Crowd++ dataset to compare
the model generalization within different training
strategies.

5 Experimental results

In this section, we first evaluate the overall per-
formance and generalization ability of our proposed
FLCB framework by comparison with two classi-
cal continual learning approaches (Kirkpatrick et al.,
2017; Li ZZ and Hoiem, 2018) (Table 3). Then, we
demonstrate the difference between FLCB and three
other learning strategies, especially for analyzing
their respective forgetting degrees among the trained
datasets (SHA, SHB, QNRF, and NWPU), and their
generalization abilities on the unseen dataset (JHU-
Crowd++). The synthetic-to-real experiments are
also conducted considering the data privacy issues
and some ethical policies.

Table 5 Forgetting performance in the intermediate process of lifelong crowd counting among four models
with FLCB

Method (FLCB) Model
MAE RMSE

mMAE mRMSE nBwT
SHA QNRF SHB NWPU SHA QNRF SHB NWPU

SHA→QNRF CSRNet 73.9 121.8 – – 111.7 225.3 – – 97.9 168.5 0.068
SHA→QNRF SFANet 73.4 111.3 – – 114.4 200.4 – – 92.4 157.4 0.225
SHA→QNRF DM-Count 65.2 84.8 – – 117.2 149.0 – – 75.0 133.1 0.058
SHA→QNRF DKPNet 62.1 82.9 – – 103.9 149.7 – – 72.5 126.8 0.078

SHA→QNRF→SHB CSRNet 73.9 121.8 16.1 – 111.7 225.3 29.9 – 70.6 122.3 0.034
SHA→QNRF→SHB SFANet 73.4 111.3 20.5 – 114.4 200.4 31.5 – 68.4 115.4 0.113
SHA→QNRF→SHB DM-Count 65.2 84.8 13.6 – 117.2 149.0 25.6 – 54.3 97.3 0.029
SHA→QNRF→SHB DKPNet 63.5 86.4 10.3 – 109.6 147.5 17.3 – 53.4 91.5 −0.014

SHA→QNRF→SHB→NWPU CSRNet 66.6 112.5 13.0 121.4 100.4 198.6 22.0 473.2 78.4 198.6 −0.102

SHA→QNRF→SHB→NWPU SFANet 69.4 103.7 12.7 108.8 110.9 176.6 20.9 445.0 73.7 188.4 −0.097

SHA→QNRF→SHB→NWPU DM-Count 69.2 95.4 9.7 83.6 113.2 166.0 15.6 370.8 64.5 166.4 −0.013

SHA→QNRF→SHB→NWPU DKPNet 68.8 84.3 7.8 76.6 113.9 160.1 12.2 364.2 59.4 162.6 −0.010

The data underlined are all less than zero, which means that our proposed FLCB method has a positive effect on the overall
performance of past domains
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5.1 Analysis of catastrophic forgetting

As shown in Table 3, we reproduce two of the
classical lifelong learning methods and modify them
to adapt to our crowd counting task, because most
lifelong learning methods focus on the classification
task, while crowd counting is a regression-like task.
The average performances in past domains and un-
seen domains of our proposed FLCB method all sur-
pass those of LwF and EwC approaches. We com-
pare the quantitative results between the baselines
and our proposed method based on four benchmark
models. The results in Table 4 demonstrate that our
method can remarkably alleviate the catastrophic
forgetting phenomenon on all models with the lowest
mMAE, mRMSE, and nBwT (i.e., forgetting degree)
under the domain-incremental training settings. We
also report the model parameters and the Multiply-
ACcumulate operations (MACs) for each benchmark
model. The forgetting degree in the intermediate
process is detailed in Table 5. The results imply that
the model will forget less and count better when more
labeled datasets are involved in the lifelong learning
process. This indicates that our framework can re-
member the old yet meaningful knowledge from the
last well-trained model when handling the new do-
main dataset.

5.2 Effect of hyper-parameter λ

The proposed balanced domain forgetting loss
(BDFLoss) is composed of optimal transport count-
ing loss and self-distillation loss. The hyper-
parameter λ plays a dominant role in our proposed
BDFLoss to control how much previously learned
meaningful knowledge should be retrained when
learning on new domain data. In other words, λ is a
trade-off between model plasticity and stability. The
greater the value of λ is, the more attention should
be paid to leveraging the distilled knowledge. If λ
is equal to 0, it degenerates to the vanilla sequential
training without any constraint of previous knowl-
edge. We just empirically choose λ = 0.5 to conduct
our main experiments in this study. In this subsec-
tion, we also investigate whether different λ values
will have a visible effect on forgetting. The exten-
sive results demonstrate that λ = 0.5 is a reasonable
choice (Table 6).

5.3 Analysis of model generalization

5.3.1 Real-to-real generalization

To build a robust model for better crowd count-
ing, we expect that the model can obtain accept-
able performance among unseen domains, because

Table 6 Forgetting degree comparison results with different hyper-parameters λ’s

Method (FLCB) λ
MAE RMSE

nBwT
SHA QNRF SHB NWPU SHA QNRF SHB NWPU

SHA→QNRF 0.1 62.2 77.2 – – 104.7 137.5 – – 0.080
SHA→QNRF 0.5 62.1 82.9 – – 103.9 149.7 – – 0.078
SHA→QNRF 1.0 62.5 81.2 – – 108.4 145.3 – – 0.085

SHA→QNRF→SHB 0.1 62.2 77.2 11.0 – 104.7 137.5 19.8 – 0.040
SHA→QNRF→SHB 0.5 63.5 86.4 10.3 – 109.6 147.5 17.3 – 0.072
SHA→QNRF→SHB 1.0 62.5 81.2 10.7 – 108.4 145.3 20.1 – 0.043

SHA→QNRF→SHB→NWPU 0.1 65.5 92.5 8.7 84.4 111.4 181.8 14.7 410.1 0.042
SHA→QNRF→SHB→NWPU 0.5 68.8 84.3 7.8 76.6 113.9 160.1 12.2 364.2 −0.010

SHA→QNRF→SHB→NWPU 1.0 67.0 84.8 11.0 80.0 112.4 181.1 18.3 354.9 0.079

The model used is DKPNet. The bold number indicates the lowest forgetting degree

Table 7 Generalization comparison of different training strategies on the unseen JHU-Crowd++ dataset

Model
MAE RMSE

CSRNet SFANet DM-Count DKPNet CSRNet SFANet DM-Count DKPNet

JOINT 103.2 115.5 96.3 89.8 320.0 347.6 320.3 318.7
LwF* 101.6 107.7 94.6 90.4 322.3 312.3 296.0 298.2
FLCB 92.9 102.2 82.5 84.8 305.1 311.3 298.5 264.8
∗ represents our reproduced results of modified approaches. The bold number indicates the best performance
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labeling crowd images is extremely expensive and
time-consuming in the real world. After the ulti-
mate models converge, we test them directly on the
unseen JHU-Crowd++ dataset (Table 7). Note that
the images from JHU-Crowd++ are never trained
during the process of lifelong learning. Our proposed
FLCB can achieve lower prediction errors in terms of
MAE and RMSE over the unseen dataset, indicating
a stronger generalization ability compared with the
joint training strategy. Furthermore, taking DKP-
Net as an example, we delve into the ablation study
of different layers for distillation in the intermediate
lifelong learning process. Every time the training of
a new incoming dataset is finished, the model will be
evaluated on the unseen dataset. The results, shown
in Table 8, illustrate that its performance is boosted
progressively with incremental data from different
domains. It is also indicated that the model can
count better on the unseen domain under the mutu-
ally complementary interaction of both feature- and
output-level distillation. Training in different orders
may achieve fluctuating performance in unseen do-
mains. We present the results in the supplementary
materials because they could be related to curricu-
lum learning, which is not our main focus in this
study.

5.3.2 Synthetic-to-real generalization

Considering data privacy and some ethical poli-
cies (i.e., the real-world training images may be

unobtainable), we conduct the training with the
same lifelong settings on the synthetic crowd dataset
(GCC) (Wang Q et al., 2019) and investigate the gen-
eralization on the unseen real-world dataset (Shang-
haiTech PartB). The GCC dataset is collected from
the GTA5 game environment, containing 15 212 syn-
thetic images with diverse scenes. The synthetic
dataset can provide precise but not time-consuming
annotations for training. We split the GCC syn-
thetic dataset into four subsets to mock the same life-
long training settings. The forgetting phenomenon
among incremental synthetic subsets is still analyzed
(Table 9), as well as the generalization performance
on the unseen dataset. After obtaining the ultimate
model, our FLCB benchmark achieves the lowest
mMAE, mRMSE, and nBwT among previously seen
datasets and decent performance on the unseen real-
world dataset. Furthermore, the generalization ex-
perimental results (Table 10) verify the superiority
of our proposed benchmark.

Table 10 The test MAE and RMSE scores on the un-
seen ShanghaiTech PartB dataset after training syn-
thetic GCC subsets

Method MAE RMSE

JOINT 22.8 30.6
CycleGAN (Zhu JY et al., 2017) 25.4 39.7
SE CycleGAN (Wang Q et al., 2019) 19.9 28.3
FLCB 16.1 25.0
The bold number indicates the best performance

In summary, our proposed lifelong crowd count-

Table 8 Generalization comparison on the unseen JHU-Crowd++ dataset with self-distillation at different
levels during the entire lifelong learning process

Distillation MAE RMSE

Feature Output A→Q A→Q→B A→Q→B→N A→Q A→Q→B A→Q→B→N

X 102.6 93.2 87.1 341.0 324.4 298.5
X 106.7 102.3 90.4 345.9 354.8 298.2

X X 96.2 90.5 84.8 327.8 313.0 264.8
A, Q, B, and N are the abbreviations for the names of four datasets SHA, QNRF, SHB, NWPU, respectively. The bold
number indicates the best performance

Table 9 Experimental results of DKPNet with the synthetic-to-real training settings

Method
MAE RMSE

mMAE mRMSE nBwT
GCC-1 GCC-2 GCC-3 GCC-4 GCC-1 GCC-2 GCC-3 GCC-4

BASELINE 55.4 34.7 18.5 35.6 131.3 82.8 53.3 74.9 36.1 85.6 1.130
LwF* 42.8 37.7 16.5 35.1 104.5 108.5 43.1 70.6 33.0 81.7 0.378
FLCB 40.0 35.1 14.6 41.7 95.4 100.5 34.5 82.5 32.8 78.2 0.192
∗ represents our reproduced results of modified approaches. The bold number indicates the best performance
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Fig. 3 The visualization results of different training paradigms. The top row shows the predictions and
compares the forgetting degree on the first training dataset (SHA), while the bottom row illustrates the
predictions and compares the generalization ability on the unseen dataset (JHU) (red: FLCB can correctly
discriminate the non-human objects like traffic lights; green: FLCB may be affected by background noise such
as loudspeakers; yellow: FLCB may not handle well the missing annotations, which is not the key research
point in our work). References to color refer to the online version of this figure

ing benchmark FLCB can help the crowd counters
forget less and count better to sustainably han-
dle multiple-domain crowd counting using a single
model, which indicates that it has potential to tackle
more complicated scenes in the future.

5.4 Visualization results

To make a more qualitative comparison, we vi-
sualize the prediction density maps under different
training strategies. As illustrated in Fig. 3, we dis-
cover that the sequential training methods achieve
terrible performance among old domains after train-
ing images from a new domain. Our proposed life-
long crowd counting benchmark can estimate crowd
density on both seen and unseen datasets more ac-
curately and outperforms other training paradigms.

5.5 Discussions

5.5.1 Limitations

In this paper, we attempt to develop a single
model to handle the incremental datasets from dif-
ferent domains for better lifelong crowd counting.
Judging from both quantitative and qualitative re-
sults, our proposed FLCB does well in achieving
a trade-off performance from all domain datasets
compared with other methods. However, there
are still some limitations that may drive future re-
search directions in lifelong crowd counting. On
one hand, according to the visualization results, our
proposed FLCB method seems to have difficulty in
dealing with the missing annotations (yellow bound-

ing boxes) and background noises (green bounding
boxes), like the loudspeaker box in Fig. 3. On the
other hand, we do not integrate any replay-based
strategies into our experiments considering the train-
ing time and storage overhead. Efficient data sam-
pling strategies and replay-based approaches may
boost lifelong crowd counting, which deserves to be
investigated in the future.

5.5.2 Lifelong learning vs. self-supervised learning

We would like to discuss lifelong learning and
self-supervised learning from a pretraining perspec-
tive. They share something in common that is ex-
pected to lay the foundation for artificial general
intelligence. Recent literature (Caron et al., 2020;
Chen T et al., 2020; Grill et al., 2020; He KM et al.,
2020; Niu et al., 2020, 2022; Huang et al., 2022; Niu
and Wang, 2022a, 2022b) shows the power of self-
supervised learning as a novel pretraining paradigm
to empower multiple downstream tasks. To an ex-
tent, lifelong learning could be regarded as a kind
of pretraining method, because it learns the shared
knowledge and general representations to boost per-
formance. However, lifelong learning usually re-
quires labeled data for training to enhance model
capacity, whereas self-supervised learning does not.
From our perspectives, both types of learning could
provide a good pretrained network or initialization
for the training of other domain datasets or down-
stream tasks, and lifelong learning may empower self-
supervised learning in the future.
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6 Conclusions

We propose a domain-incremental self-
distillation learning benchmark for lifelong crowd
counting to deal with the catastrophic forgetting
and model generalization issues using a single
model when training new datasets from different
domains one after another. With the help of the
BDFLoss function that we have designed, the model
can forget less and count better during the entire
lifelong crowd counting process. Additionally, our
proposed metric nBwT can be used to measure the
forgetting degree in future lifelong crowd counting
models. Extensive experiments demonstrate that
our proposed benchmark has a lower forgetting
degree over the sequential training baseline and a
stronger generalization ability compared with the
joint training strategy. Our proposed method is
a simple yet effective way to sustainably handle
the crowd counting problem among multiple do-
mains using a single model with limited storage
overhead when the newly available domain data
arrive. It can be incorporated into any existing
backbone as a plug-and-play training strategy for
better crowd counting in the real world. Although
our work considers crowd counting, the proposed
framework has the potential to be applied in other
regression-related image or video tasks.
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