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ABSTRACT
Content-based image retrieval using region segmentation has
been an active research area. We present IRM (Integrated
Region Matching), a novel similarity measure for region-
based image similarity comparison. The targeted image
retrieval systems represent an image by a set of regions,
roughly corresponding to objects, which are characterized by
features reecting color, texture, shape, and location prop-
erties. The IRM measure for evaluating overall similarity
between images incorporates properties of all the regions in
the images by a region-matching scheme. Compared with
retrieval based on individual regions, the overall similarity
approach reduces the inuence of inaccurate segmentation,
helps to clarify the semantics of a particular region, and
enables a simple querying interface for region-based image
retrieval systems. The IRM has been implemented as a part
of our experimental SIMPLIcity image retrieval system. The
application to a database of about 200,000 general-purpose
images shows exceptional robustness to image alterations
such as intensity variation, sharpness variation, color dis-
tortions, shape distortions, cropping, shifting, and rotation.
Compared with several existing systems, our system in gen-
eral achieves more accurate retrieval at higher speed.

1. INTRODUCTION
With the steady growth of computer power, rapidly declin-
ing cost of storage, and ever-increasing access to the Inter-
net, digital acquisition of information has become increas-
ingly popular in recent years. Digital information is prefer-
able to analog formats because of convenient sharing and
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distribution properties. This trend has motivated research
in image databases, which were nearly ignored by traditional
computer systems due to the enormous amount of data nec-
essary to represent images and the di�culty of automatically
analyzing images. Currently, storage is less of an issue since
huge storage capacity is available at low cost. However, ef-
fective indexing and searching of large-scale image databases
remains as a challenge for computer systems. The auto-
matic derivation of semantics from the content of an image
is the focus of interest for most research on image databases.
Image semantics has several levels: semantic types, object
composition, abstract semantics, and detailed semantics.

1.1 Related Work
Content-based image retrieval is de�ned as the retrieval of
relevant images from an image database based on auto-
matically derived imagery features. The need for e�cient
content-based image retrieval has increased tremendously in
many application areas such as biomedicine, crime preven-
tion, military, commerce, culture, education, entertainment,
and Web image classi�cation and searching.

There are many general-purpose image search engines. In
the commercial domain, IBM QBIC [3, 16] is one of the ear-
liest developed systems. Recently, additional systems have
been developed at IBM T.J.Watson [23], VIRAGE [5], NEC
AMORA [14], Bell Laboratory [15], Interpix (Yahoo), Ex-
calibur, and Scour.net. In the academic domain, MIT Pho-
tobook [17, 18] is one of the earliest. Berkeley Blobworld [1],
Columbia VisualSEEK and WebSEEK [22], CMU Informe-
dia [24], UIUC MARS [12], UCSB NeTra [10], UCSD, Stan-
ford (EMD [19], WBIIS [26]) are some of the recent systems.

Existing general-purpose CBIR systems roughly fall into
three categories depending on the signature extraction ap-
proach used: histogram, color layout, and region-based search.
There are also systems that combine retrieval results from
individual algorithms by a weighted sum matching met-
ric [5], or other merging schemes [20].

Histogram search [16, 19] characterizes an image by its color
distribution, or histogram. The drawback of a global his-
togram representation is that information about object lo-
cation, shape, and texture is discarded. Color histogram
search is sensitive to intensity variation, color distortions,
and cropping.

The color layout approach attempts to mitigate the prob-



lems with histogram search. For traditional color layout
indexing [16], images are partitioned into blocks and the
average color of each block is stored. Thus, the color lay-
out is essentially a low resolution representation of the orig-
inal image. A later system, WBIIS [26], uses signi�cant
Daubechies' wavelet coe�cients instead of averaging. By
adjusting block sizes or the levels of wavelet transforms, the
coarseness of a color layout representation can be tuned.
The �nest color layout using a single pixel block is merely
the original image. We can hence view a color layout repre-
sentation as an opposite extreme of a histogram. At proper
resolutions, the color layout representation naturally retains
shape, location, and texture information. However, as with
pixel representation, although information such as shape is
preserved in the color layout representation, the retrieval
system cannot \see" it explicitly. Color layout search is sen-
sitive to shifting, cropping, scaling, and rotation because
images are characterized by a set of local properties.

Region-based retrieval systems attempt to overcome the de-
�ciencies of color layout search by representing images at
the object-level. A region-based retrieval system applies
image segmentation to decompose an image into regions,
which correspond to objects if the decomposition is ideal.
The object-level representation is intended to be close to
the perception of the human visual system (HVS).

Since the retrieval system has identi�ed objects in the im-
age, it is relatively easy for the system to recognize similar
objects at di�erent locations and with di�erent orientations
and sizes. Region-based retrieval systems include the Ne-
tra system [10], the Blobworld system [1], and the query
system with color region templates [23]. We have devel-
oped SIMPLIcity (Semantics-sensitive Integrated Matching
for Picture LIbraries), a region-based image retrieval sys-
tem, using high-level semantics classi�cation [27].

The NeTra and the Blobworld systems compare images based
on individual regions. Although querying based on a lim-
ited number of regions is allowed, the query is performed by
merging single-region query results. Because of the great dif-
�culty of achieving accurate segmentation, systems in [10, 1]
tend to partition one object into several regions with none of
them being representative for the object, especially for im-
ages without distinctive objects and scenes. Consequently,
it is often di�cult for users to determine which regions and
features should be used for retrieval.

Not much attention has been paid to developing similarity
measures that combine information from all of the regions.
One e�ort in this direction is the querying system devel-
oped by Smith and Li [23]. Their system decomposes an
image into regions with characterizations pre-de�ned in a
�nite pattern library. With every pattern labeled by a sym-
bol, images are then represented by region strings. Region
strings are converted to composite region template (CRT)
descriptor matrices reecting the relative ordering of sym-
bols. Similarity between images is measured by the closeness
between the CRT descriptor matrices. This measure is sen-
sitive to object shifting since a CRT matrix is determined
solely by the ordering of symbols. Robustness to scaling and
rotation is not considered by the measure either. Because
the de�nition of the CRT descriptor matrix relies on the

pattern library, the system performance depends critically
on the library. Performance degrades if regions in an im-
age are not represented in the library. The system in [23]
uses a CRT library with patterns described only by color.
In particular, the patterns are obtained by quantizing color
space. If texture and shape features are added to distin-
guish patterns, the number of patterns in the library will
increase dramatically, roughly exponentially in the number
of features if patterns are obtained by uniformly quantizing
features.

1.2 Overview of IRM
To reect semantics more precisely by the region represen-
tation, we have developed IRM, a similarity measure of im-
ages based on region representations. IRM incorporates the
properties of all the segmented regions so that information
about an image can be fully used. Region-based matching
is a di�cult problem because of inaccurate segmentation.
Semantically-precise image segmentation is extremely di�-
cult [21, 11, 28, 7, 8] and is still an open problem in computer
vision. For example, segmentation algorithm may segment
an image of a dog into two regions: the dog and the back-
ground. The same algorithm may segment another image
of a dog into six regions: the body of the dog, the front
leg(s) of the dog, the rear leg(s) of the dog, the eye(s), the
background grass, and the sky.

The IRM measure we have developed has the following ma-
jor advantages:

1. Compared with retrieval based on individual regions,
the overall similarity approach in IRM reduces the ad-
verse e�ect of inaccurate segmentation, an important
property that previous work has virtually overlooked.

2. In many cases, knowing that one object usually ap-
pears with another object helps to clarify the semantics
of a particular region. For example, owers typically
appear with green leaves, and boats usually appear
with water.

3. By de�ning an overall image-to-image similarity mea-
sure, the system provides users with a simple querying
interface. To complete a query, a user only needs to
specify the query image. If desired, the system can
also be adjusted to allow users to query based on a
speci�c region or a few regions.

To de�ne the similarity measure, we �rst attempt to match
regions in two images. Being aware that segmentation can-
not be perfect, we \soften" the matching by allowing one re-
gion of an image to be matched to several regions of another
image. Here, a region-to-region match is obtained when the
regions are relatively similar to each other in terms of the
features extracted.

The principle of matching is that the closest region pair is
matched �rst. We call this matching scheme Integrated Re-
gion Matching (IRM) to stress the incorporation of regions
in the retrieval process. After regions are matched, the sim-
ilarity measure is computed as a weighted sum of the simi-
larity between region pairs, with weights determined by the
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Figure 1: Region-to-region matching results are incorporated in the Integrated Region Matching (IRM)
metric. A 3-D feature space is shown to illustrate the concept.

matching scheme. Figure 1 illustrates the concept of IRM
in a 3-D feature space. The features we extract on the seg-
mented regions are of high dimensions. The problem is much
more sophisticated in a high-dimensional feature space.

1.3 Outline of the Paper
The remainder of the paper is organized as follows. In Sec-
tion 2, the similarity measure based on segmented regions is
de�ned. In Section 3, we describe the experiments we have
performed and provide results. We conclude in Section 4.

2. THE SIMILARITY MEASURE
2.1 Image Segmentation
The similarity measure is de�ned based on segmented re-
gions of images. Our system segments images based on color
and frequency features using the k-means algorithm [6]. For
general-purpose images such as the images in a photo library
or the images on the World-Wide Web (WWW), precise
object segmentation is nearly as di�cult as computer se-
mantics understanding. Semantically-precise segmentation,
however, is not crucial to our system because we use a more
robust integrated region-matching (IRM) scheme which is
insensitive to inaccurate segmentation (Figure 2).

match

# regions = 2
# regions = 6

Traditional region-based matching

match

# regions = 2
# regions = 6

match

no match

Integrated Region Matching (IRM)

Figure 2: Integrated Region Matching (IRM) is ro-
bust to poor image segmentation.

To segment an image, the system partitions the image into

blocks with 4�4 pixels and extracts a feature vector for each
block. We choose this block size to optimize between texture
e�ectiveness and segmentation coarseness. The k-means al-
gorithm is used to cluster the feature vectors into several
classes with every class corresponding to one region in the
segmented image. An alternative to the block-wise segmen-
tation is a pixel-wise segmentation by forming a window
centered around every pixel.

The segmentation results are available on the demonstra-
tion web site. One main advantage of using the k-means
clustering algorithm for segmentation is that blocks in each
cluster does not have to be neighboring blocks. This way, we
preserve the natural clustering of objects and allow classi�-
cation of textured images [9]. The number of regions, k, is
selected adaptively. Experimental results have shown that
the system is insensitive to the number of regions segmented.

Six features are used for segmentation. Three of them are
the average color components in a 4 � 4 block. The other
three represent energy in high frequency bands of the wavelet
transforms [2, 13], that is, the square root of the second or-
der moment of wavelet coe�cients in high frequency bands.
We use the well-known LUV color space, where L encodes
luminance, and U and V encode color information (chromi-
nance).

To obtain the other three features, a Daubechies-4 wavelet
transform is applied to the L component of the image. Af-
ter a one-level wavelet transform, a 4 � 4 block is decom-
posed into four frequency bands: the LL, LH, HL, and HH
bands [2]. Each band contains 2 � 2 coe�cients. Without
loss of generality, suppose the coe�cients in the HL band
are fck;l; ck;l+1; ck+1;l; ck+1;l+1g. One feature is:

f =
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4

1X
i=0

1X
j=0

c2k+i;l+j

! 1

2

:

The other two features are computed similarly from the LH
and HH bands. The motivation for using the features ex-
tracted from high frequency bands is that they reect tex-
ture properties. Moments of wavelet coe�cients in various
frequency bands have been shown to be e�ective for repre-
senting texture [25]. The intuition behind this is that coe�-
cients in di�erent frequency bands show variations in di�er-
ent directions. For example, the HL band shows activities
in the horizontal direction. An image with vertical strips
thus has high energy in the HL band and low energy in the
LH band.



2.2 Integrated Region Matching (IRM)
In this section, we de�ne the similarity measure between two
sets of regions. Assume that Image 1 and 2 are represented
by region sets R1 = fr1; r2; :::; rmg and R2 = fr01; r

0
2; :::; r

0
ng,

where ri or r0i is the descriptor of region i. Denote the
distance between region ri and r0j as d(ri; r

0
j), which is writ-

ten as di;j in short. Details about features included in ri
and the de�nition of d(ri; r

0
j) will be discussed later. To

compute the similarity measure between region sets R1 and
R2, d(R1;R2), we �rst match all regions in the two images.
When we judge the similarity of two animal photographs, we
usually compare the animals in the images before comparing
the background areas in the images. The overall similarity of
the two images depends on the closeness in the two aspects.
The correspondence between objects in the images is crucial
to our judgment of similarity since it would be meaningless
to compare the animal in one image with the background in
another. Our IRM matching scheme aims at building cor-
respondence between regions that is consistent with human
perception. To increase robustness against segmentation er-
rors, we allow a region to be matched to several regions in
another image. A matching between ri and r0j is assigned
with a signi�cance credit si;j , si;j � 0. The signi�cance
credit indicates the importance of the matching for deter-
mining similarity between images. The matrix S = fsi;jg,
1 � i � n, 1 � j � m, is referred to as the signi�cance
matrix.

s2,4s1,1

1 2 3

a b dc

Image 1

Image 2

Figure 3: Integrated region matching (IRM) allows
one region to be matched to several regions.

A graphical explanation of the integrated matching scheme
is provided in Figure 3. The �gure shows that matching be-
tween images can be represented by an edge weighted graph
in which every vertex in the graph corresponds to a region.
If two vertices are connected, the two regions are matched
with a signi�cance credit being the weight on the edge. To
distinguish from matching two sets of regions, we refer to
the matching of two regions as they are linked. The length
of an edge can be regarded as the distance between the two
regions represented. If two vertices are not connected, the
corresponding regions are either from the same image or the
signi�cance credit of matching them is zero. Every match-
ing between images is characterized by links between regions
and their signi�cance credits. The matching used to com-
pute the distance between two images is referred to as the
admissible matching. The admissible matching is speci�ed
by conditions on the signi�cance matrix. If a graph rep-
resents an admissible matching, the distance between the
two region sets is the summation of all the weighted edge
lengths, i.e.,

d(R1; R2) =
X
i;j

si;jdi;j :

We call this distance the integrated region matching (IRM)
distance.

The problem of de�ning distance between region sets is then
converted to choosing the signi�cance matrix S. A natural
issue to raise is what constraints should be put on si;j so that
the admissible matching yields good similarity measure. In
other words, what properties do we expect an admissible
matching to possess? The �rst property we want to enforce
is the ful�llment of signi�cance. Assume that the signi�-
cance of ri in Image 1 is pi, and r0j in Image 2 is p0j , we
require that

nX
j=1

si;j = pi; i = 1; :::;m

mX
i=1

si;j = p0j; j = 1; :::;n :

For normalization, we have
Pm

i=1 pi =
Pn

j=1 p
0
j = 1. The

ful�llment of signi�cance ensures that all the regions play a
role for measuring similarity. We also require an admissi-
ble matching to link the most similar regions at the highest
priority. For example, if two images are the same, the ad-
missible matching should link a region in Image 1 only to the
same region in Image 2. With this matching, the distance
between the two images equals zero, which coincides with
our intuition. Following the \most similar highest priority
(MSHP)" principle, the IRM algorithm attempts to ful�ll
the signi�cance credits of regions by assigning as much sig-
ni�cance as possible to the region link with minimum dis-
tance. Initially, assume that di0 ;j0 is the minimum distance,
we set si0;j0 = min(pi0 ; p

0
j0). Without loss of generality, as-

sume pi0 � p0j0 . Then si0;j = 0, for j 6= j0 since the link

between region i0 and j0 has �lled the signi�cance of region
i0. The signi�cance credit left for region j0 is reduced to
p0j0 � pi0 . The updated matching problem is then solving

si;j , i 6= i0, by the MSHP rule under constraints:

nX
j=1

si;j = pi 1 � i � m; i 6= i0

X
i:1�i�m;i6=i0

si;j = p0j 1 � j � n; j 6= j0

X
i:1�i�m;i6=i0

si;j0 = p0j0 � pi0

si;j � 0 1 � i �m; i 6= i0; 1 � j � n :

We apply the previous procedure to the updated problem.
The iteration stops when all the signi�cance credits pi and
p0j have been assigned. The algorithm is summarized as
follows.

1. Set L = fg, denote M = f(i; j) : i = 1; :::;m; j =
1; :::;ng.

2. Choose the minimum di;j for (i; j) 2 M � L. Label
the corresponding (i; j) as (i0; j0).

3. min(pi0 ; p
0
j0 )! si0;j0 .

4. If pi0 < p0j0 , set si0;j = 0, j 6= j0; otherwise, set si;j0 =

0, i 6= i0.

5. pi0 �min(pi0 ; p
0
j0)! pi0 .



6. p0j0 �min(pi0 ; p
0
j0 )! p0j0 .

7. L + f(i0; j0)g ! L.

8. If
Pm

i=1 pi > 0 and
Pn

j=1 p
0
j > 0, go to Step 2; other-

wise, stop.

We now come to the issue of choosing pi. The value of pi
is chosen to reect the signi�cance of region i in the image.
If we assume that every region is equally important, then
pi = 1=m, where m is the number of regions. In the case
that Image 1 and Image 2 have the same number of regions,
a region in Image 1 is matched exclusively to one region in
Image 2. Another choice of pi is the percentage of the image
covered by region i based on the view that important objects
in an image tend to occupy larger areas. We refer to this
assignment of pi as the area percentage scheme. This scheme
is less sensitive to inaccurate segmentation than the uniform
scheme. If one object is partitioned into several regions, the
uniform scheme raises its signi�cance improperly, whereas
the area percentage scheme retains its signi�cance. On the
other hand, if objects are merged into one region, the area
percentage scheme assigns relatively high signi�cance to the
region. The current implementation of the system uses the
area percentage scheme.

The scheme of assigning signi�cance credits can also take
region location into consideration. For example, higher sig-
ni�cance may be assigned to regions in the center of an image
than to those around boundaries. Another way to count lo-
cation in the similarity measure is to generalize the de�nition
of the IRM distance to d(R1;R2) =

P
i;j si;jwi;jdi;j . The

parameter wi;j is chosen to adjust the e�ect of region i and
j on the similarity measure. In the current system, regions
around boundaries are slightly down-weighted by using this
generalized IRM distance.

2.3 Distance Between Regions
The distance between a region pair, d(r; r0), is determined by
the color, texture, and shape characteristics of the regions.
We have described in Section 2.1 the features used by the k-
means algorithm for segmentation. The mean values of these
features in one cluster are used to represent color and texture
in the corresponding region. To describe shape, normalized
inertia [4] of order 1 to 3 are used. For a region H in k
dimensional Euclidean space Rk, its normalized inertia of
order  is

l(H;) =

R
H
kx� x̂kdx

[V (H)]1+=k

where x̂ is the centroid of H and V (H) is the volume of H.
Since an image is speci�ed by pixels on a grid, the discrete
form of the normalized inertia is used, that is,

l(H;) =

P
x:x2H kx� x̂k

[V (H)]1+=k

where V (H) is the number of pixels in region H. The nor-
malized inertia is invariant with scaling and rotation. The
minimum normalized inertia is achieved by spheres. Denote
the th order normalized inertia of spheres as L . We de�ne
shape features as l(H;) normalized by L :

f7 = l(H;1)=L1 ; f8 = l(H; 2)=L2 ; f9 = l(H; 3)=L3 :

The computation of shape features is skipped for textured
images because region shape is not perceptually important
for such images. By a textured image, we refer to an image
composed of repeated patterns that appears like a unique
texture surface. Automatic classi�cation of textured and
non-textured images is implemented in our system (for de-
tails see [9]). For textured image, the region distance d(r; r0)
is de�ned as

d(r; r0) =
6X

i=1

wi(fi � f 0i)
2 :

For non-textured images, d(r; r0) is de�ned as

d(r; r0) = g(ds(r; r
0)) � dt(r; r

0) ;

where ds(r; r
0) is the shape distance computed by

ds(r; r
0) =

9X
i=7

wi(fi � f 0i)
2 ;

and dt(r; r
0) is the color and texture distance de�ned the

same as the distance between textured image regions, i.e.,

dt(r; r
0) =

6X
i=1

wi(fi � f 0i)
2 :

The function g(ds(r; r
0)) is a converting function to ensure a

proper inuence of the shape distance on the total distance.
In our system, it is de�ned as

g(d) =

8<
:

1 d � 0:5
0:85 0:2 < d � 0:5
0:5 d < 0:2 :

It is observed that when ds(r; r
0) � 0:5, the two regions bear

little resemblance. It is then not meaningful to distinguish
the extent of similarity by ds(r; r

0) because perceptually the
two regions simply appear di�erent. We thus set g(d) = 1
for d greater than a threshold. When ds(r; r

0) is very small,
to retain the inuence of color and texture, g(d) is bounded
away from zero. For simplicity, g(d) is selected as a piece-
wise constant function instead of a smooth one. Because
rather simple shape features are used in our system, color
and texture are emphasized more than shape for determin-
ing similarity between regions. As can be seen from the
de�nition of d(r; r0), the shape distance serves as a \bonus"
in the sense that only when two regions are considerably
similar in shape, their distance is a�ected by shape.

There has been much work on developing distance between
regions. Since the integrated region matching scheme is not
con�ned to any particular region distance and de�ning a
region distance is not our main interest, we have chosen a
distance with low computational cost so that the system can
be tested on a large image database.

3. EXPERIMENTS
The IRM has been implemented as a part of our experi-
mental SIMPLIcity image retrieval system. We tested the
system on a general-purpose image database (from COREL)
including about 200; 000 pictures, which are stored in JPEG
format with size 384� 256 or 256� 384. These images were
automatically classi�ed into three semantic types: graph



(clip art), textured photograph, and non-textured photo-
graph [9]. For each image, the features, locations, and areas
of all its regions are stored.

Compared with two color histogram systems [19] and the
WBIIS (Wavelet-Based Image Indexing and Searching) sys-
tem [26], our system in general achieves more accurate re-
trieval at higher speed. However, it is di�cult to design
a fair comparison with existing region-based searching al-
gorithms such as the Blobworld system which depends on
manually de�ned complicated queries. An on-line demon-
stration is provided1 . Readers are encouraged to visit the
web site since we cannot show many examples here due to
limited space.

3.1 Accuracy
The SIMPLIcity system was compared with the WBIIS sys-
tem using the same image database. As WBIIS forms image
signatures using wavelet coe�cients in the lower frequency
bands, it performs well with relatively smooth images, such
as most landscape images. For images with details crucial
to semantics, such as pictures containing people, the per-
formance of WBIIS degrades. In general, the SIMPLIcity
system performs as well as WBIIS for smooth landscape
images. Examples are omitted due to limited space.

SIMPLIcity

WBIIS

Figure 4: Comparison of SIMPLIcity and WBIIS.
The query image (upper-left corner) is a photo of
food. Best 11 matches are shown.

SIMPLIcity also performs well for images composed of �ne
details. Retrieval results with a photo of a hamburger as
the query are shown in Figure 4. The query image is the
image at the upper-left corner. The three numbers below
the pictures from left to right are: the ID of the image in
the database, the value of the similarity measure between
the query image and the matched image, and the number of
regions in the image. The SIMPLIcity system retrieves 10
images with food out of the �rst 11 matched images. The
WBIIS system, however, does not retrieve any image with
food in the �rst 11 matches. The top match made by SIM-
PLIcity is also a photo of hamburger, which is perceptually

1URL: http://WWW-DB.Stanford.EDU/IMAGE/

1. Sports and public events 2. Beach 3. Food
4. Landscape with buildings 5. Portrait 6. Horses

7. Tools and toys 8. Flowers 9. Vehicle

Table 1: Categories of images tested in our system-
atic evaluation.

very close to the query image. WBIIS misses this image be-
cause the query image contains important �ne details, which
are smoothed out by the multi-level wavelet transform in the
system.

Figure 5: Retrieval by SIMPLIcity: the query im-
age is a portrait image that probably depicts life in
Africa.
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Figure 6: Comparison of SIMPLIcity and WBIIS:
average precisions and weighted precisions of 9 im-
age categories.

Another query example is shown in Figure 5. The query
image in Figure 5 is di�cult to match because objects in the
image are not distinctive from the background. Moreover,
the color contrast is small. Among the retrieved images,
only the third matched image is not a picture of a person.
A few images, the 1st, 4th, 7th, and 8th matches, depict a
similar topic as well, probably about life in Africa.

3.2 Systematic evaluation
3.2.1 Performance on image queries
To provide numerical results, we tested 27 sample images
chosen randomly from 9 categories, each containing 3 of
the images. Image matching is performed on the COREL
database of 200,000 images. A retrieved image is considered
a match if it belongs to the same category of the query im-
age. The categories of images tested are listed in Table 1.



Most categories simply include images containing the speci-
�ed objects. Images in the \sports and public events" class
contain humans in a game or public event, such as festival.
Portraits are not included in this category. The \landscape
with buildings" class refers to outdoor scenes featuring man-
made constructions such as buildings and sculptures. The
\beach" class refers to sceneries at coasts or river banks.
For the \portrait" class, an image has to show people as the
main feature. A scene with human beings as a minor part
is not included.

Precision was computed for both SIMPLIcity and WBIIS.
Recall was not calculated because the database is large and
it is di�cult to estimate the total number of images in one
category, even approximately. To account for the ranks of
matched images, the average of precisions within k retrieved
images, k = 1; :::; 100, is computed, that is,

�p =
1

100

100X
k=1

nk
k

;

nk = # of matches in the �rst k retrieved images :

This average precision is referred to as the \weighted pre-
cision" because it is equivalent to a weighted percentage of
matched images with a larger weight assigned to an image
retrieved at a higher rank. For each of the 9 image cate-
gories, the average precision and weighted precision based
on the 3 sample images are plotted in Figure 6. The im-
age category identi�cation number is assigned according to
Table 1 scanned row wise. Except for the tools and toys cat-
egory, in which case the two systems perform about equally
well, SIMPLIcity has achieved better results than WBIIS
measured in both ways. For the two categories of landscape
with buildings and vehicle, the di�erence between the two
system is quite signi�cant. On average, the precision and
the weighted precision of SIMPLIcity are higher than those
of WBIIS by 0:227 and 0:273 respectively.

3.2.2 Performance on image categorization
The SIMPLIcity system was also evaluated based on a sub-
set of the COREL database, formed by 10 image categories,
each containing 100 pictures. Within this database, it is
known whether any two images are of the same category. In
particular, a retrieved image is considered a match if and
only if it is in the same category as the query. This assump-
tion is reasonable since the 10 categories were chosen so that
each depicts a distinct semantic topic. Every image in the
sub-database was tested as a query, and the retrieval ranks
of all the rest images were recorded. Three statistics were
computed for each query: the precision within the �rst 100
retrieved images, the mean rank of all the matched images,
and the standard deviation of the ranks of matched images.

The recall within the �rst 100 retrieved images was not com-
puted because it is proportional to the precision in this spe-
cial case. The total number of semantically related images
for each query is �xed to be 100. The average performance
for each image category in terms of the three statistics is
listed in Table 2, where p denotes precision, r denotes the
mean rank of matched images, and � denotes the standard
deviation of the ranks of matched images. For a system that
ranks images randomly, the average p is about 0:1, and the
average r is about 500.

Category Average p Average r Average �
1. Africa 0.475 178.2 171.9
2. Beach 0.325 242.1 180.0

3. Buildings 0.330 261.8 231.4
4. Buses 0.363 260.7 223.4

5. Dinosaurs 0.981 49.7 29.2
6. Elephants 0.400 197.7 170.7
7. Flowers 0.402 298.4 254.9
8. Horses 0.719 92.5 81.5

9. Mountains 0.342 230.4 185.8
10. Food 0.340 271.7 205.8

Table 2: The average performance for each image
category evaluated by precision p, the mean rank of
matched images r, and the standard deviation of the
ranks of matched images �.

Similar evaluation tests were carried out for color histogram
match. We used LUV color space and a matching metric
similar to the EMD described in [19] to extract color his-
togram features and match in the categorized image database.
Two di�erent color bin sizes, with an average of 13.1 and
42.6 �lled color bins per image, were evaluated. We call the
one with less �lled color bins the Color Histogram 1 system
and the other the Color Histogram 2 system. Figure 7 shows
the performance as compared with the SIMPLIcity system.
Clearly, both of the two color histogram-based matching
systems perform much worse than the SIMPLIcity region-
based CBIR system in almost all image categories. The
performance of the Color Histogram 2 system is better than
that of the Color Histogram 1 system due to more detailed
color separation obtained with more �lled bins. However,
the Color Histogram 2 system is so slow that it is impossi-
ble to obtain matches on larger databases. SIMPLIcity runs
at about twice the speed of the faster Color Histogram 1
system and gives much better searching accuracy than the
slower Color Histogram 2 system.

3.3 Robustness
We have performed extensive experiments to test the ro-
bustness of the system. Figure 8 summarizes the results.
The graphs in the �rst row show the the changes in rank-
ing of the target image as we increase the signi�cance of
image alterations. The graphs in the second row show the
the changes in IRM distance between the altered image and
the target image, as we increase the signi�cance of image
alterations.

The system is exceptionally robust to image alterations such
as intensity variation, sharpness variation, intentional color
distortions, intentional shape distortions, cropping, shifting,
and rotation. Figure 9 shows some query examples, using
the 200,000-image COREL database.

3.4 Speed
The algorithm has been implemented on a Pentium Pro
430MHz PC using the Linux operating system. To com-
pute the feature vectors for the 200; 000 color images of size
384 � 256 in our general-purpose image database requires
approximately 60 hours. On average, one second is needed
to segment an image and to compute the features of all re-
gions. The speed is much faster than other region-based
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Figure 7: Comparing with color histogram methods on average precision p, average rank of matched images
r, and the standard deviation of the ranks of matched images �. The lower numbers indicate better results for the
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Figure 8: The robustness of the system to image alterations.
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Figure 9: The robustness of the system to image
alterations. Best 5 matches are shown.

methods. For example, the Blobworld system developed by
University of California at Berkeley segments each image
in several minutes. Fast indexing has provided us with the
capability of handling outside queries and sketch queries in
real-time.

The matching speed is very fast. When the query image is
in the database, it takes about 1:5 seconds of CPU time on
average to sort all the images in the 200,000-image database
using our similarity measure. If the query is not in the
database, one extra second of CPU time is spent to process
the query. Other systems we have tested are several times
slower.

4. CONCLUSIONS AND FUTURE WORK
A measure for the overall similarity between images, de�ned
by a region-matching scheme that incorporates properties of
all the regions in the images. Compared with retrieval based
on individual regions, the overall similarity approach in IRM
reduces the inuence of inaccurate segmentation, helps to
clarify the semantics of a particular region, and enables a
simple querying interface for region-based image retrieval
systems. The application of the system to a database of
about 200,000 general-purpose images shows more accurate
and faster retrieval compared with existing algorithms. Ad-
ditionally, the system is robust to various image alterations.

The IRM can be improved by introducing weights on di�er-
ent regions, re�ning the features, and allowing the user to
turn o� the scale-invariance and rotation-invariance charac-
teristics. The interface can be improved by providing more
intuitive similarity distances. We are also planning to ex-
tend the IRM to special image databases (e.g., biomedical),
and very large image databases (e.g., WWW).
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