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Abstract. Accurate infarct segmentation in non-contrast CT (NCCT)
images is a crucial step toward computer-aided acute ischemic stroke
(AIS) assessment. In clinical practice, bilateral symmetric comparison
of brain hemispheres is usually used to locate pathological abnormali-
ties. Recent research has explored asymmetries to assist with AIS seg-
mentation. However, most previous symmetry-based work mixed differ-
ent types of asymmetries when evaluating their contribution to AIS.
In this paper, we propose a novel Asymmetry Disentanglement Net-
work (ADN) to automatically separate pathological asymmetries and
intrinsic anatomical asymmetries in NCCTs for more effective and in-
terpretable AIS segmentation. ADN first performs asymmetry disentan-
glement based on input NCCTs, which produces different types of 3D
asymmetry maps. Then a synthetic, intrinsic-asymmetry-compensated
and pathology-asymmetry-salient NCCT volume is generated and later
used as input to a segmentation network. The training of ADN incorpo-
rates domain knowledge and adopts a tissue-type aware regularization
loss function to encourage clinically-meaningful pathological asymmetry
extraction. Coupled with an unsupervised 3D transformation network,
ADN achieves state-of-the-art AIS segmentation performance on a pub-
lic NCCT dataset. In addition to the superior performance, we believe
the learned clinically-interpretable asymmetry maps can also provide in-
sights towards a better understanding of AIS assessment. Our code is
available at https://github.com/nihaomiao/MICCAI22 ADN.

1 Introduction

Stroke is one of the leading causes of death and disability worldwide [10]. In the
United States, about 795,000 people experience a new or recurrent stroke ev-
ery year, and 87% of all are acute ischemic strokes (AIS) [27]. Non-contrast CT
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Fig. 1: Illustration of (a) different types of asymmetries in the human brain, and
(b) our proposed asymmetry disentanglement framework. Asymmetry maps A,
P , and Q in (b) are normalized for better visualization. (a) and (b) are from the
same testing CT scan.

(NCCT) images are routinely used to assess the extent of infarction in AIS pa-
tients [23]. For computer-aided AIS estimation in NCCT scans, accurate infarct
segmentation is a crucial step. However, it is challenging to segment AIS infarct
in NCCT scans. First, NCCT is more difficult to process than other medical im-
age modalities such as MRI due to the low signal-to-noise and contrast-to-noise
ratios of brain tissues [17]. Second, infarct regions can be confounded by normal
physiologic changes, and the density and texture variations in involved brain ar-
eas may be subtle [19]. In clinical practice, to differentiate subtle abnormalities,
clinicians often locate suspicious regions by comparing bilateral differences along
the mid-sagittal axis (Fig. 1a).

Leveraging such prior knowledge that bilateral asymmetries can indicate po-
tential lesions, recent symmetry-based AIS segmentation approaches [5, 16, 19,
22, 23, 28] have shown impressive progress. Clèrigues et al. [9] exploited brain
hemisphere symmetry by inputting CT, CT perfusion images, and their hori-
zontally flipped versions to a 2D-patch-based CNN to segment AIS. Kuang et
al. [15] proposed a dense multi-path contextual GAN (MPC-GAN) to integrate
bilateral intensity difference, infarct location probability, and distance to cere-
brospinal fluid (CSF) for AIS segmentation. Instead of exploring symmetry at
the image level, Liang et al. [19] introduced a symmetry-enhanced attention
network (SEAN) to segment AIS in NCCT images. The authors first ran a 2D
alignment network to transform input images to be bilaterally quasi-symmetric
in axial view. Then a symmetry-enhanced attention module was employed to
capture both in-axial and cross-axial symmetry at the feature level. Though
achieving promising results, most existing work simply fused all asymmetries,
ignoring the fact that specific asymmetries caused by non-pathological factors
cannot reveal clinical findings. For instance, in Fig. 1a, the asymmetries be-
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tween the two yellow boxes indicate left-sided infarction. However, differences
between the green circles originate from the natural variation of the brain. Sev-
eral recent approaches [4, 6] explored how to highlight semantically-meaningful
pathological asymmetries at the feature level to help identify abnormalities in
X-ray or MR images. However, such feature-level pathological asymmetry has
poor interpretability, making them less useful in clinical practice. Also, [4, 6]
both focused on 2D asymmetry analysis, which may fail to make full use of 3D
spatial contextual information when applied to CT scans. Moreover, clinicians
usually only look for asymmetry in voxels of the same tissue type, e.g., within
the grey matter or within the white matter. Such critical domain knowledge has
not been investigated or utilized in the literature.

In this paper, we aim to address the aforementioned weaknesses in exist-
ing methods by proposing a novel asymmetry disentanglement network (ADN)
to automatically separate pathological and intrinsic anatomical asymmetries in
NCCT scans for AIS segmentation with tissue-type awareness. ADN performs
asymmetry disentanglement at the image level and achieves high interpretability
by directly outputting learned pathological and anatomical 3D asymmetry maps
for clinical examination. Furthermore, when asymmetry maps are applied to re-
move different types of asymmetries from the original NCCT, pathology-salient
or pathology-compensated images can be obtained (Fig. 1b). Validated by our
experiments, performing segmentation on pathology-salient NCCTs shows a no-
ticeable improvement over using original images. A key novelty of our framework
is inspired by the observation that non-pathological asymmetries can be due to
intensity differences between different types of tissues, uneven distribution of
CSF, or inherent brain anatomical asymmetry. Thus we design a tissue-aware
regularization loss function to incorporate tissue-type information into the train-
ing of ADN, which further encourages ADN to extract pathologically meaningful
asymmetries. Coupled with ADN, an unsupervised 3D transformation network
is also proposed to align NCCT scans to obtain the mid-sagittal plane for asym-
metry estimation. We conduct extensive experiments on a public NCCT dataset
AISD [19], and the results show that our proposed ADN can achieve state-of-the-
art performance while successfully disentangling different types of asymmetries
in a clinically interpretable way.

2 Methodology

Fig. 2 shows the overview of our proposed framework ADN. In general, ADN
includes three 3D volume-based modules: transformation network T for input
alignment and the subsequent total asymmetry estimation, asymmetry extrac-
tion network D to detect pathological asymmetries and further separate different
types of asymmetries, and segmentation network F for the final AIS segmenta-
tion. Network T is mainly based on a convolutional encoder while both D and
F adopt an encoder-decoder architecture. For the input deskulled NCCT scan
I, we first employ an unsupervised 3D transformation network T to align I and
generate a bilaterally quasi-symmetric scan X in which the mid-sagittal plane
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Fig. 2: Overview of the asymmetry disentanglement network (ADN). Tissue-type
information is generated by SPM12 [2] and is only required during training.

S is in the vertical center of the 3D volume space. We then feed X into the
network D to extract pathological asymmetry map P . P is later used to calcu-
late the intrinsic anatomical asymmetry map and then synthesize an intrinsic-
asymmetry-compensated scan X̂. We subsequently input X̂ to network F to
obtain the segmentation result Ŷ . We finally apply inverse transformation T −1

to Ŷ for getting the final output O corresponding to the input I. During the
training, we also leverage tissue segmentation results generated from an exist-
ing tool to provide extra regularization for network D. The voxel intensities of
NCCT images are normalized to be in the range of [0, 1] for network processing
and asymmetry computation.
Transformation Network T . Since the input deskulled NCCT scan I is usu-
ally not perfectly centered in the volume space, to make better use of bilateral
symmetry, we propose an unsupervised 3D transformation network T to align
the mid-sagittal plane S to be in the vertical center of volume space for sub-
sequent total asymmetry estimation. Different from the 2D alignment network
in [19], which may be sensitive to texture variations in some slices, T utilizes 3D
spatial contextual information and outputs parameters α ∈ R6, which represents
an affine transformation (R, t) ∈ SE(3), where α1:3 are rotation angles and α4:6

are translations along x, y, and z axes. cWe then apply the output parameters
α to generate bilaterally quasi-symmetric CT image X = T (I) using parame-
terized sampling grid [12]. Intuitively, when S is transformed to align with the
vertical center plane, X should have the minimum difference from its horizon-
tally flipped version X ′. Thus we adopt the following loss function to train the
3D transformation network T :

LT = ∥X −X ′∥1 , (1)

where ∥·∥1 is L1 loss. Note that T computes the 3D alignment in contrast to
2D, and no annotation is required for the training of T .
Asymmetry Disentanglement. Based on X and its self-mirrored version X ′,
we can compute a total asymmetry map A and further employ an asymmetry
extraction network D to extract pathological asymmetry map P from A. Gen-
erally, the ischemic stroke areas appear darker than their contralateral regions
in NCCT images (see Fig. 1a). Thus voxels that are darker (i.e., having lower
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intensity) in X than X ′ are suspicious voxels that could correspond to stroke
lesions. To obtain these asymmetric darker voxels in X, we first compute the
total asymmetry map A by:

Ai = max(X ′
i −Xi, 0) , (2)

where i is any voxel inside X. Note that voxels that are darker on one side
of the midsagittal plane have positive values in A, whereas the value of other
voxels is set to zero. We obtain the pathological asymmetry map P through the
trained network D, i.e., P = D(X). Then the map of asymmetry due to intrinsic
anatomical asymmetry is Q = A−P . Again, in both P and Q asymmetric voxels
have positive values and symmetric voxels have zero values. Next, we generate
a new image X̂ in which the intrinsic anatomical asymmetry is compensated or
neutralized so that there is only pathological asymmetry in X̂. X̂ is defined as:

X̂ = X +Q = X +A− P . (3)

Note that although X̂ does not exist in reality since actual brain CTs always
contain some normal anatomical asymmetry, using this synthetic X̂ can make
pathological asymmetries more salient and thus make accurate infarct segmen-
tation easier as we will demonstrate in our experiments. Similarly, we can com-
pensate for pathological asymmetry and generate a synthetic image X̃ = X +P
that contains only normal anatomical asymmetry. Our proposed ADN encour-
ages learned anatomical asymmetry and pathological asymmetry to be meaning-
ful via implicit supervision from the final segmentation so that they should not
affect pathology information presented in X̂ or lead to false positives. Example
asymmetry disentanglement results are shown in Figs. 1b and 4. We then input
X̂ to network F to obtain segmentation map Ŷ . The final segmentation O corre-
sponding to the original I can be calculated by applying inverse transformation
T −1 to Ŷ .
Training of Pathological Asymmetry Extraction Network D and Seg-
mentation Network F . Intuitively, one can utilize the infarct ground truth
map G to train both D and F with binary cross-entropy loss:

LF = Lbce(O,G) = Lbce(T −1(Ŷ ), G) , (4)

Since Ŷ = F(X̂) = F(X + A − D(X)), which is related to both D and F ,
using the loss LF can update both D and F . However, this can lead to a triv-
ial solution P = D(X) = A, such that X̂ is equivalent to X, downgrading
the proposed model to a regular segmentation network. To ensure pathologi-
cal asymmetry map P is clinically meaningful, we design a novel tissue-aware
regularization loss function to provide extra constraints for the training of D.
This loss function is motivated by the fact that it is only meaningful to examine
pathological asymmetry when the pair of mirroring voxels belong to the same
tissue type. Thus P resulting from the network D should exclude asymmetry
in voxels whose mirrored counterparts belong to a different tissue type. To uti-
lize such same-tissue constraint, during training, we first employ an off-the-shelf
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tool, statistical parametric mapping SPM12 [2, 3] and a CT brain atlas [24] to
segment GM, WM, and CSF regions from X; these regions are represented as
binary maps RGM, RWM and RCSF. Then we improve these tissue segmentation
results by removing the known stroke regions (based on ground truth G) from
the GM, WM and CSF regions. The tissue-aware regularization loss for training
D is designed by considering the following loss terms:

– Tissue-type constraint loss Ltissue = ∥P · (RGW +RCSF)∥1, which aims to
make P exclude asymmetric voxels that belong to different tissue types and
regions containing CSF. In particular, RGW indicates GM voxels whose mir-
rored counterparts are WM voxels or WM voxels whose mirrored counter-
parts are GM voxels; RGW can be obtained by computing the intersection
of horizontally flipped RGM and the original RWM.

– Size constraint loss Lsize = ∥mean(P )−mean(T (G))∥1, which aims to keep
P be of similar average size as ground truth.

– Asymmetry loss Lasymmetry = ∥P · (1−A)∥1, which is to constrain all sym-
metric regions (non-zero in (1 − A)) to have zero value in P so that P has
non-zero only for asymmetric voxels.

– Intrinsic asymmetry loss Lintrinsic = −∥mean(A− P )∥1, which is to encour-
age intrinsic anatomical asymmetries Q = A − P to be as large as possible
to contain all non-pathological asymmetries.

The final regularization loss function to train D is calculated by:

LD = Ltissue + Lsize + Lasymmetry + Lintrinsic . (5)

So the total loss function to jointly train D and F is:

LDF = LF + λLD , (6)

where λ is a scaling factor. For LF , we also add an extra generalized Dice loss
function [25] to alleviate the class imbalance issue. Note that we only use tissue-
type information during training. Using LDF , network D is trained to help max-
imize the segmentation accuracy of network F under the clinical constraints
encoded in LD. Thus ADN can learn how to automatically separate different
kinds of asymmetries in a clinically interpretable way.

3 Experiments

We validate our proposed method using AISD [19], a public non-contrast CT
(NCCT) dataset of acute ischemic stroke (AIS), which includes 345 training
scans and 52 testing scans. Ischemic lesions are manually contoured on NCCT
by a doctor using MRI scans as the reference standard. The xyz spacing values
are various in this dataset, where the x- and y-spacing values are 0.40 ∼ 2.04
mm, and z-spacing (slice thickness) varies from 3 to 10 mm. To ensure that
each voxel represents a consistent volume throughout the whole dataset, after
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Fig. 3: Qualitative comparison of different methods on AISD. Segmented regions
are marked by red contours.

Table 1: Quantitative comparison of different methods on AISD. “Aligned”
means whether the transformation is applied to the input CT to make it bi-
laterally quasi-symmetric.

Method Aligned Dice ↑ HD95 (mm) ↓
DeepMedic [13] N 0.4412 58.20
3D U-Net [8] N 0.4281 42.18
3D ResUNet [18] N 0.4763 42.55
Clèrigues et al. [9] Y 0.5051 43.17
SEAN [19] Y 0.5047 40.07

3D ResUNet [18] Y 0.4850 39.87
ADN w/o Ltissue Y 0.5090 39.66
ADN (Ours) Y 0.5245 39.18

skull stripping, we resample all NCCTs to be 1.2 × 1.2 × 5 mm3 and reshape
them to be 256×256×40 using the Python package nilearn [1]. To evaluate 3D
segmentation performance, we employ two volume-based metrics Dice coefficient
and Hausdorff distance with 95% quantile (HD95). The definitions of the metrics
can be found in [26].

Implementation Details. Our implementation is based on PyTorch [21] frame-
work. We implement transformation network T with four 3D residual blocks [11]
followed by one fully-connected layer with Tanh activation to predict parame-
ters α. The range of rotation degrees in xy plane is restricted to be no more
than 60◦ and the translation distance is limited to be no more than half of the
image size. For simplicity, we do not consider rotation and translation of in-
put CT in z-axis. As a general framework, ADN can employ various networks
as its backbone. Here we adopt the same architecture as 3D ResUNet [18] to
implement asymmetry extraction network D and segmentation network F . Due
to the GPU memory constraint, we first train unsupervised network T using
Eq. (1) and then fix T and jointly train D and F using Eq. (6). The factor λ in
Eq. (6) is set to be 10. All networks are trained with AdamW optimizer [20] with
(β1, β2) = (0.9, 0.999) and 5 × 10−4 weight decay. The initial learning rates are
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a

Fig. 4: Some asymmetry disentanglement results of our proposed ADN. X:
aligned NCCT; GT: ground truth; Prediction: AIS segmentation by our method;
X̂ = X + Q: pathology-salient NCCT; X̃ = X + P : pathology-compensated
NCCT; A: total asymmetry map; P : pathological asymmetry map; Q: intrinsic
asymmetry map. Displayed asymmetry maps are normalized for better visual-
ization.

1 × 10−5 for network T and 1 × 10−3 for network D and F and we adopt the
poly learning rate policy [7] with a power of 0.9. We take the whole CT scan of
size 256× 256× 40 as input and the training batch is set to be 6. We only train
models using the training set until convergence. More specifically, we terminate
the training once the Dice of the training set remains mostly unchanged for 2
epochs. To help network D achieve good initialization and facilitate the joint
training, at the first 2 epochs, we employ a warm-start strategy by using ground
truth G to provide extra supervised cross-entropy loss for training D.

Result Analysis. We compare our proposed ADN with current state-of-the-art
methods, including 3D patch-based network DeepMedic [13], volume-based 3D
U-Net [8] and 3D ResUNet [18], and symmetry-aware models Clèrigues et al. [9]
and SEAN [19]. The comparison results are shown in Table 1 and Fig. 3. The
original Clèrigues et al. is 2D-patch-based and it utilizes symmetry information
by concatenating aligned CT patches with their mirrored versions. Here we adapt
it to be 3D-volume-based by inputting both aligned CT and its horizontally
flipped version to 3D ResUNet. We reimplement SEAN [19] according to their
paper due to the lack of publicly available implementation. For the other models,
we follow publicly available implementations. Note that both Clèrigues et al.
and SEAN are based on aligned CT to better extract bilateral symmetry. All
the aligned segmentation results will be inversely transformed to correspond to
the original NCCT for final comparison. As shown in Table 1, ADN has achieved
the best Dice and HD95, outperforming all other methods. We also show some
qualitative results in Fig 3.

To further verify the effectiveness of the proposed asymmetry extraction and
compensation module, we conduct an ablation study by training a 3D ResUNet
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using aligned CT scans (see the third to the last line in Table 1). The only differ-
ence between this baseline and proposed ADN is the input to the segmentation
network: 3D ResUNet uses the aligned CT scan (X in Fig. 2) as input while ADN
uses the aligned CT scan with intrinsic asymmetry compensated (X̂). Results
in Table 1 demonstrate that using pathology-salient input can achieve a notice-
ably better Dice coefficient. We also demonstrate the effectiveness of tissue-type
constraint loss by ablation study. Compared to the ADN model without using
Ltissue, the full ADN model achieves both better Dice and HD95 scores. In ad-
dition to the state-of-the-art AIS segmentation performance, ADN also provides
clinically interpretable asymmetry maps. We visualize some asymmetry disen-
tanglement results of ADN in Fig. 4.

4 Discussion and Conclusion

We proposed a novel asymmetry disentanglement network, ADN, to separate
different kinds of asymmetries in non-contrast CT (NCCT) images for effective
acute ischemic stroke (AIS) infarct segmentation. Equipped with a clinically-
inspired tissue-aware regularization loss function, ADN not only learns patho-
logical and intrinsic anatomical asymmetry maps for clinical interpretation but
also generates pathology-salient (and intrinsic asymmetry compensated) NCCT
images for better AIS detection. We currently focus on NCCT because it is nois-
ier and more challenging than other modalities when dealing with soft tissues.
Besides CT, our ADN can be extended to other tasks/modalities that leverage
bilateral asymmetries to identify abnormalities. Such tasks include but are not
limited to stroke or multiple sclerosis (MS) in brain MRI [4], fractures in pelvic
X-Rays [6], and infiltration in chest X-Rays [14]. One limitation of ADN that we
observe is that it appears to ignore those bright bleeding spots inside stroke re-
gions. With available annotations, bleeding spots could be detected by a network
with inverse intensity change using the same architecture. We plan to explore
bleeding spot detection and mitigate their effects in our future work.
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