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Abstract. The standard placental examination helps identify adverse
pregnancy outcomes but is not scalable since it requires hospital-level
equipment and expert knowledge. Although the current supervised learn-
ing approaches in automatic placenta analysis improved the scalability,
those approaches fall short on robustness and generalizability due to the
scarcity of labeled training images. In this paper, we propose to use the
vision-language contrastive learning (VLC) approach to address the data
scarcity problem by incorporating the abundant pathology reports into
the training data. Moreover, we address the feature suppression prob-
lem in the current VLC approaches to improve generalizability and ro-
bustness. The improvements enable us to use a shared image encoder
across tasks to boost efficiency. Overall, our approach outperforms the
strong baselines for fetal/maternal inflammatory response (FIR/MIR),
chorioamnionitis, and sepsis risk classification tasks using the images
from a professional photography instrument at the Northwestern Memo-
rial Hospital; it also achieves the highest inference robustness to iPad
images for MIR and chorioamnionitis risk classification tasks. It is the
first approach to show robustness to placenta images from a mobile plat-
form that is accessible to low-resource communities.

Keywords: Placenta analysis · mHealth · Vision-language pre-training.

1 Introduction

The placenta is a temporary organ that forms during pregnancy and acts as fetal
life support prior to delivery. Adverse pregnancy outcomes, including chorioam-
nionitis and sepsis (infection) and meconium staining (fetal distress), produce
reproducible morphologic changes in the placenta that can be identified by
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pathologic examination. The current standard placental examination consists of
macroscopic examination, production of microscopic slides, manual examination
of the slide by a pathologist, and production of a report. This process requires
hospital-level equipment and human input at each step, introducing variation
and limiting opportunities for scaling. Automatic placenta analysis using a pho-
tographic image is more scalable and can benefit low-resource communities with
no access to a pathologist.

Related Work. A recent automatic placenta photo analysis approach, the AI-
PLAX [4], used a combination of handcrafted features/rules and deep learn-
ing methods; A later approach [19] used only deep learning methods. Although
these approaches have achieved promising results, their models suffered from
data scarcity; a large portion of the collected images was discarded to balance
the positive and negative sample ratio and meet certain quality standards; all
pathology reports were ignored since their models were not designed to use text
data. Recent advances in self-supervised learning [8, 1] and vision-language con-
trastive learning (VLC) [18, 14] have shown promising results in pre-training
tasks and can potentially benefit the model performance by including the dis-
carded data as part of the pre-training dataset. However, current contrastive
loss used in both the self-supervised methods and VLC methods suffered from
the feature suppression problem [2]. Although recent work has addressed such
a problem in a self-supervised setting [16, 15, 12, 5], to our knowledge, no work
has been done in a VLC setting.

Our Contributions. We tackle the data scarcity problem by using an improved
VLC technique to train a shared image encoder using the placenta image and the
corresponding pathology report. Our technique is designed to learn generalizable
placental features that can be applied to many downstream placental analysis
tasks without training a separate image encoder for every task. This approach
requires less data for the downstream tasks thus alleviating the data scarcity
problem. To our knowledge, this is the first work to address the feature suppres-
sion problem in VLC. This is also the first automatic placenta analysis approach
tested on iPad images. Our work improves both efficiency and robustness over
the existing work in automatic placenta analysis.

2 Method

The proposed method is illustrated in Fig. 1. It consists of a pre-training stage
and a fine-tuning stage. The pre-trained text encoder is frozen using a stop
gradient operation in the pre-training stage. The trained image encoder is frozen
using a stop gradient operation and shared for all tasks in the fine-tuning stage.

2.1 Problem Formulation

We have two tasks, the pre-training and the downstream classification. Formally,
for the former, we want to learn a function fv using a learned function fu such
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Fig. 1: A diagram illustrating our approach where all the notations correspond
to the descriptions in Section 2. The inputs are omitted for simplicity.

that, for any pair of input (xi, ti) and an similarity function sim, we have

sim(gv(fv(xi)), gu(fu(ti))) > sim(gv(fv(xi)), gu(fu(tj))) , (1)

where g is a linear projection function to map the output vector to the same
shape and i ̸= j. The details on the objective function for achieving inequality (1)
are discussed later.

For the latter task, we want to learn a function fct using the learned function
fv for each task t ∈ [1 : T ] such that, for a pair of input (xi, lti),

fct(fv(xi)) = lti , (2)

which can be achieved by using the cross-entropy lossH as the objective function.

2.2 Hypothetical Cause of Feature Suppression Problem

Current VLC methods minimize the following contrastive loss:

ℓ
(v→u)
i = − log

exp(⟨vi,ui⟩/τ)∑N
k=1 exp(⟨vi,uk⟩/τ)

, (3)

where ⟨v,u⟩ represents the cosine similarity between the two feature vectors
v, u from gv(fv(x)) and gu(fu(t)), respectively, τ is the temperature hyper-
parameter, and N is the total number of sample is a mini-batch. CLIP [14] and
ConVIRT [18] have shown that models trained using this method are more ro-
bust. However, as demonstrated in [2], such a contrastive loss suffers from the
feature suppression problem where the model only learns the most important
feature. This effect is especially problematic in our application since we have
multiple tasks for the same image and different tasks may require different fea-
tures. Current contrastive loss uses cosine similarity ⟨v,u⟩ which is defined as

⟨v,u⟩ =
∑n

i=1 viui√∑n
i=1 v

2
i

√∑n
i=1 u

2
i

, (4)
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where n is the length of vector v or u and vi and ui are the ith element in v
and u, respectively. Although previous work [16, 15, 12, 5] has studied the cause
of the feature suppression problem by analyzing the entire loss function in a self-
supervised setting, we believe the similarity metric alone can play an important
role. The objection function (3) tries to achieve ⟨v,u⟩ > ⟨v,w⟩ when v and u are
the corresponding pair. Given

√∑n
i=1 u

2
i =

√∑n
i=1 w

2
i (i.e., two text features

have the same L2 norm) and vj = 0 (i.e., some elements of image features are not
important), ui > wi is enough for ⟨v,u⟩ > ⟨v,w⟩. In this case, both uj and wj

are ignored although they are not necessarily zero. This effect takes place when
vj ≈ 0. In other words, the elements of features with small value contribute very
little to the loss function (4) but the true importance of a feature is unknown
before the downstream tasks. We hypothesize such an effect in the similarity
metric is one cause of the feature suppression problem in VLC methods and we
can address it by simply replacing the similarity metric.

2.3 Negative Logarithmic Hyperbolic Cosine Similarity

To minimize the feature suppression problem, we propose to use the Negative
Logarithmic Hyperbolic Cosine (NegLogCosh) as the similarity metric:

NegLogCosh(v,u) = − 1

n

n∑
i=1

log(cosh(s(vi − ui))) , (5)

where s is a scaling factor, The advantage of NegLogCosh(v,u) over ⟨v,u⟩ is
that the value change of any vi or ui is reflected in the result, thus the trained
model tends to focus on more features. Although L1 and L2 loss functions have
the same property, NegLogCosh(v,u) has more advantages. First, NegLogCosh
has less emphasis than L2 loss when vi and ui are very different thus reducing
the effect of the dominant feature from either the text side or the image side.
Second, NegLogCosh is more stable than L1 loss when vi−ui ≈ 0. The proposed
objective function is the following:

ℓ̃
(v→u)
i = − log

exp(NegLogCosh(vi,ui)/τ)∑N
k=1 exp(NegLogCosh(vi,uk)/τ)

. (6)

Same as ConVIRT [18], the final loss function given λ ∈ [0, 1] is

L =
1

N

N∑
i=1

(
λℓ̃

(u→v)
i + (1− λ)ℓ̃

(v→u)
i

)
. (7)

2.4 Sub-feature Comparison

Because the similarity metric (5) compares two feature vectors element-wise
instead of the angle between the two vectors, we can compare a random subset
of the elements in the two features vector to reduce the feature suppression
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problem further. Inspired by Dropout [17], we can randomly set some element
of a feature vector to zero so that we have a sub-feature vector. For a feature
vector v and an index vector l = (l1, l2, ..., lk) where k is the size of v and ij
is a sample from a Bernoulli distribution with probability p, a sub-feature vsub

given l is defined as:
vsub(l) = v ⊙ l , (8)

where ⊙ is the element-wise multiplication. Sub-features contain many zero en-
tries determined by l. Replacing v with vsub(l) in the metric (5) produces

NegLogCosh(vsub(l),usub(l)) = − 1

n

n∑
i=1

log(cosh(sli(vi − ui))) , (9)

where the index vector l is shared within the same mini-batch. Sharing the index
vector is the main difference between this sub-feature approach and Dropout.
Based on inequality (1), once the loss function (7) is minimized, we have:

NegLogCosh(vsub(l),usub(l)) > NegLogCosh(vsub(l),wsub(l)) , (10)

for any v,u pair and w that comes from other pairs and for any l. If we construct
the corresponding index vector, 1− l = (1− l1, l − l2, ..., 1− lk), which satisfies
(10), we obtain

NegLogCosh(v,u)

= NegLogCosh(vsub(l),usub(l)) + NegLogCosh(vsub(1−i),usub(1−l))

> NegLogCosh(vsub(l),wsub(l)) + NegLogCosh(vsub(1−i),wsub(1−l))

= NegLogCosh(v,w)

(11)

from equation (9). Thus, achieving inequality (10) implies achieving inequality
(11). However, achieving inequality (11) does not imply inequality (10) because
we can select a sub-feature to flip the inequality, and the loss function does
not rule out such a possibility. This one-way implication shows that sub-feature
comparison enables a VLC model to learn more image and text relationships in
the feature space than a traditional approach. In other words, instead of just
learning the features presented in the text, we have a chance to learn a more
general feature representation. This advantage should both help alleviate the
feature suppression problem and reduce over-fitting.

3 Dataset

The primary dataset was collected using a professional photography instrument
in the pathology department at the Northwestern Memorial Hospital (Chicago)
between 2014 and 2018. After filtering out blurry images and images with sliced
placenta, we were left with 13,004 fetal side placenta images and pathology
report pairs. We selected 2,811 images from 2017 for fine-tuning and the rest for
pre-training.
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The final pre-training data set consists of 10,193 image-and-text pairs. Each
image contains the fetal side of a placenta, the cord, and a ruler. Each text
sequence for the image contains a part of the corresponding pathology report.

The fine-tuning dataset consists of 2,811 images; we first manually checked
the images to ensure the placenta is complete and free from obscures. We la-
beled each image based on the pathology report on four tasks presented in [4,
19]: meconium, fetal inflammatory response (FIR), maternal inflammatory re-
sponse (MIR), and chorioamnionitis. There are different levels or stages for each
symptom in the pathology report. We labeled the images as positive for meco-
nium and chorioamnionitis regardless of the level. For FIR and MIR, we labeled
the image as negative if the report does not contain any related information or
identified the placenta as negative; we labeled the image as positive if the report
identifies the placenta as stage 2 or higher; we dropped the image if the stage
is higher than 0 but lower than 2 to improve the model’s ability to distinguish
significant cases. To assess the generalizability, we also labeled 166 images with
neonatal sepsis based on the results that are diagnosed by treating physicians
using clinical criteria on the infant charts. We then used all the positive exam-
ples for each task and uniformly sampled a similar number of negative samples.
We then randomly split the data into training, validation, and testing sets with
the ratio of 0.25:0.25:0.5 since we do not have the exact test set as in [4, 19]. We
selected more images for testing to reduce the randomness in the testing result.
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Fig. 2: Left: Example images from the two datasets. There is no manually gen-
erated background mask for the primary dataset. The image from the primary
dataset and the iPad images have different white balance (see ruler color) and
different backgrounds. Right: An example input image-and-text pair used in
the pre-training. Best viewed in color.

To understand the robustness of the proposed method, we collected 52 pla-
centa images at the same hospital in the summer of 2021 using an iPad (2021
model). The placentae were placed on a surgical towel and wiped clean of excess
blood, the lighting was adjusted to minimize glare, and the iPad was held near
parallel to the bench surface. As shown in Fig. 2, the performance in semantic
segmentation from PlacentaNet is sub-optimal, and the white balance is differ-
ent for the iPad image. We obtained labels for MIR and FIR from microscopical
diagnoses [10] by an expert perinatal pathologist and clinical chorioamnionitis
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from the infant charts. Note that the clinical chorioamnionitis is different from
the histologic chorioamnionitis in the primary dataset. Since all data have FIR
lower than stage 2, we discarded this label. For the rest of the tasks, we labeled
images using the same criteria as the primary dataset. We acknowledge that
this dataset is too small to serve as a benchmark, thus we considered a method
outperforming others when the difference is significant (e.g., by a few percentage
points or higher). We used the iPad images to test the robustness; the main eval-
uation dataset is the primary dataset. A table containing the detailed breakdown
of the data is in the supplementary material.

4 Experiments

4.1 Training and Testing

We used the ResNet50 [9] as our image encoder architecture and a pre-trained
BERT [6] as our text encoder. The projection layers for both encoders were one-
layer fully-connected neural networks (FC) with no activation. The classifiers
were all two-layer FC with ReLU activation in the first layer but no activation
in the output layer. For image preprocessing, we masked out the background
from each image using PlacentaNet [3] and applied random augmentations. We
randomly sampled topics in the text strings with replacements for the text pre-
processing. We applied the Adam optimizer [11] and cosine decay learning rate
scheduler with warm-up [13]. We selected the hyper-parameters on the baselines
and applied them to our method. The details are in the supplementary material.

One independent image encoder was jointly trained with a classifier for each
task for the baseline ResNet50. We trained the model on the training set for 100
epochs and saved the model with the highest validation accuracy.

For VLC models, we used the ConVIRT method as the baseline. We changed
the projection layer from two-layer FC with ReLU activation to one-layer FC
with no activation but kept the essential methodology the same. We trained
the model for 400 epochs and saved the encoder in the last epoch. The training
procedure for each downstream task was the same as for the baseline ResNet50,
but the pre-trained encoder was frozen.

Our proposed method used the NegLogCosh similarity with the sub-feature
comparison technique instead of cosine similarity. The training procedure fol-
lowed the baseline ConVIRT.

We used the same testing procedure for all methods; we used the same pre-
possessing steps for all images in the primary dataset but two methods to mask
out the background on the iPad images. The first method uses the segmentation
map from PlacentaNet, which is sub-optimal (see Fig. 2) due to the difference in
image quality. We included manually labeled segmentation maps as the second
method to address this issue. In practice, this issue can be minimized by [19].

4.2 Results and Discussion

The mean results and confidence intervals (CIs) for the five experiments on the
primary dataset are shown in Table 1. Since we do not have the exact model ar-
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Table 1: AUC-ROC scores (in %) for placenta analysis tasks. Top: The mean
and 95% CI of five random splits. The highest means are in bold. Bottom: The
estimated mean improvements over the baseline ResNet50 and 95% CI using
100 bootstrap samples on the five random splits. The statistically significant
improvements (CIs above 0) are underlined.

Primary iPad

Mecon. FIR MIR H. Chorio. Sepsis
PlacentaNet Manual

MIR C. Chorio. MIR C. Chorio.

RN50 77.0±2.9 74.2±3.3 68.5±3.4 67.4±2.7 88.4±2.0 46.7±20.9 42.8±14.0 50.8±21.6 47.0±16.7

ConVIRT 77.5±2.7 76.5±2.6 69.2±2.8 68.0±2.5 89.2±3.6 53.0±8.0 42.4±4.8 52.5±25.7 50.7±6.6

Ours 79.4±1.3 77.4±3.4 70.3±4.0 68.9±5.0 89.8±2.8 58.4±7.2 45.4±2.7 61.9±14.4 53.6±4.2

ConVIRT 0.6±1.8 2.2±1.9 0.8±1.3 0.6±2.3 0.8±1.4 6.4±6.7 -0.7±8.0 1.8±7.5 3.4±10.0

Ours 2.5±1.3 3.1±1.9 1.8±1.3 1.5±2.3 1.4±1.3 11.8±6.5 2.4±7.2 11.3±7.8 6.4±7.7

chitectures for all the experiments in [4, 19], we are reporting the widely adopted
ResNet50 as the baseline. Our method achieved the highest area under ROC [7]
(AUC-ROC) for all tasks in the experiment. Many of the improvements are sta-
tistically significant as the 95% CIs estimated using bootstrap samples do not
contain 0. Although ConVIRT also outperformed the baseline on all the tasks in
the pre-training data, only the improvement on FIR is significant. Moreover, the
text features directly correspond to sepsis, which is not in the pre-training tasks,
could be suppressed by other features. ConVIRT did not outperform the base-
line without addressing the feature suppression problem, even with additional
pre-training data. In contrast, our method showed significant improvement.

Additionally, our method also achieved the best when testing on the iPad
images regardless of the segmentation map generation method, as shown in Ta-
ble 1. The performance on clinical chorioamnionitis was much lower for the iPad
images because we trained the model using histologic chorioamnionitis. As ex-
pected, the manually labeled segmentation maps resulted in higher AUC-ROC
scores. Moreover, the proposed method always has smaller CIs, which also con-
firms the improvement in robustness. Although a larger iPad dataset would be
necessary for confirming the improved performance of our approach on the mo-
bile platform, the better robustness of our approach is apparent.

The qualitative examples are in the supplementary materials. Those examples
show that all the experimented methods are sensitive to placenta color. We
need more control over the lighting when collecting placenta images or better
prepossessing to balance the placenta color for better performance.

Moreover, the shared encoder makes our method more efficient than the
previous approach as the number of tasks grows.
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5 Conclusions and Future Work

We proposed a robust, generalizable, and efficient framework for automatic pla-
centa analysis. We showed that our pre-training method outperformed the pop-
ular approaches in almost all the placenta analysis tasks in the experiments. Our
approach’s robustness on photos taken with an iPad has high clinical value to
low-resource communities. We expect our approach to perform better if we have
a better image encoder, more data, or a domain-specific text encoder.

In the future, it would be interesting to extend our approach to a zero-shot
setting [14] to further reduce the computation cost. More qualitative analysis
can be performed to understand the improvement better. Lastly, we can collect
a larger clinical dataset to improve the accuracy and robustness.
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Table 1: Hyper-parameters for the pre-training and the fine-tuning models. The
hyper-parameters are selected to make the baselines converge; no other tunning
is made on our method. The average runtime is in the end.

Pre-train Supervised/Fine-tune

Optmizer Adam Adam
β1/β2/ϵ 0.9/0.999/10−7 0.9/0.999/10−7

Learning Rate Schedule WarmUp&CosineDecay WarmUp&CosineDecay
Initial Learning Rate 0.00025 0.00025
Final Learning Rate 0 0
Warm-up Epochs 10 0
Weight Decay 10−6 10−6

Class Weight N/A (log(1.03 + #samples
#all data

))−1

Batch Size 32 32
Epochs 400 100

Random Left Right Flip Yes Yes
Random Up Down Flip Yes Yes
Random Brightness 0.05 0.01
Random Hue 0.05 0.01

Input Size 512× 384 512× 384
Projection Output Size 768 N/A
Sub-feature Drop Ratio 0.2 N/A
τ/c (Variables in the paper) 0.1/1.25 N/A
Classifier FC1 Units N/A 256
Classifier FC2 Units N/A 1
Classifier Dropout Ratio N/A 0.2

ResNet50 Average Runtime N/A (1.6/0.7) sec/batch
ConVIRT Average Runtime 0.9 sec/batch (1.1/0.7) sec/batch
Ours Average Runtime 0.9 sec/batch (1.1/0.7) sec/batch
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Table 2: An example random split of the fine-tuning dataset (negative/positive).
Mecon. FIR MIR H. Chorio. Sepsis MIR (iPad) C. Chorio. (iPad)

Train 177/173 88/79 166/188 119/102 41/44 - -
Val. 174/176 79/88 198/157 100/122 43/42 - -
Test 370/330 190/145 332/378 228/215 90/80 10/14 22/23

Total 721/679 357/312 696/723 435/439 174/166 10/14 22/23
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Fig. 1: Qualitative examples of the high confidence predictions produced by all
methods on the primary dataset. The predictions are labeled above the images.
The correct (left two columns) and incorrect (right two columns) predictions
are boxed with the corresponding color. Placentas with warmer colors tend to
receive positive predictions. Best viewed in color.


