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Abstract. Analysis of the placenta is extremely useful for evaluating
health risks of the mother and baby after delivery. In this paper, we
tackle the problem of automatic morphological characterization of pla-
centas, including the tasks of placenta image segmentation, umbilical
cord insertion point localization, and maternal/fetal side classification.
We curated an existing dataset consisting of around 1,000 placenta im-
ages taken at Northwestern Memorial Hospital, together with their pixel-
level segmentation map. We propose a novel pipeline, PlacentaNet, which
consists of three encoder-decoder convolutional neural networks with a
shared encoder, to address these morphological characterization tasks by
employing a transfer learning training strategy. We evaluated its effec-
tiveness using the curated dataset as well as the pathology reports in
the medical record. The system produced accurate morphological char-
acterization, which enabled subsequent feature analysis of placentas. In
particular, we show promising results for detection of retained placenta
(i.e., incomplete placenta) and umbilical cord insertion type categoriza-
tion, both of which may possess clinical impact.

Keywords: Placenta - Convolutional neural network - Segmentation -
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1 Introduction

The placenta is a window into the events of a pregnancy and the health of the
mother and baby [12]. Yet, a very small percentage of placentas around the
world are ever examined by a pathologist. Even in developed countries like the
U.S., placentas are examined and characterized by a pathologist only when it is
considered necessary and resources are available. Full pathological examination
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is expensive and time consuming. In placenta examination, pathologists complete
a report that contains various measurements (e.g., the weight, the disc diameter)
and diagnoses (e.g., completeness or retained placenta, cord insertion type, shape
category). These measurements and placental diagnoses are extremely useful for
the short- and long-term clinical care of the mother and baby.

Automated placenta analysis based on photographic imaging can potentially
allow more placentas to be examined, reduce the number of normal placentas
sent for full pathological examination, and provide more accurate and timely
morphological and pathological measurements or analyses. Typical photographs
of the placentas capture the umbilical cord inserting into the fetal side of the
disc, as well as the maternal side appearance. Two example images of placentas
can be found later in Fig. a). This paper focuses on a fully automated system
for morphological characterization of placentas. Such systems will be the cor-
nerstone for automated pathological analyses because segmentation of disc and
cord, location of cord insertion point, and determination of fetal/maternal side
are important first steps before further analyses can be done.

Related Work. Existing placenta imaging research can be roughly categorized
into two types: those using microscopic images of slices of the placentas [I50]
and those using the macroscopic images of the placentas taken by cameras [17]
or by MRI [I]. A comprehensive overview of both microscopic and macroscopic
placenta pathology can be found in a book by Benirschke et al. [3]. To our
knowledge, there has not been an automated approach to analyze placenta pho-
tographs. We believe such an approach has the potential to be adopted widely
because it requires no specialized hardware beyond an ordinary camera or a
camera phone.

In this paper, we propose a transfer learning (TL) approach to tackle the
associated tasks of morphological characterization rather than employing one
independent model for each task. TL promises performance gain and robust-
ness enhancement through representation sharing for closely related tasks [10].
Specifically, we transfer the learned representation of the encoder from the seg-
mentation task to the other two tasks, i.e. disc side classification and insertion
point localization. Our network architecture design takes inspiration from the re-
cent deep learning advances on classification [4], image segmentation [7I3], and
key-point localization [9]. In particular, the design of our segmentation module
follows the practice of concatenating feature maps in encoder with feature maps
in decoder, such as performed in the U-Net [13]; and the design of our insertion
point module follows the practice of regressing a Gaussian heat map, rather than
using the coordinate values, as the ground truth, which has been shown to be
successful in human key-point /joint localization tasks [T6J3J9ITT]. Tompson et al.
first showed the importance of intermediate supervision to improving localiza-
tion accuracy [9]. We take their idea in our design by considering two heat map
predictions in the final loss — one from the final feature layer and one from the
intermediate feature layer.
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Fig. 1: Data curation process. (a-c): collecting pixel-level segmentation map for
cord, disc, and ruler, insertion point location, and classification of whether an
image captures fetal or maternal side placenta through our web-based labeling
tool. (d-e): extracting diagnoses and measurements from unidentified patholog-
ical report in PDF format.

2 The Dataset

We obtained a dataset consisting of 1,003 placenta images, of which 430 are
fetal-side images and 573 are maternal-side imagesﬂ from Northwestern Memo-
rial Hospital, a large urban academic medical center. We also have the complete
pathology report for each placenta, written in natural language by the patholo-
gist who originally examined the placenta. Pathology classification is standard-
ized and pathologist are perinatal experts. Fig. [1| shows our data curation pro-
cess. We developed a web-based tool (Fig. [I[b)) to collect i) the pixel-wise seg-
mentation maps, ii) the side-type label as fetal side or maternal side, and iii)
the cord insertion point (only for fetal side, visualized as a Gaussian heat map
centered at the marked coordinate in (Fig.[I[c))) so that multiple trained label-
ers can annotate this dataset concurrently. We also extract diagnoses from the
pathology reports.

We divide the dataset into training and testing sets with the ratio of 0.8 : 0.2.
Because the insertion point can only be observed from the fetal side, we only use
the 430 fetal-side images for insertion point prediction, with the same training-
testing ratio as aforementioned.

3 The Method

The proposed PlacentaNet model, as illustrated in Fig. [2| consists of an Encoder
for feature pyramid extraction (blue), which is shared among all tasks, a fully
convolutional SegDecoder for placenta image segmentation on both fetal- and
maternal-side images (red), a Classification Subnet for fetal/maternal-side
classification (purple), and a fully convolutional IPDecoder for insertion point
localization.

3 The numbers of fetal-side and maternal-side images are uneven because some of the
collected images did not meet our image quality standard (e.g. disc occluded by
irrelevant object such as scissors) and we had to discard them from the dataset. We
plan to release our dataset in the future after substantial expansion.
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Encoder as feature pyramid extractor. The Encoder takes a placenta image
x (either the fetal side or the maternal side) as the input and outputs a pyra-
mid of feature maps {f1, fa, f3, f4, f5} (represented as blue rectangles). Depending
on the tasks, all or part of the feature maps are used by further task mod-
ules. Specifically, SegDecoder takes {fy, fs, {3, fs,f5} as input; Classification
Subnet takes {f5} as input; and IPDecoder takes {fs, f, f5} as input. The Conv-1
and Conv-2 blocks both consist of a Conv-BatchNorm-Relu layer. The difference,
however, is that the Conv layer in Conv-1 block has stride 1, while the Conv
layer in Conv-2 block has stride 2. The Res conv blocks are residual blocks with
two convolutional layers with stride 2 and 1, respectively, and the same kernel
size 3 x 3, each of which spatially downsamples the input feature maps to half of
its size and doubles the number of feature channels. The residual structure has
been shown especially helpful for training deep architectures by He et al. [4].
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Fig. 2: The architecture of PlacentaNet: a multi-task convolutional neural net-
work for placenta image segmentation, cord insertion point localization, and
placenta disc side classification. “Up sample & Conv” is implemented by a
transposed convolution layer. “Res conv blocks” are residual blocks with two
convolutional layers with stride 2 and 1, respectively, and the same kernel size
3 x 3. “Score blocks” are convolutional layers with kernel size 1 x 1 and the
number of output channel 1. The soft-max layers are omitted. We use dice loss,
BCE loss and MSE loss for the segmentation, classification, and insertion point
localization, respectively.

SegDecoder for segmentation. Our SegDecoder module consists of four ex-
panding fully convolutional blocks, each of which takes the concatenation of a
copy of the corresponding feature map f;,i € {1,2, 3,4}, and transposes a con-
voluted (up-scaling factor 2) output feature map of the last layer. Finally, we
apply soft-max to predict the probability of pixel (i, j) being of class k, denoted
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as p(i,7,k). To overcome the problem of highly imbalanced number of pixels
for different categories, we use dice loss [§] instead of the common cross entropy
loss. Since we have four classes rather than two classes in [§], we adjust the dice
loss to suit the 4-class scenario:

Z@j 22:0 p(iv.ja k) : g(ivjv k)
Zz’,j Zi:o(p(ivja k) + g(i>j7 k)) ,

where 4, j run over the row and column indexes of an image, respectively; p(4, 7, k)
and g(i, j, k) denote the predicted probability of the pixel at location (4, j) and
the 0/1 ground truth of that pixel belonging to class k, respectively.
Classification Subnet for fetal/maternal side classification. Because the
fetal/maternal side can be inferred from the “disc”’region of a placenta alone,
we crop the full placenta image x by a rectangle including the region of disc
and resize the cropped image to 512 x 512 pixels as the input to the Encoder,
which we denote as x.. The cropping is based on the ground truth segmentation
map during training and on the predicted segmentation map at inference. Our
Classification Subnet consists of a Res conv block, two fully connected layers,
and a soft-max layer. At the end, a binary cross entropy (BCE) loss is applied
to supervise the network.

IPDecoder for insertion point localization. Because the insertion point is
always located within or adjacent to the “disc” region, we use cropped disc region
image x., by the same way as we perform cropping in Classification Subnet,
as the input to the Encoder. Our IPDecoder is also fully convolutional and
consists of two expanding fully convolutional blocks, the structure of which are
the same as in the first two convolutional blocks in SegDecoder. The similarity
of IPDecoder’s structure with SegDecoder’s helps us to ensure that the shared
encoder representation could also be readily utilized here. Inspired by the success
of intermediate supervision [9], we predict the insertion point localization heat
map after each expanding convolutional block by a convolutional layer with
kernel size 1 x 1 (denoted as “Score block” in Fig. [2) and use the MSE loss to
measure the prediction error:

LP = 3" |Ih.g) ~ B )P ke {12}, @

Lseg -1

1)

where h(i,j) and h(i, j) are the ground truth (Gaussian) heat map and the
predicted heat map, respectively. And the final loss for insertion point is L'P =
LllerLép . During inference, the predicted insertion point location is determined
by (i,7) = arg max; ; h(i, j) .

Training and Testing. We use mini-batched stochastic gradient descent (SGD)
with learning rate 0.1, momentum 0.9, and weight decay 0.0005 for all training.
We use a batch size of 2 for all segmentation training and a batch size of 10
for all insertion point localization and fetal/maternal side classification train-
ing. The procedures of training are as follows. We first train the SegDecoder +
Encoder from scratch with parameters initialized to zero. Next, we fix the learned
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weights for the Encoder and train Classification Subnet and IPDecoder sub-
sequently (in other words, the Encoder only acts as a fixed feature pyramid ex-
tractor at this stage). The rationale for making such choices is that the training
for segmentation task consumes all images we have gathered and makes use of
pixel-wise dense supervision, which is much less likely to lead to an overfitting
problem. In contrast, the training of Classification Subnet takes binary value
as ground truth for each image and the training of IPDecoder only uses around
half of the whole dataset (only fetal-side images). To alleviate the lack of labels
and to make the model more robust, we use common augmentation techniques
including random rotation (+30°), and horizontal and vertical flipping for all
training images.

Implementation. We implemented the proposed pipeline in PyTorch and ran
experiments on an NVIDIA TITAN Xp GPU. For segmentation training, all
images are first resized to 768 x 1024, which is of the same aspect ratio as the
original placenta images. For insertion point localization and fetal/maternal side
classification training, we resize all cropped “disc” region images to 512 x 512,
which is natural because the cropped “disc” regions often have a bounding box
close to a square.

4 Experiments and Evaluation

Segmentation. We compared our approach with two fully convolutional encoder-
decoder architectures, the U-Net [I3] and the SegNet [2]. The results are shown
in Fig. a—d). We report the segmentation performance using standard segmen-
tation metrics pixel accuracy, mean accuracy, and mean IoU. In Fig. [3[ (b, ¢, and
d), we compare pixel-wise prediction confusion matrices of our approach, U-Net,
and Segnet, respectively, which reflects more detail about segmentation perfor-
mance for different categories. We also show a few segmentation examples in
Fig. e) for qualitative comparison. Our approach yields the best segmentation
results, especially for differentiating the cord and the ruler classes.
Fetal/Maternal Side Classification. We achieve an overall fetal/maternal
side classification accuracy of 97.51% on our test set. Without the shared encoder
representation, we can only achieve 95.52% by training Encoder + Classifica-
tion Subnet from scratch. We also compare their confusion matrices in Fig. 1
in the supplementary material.

Insertion Point Localization. We use Percentage of Correct Keypoints (PCK)
as the evaluation metric. PCK measures the percentage of the predictions falling
within a circle of certain radius centered at the ground truth location. We com-
pare our approach (both with and without shared encoder weights) to the Hour-
glass model (with number of stacks 1 and 2), which shows competitive results
in human keypoint localization [9]. Fig. [B[f) shows the PCK curves, with the
z-axis being the radius normalized by the diameter of the placenta. Each curve
in Fig. 3(f) is the average of the results for five models trained with different
seeds, and the light-colored band around each curve (viewable when the figure is
enlarged) shows the standard deviation of the results. Our approach with shared



PlacentaNet: Automatic Morphological Characterization 7

Original image  Ground truth UNet SegNet Ours

I Disk
N Cord

Ruler
M Background

() © () e

Originalimage ~ Groundtruth  Hourglass-s1  Hourglass-s2  OUrS (W0 shared

encoder weights)

R

® ()]

Fig. 3: Evaluation results. (a) Segmentation evaluation accuracy. (b-d) Confusion
matrices of our approach, U-Net, and SegNet, respectively. (e¢) Example segmen-
tation results. We show both fetal-side results (top two rows) and maternal-side
results (bottom two rows). (f) Quantitative evaluation of insertion point local-
ization with PCK curves. (g) Examples of insertion point heat map prediction.

Encoder consistently gives the best results, especially when the normalized dis-
tance is from 0.2 to 0.6. We show a few qualitative examples of the insertion point
heat maps predicted by each model, along with the ground truth (Fig. g))
Placenta Feature Analysis. The predictions of PlacentaNet enable us to con-
duct automatic placenta feature analysis by subsequent models/procedures.

(1) Detection of retained placenta. Retained placenta is a cause of postpar-
tum hemorrhage and, if prolonged, it can serve as a nidus for infection [I4].
Pathologists judge if there could be retained placenta by carefully inspecting the
maternal surface of a placenta’s disc. We identified 119 out of 573 maternal side
placenta images in our dataset with possible “retained placenta” based on the
pathology reports and we asked a perinatal pathologist (coauthor) to annotate
where the possible missing parts are for each of them. We trained two neural
networks for this task, for classification and localization, respectively, and both
achieved promising results. We show the ROC curve of the classification net-
work in Fig. a) and example localization results along with the ground truth
in Fig. (b) (More localization results are in supplementary material Fig. 3).
(2) Umbilical cord insertion type categorization. Abnormal cord insertion is a
feature of fetal vascular malperfusion [5]. Based on the segmentation, the pre-
dicted insertion point location, and the scale we extracted from the ruler, we
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Fig.4: (a) ROC curve for retained placenta classification. AUC for red(blue)
curve is 0.836(0.827). (b) Example of retained placenta problem localization. (c)
The confusion matrix for insertion type categorization. (d) Example of insertion
point type prediction.

can measure the distance from the insertion point to the nearest margin of the
disc, and the lengths of the long and short axes of the disc (all in centimeters).
Further, we classify the cord insertion type into “centrally”, “eccentrically”, and
“marginally”, based on the ratio between the distance from the insertion point
to its closest disc margin and the average between the lengths of the long and
short azes. We achieve an overall 88% test accuracy. We show the classification
confusion matrix in Fig. c). One qualitative example of our prediction is shown
in Fig. (d) Detailed procedures and more qualitative examples of measurement
and classification are in supplementary material Figs. 1 and 2.

5 Conclusions and Future Work

We proposed a novel, compact multi-head encoder-decoder CNN to jointly solve
placenta morphological characterization tasks. We showed that our approach can
achieve better performance than competitive baselines for each task. We showed
that the representation learned from segmentation task could benefit insertion
point localization and fetal/maternal side classification task. In the future, it
would be interesting to explore if these tasks could mutually benefit each other.
The use of this method in automated prediction of pathological indicators is the
next direction we will pursue.
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1 Definition of the Metrics for Evaluating Segmentation

Suppose we have counted how many pixels are predicted to class j but with their
ground truth being class ¢ (for every i,5 € {0,1,...,k — 1}, k is the number of
classes) and we store it as the term C,; ; in a k x k& matrix C. We also denote
the (ground truth) total number of pixels for class ¢ as T;. It’s easy to see that
T, = Zk;é C,; ;. The pixel accuracy, mean class accuracy, and mean IoU are
then defined as follows.

Pixel accuracy:
Yo C
Y T
Mean class accuracy:
115 G
kT
Mean IoU:
= C..
k ; T,+>....C

JAi g

2 Definition of Percentage of Correct Keypoints (PCK)

Suppose we are making predictions for n keypoints {p;}?_;. And we denote the
prediction for keypoint p as p. And we use ||.||2, 4.e. the L-2 Euclidean distance,
to measure the error of the prediction p from the ground truth p. Then the
formal definition for PCK at normalized distance z (z € [0, 1]) is:

(p: YIEPE <o npe(pii)]

d

PCKQx =
n

In our paper, we choose the diameter of the disc as the normalizing factor d.

* A. D. Gernand and J. Z. Wang have equal contributions.
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Fig.1: Fetal/maternal side classification confusion matrices comparison. (a)
Without shared encoder weights. (b) Ours.
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(d)

Fig.2: The insertion type categorization process consists of steps 1) to 5). (a),
(b), and (c) illustrate the detailed procedure for steps 1), 2), and 3), respectively.
(d) shows the evaluation for our estimation of the distance from the insertion
point to its nearest point on the disc margin on the test set. The x-axis represents
the threshold of the normalized error (absolute error normalized by the ground
truth) and the y-axis shows the percentage of our estimation, the error of which
is below such threshold. The ground truth are extracted from the pathology
reports. It can be seen that we have a 60% prediction accuracy if we set the
threshold to 0.2.
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Fig. 3: Qualitative examples of insertion point type categorization. Insertion type
predictions are displayed in the upper right corner of each image, along with the
ground truth in brackets. The success cases are green boxed and the failed cases
are red boxed. For each image, the predicted insertion point location are marked
with a green dot; a transparent green mask is overlaid on the image representing
the predicted “whole” disc region; a (green) line is drawn between the insertion
point and its nearest point on the disc margin. The predicted length of such
line is displayed next to it, along with the ground truth length extracted from
the pathology report (in brackets). The predicted long and short axes are also
displayed, along with their predicted length in centimeters.
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Fig. 4: Qualitative examples of our incomplete part localization predictions pro-
duced by our localization network. The localization network assumes that the
input has already been predicted as having “retained placenta” by our classifica-
tion network. The results are promising, but further improvement is likely when
substantially more labeled training data become available.
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