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A B S T R A C T

Stroke is one of the leading causes of death and disability in the world. Despite intensive
research on automatic stroke lesion segmentation from non-invasive imaging modalities
including diffusion-weighted imaging (DWI), challenges remain such as a lack of suffi-
cient labeled data for training deep learning models and failure in detecting some small
lesions. In this paper, we propose BB-Guided Segmentor, a method that significantly
improves the accuracy of stroke lesion segmentation by leveraging expert knowledge.
Specifically, our model uses a very coarse bounding box label provided by the expert
and then performs accurate segmentation automatically. The small overhead of having
the expert provide a rough bounding box leads to large performance improvement in
segmentation, which is paramount to accurate stroke diagnosis. To train our model, we
employ a weakly-supervised approach that uses a large number of weakly-labeled im-
ages with only bounding boxes and a small number of fully labeled images. The scarce
fully labeled images are used to train a generator segmentation network, while adver-
sarial training is used to leverage the large number of weakly-labeled images to provide
additional learning signals. We evaluate our method extensively using a unique clini-
cal dataset of 99 fully labeled cases (i.e., with full segmentation map labels) and 831
weakly labeled cases (i.e., with only bounding box labels), and the results demonstrate
the superior performance of our approach over state-of-the-art stroke lesion segmen-
tation models. We also achieve competitive performance as a SOTA fully supervised
method using less than one-tenth of the complete labels. Our proposed approach has the
potential to improve stroke diagnosis and treatment planning, which may lead to better
patient outcomes.
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1. Introduction

Stroke is the fifth most dominant cause of death in the United
States (Xu et al., 2021) and the most common cause of severe
disability (Adamson et al., 2004). According to the National
Health and Nutrition Examination Survey, more than 7.8 mil-
lion people suffer from stroke, and the number keeps increas-
ing (Tsao et al., 2022). Diffusion-weighted magnetic resonance
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imaging (DWI) is a valuable tool in the diagnosis of vascu-
lar strokes in the brain, as it has shown superiority over other
conventional imaging methods, such as computed tomography
(CT) or ordinary magnetic resonance imaging (MRI), in the de-
tection of small and early cerebral infarction (Crisostomo et al.,
2003; Liu et al., 2014). For evaluation and treatment guidance
based on DWI, accurate segmentation of acute ischemic lesions
in DWI images is essential (Woo et al., 2019). In clinical prac-
tice, however, it can take a radiologist more than an hour to
trace lesions in a brain scan manually. The laborious manual
segmentation process has the risk of introducing bias too. To
alleviate this burden and improve accuracy, automatic and reli-
able lesion segmentation systems are in urgent need.

Over the last few years, many deep learning methods have
achieved great success in medical image segmentation (Kirillov
et al., 2019; Ma et al., 2021; Chen et al., 2021; Dolz et al., 2020;
Silva-Rodrı́guez et al., 2021), some are specifically applied to
ischemic stroke lesion segmentation (Wu et al., 2019; Zhang
et al., 2020a; Wong et al., 2022; Abramova et al., 2021; Qi et al.,
2019; Zhou et al., 2019). However, most existing deep learning
methods for segmentation are supervised, which would require
large datasets precisely annotated by radiologists. Generally,
for a 3D volume consisting of many 2D slices such as DWI
data, the labels are obtained by asking radiologists or expert
users to manually label the stroke region slice by slice, which is
time-consuming and difficult to reproduce. Furthermore, there
are often variations among labels provided by different experts
due to variations in segmentation protocol and experience level.

To mitigate these difficulties, we propose an annotation-
efficient segmentation method with prior knowledge: we incor-
porate a loose bounding box provided by the expert into an auto-
matic segmentation model. The motivation for this implemen-
tation is that bounding box annotation is not as time-consuming
to get as pixel-level annotations. In clinical practice, consid-
ering the effort needed to redraw segmentation when an algo-
rithm gives inaccurate results, the time investment in providing
a bounding box that will boost the accuracy is worthwhile. Al-
though having users provide bounding boxes is a simple and
popular interaction paradigm considered by many existing in-
teractive image segmentation frameworks (Zhang et al., 2020b;
Yu et al., 2017; Wang et al., 2018), our approach is different
in that it leverages a small number of fully-labeled cases (i.e.,
with pixel-level annotation) and a large number of weakly la-
beled cases (i.e., with only loose bounding box annotation) for
training so that our model can be retrained and continuously
improve itself as more labeled cases become available. This is
especially important for improving the generalizability of the
model and during model deployment phase when quick bound-
ing box labels can be used to label more cases including those
with rare occurring stroke lesions and different types of image
artifacts.

In the literature, there have been some weakly supervised
methods applied to semantic segmentation with box-level la-
bels (Hsu et al., 2019; Remez et al., 2018; Han et al., 2020; Lee
et al., 2021; Zhang et al., 2022), but they usually couple object
detection and segmentation and the bounding boxes are used to
train object detectors. In comparison, we directly use expert-

provided bounding boxes as input to our segmentation net-
work to improve model generalizability and segmentation ac-
curacy. Furthermore, most existing methods utilizing box-level
labels rely on global context to achieve accurate object detec-
tion. However, for stroke lesion segmentation, there is no clear
context information to utilize because the locations of lesions
are usually random, and the shape and extent of lesions vary
greatly. To address the limitations of current methods includ-
ing annotation-efficient methods as applied to ischemic stroke
lesion segmentation, we present a weakly supervised segmen-
tation method guided by bounding box input. Our model is
trained with a small number of fully-labeled images and a large
number of weakly-labeled images. It is based on a novel adver-
sarial learning framework for segmentation, which consists of
a segmentation network (i.e., generator) that generates the seg-
mentation prediction, and a discriminator network that outputs a
confidence map indicating the assessed quality of the prediction
at the pixel level. The generator takes as input a DWI channel,
an exponential apparent diffusion map (eADC) channel, and a
lesion bounding boxes map (in the form of a binary map). For
the small amount of pixel-level labeled data, we make use of
the ground truth label maps to update both the generator and
discriminator networks. When using the weakly labeled data,
the confidence map produced by the discriminator can be used
to provide feedback signals to further refine the segmentation
network.

To evaluate our framework, we conduct experiments on an
ischemic stroke DWI dataset with 99 3D images fully labeled
at the pixel level and 831 weakly labeled 3D images with lesion
bounding boxes. Our framework achieves a much higher DSC
of 91.77% in this setting as compared to the highest achieved
by baseline methods at 87.33% DSC. To further evaluate our
method in a real clinical scenario, our method is tested on a
larger dataset that includes challenging cases and achieves com-
petitive performance compared to a fully-supervised method.

In summary, the main contributions of our work are as fol-
lows. First, we propose BB-Guided Segmentor, a new weakly-
supervised segmentation pipeline with bounding box input that
learns a highly accurate segmentation model using only a small
amount of fully-label images. Second, we introduce a novel ad-
versarial framework that supports learning from weakly-labeled
data and significantly improves segmentation accuracy. Third,
our method demonstrates promising performance through eval-
uation, achieving comparable segmentation accuracy to a state-
of-the-art fully-supervised approach while using less than one-
tenth of the fully-labeled data.

2. Methodology

In this section, we introduce our proposed adversarial deep
learning framework for segmenting ischemic stroke lesions.
Considering that weak annotations such as lesion bounding
boxes can provide useful localization information, we work in
a weakly supervised setting to investigate the benefit of using
additional bounding box information. In this scenario, a user
only needs to provide a rough 3D bounding box for each le-
sion, and then our proposed method can automatically perform
precise lesion segmentation.



Yanglan Ou et al. /Computerized Medical Imaging and Graphics (2023) 3

2.1. Data Setting

The training has two modes: (1) We use a small amount of
fully labeled data F where each data tuple [x, b, y] ∈ F consists
of an input image x concatenating the Exponential ADC and
DWI channels, the labeled binary mask of bounding boxes b of
the lesions inside x, and the full lesion segmentation label map
y; and (2) we use a large amount of weakly labeled data W
where each data tuple [x, b] ∈ W only includes the input image
x and the mask of lesion bounding boxes b.

2.2. Adversarial Learning with Fully Labeled Data

To fully leverage the fine-grained lesion boundary annota-
tions in the small amount of fully labeled data F , we use F
inside an adversarial learning framework so that a trained critic
(or discriminator) network can provide feedback to the segmen-
tor (or generator) network based on pixel-wise confidence of the
predicted segmentation. Fig. 1 (Top) shows an overview of our
algorithm for training with fully labeled data.

Generator (segmentation network): As illustrated in
Fig. 1 (Top), we follow the conditional generative adversar-
ial network (CGAN (Mirza and Osindero, 2014)) formulation,
where a generator G is used to map Gaussian noise z and input
image x to the predicted probability map ŷ = G(z, x, b).

For the architecture of the generator network G, we adopt
the Patcher (Ou et al., 2022) as the backbone. Patcher is newly
proposed for medical image segmentation, which is extended
from the transformer and has a strong ability to incorporate both
global and local contexts in learning. The Patcher encoder em-
ploys a cascade of four Patcher blocks to produce four feature
maps with decreasing spatial dimensions and increasing recep-
tive fields. Then it applies a Mixture of Experts (MoE) decoder
to use a gating network to select a suitable set of features from
the encoder to output the prediction. The inputs to the Patcher
include an image x with size 256 × 256 × 2, a Gaussian noise
channel z, and a bounding box map b. The two-channel input
image x is formed by the concatenation of Exponential ADC
and DWI channels of the ischemic stroke clinic data.

Discriminator: As shown in Fig. 1 (Top), we also include a
discriminator D to differentiate between the generated predic-
tion ŷ and the real label y for the input image x. The discrimi-
nator D is based on a fully convolutional network (FCN) (Long
et al., 2015). We multiply the input image with each of the class
probability maps ŷ (or ground truth y ), leading to an adversarial
input with 2 channels. Then the discriminator takes the product
of either the fake pair (x, ŷ) or the real pair (x, y). The symbol⊙

in the diagram means Hadamard (or pixel-wise) product.
Instead of producing a single image-level probability as in clas-
sical GAN, our proposed discriminator produces a probability
per pixel, thus giving rise to a 256 × 256 confidence map. The
value at each pixel in the confidence map is between 0 and 1,
where 0 and 1 represent fake and real, respectively. The con-
fidence map allows us to evaluate the “goodness” of the seg-
mentation at the pixel level, which will prove beneficial in our
adversarial setting.

The adversarial loss LCGAN is applied to each pixel of the
confidence map and the average loss is used to train the dis-
criminator.

The CGAN objective can be written as:

LCGAN(G,D) =Ex,y[
∑

i

log D(xi, yi)]

+ Ex,b,z[
∑

i

log(1 − D(xi, ŷi))] .
(1)

Note that our adversarial loss is pixel-wise, as xi and yi rep-
resent the pixel value and label of pixel i, respectively. ŷi =

G(z, x, b)i is the predicted probability value at pixel i.
Besides the adversarial loss LCGAN, we also use the cross-

entropy loss between the label y and the predicted probability
map ŷ as additional supervision to train the generator:

LCE =
∑

i

−
(
yi log ŷi + (1 − yi) log (1 − ŷi)

)
. (2)

The overall loss for a fully labeled pair (x, y) in F is defined as:

LF = LCE + λCGANLCGAN , (3)

where λCGAN is a weighting coefficient.

2.3. Learning with Weakly Labeled Data
When the discriminator D is sufficiently trained with fully la-

beled data F , we start weakly-supervised training with weakly-
labeled dataW. Fig. 1 (Bottom) illustrates our framework us-
ing weakly labeled data.

During the training of the discriminator using fully labeled
data, the confidence map for real pairs is expected to have high
values (as close as possible to 1) at all pixels, while for fake
pairs the values are expected to be low (as close as possible to
0). Using weakly labeled data, the input to the discriminator
is a fake pair (x, ŷ), and the discriminator outputs a confidence
map for this fake pair; we can use this confidence map, D(x, ŷ),
to assess the confidence in the label prediction at each pixel for
the image x. Then we obtain a mask M by binarizing the con-
fidence map: M = I(D (x, ŷ) > T ), where T is the confidence
threshold. In our experiments, we set the value of the confi-
dence threshold T to be 0.49. As mask M highlights the areas
where the predicted segmentation is believed to be realistic by
the discriminator, we can then formulate a loss:

LW = −M ⊙
(
y′ log ŷ + (1 − y′) log(1 − ŷ)

)
, (4)

where we use the binarized prediction y′ as the pseudo label,
and calculate the cross-entropy loss between y′ and the pre-
dicted probability map ŷ within the masked areas. Again, ⊙
stands for the Hadamard (or pixel-wise) product.

An alternative approach to using a binary mask M is to
directly multiply the confidence map D(x, ŷ) with the cross-
entropy loss. However, in our experiments, this alternative ap-
proach did not give as good a performance as using M.

2.4. Inference
For testing and inference in the weakly supervised segmen-

tation setting, we use the four-channel input consisting of the
two-channel clinical data x, the Gaussian noise channel z, and
the bounding box mask b for the generator. Given the input,
the trained generator produces the probability map ŷ, which
is then binarized to get the segmentation map y′, as shown in
Fig. 2 (Bottom).
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Fig. 1. An overview of our weakly supervised approach applied to stroke lesion segmentation, where we use both labeled and weakly labeled data. Top:
For fully labeled data, we use the ground truth label y to train the generator G and discriminator D. Bounding box information is integrated into the
framework via the ConvNet bounding box encoder. Bottom: For weakly labeled data, we use the confidence map produced by the trained discriminator to
generate a masked region in which the cross-entropy loss is calculated using binarized segmentation map y′ as the pseudo label.
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Fig. 2. An overview of the inference process during testing.

3. Experiments

3.1. Experimental Setup
3.1.1. Dataset

The clinical data we use to evaluate our model is provided
by the Houston Methodist Hospital, Houston, Texas. 99 cases
are fully labeled data, with pixel-wise segmentation label maps
as the annotation. These cases are acute ischemic stroke cases
sampled from a larger set of cases. The 99 sampled cases have
large (n = 42) and small (n = 57) infarct sizes, and have an
equal distribution of samples from stroke with the left or right
middle cerebral artery (MCA), posterior cerebral artery (PCA),
and anterior cerebral artery (ACA) origins. The cases contain
a mix of 1.5T and 3.0T scans. Certain cases even have a mix
of MCA and ACA in a single scan. Besides, there are cortical
stroke and subcortical stroke, and acute and subacute ischemia
represented in the cases. The acute and subacute ischemic in-
farcts are manually segmented by three experts based on the
diffusion-weighted imaging (DWI) and the exponential appar-
ent diffusion map (eADC). We plan to release this set of 99

fully labeled cases so that other researchers can evaluate their
algorithms on this dataset and compare with ours.

Besides the 99 cases of fully labeled data, we have 831
weakly labeled cases, where we collected 3D bounding boxes
for all lesions. In our experiments, we use all 831 weakly la-
beled cases (20,663 slices) and 67 of the 99 fully labeled cases
(1,652 slices) for training. We then use the remaining 32 fully
labeled cases for validation and testing; 20 (499 slices) of these
cases are used for validation and 12 cases (300 slices) are used
for testing. The 12 cases used for testing were carefully cho-
sen to make sure the stroke size, location, and type are nicely
balanced in the testing set.

3.1.2. Implementation Details

Our implementation is using PyTorch (Paszke et al., 2019).
All experiments are conducted on two NVIDIA RTX 6000
GPUs with 24 GB memory. When training the segmentation
network, we use the Stochastic Gradient Descent (SGD) op-
timization method with a learning rate of 0.01, momentum
0.9, and weight decay 5e − 4. For the discriminator network,
the Adam optimizer (Kingma and Ba, 2014) is adopted with a
learning rate of 1e−4 and weight decay of 5e−5. To ensure that
our program runs smoothly on the GPUs, we train our models
with a mini-batch of 2 samples per GPU. The first 50 epochs
of training are run in a fully supervised mode. After the 50
epochs, we incorporate weakly labeled data into our training,
and it converged after 200 epochs.
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3.1.3. Baselines and Metrics
We compare our method against three weakly-supervised

segmentation baselines: ELN (Kwon and Kwak, 2022),
TCSM (Li et al., 2020) and AdvSemiSeg (Hung et al., 2018).
We implement baselines on our dataset using publicly released
code. For a fair comparison, we also provide a bounding box
map as input for all baselines. We use two common evalu-
ation metrics–DSC and IoU–for measuring lesion segmenta-
tion accuracy to provide a quantitative comparison on all le-
sions. Since case-level performance makes more sense in clini-
cal practice and that is what doctors care more about, we report
case-level results as well, in addition to slice-level results.

3.1.4. Field Testing using Challenging Cases with Bounding
Box Variations

In order to better assess the generalization ability of our
method and its robustness to variations in bounding box defi-
nition, we further test it on 44 more challenging cases. Two ex-
pert users are randomly assigned to cases for which they draw
the bounding boxes loosely to include all the stroke lesions and
the labeling time per case is recorded, which mimics a real
application scenario. Most of these challenging cases include
many small and scattered lesions and are low performing with
the roto-translation equivariant Group UNet (GUNet) model
trained in a fully-supervised manner using 700 fully-labeled
cases (Wong et al., 2022). The 700 fully-labeled cases used
by the GUNet are from the 831 cases described in Sec. 3.1.1;
note that our approach only uses the weak labels (i.e., bound-
ing boxes) of these cases in the proposed weakly-supervised
framework while the GUNet (Wong et al., 2022) takes a fully-
supervised approach that uses pixel-level labels for the 700
training cases. The 44 testing cases are not in the set of 831
cases. We show segmentation results from our method on the
44 challenging cases and also compare them to results from the
GUNet fully-supervised method.

3.2. Results

Table 1 shows a segmentation performance comparison be-
tween our method and several other baseline methods. One can
see that our weakly supervised method (4th row) outperforms
other methods when all baselines are also given the bounding
box map as an input channel.

We also perform an ablation study (Table 2) to verify the
contributions of individual components of our weakly super-
vised method. We evaluate the performance of: (1) removing
the bounding box map (i.e., a two-channel input excluding the
bounding box channel), (2) removing the pseudo label supervi-
sion on weakly labeled data (i.e., excluding Eq. 4), (3) remov-
ing the discriminator (i.e., excluding adversarial loss Eq. 1), (4)
without using the weakly labeled data. Results in the 1st to
4th rows show that the main contributor to performance gain is
from bounding box information. Comparing the results shown
in the 1st row and 5th row of Table 2, we notice that the dice
score (DSC) of our weakly supervised method (using bounding
boxes) is 7% higher than without using bounding boxes. Even
though the bounding boxes provided in the weakly labeled data

are loose around most lesions, it still provides useful informa-
tion that can be integrated into the generator to improve model
performance. In clinical practice, considering the effort needed
to redraw segmentation when an algorithm gives inaccurate re-
sults, the time investment in providing rough bounding boxes
that will lead to a 7% accuracy gain should be worth it. Also, as
shown in the 3rd row and 5th row of Table 2, the discriminator
is another major contributor to the good performance. It is ev-
ident that our adversarial critic design successfully encourages
the generator to learn to generate more accurate segmentation.

Fig. 3 shows qualitative testing results by our weakly super-
vised method. It can be seen that the masks produced by our
method (the last column) are the closest to the ground truth.
Especially in the third sample (in the 3rd row), our weakly su-
pervised method successfully detected and segmented the small
lesions, while the other methods either missed those lesions or
did not predict the lesion boundary accurately.

Field testing results on challenging cases are summarized in
Table 3. The average time to label a case with bounding boxes
is 30 seconds for expert user1 (ten years experience) and 45
seconds for expert user2 (three years experience). We can see
that without the help of bounding boxes, both DSC and IoU de-
crease a lot compared with using the bounding boxes (Line 2
vs. Line 1). Specifically, the DSC and IoU drop 31% and 27%
respectively for case-level results. The large difference with and
without bounding boxes validates the contribution from bound-
ing box input.

In Table 3, we also show comparison results between our
method and the fully-supervised method GUNet (Wong et al.,
2022) (Line 3). GUNet is an automatic segmentation model
trained using 700 fully labeled cases and it has been put into
service in clinical practice. Our model trained on less than
1/10 of the full labels (i.e., using 67 fully-labeled cases) with
the bounding box prior is able to reach the performance of the
fully supervised GUNet (trained using 700 fully-labeled cases).
By requiring much less fully-labeled cases for training, our ap-
proach is easier to be adopted by different imaging centers. Ex-
perts at various imaging centers can provide bounding box la-
bels more efficiently, and more case variations can be learned
inexpensively to improve the performance of the existing model
through retraining.

4. Discussion

In our adversarial learning setting, the generators take the
concatenation of input image x and random noise z to gener-
ate the predicted segmentation map. One may be curious about
how the segmentation results would differ given the same input
image but different Gaussian noise. To answer this question, we
performed 10 testings with the same input image x, but differ-
ent noise channels z that were generated from 10 random seeds.
The mean and standard deviation (std) of segmentation metrics
from the 10 testings are summarized in Table 4. One can ob-
serve that the DSC and IoU are both stable with very small std,
which means our learned models are robust to random noise
and can generate stable segmentation results.

Our approach should be very useful in scenarios where there
is limited annotation data. Since harmonization of images
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Table 1. Segmentation performance comparison between different models

slice-level case-level

Method DSC (%) IoU (%) DSC (%) IoU (%)

ELN (Kwon and Kwak, 2022) 83.27 78.42 78.95 72.86
TCSM (Li et al., 2020) 84.45 79.09 80.32 73.30

AdvSemiSeg (Hung et al., 2018) 87.33 82.08 82.95 77.01
BB-Guided Segmentor (Ours) 91.77 84.05 86.97 77.56

Inputs

eADC DWI TCSM ELN AdvSemiSeg Ours

Outputs

U2PL

Fig. 3. Visualization of stroke lesion segmentation. We highlight correct predictions (green), false positives (red), and false negatives (white).

Table 2. Ablation study results of our model.
slice-level case-level

Method DSC (%) IoU (%) DSC (%) IoU (%)

w/o bbox 84.93 82.93 84.95 74.86
w/o pseu 91.36 83.69 86.52 76.84

w/o Discriminator 85.71 82.80 84.65 74.56
w/oW 91.25 83.93 86.93 77.55

BB-Guided Segmentor (Ours) 91.77 84.05 86.97 77.56

Table 3. Field testing results on challenging cases.
slice-level case-level

Method DSC (%) IoU (%) DSC (%) IoU (%)

w/o bbox 25.19 19.27 30.30 21.77
w/bbox 58.29 46.38 61.89 48.21

GUNet (Wong et al., 2022) 59.37 49.67 60.95 47.49

Table 4. Mean and standard deviation (std) of slice-level segmentation met-
rics from 10 testings with different random noise z for generators.

Measurement DSC IoU

mean 91.77 83.73
std 3.09e-4 2.98e-4

across imaging centers remains an open challenge, in an imag-
ing center with limited resources, our approach can be adopted
where clinicians only need to fully label a small number of
cases imaged at that center, and then quickly provide bounding
box weak labels during production phase to get highly accu-
rate segmentation results. Only requiring rough bounding box
weak labels, our method can achieve performance similar to a
fully-supervised method that requires many more fully-labeled
cases.
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One direction for future work relates to deep domain adap-
tation (DDA). The idea is to adapt our models trained on MRI
images to segmenting stroke lesions from non-contrast CT im-
ages. Considering that most US emergency departments do not
have MRI available for acute stroke (Birenbaum et al., 2011)
while CT is readily available, adapting our methodology and
trained models to segmentation from CT through domain adap-
tation can make the framework more widely applicable and also
reduce the need to collect a large number of annotated CT scans
to train CT segmentation models.

5. Conclusion

We introduced an adversarial learning framework with
bounding-box based prior for ischemic stroke lesion segmenta-
tion. Our novel weakly supervised segmentation model incor-
porates a bounding box prior that enhances the segmentation
network using weak labels, i.e., loose bounding boxes around
stroke lesions. We proposed an adversarial learning frame-
work, which leverages a trained discriminator network to pro-
vide feedback to the segmentor (or generator) network based
on confidence of the predicted segmentation at the pixel-level.
Our experiments on clinical datasets have shown that both the
bounding box prior and the adversarial learning framework sig-
nificantly improve segmentation accuracy. We hope the use of
bounding box-guided segmentation in our work can provide a
new perspective on weakly supervised architectures for medi-
cal imaging especially in model deployment stage to increase
model performance by leveraging large number of bounding
boxes from rare occurring cases. We plan to extend our frame-
work to more practical scenarios, including making it robust
to spurious bounding boxes and generalizing it to other imag-
ing modalities such as CT. Our work may have implications for
other areas of medical image analysis that rely on weakly super-
vised learning, and we hope our approach will inspire further
research.
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