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Abstract

Post-delivery analysis of the placenta is useful for evaluating health risks of both the mother and baby. In the U.S., however, only
about 20% of placentas are assessed by pathology exams, and placental data is often missed in pregnancy research because of the
additional time, cost, and expertise needed. A computer-based tool that can be used in any delivery setting at the time of birth
to provide an immediate and comprehensive placental assessment would have the potential to not only to improve health care,
but also to radically improve medical knowledge. In this paper, we tackle the problem of automatic placental assessment and
examination using photos. More concretely, we first address morphological characterization, which includes the tasks of placental
image segmentation, umbilical cord insertion point localization, and maternal/fetal side classification. We also tackle clinically
meaningful feature analysis of placentas, which comprises detection of retained placenta (i.e., incomplete placenta), umbilical
cord knot, meconium, abruption, chorioamnionitis, and hypercoiled cord, and categorization of umbilical cord insertion type. We
curated a dataset consisting of approximately 1,300 placenta images taken at Northwestern Memorial Hospital, with hand-labeled
pixel-level segmentation map, cord insertion point and other information extracted from the associated pathology reports. We
developed the AI-based Placental Assessment and Examination system (AI-PLAX), which is a novel two-stage photograph-based
pipeline for fully automated analysis. In the first stage, we use three encoder-decoder convolutional neural networks with a shared
encoder to address morphological characterization tasks by employing a transfer-learning training strategy. In the second stage, we
employ distinct sub-models to solve different feature analysis tasks by using both the photograph and the output of the first stage.
We evaluated the effectiveness of our pipeline by using the curated dataset as well as the pathology reports in the medical record.
Through extensive experiments, we demonstrate our system is able to produce accurate morphological characterization and very
promising performance on aforementioned feature analysis tasks, all of which may possess clinical impact and contribute to future
pregnancy research. This work is the first for comprehensive, automated, computer-based placental analysis and will serve as a
launchpad for potentially multiple future innovations.

Keywords: Deep learning, transfer learning, placenta, photo image analysis, pathology

1. Introduction

The placenta is a window into the events of a pregnancy
and the health of the mother and baby (Roberts, 2008). Yet,
a very small percentage of placentas around the world are ever
examined by a pathologist. Even in developed countries like the
U.S., placentas are examined and characterized by a pathologist
only when it is considered necessary and resources are avail-
able. Full pathological examination is expensive and time con-
suming. Pathologists or pathologist assistants perform a macro-
scopic or gross examination and select sections for microscopic
examination. After processing, they examine sections under a
microscope and produce a written report (e.g., Fig. 1(b-c)) that
contains various measurements (e.g., the weight, the disc di-
ameter) and diagnoses (e.g., completeness or retained placenta,
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cord insertion type, shape category, meconium, chorioamnioni-
tis, etc.). In some specialty centers, including Northwestern, the
gross examination includes photography using special equip-
ment (Fig. 1(a)). These measurements and placental diagnoses
can be useful for both short- and long-term clinical care of the
mother and baby.

Automated placental assessment based on photographic
imaging can potentially allow more placentas to be examined,
reduce the number of normal placentas sent for full patholog-
ical examination, and provide more accurate and timely mor-
phological and pathological measurements or analyses. Typical
photographs of the placentas capture the umbilical cord insert-
ing into the fetal side of the disc, as well as the maternal side
appearance. Two example images of placentas can be found
in Fig. 1(d). This paper focuses on a fully automated system
for placental assessment and examination. Specifically, such
systems will be responsible for placental segmentation, umbil-
ical insertion point localization, fetal/maternal side classifica-
tion, and the prediction of a number of pathological indicators
(aka gross abnormality). These indicators include retained pla-
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centa (i.e., incomplete placenta), umbilical cord knot, meco-
nium, abruption, chorioamnionitis, hypercoiled cord, and um-
bilical cord insertion type. Some pathological findings from
placentas are strictly microscopic; however, many have gross
(macroscopic) and microscopic features, while some are only
seen on gross exam. The latter are particularly frequent in pla-
cental pathology (Heerema-McKenney et al., 2019). Thus, we
focus on predicting macroscopic pathological indicators.

1.1. Related Work

Existing placental imaging research can be classified into
two types based on the time the image is taken: pre-delivery
and post-delivery. Because we cannot directly capture a photo
for the placenta under visible light spectrum prior to the deliv-
ery, pre-delivery placental imaging research has been focused
on images obtained through other means, e.g., MRI (Alansary
et al., 2016) and ultrasound (Malathi & Shanthi, 2011; Looney
et al., 2017). Pre-delivery placental imaging research focuses
on segmentation, which can be used as visual aids for doctors.

Post-delivery placental imaging research engages different
methods and thus can be further categorized into two types:
those using microscopic images of
(Thomas et al., 2010; Kidron et al., 2017) and those using macro-
scopic images of the placenta taken by cameras (Yampolsky
et al., 2009). A comprehensive overview of both microscopic
and macroscopic placenta pathologies can be found in a book
by Benirschke et al. (2012). While microscopic assessment is
more established, it requires equipment and personnel to make
slides and microscopes and microphotography to make images.
In contrast, camera-based imaging in the second category only
requires an ordinary camera or even a camera phone, and thus
has greater potential to be widely adopted. We found a few
prior works on macroscopic placental assessment from photos
in the literature, but each focused on a specific aspect and in-
volved human assessment as a part of the process. For exam-
ple, Salafia et al. (2010); Yampolsky et al. (2008) studied varia-
tions in disc surface shape and vascular network from placental
photos to identify associations between these factors and vascu-
lar pathologies and placental efficiency. Haeussner et al. (2013)
attempted to estimate the size and shape of placentas from pho-
tos and found placenta size but not shape to have an association
with the birth weight. To our knowledge, there has not been an
automated approach to analyze placenta photographs. We be-
lieve such an approach has the potential for widespread adop-
tion because today’s smartphones have high-quality cameras as
well as highly capable CPU, GPU, and/or AI chips.

In this paper, we extend our earlier preliminary work (Chen
et al., 2019) and present a two-stage pipeline (as illustrated in
Fig. 2) for automated placental assessment and examination
using photos. In the first stage (Stage I), we take a transfer
learning (TL) approach to tackle the associated tasks of mor-
phological characterization rather than employing an indepen-
dent model for each task. Transfer learning promises perfor-
mance gain and robustness enhancement through representa-
tion sharing for closely related tasks (Pan & Yang, 2009) and
has become popular in medical imaging applications in recent

years (Cheplygina et al., 2019). Cheplygina et al. (2019) sum-
marizes the use of transfer learning into three categories: “same
domain, different tasks”, “different domains, same task” and
“different domains, different tasks”. Our method is closest to
the “same domain, different tasks” category but is not an exact
match. More precisely, our method should fall into a category
described as “similar/overlapped domains, different tasks” be-
cause the source and target domains have overlap but are not the
same (see Section 2.2 for more detailed discussions). Specifi-
cally, we transfer the learned representation of the encoder from
the segmentation task to the other two tasks, i.e. disc side clas-
sification and insertion point localization. Our network archi-
tecture design takes inspiration from the recent deep learning
advances on classification (He et al., 2016), image segmenta-
tion (Long et al., 2015; Ronneberger et al., 2015), and key point
localization (Newell et al., 2016). In particular, the design of
our segmentation module follows the practice of concatenat-
ing feature maps in encoder with feature maps in decoder, such
as performed in the U-Net (Ronneberger et al., 2015); and the
design of our insertion point module follows the practice of re-
gressing a Gaussian heat map, rather than using the coordinate
values, as the ground truth, which has been shown to be suc-
cessful in human key-point/joint localization tasks (Tompson
et al., 2014; Benirschke et al., 2012; Newell et al., 2016; Payer
et al., 2019). Tompson et al. (2014) first showed the importance
of intermediate supervision to improving localization accuracy.
We take their idea in our design by considering two heat map
predictions in the final loss — one from the final feature layer
and one from the intermediate feature layer. In the second stage
(Stage II), we employ independent models each tailored for an
individual task for a few important placental assessment tasks
including but not limited to detection of retained placenta (i.e.,
incomplete placenta), umbilical cord knot, meconium, abrup-
tion, chorioamnionitis, hypercoiled cord, and categorization of
umbilical cord insertion type.

1.2. Rationale for a Two-Stage Pipeline
We chose to pursue a two-stage pipeline based on the fol-

lowing observations, both of which make it difficult to build an
end-to-end model for all tasks:

• Almost all of our second-stage tasks only apply to either
the fetal side or the maternal side of a placenta or only to
the disc/cord/ruler region.

• A relatively small fraction of all images bears the abnor-
malities we attempt to detect for the tasks in the second
stage, and the sets of images bearing different abnormal-
ities often have little overlap.

The first observation makes it natural for the second-stage tasks
to take in the segmentation and disc-side predictions from the
first stage to narrow down the region of interest and eliminate
irrelevant information. Also, this means the input feature space
for these tasks is rather different from the first stage or other
second-stage tasks, and it is difficult, if not impossible, to apply
transfer learning here to let those tasks benefit from the repre-
sentations learnt from other tasks. In contrast, tasks in the first
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Figure 1: Data curation process. (a) Placenta photography equipment at Northwestern Memorial Hospital. This equipment is used to collect high and consistent
quality placenta photos for the curation of our dataset. (b-c) Extracting diagnoses and measurements from de-identified pathological report in PDF format. (d-f)
Collecting pixel-level segmentation map for cord, disc, and ruler, insertion point location, and whether an image captures fetal or maternal side placenta through our
web-based labeling tool.
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Figure 2: Schematic diagram of our proposed two-stage framework for automated placental assessment and examination using photos. Details of the Stage I and
Stage II models will be described in Sections 2.2 and 2.3, respectively.

stage are more closely related and have larger overlapped input
feature space. The second observation makes it sometimes im-
practical to use the same training/testing set for all tasks. Each
task may have its own training/testing set such that the model
will not be dominated by negative cases (i.e., without abnor-
malities).

1.3. Contributions

We summarize the primary contributions as follows.

• We introduce a novel pipeline for comprehensive, auto-
mated placental assessment and examination using pho-
tos. The design of the pipeline, which has two stages,
takes the relationship and the similarity of the tasks into
consideration. Specifically, we use transfer learning to

boost performance and robustness for closely related
tasks with significant overlapped input space in the first
stage. In the second stage, we use the first-stage pre-
dictions in separate models to address distinct tasks: to
determine if an image is relevant (through side classi-
fication) and to provide the region of interest (through
segmentation). Our method is explainable by design and
achieves highly promising results. We believe isolating
the models for irrelevant tasks and enforcing strong pri-
ors on the information flow between sub-models are crit-
ical under a limited label and robustness-prioritized set-
ting, which is typical for medical image analysis. Such
isolation is necessary to reduce the possibility of learning
signals/correlations that do not hold true for the general
distribution but just happen to be the case in our collected
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data based on prior domain knowledge. Additionally, dis-
tinct sub-models in the second stage can be developed in
parallel and can be upgraded without worrying that it will
affect performance for other tasks.

• Our use of transfer learning for the first-stage tasks can
be categorized into the “similar/overlapped domains, dif-
ferent tasks” type, which is novel and can be applied to
other medical image analysis problems.

• We curated a first-of-its-kind large-scale dataset with
hand-labeled segmentation maps, umbilical cord inser-
tion point location and diagnoses extracted from the
associated pathology reports. This dataset enabled us
to develop our computational pipeline addressing auto-
mated placental assessment and examination tasks. We
believe the dataset will also be highly beneficial to future
research on the placenta and adverse prenatal and post-
partum outcomes.

2. Materials and Methods

2.1. Dataset
We collected a dataset consisting of 18, 400 placenta pho-

tos as well as the associated pathology reports written in natu-
ral English by the pathologist who originally examined the pla-
centa, spanning the years of 2016 to 2018. The photos and
reports are from Northwestern Memorial Hospital, a large ur-
ban academic medical center. The photos were taken by on-site
pathologists and pathologist assistants using a camera installed
on a fixed height arm against standardized blue background as
illustrated in Fig. 1(a). Pathology classification is standardized,
and the pathologists have perinatal training and expertise. From
the 18, 400 placenta photos (of about 9, 000 placentas), 1, 370
photos were selected to be hand labeled. 665 of the photos are
fetal-side images, and 705 are maternal-side images, .2 Fig. 1
shows our data curation process. We developed a web-based
tool (Fig. 1(e)) to collect the following data: i) the pixel-wise
segmentation maps, ii) the side-type label as fetal side or ma-
ternal side, and iii) the cord insertion point (only for fetal side,
visualized as a Gaussian heat map centered at the marked co-
ordinate in (Fig. 1(f))) so that multiple trained labelers could
annotate this dataset concurrently. We also extract diagnoses
from the pathology reports (Fig. 1(b-c)). A complete list of di-
agnoses we extracted from the pathology reports are listed in
Appendix A. For those placentas being diagnosed with being
retained/incomplete the pixel-wise incomplete area was anno-
tated by a highly-trained pathologist who is a research member
(J.A.G.). For true knot in the cord, trained research members
placed a bounding box around the knot with expert review as
needed.

2The numbers of fetal-side and maternal-side images are uneven because
some of the collected images did not meet our image quality standard (e.g.
disc occluded by irrelevant object such as scissors) and we had to discard them
from the dataset. We plan to release our dataset in the future after substantial
expansion.

We divided the fully-labeled dataset into training and testing
sets with the ratio of 0.8 : 0.2. Because the insertion point
can only be observed from the fetal side, we only use the 665
fetal-side images for insertion point prediction, with the same
training-testing ratio as aforementioned.

2.2. Stage I: Morphological Characterization

The proposed model for morphological characterization, as
illustrated in Fig. 3, consists of an Encoder for feature pyra-
mid extraction (blue), which is shared among all tasks, a fully
convolutional SegDecoder for placenta image segmentation on
both fetal- and maternal-side images (red), a Classification
Subnet for fetal/maternal-side classification (purple), and a
fully convolutional IPDecoder for insertion point localization.

2.2.1. Encoder as feature pyramid extractor
The Encoder takes a placenta image x (either the fetal side

or the maternal side) as the input and then outputs a pyramid of
feature maps {f1, f2, f3, f4, f5} (represented as blue rectangles).
Depending on the tasks, all or part of the feature maps are
used by further task modules. Specifically, SegDecoder takes
{f1, f2, f3, f4, f5} as input; Classification Subnet takes {f5}

as input; and IPDecoder takes {f3, f4, f5} as input. The Conv-
1 and Conv-2 blocks both consist of a Conv-BatchNorm-Relu
layer. The difference, however, is that the Conv layer in the
Conv-1 block has stride 1, while the Conv layer in Conv-2 block
has stride 2. The Res conv blocks are residual blocks with two
convolutional layers with stride 2 and 1, respectively, and the
same kernel size 3 × 3, each of which spatially downsamples
the input feature maps to half of its size and doubles the num-
ber of feature channels. The residual structure has been shown
especially helpful for training deep architectures by He et al.
(2016).

2.2.2. SegDecoder for segmentation
Our SegDecoder module consists of four expanding fully

convolutional blocks, each of which takes the concatenation
of a copy of the corresponding feature map fi, i ∈ {1, 2, 3, 4},
and transposes a convoluted (up-scaling factor 2) output feature
map of the last layer. Finally, we apply soft-max to predict the
probability of pixel (i, j) being of class k, denoted as p(i, j, k).
To overcome the problem of highly imbalanced number of pix-
els for different categories, we use dice loss (Milletari et al.,
2016) instead of the common cross entropy loss. Since we have
four classes rather than two classes in (Milletari et al., 2016),
we adjust the dice loss to suit the 4-class scenario:

Lseg = 1 −
∑

i, j
∑3

k=0 p(i, j, k) · g(i, j, k)∑
i, j

∑3
k=0(p(i, j, k) + g(i, j, k))

, (1)

where i, j run over the row and column indexes of an image,
respectively; p(i, j, k) and g(i, j, k) denote the predicted proba-
bility of the pixel at location (i, j) and the 0/1 ground truth of
that pixel belonging to class k, respectively.
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Figure 3: The architecture of our model for morphological characterization: a multi-head convolutional neural network for placenta image segmentation, cord
insertion point localization, and placenta disc side classification. “Up sample & Conv” is implemented by a transposed convolution layer. “Res conv blocks” are
residual blocks with two convolutional layers with stride 2 and 1, respectively, and the same kernel size 3 × 3. “Score blocks” are convolutional layers with kernel
size 1 × 1 and the number of output channel 1. The soft-max layers are omitted. We use dice loss, binary cross entropy (BCE) loss and mean square error (MSE)
loss for the segmentation, classification, and insertion point localization, respectively.

2.2.3. Classification Subnet for fetal/maternal side clas-
sification

Because the fetal/maternal side can be inferred from the
“disc”region of a placenta alone, we crop the full placenta im-
age x by a rectangle including the region of disc and resize the
cropped image to 512× 512 pixels as the input to the Encoder,
which we denote as xc. The cropping is based on the ground
truth segmentation map during training and on the predicted
segmentation map at inference. Our Classification Subnet

consists of a Res conv block, two fully connected layers, and a
soft-max layer. At the end, a binary cross entropy (BCE) loss is
applied to supervise the network.

2.2.4. IPDecoder for insertion point localization
Because the insertion point is always located within or adja-

cent to the “disc” region, we use cropped disc region image xc,
just as we perform cropping in Classification Subnet, as
the input to the Encoder. Our IPDecoder is also fully convolu-
tional and consists of two expanding fully convolutional blocks,
the structure of which are the same as in the first two convolu-
tional blocks in SegDecoder. The similarity of IPDecoder’s
structure with SegDecoder’s helps us to ensure that the shared
encoder representation could also be readily utilized here. In-
spired by the success of intermediate supervision (Newell et al.,
2016), we predict the insertion point localization heat map after

each expanding convolutional block by a convolutional layer
with kernel size 1 × 1 (denoted as “Score block” in Fig. 3) and
use the MSE loss to measure the prediction error:

Lip
k =

∑
i, j

||h(i, j) − ĥ(i, j)||2, k ∈ {1, 2} , (2)

where h(i, j) and ĥ(i, j) are the ground truth (Gaussian) heat
map and the predicted heat map, respectively. The final loss
for insertion point is Lip = Lip

1 + Lip
2 . During inference, the pre-

dicted insertion point location is determined by
(i, j) = arg maxi, j ĥ(i, j) .

2.2.5. Training and testing
We use mini-batched stochastic gradient descent (SGD) with

learning rate 0.1, momentum 0.9, and weight decay 0.0005 for
all training. We use a batch size of 2 for all segmentation
training and a batch size of 10 for all insertion point localiza-
tion and fetal/maternal side classification training. The proce-
dures of training are as follows. We first train the SegDecoder
+ Encoder from scratch with parameters initialized to zero.
Next, we fix the learned weights for the Encoder and train
Classification Subnet and IPDecoder subsequently (in
other words, the Encoder only acts as a fixed feature pyramid
extractor at this stage). The rationale for making such choices is
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Figure 4: The insertion type categorization and related automated measurements procedures consists of steps 1) to 5). (a), (b), and (c) illustrate the detailed procedure
for steps 1), 2), and 3), respectively.

that the training for segmentation task consumes all images we
have gathered and makes use of pixel-wise dense supervision,
which is much less likely to lead to an overfitting problem. In
contrast, the training for Classification Subnet takes bi-
nary value as ground truth for each image while the training for
IPDecoder only uses around half of the whole dataset (only
fetal-side images). To alleviate the lack of labels and to make
the model more robust, we use common augmentation tech-
niques including random rotation (±30◦) as well as horizontal
and vertical flipping for all training images.

2.2.6. Implementation
We implemented the proposed pipeline in PyTorch (Steiner

et al., 2019) and ran experiments on an NVIDIA TITAN Xp
GPU. For segmentation training, all images are first resized
to 768 × 1024, which is of the same aspect ratio as the orig-
inal placenta images. For insertion point localization and fe-
tal/maternal side classification training, we resize all cropped
“disc” region images to 512× 512, which is natural because the
cropped “disc” regions often have a bounding box close to a
square. We summarize all parameter settings for our model in
Appendix B.

2.3. Stage II: Placenta Feature Analysis

In this stage, we detect pathological indicators based on the
results from Stage I.

2.3.1. Detection of retained placenta
Retained placenta is a cause of postpartum hemorrhage, and

if prolonged, it can serve as a nidus for infection (Silver, 2015).
Trained birth attendants perform a focused examination of the
placenta, including inspecting the maternal surface for com-
pleteness. However, this process may fail if there is not a trained

birth attendant, if blood obscures incomplete areas, or if human
error happens. Examination of placentas in pathology also in-
cludes assessment of the completeness of the maternal surface,
which is recorded in the pathology report. The treatment for
retained placenta includes removal of retained parts from the
uterus. We identified 119 out of 705 maternal side placenta
images in our dataset with possible “retained placenta” based
on the pathology reports and we asked a perinatal pathologist
(coauthor) to annotate where the possible missing parts are for
each of the images. We trained two neural networks for this
task, one for classification and one for localization.

The classification network is a binary classification CNN
tasked with assessing if the placenta is retained (or incomplete)
or not. As the incomplete parts are always within the disk re-
gion, the pixels out of the disk region are not considered for the
binary classification and were excluded from the input. Thus,
we use segmentation maps predicted in Stage I to extract the
disk part of a placenta photo by setting pixels not classified as
a part of the disc to zeros. Next, we feed the processed pla-
centa photo into the classification network, which is a Resnet-
18 network, chosen to suit the small scale of our training set. In
training, we fine-tune on our dataset from a model pretrained on
ImageNet (Deng et al., 2009) (with 1, 000 classes) using mini-
batched stochastic gradient descent (SGD) with batch size 10,
learning rate 0.01, momentum 0.9, and weight decay 0.0005 for
all experiments.

The localization network assumes that the input placenta
image has been classified as retained/incomplete and is tasked
with segmenting out the retained/incomplete region(s). We treat
it as a two-class segmentation problem and train our localiza-
tion network, which we choose to be the Deeplab architec-
ture (Chen et al., 2017) with ResNet-101 as the backbone net-
work (pretrained on ImageNet (Deng et al., 2009)), against the
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expert-provided pixel-wise incomplete region labels. Segmen-
tation map predicted in Stage I are used to exclude non-disc
regions such that our localization network is not distracted by
those pixels. The training set contains 57 images and the testing
set contains 12 images. We use SGD with batch size 5, learning
rate 0.01, momentum 0.9 and weight decay 0.0005.

2.3.2. Umbilical cord insertion type categorization
Abnormal cord insertion is a feature of fetal vascular mal-

perfusion (Khong et al., 2016). Based on the segmentation, the
predicted insertion point location, and the scale we extracted
from the ruler, we can measure the distance from the insertion
point to the nearest margin of the disc, the length of the long-
and short-axis of the disc (all in centimeters). Further, we clas-
sify the cord insertion type into “centrally”, “eccentrically”, and
“marginally”, based on the ratio of the distance from the inser-
tion point to its closest disc margin to the average length of
the long- and short-axis. The thresholds for the above ratio
between different categories are selected by optimizing classifi-
cation accuracy on the training set. As illustrated in Fig. 4, the
detailed procedures for insertion type categorization and related
automated measurements are as follows.

1. We recover the occluded disc area by merging the orig-
inally predicted disc area with the polygon defined by
vertices (red) adjacent with both disc area and cord area.
Here, erosion and dilation image processing operations is
used to remove small holes sometimes appearing in the
disc region given by the raw segmentation prediction.

2. We extract the scale information from the ruler. Since the
ruler in the image could be of any orientation, we first
rectify the orientation of the ruler and fit a rectangle from
the predicted ruler region. Next, we binarize the pixels
within the ruler region such that the scale marker is more
distinct. Thirdly, we use kernel density estimation to fit
a distribution of the marker pixels (white after binariza-
tion) along the long edge of the ruler. Finally we read the
number of pixels corresponding to one centimeter as the
number of pixels between the two adjacent crests of the
estimated distribution.

3. We estimate the long- and short-axis of a placenta by sim-
ulating how pathologists measure those from a 2-D shape
by using a vernier caliper.

4. We estimate the distance from the insertion point to its
nearest point on disc margin.

5. We calculate the ratio of the distance from the insertion
point to its closest disc margin to the average length of
the long- and short-axis and conduct the classification
based on pre-selected thresholds based on optimizing train-
ing set classification accuracy.

2.3.3. Meconium, abruption and chorioamnionitis detection
Meconium discharge is an indication of fetal distress and

can damage the umbilical vessels as well as injure neonatal
lungs (Kaspar et al., 2000). Meconium stains on the fetal mem-
branes and/or the fetal surface of the placenta are seen in Fig.

(a) Abruption examples

(b) Chorioamnionitis examples

(c) Meconium examples

(d) Regular and irregular shape examples

(e) True knot examples

Figure 5: Sample placenta with abnormalities we aim to detect. Each row has
a different abnormality. (a) Abruption. (main indicator: blood clots on the
maternal surface.) (b) Chorioamnionitis. (main indicator: opaque colored fetal
surface.) (c) Meconium. (main indicator: meconium stain on the fetal surface.)
(d) Irregular shaped. (left: regular, right: irregular. Their associated binary disc
region along with the fitted ellipses are also displayed next to each of them.) (e)
True knots on the cord.

5(a). Meconium is not always detectable from the gross color
examination as shown in the third image (from left to right) of
Fig. 5(a) and histological analysis is required in some cases.
Placental abruption is separation of the placenta from the wall
of the uterus before birth and can cause maternal blood loss
and fetal distress or death. At delivery, dark red to brown ad-
herent blood clots on the maternal side of placenta may be the
main diagnostic characters of abruption; as seen in Fig. 5(b),
however, this complication is not always visible. Larger clots
suggest more severe abruption. Chorioamnionitis is an inflam-
mation of the fetal membranes that often results from bacte-
rial infection and which may progress to devastating infection
of the fetus. The fetal surface of the placenta that is affected
by chorioamnionitis often looks opaque, with the color ranging
from white to yellow to green. The percentage of placenta im-
ages diagnosed with meconium, abruption, or chorioamnionitis
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are relatively low. As a consequence, the number in our fully
labeled placenta images are too few for direct training of our
model. To address this challenge, we build our training and
testing set for these three tasks by using selected images of pla-
centas diagnosed with these three problems out of the 18, 400
images we collected in the year of 2016-2018. Specifically,
we selected the set of images that satisfied our standards about
freshness, non-placenta related objects in the image, etc. In
sum, we used 470 meconium diagnosed fetal side images from
a total of 731 cases, 268 chorioamnionitis diagnosed fetal side
images from a total of 461 cases, and 181 maternal side images
with abruption diagnosis from a total of 314 cases. For each
task, we build the training and testing set by 1) randomly sam-
pling the same amount of negative cases (not diagnosed with
meconium, abruption or chorioamnionitis) as positive cases as
found in the whole dataset; 2) splitting the whole assembled
dataset into training and testing sets with the ratio of 0.8 : 0.2.

We trained one simple 6-layer convolutional neural network
as the binary classifier for each of the three abnormalities. Only
the disc region of an image is fed into those CNN classifiers and
non-disc regions of the image are zeroing out based on our seg-
mentation predictions. The first four layers are convolutional
layers with filter size of 3, stride of 1, max pooling (for down-
sampling), relu activation and output sizes are 99 × 99 × 32,
48×48×64, 23×23×128, and 10×10×256, respectively. The
last two layers are fully connected layers with 1024 neurons and
1 neuron, respectively. At the end, a sigmoid activation is used
to scale the output in the range of [0, 1] as the probability for
each class. We train each network for 30 epochs (until which
the training loss has converged) using RMSProp optimizer with
learning rate 0.001, momentum 0.9, batch size 10. Since abrup-
tion only appears on the maternal side and chorioamnionitis and
meconium only appears on the fetal side, our classification net-
work for each of them assumes a placenta image has already
been classified into the associated side during inference.

2.3.4. Irregular shape detection
Abnormal placental shape has been associated with prema-

ture birth or stillbirth (Salafia et al., 2010). The regular shape
for a placenta is round or oval. Meanwhile, those placentas clas-
sified as irregularly shaped often looks star-like or calabash-like
(as shown in Fig. 5(d)), with prominent concave or convex parts
on the contour of the disc. By imitating how a pathologist de-
termines if the shape of a placenta disc is irregular, we design a
simple measure to quantify the irregularity of the disc shape for
a placenta. First, we use the same module as in Section 2.3.2
(Fig. 4(1)) to recover the occluded disc and produce a whole
disc region as a binary map. Next, we find the best-fit ellipse
using zeroth-, first- and second-order moments. The (p + q)-th
order moment is defined by:

mp,q =

∫∫
xpyq f (x, y)dxdy, (3)

where f (x, y) = 1 when the pixel is on the disc area, and zero
otherwise. Then we can get the center coordinates (xc, yc), the
inclination angle α and the long- and short-axis a, b of the el-

lipse following:

xc =
m1,0

m0,0
, yc =

m0,1

m0,0
, (4)

α =
1
2

tan−1
(

2m1,1

m2,0 − m0,2

)
, (5)

a =

√
2

m0,0

(
m2,0 + m0,2 +

(
(m2,0 − m0,2)2 + 4m2

1,1

) 1
2
)
, (6)

b =

√
2

m0,0

(
m2,0 + m0,2 −

(
(m2,0 − m0,2)2 + 4m2

1,1

) 1
2
)
. (7)

Finally, we count the number of pixels covered by the fitted
ellipse (denoted as n1), the number of disc pixels outside the
fitted ellipse (denoted as n2), and the number of non-disc pixels
within the ellipse (denoted as n3, those pixels are white ones in
Fig. 5). We also define

I =
n2 + n3

n1
, (8)

as the measure of irregularity for disc shape. Obviously, the
larger the I, the more irregular a disc shape is. We select a
threshold for I from the training set such that we classify a pla-
centa as irregular-shaped if its I is larger than that threshold.
Two examples of regular and irregular shaped placentas, along
with their disc binary maps and fitted ellipses are displayed in
Fig. 5(d).

2.3.5. Hypercoiled cord identification

(a) Hypercoiled cord (left) and normal cord (right) examples

(b) Coil counting from the extracted edge segments

Figure 6: Fold crevice extraction and coil counting rules.

As illustrated in Fig. 6, a hypercoiled cord is more twisted
than a normal cord, impairing fetal blood flow. Detecting this
phenomenon is important because it is linked to infant mortal-
ity (Ernst et al., 2013). Our approach is to apply Canny edge de-
tection on the cord region predicted by our segmentation model
to detect fold crevices caused by hypercoiling. The count of
those fold crevices could be a good approximation to the actual
number of coils because it is also the main clue for patholo-
gists to identify an individual coil and count the total number
of coils using bare eyes. Before counting, we disregarded the
detected fold crevices that are very small (in terms of length),
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crossed with the adjacent one, or whose orientation is too par-
allel with the orientation of the central skeleton of the cord.
Fig. 6(a) shows two examples of our intermediate results for
fold crevices detection. Sometimes, there are two or more edge
segments extracted for one crevice, which will result in incor-
rect count of coils if we blindly count the number of extracted
edge segments. We design a simple but effective rule, as illus-
trated in Fig. 6, to overcome this:

• Let ei
1, ei

2 and ei
3be the points of intersection between the

i-th segment and the two cord boundaries and the central
skeleton, respectively. Let ei

4 be ei
2’s projection (in the di-

rection vertical to the central skeleton) onto the opposite
boundary.

• Denote the length of the boundary between ei
1 and ei

4 as
Ti. Denote the distance between ek

1 (k ≥ i + 1) of the k-th
segment and ei

1 be dik.

• If dik > 2Ti, then the k-th segment will be counted as a
coil. Otherwise, the k-th segment will not be counted.

Let’s denote n the count of coils we obtain following the
above rule and l the cord length in centimeters. We can quantify
the coilness of a cord by:

C =
n × 10

l
, (9)

i.e., the number of coils per ten centimeters. After exploring
the hypercoiled cords in the training set, we define a cord to
be “hypercoiled” if C ≥ 4, which leads to the best training set
accuracy when it is used as the classification criterion.

2.3.6. Knot detection
A true knot forms when the umbilical cord ties around it-

self. Fig. 5(e) shows some examples of true knots. Loosely
looped knots do not usually present a problem, while tight knots
can severely affect the blood and oxygen exchange between the
mother and the fetus. Therefore, knot detection is included as
a routine examination by clinical staff at delivery and in the
gross pathological exam. In a regular pathology report, a pla-
centa is diagnosed with “normal” or “having true knots” or
“having false knots” (which means the image does not con-
tain true knot(s) but some part(s) of cords are very similar to
true knots), In our dataset, we have 171 images diagnosed with
having true knots and 462 images diagnosed with having false
knots. For each placenta image diagnosed with having true
knots, We manually labelled all the true knots with bounding
boxes. Using these labeled images, we trained our knots detec-
tion module from scratch. For the knot detection task, we uses
YOLO (Redmon et al., 2016), a single-stage detection network.
we used the original RGB image concatenated with a binary
mask denoting the cord region predicted by our segmentation
as the input to the detection network and trained our detection
network against the expert-labeled bounding boxes. As before,
we used the 0.8 : 0.2 ratio to split the original dataset into train-
ing and testing sets. We used batch size 64 and learning rate
0.001.

3. Results

In this section, we summarize the experimental results using
our dataset. The results are organized by the two stages and then
by the individual tasks within each stage. We also discuss the
inference time and the clinical significance at the end of this
section.

3.1. Morphological Characterization

3.1.1. Segmentation
We compared our approach with two fully convolutional

encoder-decoder architectures, the U-Net (Ronneberger et al.,
2015) and the SegNet (Badrinarayanan et al., 2017). The re-
sults are shown in Table. 1 and Fig. 7.

Table 1: Segmentation evaluation

Model pixel acc. class acc. mean IoU
U-Net 98.10 92.98 88.21
SegNet 96.51 94.56 84.57

ours 98.73 97.26 93.93

We report the segmentation performance using standard seg-
mentation metrics pixel accuracy, mean accuracy, and mean
IoU. The definition of those metrics are as follows: suppose we
have counted how many pixels are predicted to class j but with
their ground truth being class i (for every i, j ∈ {0, 1, . . . , k − 1},
k is the number of classes) and we store it as the term Ci, j in a
k × k matrix C. We also denote the (ground truth) total number
of pixels for class i as Ti. It is easy to see that Ti =

∑k−1
j=0 Ci, j.

The pixel accuracy, mean class accuracy, and mean IoU are then
defined as follows.

• Pixel accuracy: ∑k−1
i=0 Ci,i∑k−1
i=0 Ti

. (10)

• Mean class accuracy:

1
k

∑k−1
i=0 Ci,i

Ti
. (11)

• Mean IoU:

1
k

k−1∑
i=0

Ci,i

Ti +
∑

j,i Ci, j
. (12)

In Fig. 7(a), (b) and (c), we compare pixel-wise prediction
confusion matrices of our approach, U-Net, and Segnet, respec-
tively, which reflects more details about segmentation perfor-
mance for different categories. We also show a few segmenta-
tion examples in Fig. 7(d) for qualitative comparison. Our ap-
proach yields the best segmentation results, especially for dif-
ferentiating the cord and the ruler classes.
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(a)

(b)

(c)

Original image Ground truth OursUNet SegNet

Disk Cord Ruler Background
(d)

Figure 7: (a), (b), and (c) are confusion matrices of our approach, U-Net, and SegNet, respectively. (d) Examples of segmentation results. We show both fetal-side
results (top two rows) and maternal-side results (bottom two rows).

3.1.2. Fetal/maternal side classification
We achieved an overall fetal/maternal side classification ac-

curacy of 97.51% on our test set. Without the shared encoder
representation, we can only achieve 95.52% by training
Encoder + Classification Subnet from scratch. We also
compare their confusion matrices in Fig. 8.

(a) (b)

Figure 8: Fetal/maternal side classification confusion matrices comparison. (a)
Without shared encoder weights. (b) Ours.

3.1.3. Insertion point localization
We choose Percentage of Correct Keypoints (PCK) as the

evaluation metric. PCK measures the percentage of the predic-
tions fall within a circle of certain radius centered at the ground

truth location. More formally, PCK at normalized distance x
(x ∈ [0, 1]) is defined as:

PCK@x =
|{p :

√
||p̂−p||2

d < x ∧ p ∈ {pi}
n
i=1}|

n
, (13)

where {pi}
n
i=1 are the n keypoints we are trying to predict. p̂

stands for our prediction for p; ||.||2 stands for the L-2 Euclidean
distance and is used to measure the error of the prediction p̂
from the ground truth p; |.| stands for the cardinality of a set.
In our paper, we choose the diameter of the disc3. as the nor-
malizing factor d. In comparing our approach (both with and
without shared encoder weights) to the Hourglass model (with
number of stacks 1 and 2), we see competitive results achieved
by our approach in human keypoint localization (Newell et al.,
2016). Fig. 9(a) shows the PCK curves, with the x axis being
the radius normalized by the diameter of the placenta. Each
curve in Fig. 9(a) is the average of the results for five models
trained with different seeds, and the light-colored band around
each curve (view-able when the figure is enlarged) shows the
standard deviation of the results. Our approach with shared

3In practice, we approximate the diameter of the disc by the distance be-
tween the right most and left most pixel of the “disc” area in the segmentation
map.
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(a)

R

Original image Ground truth Hourglass-s1 Ours (w/o shared 
encoder weights)Hourglass-s2 Ours

(b)

Figure 9: Evaluation of insertion point localization. (a) Quantitative evaluation with percentage of correct keypoints (PCK) curves. (b) Qualitative examples of
insertion point heat map predictions.
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Figure 10: Quantitative and qualitative evaluation of the retained placenta classification and localization networks. (a) Receiver operating characteristic (ROC) curve
for the classification network. (b) Qualitative examples of our incomplete part localization predictions produced by our localization network.

Encoder consistently gives the best results, especially when
the normalized distance is from 0.2 to 0.6. We also show a few
qualitative examples of the insertion point heat maps predicted
by each model, along with the ground truth in Fig. 9(b).

3.2. Placenta Feature Analysis

The predictions of the Stage I models enable us to con-
duct automatic placenta feature analysis by subsequent mod-
els/procedures.

3.2.1. Detection of retained placenta
Both our classification network and localization network

achieve promising results. We show the receiver operating
characteristic curve of the classification network in Fig. 10(a)
and example localization results along with the ground truth
in Fig. 10(b). To show the advantage of using the disc region
only as the input, we compare two versions of classification

network in Fig. 10(a), one with segmented disc region only (or-
ange line, with AUC 0.836) and one without using our segmen-
tation predictions (blue, with AUC 0.827). We also show the
results of our classification network based on the disc regions
provided by UNet (chartreuse, with AUC 0.781) and SegNet
(red, with AUC 0.844) segmentation. The results based on our
segmentation network in Stage-I is significantly better than the
results based on UNet, and on par with or slightly worse than
the results based on SegNet. We have expanded our pool of im-
ages with expert-labeled incomplete region (around 2×) from
what we have for our conference paper (Chen et al., 2019) and
improved our localization results from IOU = 0.571 to IOU
= 0.636 by training on this expanded pool of labeled images.
This improvement is also significant in our qualitative exam-
ples shown in Fig. 10(b).
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Figure 11: Quantitative and qualitative evaluation for insertion point type categorization. (a) The confusion matrix for insertion type categorization. (b) Quantitative
evaluation of our estimation on the distance from the insertion point to the nearest disc margin. (c) Qualitative examples of insertion point type categorization.

(a) (b) (c)

Figure 12: Receiver operating characteristic (ROC) curves for detecting meconium (a), abruption (b), and chorioamnionitis (c).

3.2.2. Umbilical cord insertion type categorization
We achieved an overall 88% test accuracy and we show

the classification confusion matrix in Fig. 11(a). Because the
ground truth distance from the insertion point to its nearest
point on the disc margin can be extracted from the pathology re-
ports, as shown in Appendix A, we are able to evaluate our pre-
diction for this important intermediate value. Fig. 11(b) shows
the evaluation for our estimation of the distance from the in-
sertion point to its nearest point on the disc margin on the test
set. The x-axis represents the threshold of the normalized error
(absolute error normalized by the ground truth) and the y-axis
shows the percentage of our estimation, the error of which is
below such threshold. As shown, we have a 58% prediction
accuracy if we set the threshold to 0.2. Qualitative examples
of our insertion type categorization and associated automated
categorization can be found in Fig. 11(c). Insertion type pre-
dictions are displayed in the upper right corner of each image,
along with the ground truth in brackets. The success cases are

green boxed and the failed cases are red boxed. For each image,
the predicted insertion point location are marked with a green
dot; a transparent green mask is overlaid on the image repre-
senting the predicted whole disc region; a (green) line is drawn
between the insertion point and its nearest point on the disc
margin. The predicted length of such line is displayed next to it,
along with the ground truth length extracted from the pathology
report (in brackets). The predicted long and short axes are also
displayed, along with their predicted length in centimeters. We
can see that the results for both the umbilical cord insertion type
categorization and its related measurements are very appealing.
Our method is already very promising as a replacement for the
current approach based on the manual measurement and naked-
eye inspection.

3.2.3. Meconium, abruption, and chorioamnionitis detection
The ROC curves of binary classifiers for meconium, abrup-

tion, and chorioamnionitis are shown in Fig. 12(a), (b), and (c),
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respectively. We achieved 0.97/0.98, 0.72/0.72 and 0.70/0.69
in terms of sensitivity and specificity for the detection of abrup-
tion, meconium, and chorioamnionitis, respectively, under the
selected operating point marked on the ROC curve as shown
in Fig. 12. We also show ROC curves of binary classifiers for
meconium, abruption, and chorioamnionitis based on UNet and
SegNet segmentations in each sub-figure. Overall, our segmen-
tation network described in Stage-I is the best choice to achieve
the best ROC curve for all three tasks.

3.2.4. Irregular shape detection
In our dataset, 77 placentas are labeled as irregular shaped.

By maximizing training set accuracy, we chose 0.14 as the ir-
regularity measure (Eq. 8) threshold for classifying the shape.
The sensitivity and specificity for shape classification are 0.87
and 0.97, respectively, using the selected threshold. On expert
review, the shape labels in pathology report are quite subjec-
tive, which we believe is the main limiting factor for achiev-
ing better classification performance in our model. We can,
however, make the shape classification much more objective
by switching from the current naked-eye inspection approach
to our computer-based approach.

3.2.5. Hypercoiled cord identification
Our dataset contains a total of 143 cords that are labeled as

hypercoiled. The sensitivity and specificity for cord classifica-
tion are 0.85 and 0.93, respectively, under the selected coilness
threshold. We believe the results still have room for improve-
ment. The main factors hindering our method from achiev-
ing better accuracy include blood stains within the image, faint
edges on the cord, limited number of hypercoiled cases for se-
lecting the threshold, and the cord segmentation prediction er-
ror.

3.2.6. Knot detection
We used the standard metric, mean average precision (MAP)

under different thresholds of intersection over union (IoU) to
evaluate our detection performance. In our dataset, the num-
ber of positive examples is significantly less than the number of
negative examples and the number of hard negative examples
(false knot) is significantly less than the number of easy neg-
ative examples (no knot). Such imbalance of different classes
and imbalance of easy cases and hard cases could hurt the
model’s performance due to the dominating influence on the
loss from the the class in majority (or from the easy cases). This
phenomenon has been verified and studied in many other appli-
cations and models, e.g. (Lin et al., 2017; Cui et al., 2019). To
address such a problem, we must balance the influence of dif-
ferent classes (or easy/hard cases) on the loss, either through
an explicit re-weighting scheme by multiplying a scalar or im-
plicit re-weighting scheme by adjusting the sampling for SGD.
In that regard, we explored different sampling strategies instead
of the default uniform sampling strategy when we use SGD to
train our detection network. We present the results in Fig. 13(a)
and (b). Specifically, we swept the ratio of the probability of
sampling an image with a false knot or no knot over the proba-
bility of sampling an image with a true knot (R1) and the ratio

of the probability of sampling an image with a false knot over
the probability of sampling an image with no knot (R2). We
then compare detection performance on the same test set under
the training settings with different R1 (Fig. 13(a)) and differ-
ent R2 (Fig. 13(b)). By default, if we sample uniformly from
the training set, disregarding if a sample is positive/negative or
is a easy/hard case, R1 = 7 and R2 = 0.5. We can see from
Fig. 13(a) and (b) that we can achieve significantly better per-
formance by decreasing R2 and increasing R1 from the default
value, which translates to forcing our model attend more to neg-
ative cases (false knot or no knot), especially the hard negative
cases (false knot). Under the best setting we selected (R1 = 2
and R2 = 1.0), we can achieve MAP 0.817, 0.813, 0.376 for IoU
thresholds of 0.25, 0.5, and 0.75, respectively. Given the detec-
tion results by our model, we are able to classify whether an im-
age has a true knot. And since classification itself is important
in practice, we also show the ROC curve for our model from a
binary classification perspective in Fig. 13(c) (orange line). As
before, by concatenating the binary mask (given by our segmen-
tation model in stage 1) for the cord with the original image’s
RGB channels, we achieve significant additional performance
improvement. Quantitatively, we improved MAP from 0.77 to
0.81 and ROC curve from the blue line (AUC = 0.89) to the
orange line (AUC = 0.93) in Fig. 13(c) by switching from RGB
only to RGB+Ours Mask as the input. Besides, when we con-
catenate the segmented masks provided by UNet and SegNet
instead of the our segmentation network in Stage-I, the ROC
curves (purple and red lines) become worse, and their AUC
drop to 0.87 and 0.90, respectively. This again demonstrates
the superior performance of our segmentation method. A few
qualitative examples of true knot detection (our best model with
R1 = 2 and R2 = 1.0 and using RGB+Ours MASK as input) are
shown in Fig. 13(d).

3.3. Inference time and discussion on the clinical significance

3.3.1. Inference time
Table 2 summarizes the inference time of each individual

component of our approach. For components not involving
neural networks, we estimate the computation time by averag-
ing over 10 images; for components involving neural networks
accelerated by GPU, we estimate the computation time by av-
eraging the inference time for 20 batches of images. Inference
batch size used for each component is also displayed in Table 2.
If we conduct segmentation for the maternal and fetal images at
the same time and all other steps sequentially, the total infer-
ence time for a placenta is about 3.26 second. Moreover, if we
parallelize the computation of Side classification and Insertion
point estimation in Stage-I and all parallelizable components in
Stage-II, the total inference time for a placenta is about 1.58
second. The inference time of the bottleneck components for
the total inference time estimation are underlined in Table 2.

3.3.2. Discussion on clinical significance
Our approach can significantly reduce the work burden of

clinicians. Currently it takes about 15 minutes for a trained
physician at Northwestern Memorial Hospital to examine the
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Figure 13: (a) The comparison of mean average accuracy (MAP) between different ratios of the probability to sample an image with false knot or no knot over the
probability to sample an image with true knot (R1) under IoU threshold 0.25, 0.5 and 0.75. (b)The comparison of MAP between different ratios of the probability to
sample an image with false knot over the probability to sample an image with no knot (R2) under IoU threshold 0.25, 0.5 and 0.75. Here, we assume R1 = 2, which
is the best from results in (a). (c) The comparison of receiver operating characteristic (ROC) curves between using RGB only v.s. RGB+MASK as the input at IoU
threshold 0.5. (d) Example detection results using RGB+MASK as input and R1 = 2 and R2 = 1.0. We also attach IoU value for each example here at the bottom.

Table 2: Summary of inference time

Component Inference time (s./img.) Batch size

Segmentation 0.53 2
Side classification 0.09 10

Insertion point estimation 0.18 10

Retained placenta classification 0.11 32
Retained placenta localization 0.47 10
Insertion type categorization 0.87 NA

Meconium detection 0.19 16
Abruption detection 0.23 16

Chorioamnionitis detection 0.19 16
Irregular shape detection 0.39 NA

Hypercoiled cord identification 0.31 NA
Knot detection 0.28 10

placenta and produce a pathology report that covers all diag-
noses tackled by our approach, according to the perinatal pathol-
ogist (coauthor) in our team. This is about 276 (569) times of
the inference time of the sequential (parallel) version of our ap-
proach.

More importantly, the benefits of a fully automatic system
is not limited to faster inference time. Other benefits of our
approach include:

• High objectivity: There can be inconsistent diagnoses
among a group of physicians or even with the same physi-
cian over time. Our approach, however, always predicts
using the same set of criteria and is a deterministic pro-
cess.

• 24/7 availability and flexibility: For instance, if a woman
delivers on Saturday at noon, the placenta won’t even
make it to the pathology lab until the next Monday morn-
ing. In contrast, our approach can provides timely on-site
diagnoses so prompt treatment can be given to the mother
and/or the baby if necessary.

• Scalability: By deploying our system in cloud services,
we can use more machines when the demand is high. In
contrast, it’s costly to train and employ pathologists to
meet sudden higher demand of the service.

We do want to emphasize, however, that the system has
much room to improve further before it can be fully deployed
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clinically. Example areas to improve are as follows:

• We need to develop an easy-to-use interface for the physi-
cians so they can easily run our algorithms, view, search,
compare, and correct results generated by our system, in-
tegrate it into their current or updated workflow, and pro-
vide specific feedback. We have already developed a pro-
totype demo, specifically, a Web application running all
our algorithms at the back-end. Please see the supple-
mentary video file. But there is still a gap between our
prototype and a clinical software/system.

• We need to collect feedback from physicians and pathol-
ogists. There may be some cases that our system fails to
predict due to limited training data or design flaw that we
may not be aware of.

These problems are already beyond the scope of this paper and
we will tackle them in the future works. Before overcoming
these obstacles, we believe deploying our approach for triage
purpose in clinical setting is the most promising first step. This
will help hospitals prioritize limited pathology resources toward
most needed cases, and at the same time minimize the health
risk of patients using our automatic approach. Clinical adoption
of our technology will be a gradual process that include a few
phases/iterations but not a once-for-all feat.

4. Conclusion & Discussion

We proposed a two-stage pipeline to address the tasks for
automated placental assessment and examination. In the first
stage, we designed a compact multi-head encoder-decoder CNN
to jointly solve morphological placental characterization tasks
by employing a transfer learning training strategy. We showed
that our approach can achieve better performance than compet-
itive baselines for each task. We also showed that the represen-
tation learned from the segmentation task can benefit insertion
point localization and fetal/maternal side classification task. In
the second stage, we used the output from the first stage, as well
as the original placenta photos, as the input and employed mul-
tiple independent models for a few noteworthy placental assess-
ment tasks. Through ablation experiments, we demonstrated
that the predictions from the first stage models help us achieve
better performance for tasks in this stage. For second-stage pla-
centa feature analysis tasks, though our results still have room
to be improved, especially when more placental images diag-
nosed with those abnormalities are available in the future, our
current approaches are already useful for triage purpose, which
could significantly alleviate the workload for pathologists.

In the future, it will be interesting to explore if some of
these tasks can benefit from both fully-labeled (small fraction)
and unlabeled placenta (large fraction) photos by using semi-
supervised learning techniques. Automated prediction of addi-
tional and potentially more fine-grained pathological indicators
beyond the ones tackled in this paper is also a direction we will
pursue. We believe the prediction of some of those indicators
could benefit from the predictions from the two stages of our
current pipeline, such that a multi-stage pipeline becomes fea-
sible.
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Appendix A. Information Extracted from Pathology
Reports

Table A1 summarizes the information we extracted from a
pathology report.

Appendix B. Summary of Parameter Settings

Table B1 summarizes the all parameter settings for our Stage-
I model.

References

Alansary, A., Kamnitsas, K., Davidson, A., Khlebnikov, R., Rajchl, M., Mala-
mateniou, C., Rutherford, M., Hajnal, J. V., Glocker, B., Rueckert, D., &
Kainz, B. (2016). Fast fully automatic segmentation of the human placenta
from motion corrupted MRI. In Proceedings of the International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention (pp.
589–597). Springer.

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 39, 2481–2495.

Benirschke, K., Burton, G. J., & Baergen, R. N. (2012). Pathology of the Hu-
man Placenta. (6th ed.). Springer.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.
(2017). DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40, 834–848.

Chen, Y., Wu, C., Zhang, Z., Goldstein, J. A., Gernand, A. D., & Wang, J. Z.
(2019). PlacentaNet: Automatic morphological characterization of placenta
photos with deep learning. In Proceedings of the International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention (pp.
487–495). Springer.

Cheplygina, V., de Bruijne, M., & Pluim, J. P. (2019). Not-so-supervised: A
survey of semi-supervised, multi-instance, and transfer learning in medical
image analysis. Medical Image Analysis, 54, 280–296.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced
loss based on effective number of samples. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 9268–9277).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Im-
ageNet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–
255).



Y. Chen, Z. Zhang and C. Wu et al./Computerized Medical Imaging and Graphics (2019) manuscript 16

Table A1: Information Extracted from Pathology Reports

Category Item Description in the Pathology Report

Image ID Unique ID given to the image
Maternal Age Age of the mother at the time of delivery

General Gestational Age Age of fetus at the time of delivery
Information Placental Weight Weight of Placenta in grams

Delivery Type Cesarean or Vaginal
Freshness Fresh or Fixed
Shape Age of the mother at the time of delivery

Cord

Knot True, False or None
Coils Number of twists/coils in the segment of cord
Diameter Average diameter, Minimum and Maximum diameter
Insertion Type Central, Eccentric,Margina, Velamentous, Furcate
Insertion Distance Distance from the cord insertion to the nearest margin

Membrane
Color Opaque, Green, Yellow, Clear, Pink, Pruple, Tan, Gray
Insertion Type Circummarginate, Circumvallate, Marginal

Fetal Side Color
Opaque, Green, Red, Blue, Yellow, Clear,
Pink, Purple, Tan, Gray, White, Variegated

Maternal
Completeness

Complete, Incomplete, Fragmented,
Side Disrupted, Ragged, Roughened

Adherent Blood Clots Adherent Blood Clot observed in the gross description

Meconium Meconium is detected in the Final Diagnosis
Amnion Nodosum Amnion Nodosum is detected in the Final Diagnosis

Final Accessory Lobe Accessory Lobe is detected in the Final Diagnosis
Diagnosis Chorangioma Chorangioma is detected in the Final Diagnosis

Abruption Abruption is detected in the Final Diagnosis
Chorioamnionitis Chorioamnionitis is detected in the Final Diagnosis
Placental Hypoplasia Placental Hypoplasia is detected in the Final Diagnosis

Table B1: Summary of Parameter Settings

Parameter Value

Input Image Dimensions
768 × 1024 (Encoder+SegDecoder)
512 × 512 (Encoder+Classification SubNet)
512 × 512 (Encoder+IPDecoder)

Learning Rate 0.1

Momentum 0.9

Weight Decay 0.0005

Batch Size
2 (Encoder+SegDecoder)
10 (Encoder+Classification SubNet)
10 (Encoder+IPDecoder)

Epochs 10



Y. Chen, Z. Zhang and C. Wu et al./Computerized Medical Imaging and Graphics (2019) manuscript 17

Ernst, L. M., Minturn, L., Huang, M., Curry, E., & Su, E. (2013). Gross patterns
of umbilical cord coiling: correlations with placental histology and stillbirth.
Placenta, 34, 583–588.

Haeussner, E., Schmitz, C., Von Koch, F., & Frank, H.-G. (2013). Birth weight
correlates with size but not shape of the normal human placenta. Placenta,
34, 574–582.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 770–778).

Heerema-McKenney, A., Popek, E. J., & De Paepe, M. (2019). Diagnostic
Pathology: Placenta E-Book. Elsevier Health Sciences.

Kaspar, H., Abu-Musa, A., Hannoun, A., Seoud, M., Shammas, M., Usta, I.,
& Khalil, A. (2000). The placenta in meconium staining: lesions and early
neonatal outcome. Clinical and Experimental Obstetrics & Gynecology, 27,
63–66.

Khong, T. Y., Mooney, E. E., Ariel, I., Balmus, N. C., Boyd, T. K., Brundler,
M.-A., Derricott, H., Evans, M. J., Faye-Petersen, O. M., Gillan, J. E. et al.
(2016). Sampling and definitions of placental lesions: Amsterdam placental
workshop group consensus statement. Archives of Pathology & Laboratory
Medicine, 140, 698–713.

Kidron, D., Vainer, I., Fisher, Y., & Sharony, R. (2017). Automated image anal-
ysis of placental villi and syncytial knots in histological sections. Placenta,
53, 113–118.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for
dense object detection. In Proceedings of the IEEE International Conference
on Computer Vision (pp. 2980–2988).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (pp. 3431–3440).

Looney, P., Stevenson, G. N., Nicolaides, K. H., Plasencia, W., Molloholli, M.,
Natsis, S., & Collins, S. L. (2017). Automatic 3D ultrasound segmentation
of the first trimester placenta using deep learning. In IEEE International
Symposium on Biomedical Imaging (pp. 279–282).

Malathi, G., & Shanthi, V. (2011). Statistical measurement of ultrasound pla-
centa images complicated by gestational diabetes mellitus using segmenta-
tion approach. Journal of Information Hiding and Multimedia Signal Pro-
cessing, 2, 332–343.

Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully convolutional
neural networks for volumetric medical image segmentation. In Proceedings
of the International Conference on 3D Vision (3DV) (pp. 565–571).

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for hu-
man pose estimation. In Proceedings of the European Conference on Com-
puter Vision (pp. 483–499). Springer.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22, 1345–1359.
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