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ABSTRACT 
Histology is used in both clinical and research contexts as a highly 
sensitive method for detecting morphological abnormalities in 
organ tissues. Although modern scanning equipment has enabled 
high-throughput digitization of high-resolution histology slides, 
the manual scoring and annotation of these images is a tedious, 
subjective, and sometimes error-prone process. A number of 
methods have been proposed for the automated characterization of 
histology images, most of which rely on the extraction of texture 
features used for classifier training. The irregular, nonlinear 
shapes of certain types of tissues can obscure the implicit 
symmetries observed within them, making it difficult or 
cumbersome for automated methods to extract texture features 
quickly and reliably. Using larval zebrafish eye and gut tissues as 
a pilot model, we present a prototype method for transforming the 
appearance of these irregularly-shaped tissues into one-
dimensional, “frieze-like” patterns. We show that the reduced 
dimensionality of the patterns may allow them to be characterized 
with greater efficiency and accuracy than by previous methods of 
image analysis, which in turn enables potentially greater accuracy 
in the retrieval of histology images exhibiting abnormalities of 
interest to pathologists and researchers.  

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics, health, 
medical information systems; H.3.1 [Information Storage and 
Retrieval]: Content Analysis and Indexing – Abstracting 
methods, indexing methods; I.5.2 [Pattern Recognition]: Design 
Methodology – Feature evaluation and selection, pattern 
analysis. 

General Terms 
Algorithms, Experimentation, Performance 

Keywords 
Automated Histology, Computational Symmetry, Dimension 
Reduction, Frieze Patterns, Texture Analysis, Zebrafish 

 

 

1. INTRODUCTION 
1.1 The need for automated characterization 
and retrieval of histological images 

The study of systems biology involves the computational 
modeling and analysis of complex biological systems [1]. 
Whether the system of interest is a cell, an organ system, or a 
complete organism, a working model requires a comprehensive 
understanding of the functions of genes, interactions between 
gene products, and interactions between the system and its 
surrounding environment, all within the context of a particular 
biological process. A proper characterization of the process 
dynamics requires an integrated, spatiotemporal assessment of the 
abnormal phenotypes (observable traits) that result from the 
disruption of normal gene function due to mutations, knockdowns 
and knockouts, as well as toxicological or environmental effects.  

Since many genes function across multiple tissue types, it is 
not surprising that many of these phenotypes cross organ systems 
to qualify as pleiotropy—the association of multiple phenotypes 
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Figure 2. Current laboratory pipeline for “high-throughput” 
histology. The overall process is rate-limited by the manual 
(and tedious) process of scoring and annotation. 
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Figure 1. An example image of a histological section of a 
zebrafish larva. 

Figure 3. There is an implicit “rotational symmetry” in 
certain histology images, such as those of the zebrafish eye 
(a) and gut (b), as indicated by the arrows. Our challenge 
here is to recover and characterize this implicit symmetry. 



with a single gene defect. The existence of pleiotropy motivates 
the need for tools powerful enough to simultaneously survey 
multiple phenotypes. Automatic characterization of histological 
abnormalities can be an effective, high-throughput means of 
providing that important function. 

Histology—the microscopic study of tissues—is a highly 
sensitive method of detecting and characterizing morphological 
phenotypes. Traditionally, histology is used in pathology for 
diagnosis of diseases such as cancer, although it has more recently 
become a powerful tool for studying functional genomics in the 
laboratory. Histology is particularly well suited to small model 
organisms, because all tissues in the organism can be sampled in a 
relatively small number of slides. Larval zebrafish, for example, 
are small enough to make it practical to assess tissue 
abnormalities in stained tissue sections from multiple specimens 
on single microscope slides. These “arrays” of larval tissue 
sections have been used to screen for abnormalities and can be 
readily digitized using modern scanning equipment and stored as 
high-resolution “virtual slides” for subsequent scoring and 
annotation of phenotypes.  

A number of obstacles prevent histological analysis from 
reaching its maximum potential as a phenotyping tool, however. 
While largely reliable and useful clinically, the qualitative aspects 
of current histological assessments result in intra- and inter-
observer variability owing to differences in training, ability, 
timing, and experience [2,3]. Moreover, because most histological 
images are characterized manually, a biologist must sift through 
dozens or even hundreds of images to find those images of 
specimens that exhibit any mutant phenotypes or otherwise 
abnormal traits. A mechanism to retrieve only those images with 
abnormal features would greatly enhance the productivity of 
biologists who take advantage of histology as a phenotyping tool. 

1.2 Use of the zebrafish for high-throughput 
histological phenotyping studies 

The zebrafish is an excellent model organism for vertebrate 
development and human disease because its transparent, readily 
accessible embryo develops outside the mother’s body [4]. 
Moreover, the zebrafish embryo develops much more rapidly than 
many other vertebrate models, with most organ systems well 
differentiated within 7 dpf (days post-fertilization) [5], allowing 
mutant phenotypes to be identified quickly. Owing to their small 
size, zebrafish larvae are amenable to “high-throughput” 
histology, a procedure developed by Cheng and co-workers [6, 7, 
8, 9] in which arrays of up to 50 zebrafish larvae at different 
stages of development are fixed to preserve morphology, 

embedded in agarose gel, processed into paraffin wax blocks, and 
sliced into thin sections. The sections are individually mounted on 
glass microscope slides for staining and then scanned to produce 
virtual slides for scoring and annotation of phenotypes (Fig. 2).  

The phrase “high-throughput,” as used in this context, does not 
currently apply to all steps in the cycle, however. While fixation, 
embedding, sectioning, staining, and digitization of an entire array 
of larvae may be conducted in parallel (in that multiple larvae are 
processed simultaneously), the process of scoring each image is 
rate limiting. Our early efforts to address this problem resulted in 
a prototype method for the automated segmentation and 
classification of histological images of larval zebrafish eye and 
gut [10]. In this prototype, called SHIRAZ (System of 
Histological Image Retrieval and Annotation for Zoopathology), 
the segmentation and feature extraction algorithms as well as 
classification models were initially designed to analyze images of 
larval zebrafish eye and gut as part of our lab’s ongoing study of 
pleiotropic genes in the zebrafish.  

We chose eye and gut as the initial organs for examination 
because their tissues have an inherent polarity and “directional” 
organization that, when disrupted, result in mutant phenotypes 
that are relatively easy to detect and have also been shown to co-
segregate across organ boundaries as a result of pleiotropy in our 
mutant screen [11]. Our prototype yielded highly promising initial 
results for both segmentation and classification, and to our 
knowledge, this was the first published work in automated 
zebrafish histology image analysis. However, classification was 
limited to assigning a categorical abnormality score to each image 
and did not specifically focus on the detection of local tissue 
defects in mutant specimens. This was mainly due to 
segmentation difficulties arising from the irregular shapes of the 
cell layers as well as very subtle variations in gray-level intensity 
and texture between certain layers. 

Upon inspection of any typical zebrafish histology image, one 
can observe that certain tissue structures exhibit a certain degree 
of repetition or symmetry (at least in the normal or “wild-type” 
state). One can see that the zebrafish larval retina possesses partial 
rotational symmetry about the lens, as indicated in Fig. 3a. In 
addition, despite its distorted and folded appearance, the epithelial 
lining of the zebrafish gut seems to resemble a repeating pattern 
of columnar cells (see Fig. 3b), each of which normally has a 
polarized orientation, with the nucleus on one end of the column 
and the cytoplasm on the other. The repeating patterns implied 
within the retina and the gut epithelium might become more 
obvious if one could somehow transform the image of the gut 
from its folded appearance to a more regular, linear shape, thereby 
reducing the pattern complexity to only one dimension. This 

Figure 4. Example results of proposed methods. The implicitly symmetric region of interest is extracted from the image and 
then transformed into a 1-D “frieze-like” expansion. For retinal images, the extreme ends of the frieze-like expansion will be 
distorted, so we extract the middle 50% of pixels. The frieze-like expansion is then divided into regions according to similarity 
to the dominant motif. In addition, we convolve the image with a log-Gabor filter to detect potential local defects. 



would facilitate the generation of methods for detecting and 
characterizing the implicit symmetry patterns as well as defects 
and local deviations that disrupt the pattern continuity. 

We have explored the development of such transformation and 
detection methods [12], and we here present a novel approach to 
the detection and characterization of tissue defects in these types 
of histology images. Specifically, we make three contributions:  

(1) We propose a method to segment out the regions of interest 
within certain types of histological structures—here using 
zebrafish eye and gut as a pilot model—and transform these 
regions to a one-dimensional pattern; 
(2) We propose a method to detect the dominant or most 
commonly repeated motif within each pattern and then use the 
differences in global texture (measured using Haralick and Gabor 
features) between the dominant motif and the remainder of the 
pattern as a set of features to classify the images as normal or 
abnormal; and  

(3) We demonstrate that transformation of these images to a 1-D 
pattern greatly simplifies the reliable detection of potential local 
texture defects using log-Gabor filters.  

The information extracted from these methods will be used as part 
of an ontology-based zebrafish histology image annotation and 
retrieval system currently under development. Fig. 4 provides a 
result from the transformation and characterization of an example 
input image. 

2. RELATED WORK 
2.1 Symmetry detection 

Recently, Lee et al. [13] proposed a new algorithm for 
rotational symmetry detection and characterization using a 
“frieze-expansion” approach, in which 2-D images consisting of 
potential centers of rotational symmetry are transformed from 
polar to rectangular coordinates with respect to each potential 
symmetry center, thereby producing a frieze pattern. A frieze 
pattern is any pattern that exhibits 1-D translational symmetry. 
Group theory [14] has proven that there are only seven unique 
frieze symmetry groups (shown in Fig. 5), with each of these 
seven groups corresponding to a type of rotational symmetry 
group, such as cyclic (Cn) or dihedral (Dn), where n represents the 
number of discrete rotational symmetries exhibited in the pattern.  
Since frieze patterns are symmetric in only one direction, the task 
of detecting the repeated pattern motif becomes considerably 
easier. Following the frieze-expansion step, the symmetry group is 

determined by frequency analysis using Discrete Fourier 
Transform (DFT). This approach to rotational symmetry detection 
was found to be superior in terms of accuracy and speed to current 
state-of-the-art rotational symmetry detection algorithms, 
including the SIFT keypoint-based method proposed by Loy and 
Eklundh [15] and the gradient vector flow (GVF) approach 
proposed by Prasad and Davis [16]. In this paper, we propose a 
variation of Lee’s frieze-expansion approach in the analysis of 
certain types of histopathology images that appear to possess an 
implicit “rotational” symmetry.  

2.2 Texture analysis in histopathology images 
A common approach to analyzing texture in histological and 

other images is based on features computed from an image’s gray-
level co-occurrence matrix (GLCM). Each element in the GLCM 
represents the probability p(i, j) of a pixel with gray-level 
intensity i having a neighboring pixel with gray-level intensity j. 
Because features computed from the GLCM consider the values 
of two neighboring pixels, they are termed second-order texture 
features, in contrast to first-order measures of textures such as 
mean and standard deviation, which do not specifically account 
for relationships between pixels. 

Haralick [17] introduced a number of commonly used second-
order texture features, including energy (also known as the 
angular second moment or uniformity), entropy, heterogeneity 
(also known as the inverse difference moment), contrast (also 
called variance or inertia), as well as several additional measures 
of variance, entropy, and correlation. Closely related to entropy 
(but not considered a “Haralick feature”) is mutual information, 
which is the difference between the joint entropy of two images 
taken together and the sum of each image’s marginal entropy. 
Maximization of mutual information has been used as a criterion 
for alignment of two similar images [18], but here we will simply 
use mutual information as one possible measure of image 
similarity.  

In addition to the Haralick features derived from an image’s 
GLCM, features resulting from images convolved with Gabor 
filters have been used to detect responses to global textural 
variation. Part of the usefulness of Gabor filters stems from their 
ability to approximate certain characteristics of how information 
is processed in the primary visual cortex [19]. In addition, they 
have been shown to possess optimal localization properties in 
both spatial and frequency domains. Consequently, they are a 
good choice for the segmentation and characterization of image 
textures. 

In one recent application, Doyle et al. [20] used both Haralick 
and Gabor features in the classification of prostate cancer 
histology images, with scoring based on the Gleason grading 
system commonly used in prostate cancer diagnosis. Using a 
support vector classifier, Doyle et al. were able to successfully 
discriminate between images of varying Gleason score, ranging 
from 1 (normal or benign, with gland boundaries readily 
identified) to 5 (severely abnormal, with no recognizable glands), 
with accuracies ranging from 77% to 93% depending on the 
choice of classification pairs used.  

It was suggested by Field in 1987 [21], however, that Gabor 
functions tend to over-represent low frequency components and 
under-represent higher-frequency components and thus may not 
always be suitable for texture analysis of natural images. Field 
proposed an alternative, called the log-Gabor function, whose 

Figure 5. The correspondence between the seven frieze 
groups and the two discrete rotation symmetry groups in 
2-D. From Lee et al. [13]; used with permission. 



transfer function is Gaussian when viewed on logarithmic 
frequency scales. Its frequency response is represented in linear 
frequency space by the equation 
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where f0 is the center frequency of the filter and σ is the standard 
deviation of the Gaussian that describes the behavior of the log-
Gabor filter's transfer function in the frequency domain. The ratio 
σ / f0 is thus used in specifying the filter bandwidth. Because its 
frequency response is more symmetric on the logarithmic scale, 
the log-Gabor function may be more consistent with 
measurements of cell responses in mammalian visual systems, 
which are also symmetric on the log frequency scale [22]. Like 
Gabor functions, however, log-Gabor functions are typically 
implemented using banks of filters generated using multiple scales 
and orientations. 

In our work, we not only classify images of zebrafish eye and 
gut histology using both Haralick and log-Gabor features, but we 
also show that log-Gabor filters applied in only one direction may 
be useful for detecting possible local tissue defects in our frieze-
like image transformations.   

3. PROPOSED METHODS 
Unlike the algorithm by Lee et al. [13], which is designed to 

detect and characterize patterns exhibiting true rotational 
symmetry, our method had to be designed to extract and process 
patterns too irregular to have explicit rotational symmetry. In 
other words, the variation in cell shape, color, and texture along 
the gut epithelium or the retinal cell layers makes it unlikely that 
that the entire image can be represented by one single motif, i.e., a 
local tile reflecting the symmetry of the entire pattern. 
Consequently, the “hard” classifications produced by Lee’s 
algorithm, e.g.,  “C5” for a cyclic pattern with five rotational 
symmetries, are less useful for our purposes.  

Upon inspection of most eye and gut images, however, there 
may be a dominant motif—that is, a motif that is observed in the 
pattern more often than other motifs. In other words, given an 
image divided into tiles (or texels) of identical size, if a plurality 
of texels are highly similar, then any of the texels in that plurality 
could be considered the dominant motif, although we would 
naturally expect at least some variability among these texels. The 
remaining texels in the pattern would then be grouped and 
characterized according to their extent of dissimilarity from the 
dominant motif. Texture features are then extracted from each 
group of texels and later used for classifying the entire pattern, 
e.g., as either normal  (“wild-type”) or abnormal (“mutant”). 
Therefore, the proposed framework for pattern characterization 
can be summarized in the following steps:  

(1) Extraction of the implicitly repeating pattern from the image 
followed by transformation into its 1-D “frieze-like 
expansion”  

(2) Classification of the pattern as normal or abnormal, based on 
texture features extracted from texels grouped by extent of 
similarity to the recovered dominant motif 

(3) Detection of local texture defects within the frieze-like 
expansion pattern using log-Gabor filters applied in the 
direction of 1-D pattern repetition. 

The extracted features and the global classification of the pattern, 
as well as the locations of potential defects therein, may be used 
to index and annotate the original images for later retrieval, such 
as for searching for images of similar phenotype using a 
previously uncharacterized image as the search query. 

3.1 “Frieze-like” expansion 
3.1.1 Image pre-processing and segmentation 

Zebrafish larvae were collected, fixed, and embedded as 
described in [6,7]. Eye and gut images were manually cropped 
from 40× virtual slides of hematoxylin & eosin (H&E)-stained 
zebrafish sections captured using an Aperio ScanScope™ slide 
scanner in the Penn State Zebrafish Functional Genomics Facility. 
In order to reduce the computational cost of image segmentation 
and feature extraction, the images of the zebrafish eyes and guts 
used in our prototype were converted to grayscale color space and 
finally scaled down to a 512 × 512 matrix.  

Segmentation of the zebrafish larval eye and gut images is 
carried out by a series of image processing operations including 
histogram equalization, connected component analysis, 
thresholding, edge detection, as well as the morphological 
operations of dilation, erosion, closing, and opening. The 
parameters used for each of these operations were heuristically 
determined, but are a loose function of the skewness of the image 
histogram.  

The zebrafish eye consists of several distinct layers, including 
the lens, the ganglion cell layer (GCL), the inner plexiform later 
(IPL), the inner nuclear layer (INL), the outer plexiform layer 
(OPL), the photoreceptor layer (PRL), and the retinal pigmented 
epithelium (RPE) [5]. For the purposes of expanding the retina 
into a 1-D frieze-like pattern, we only need to provide an outer 
perimeter, which will correspond the top edge of the frieze-like 
expansion pattern, and an inner perimeter, corresponding to the 
bottom edge (Figs. 8b,c). Thus we need only extract the RPE and 
the lens, and fortunately, they are relatively easy to identify. The 
RPE, by virtue of its melanin pigmentation, is always the darkest 

Figure 6. Example segmentation of a zebrafish eye (left) 
into its constituent cell layers. 

Figure 7. Example segmentation of a zebrafish gut image 
(left) into the epithelial lining and the lumen. 



continuous segment of the retina, and the lens is always the largest 
object whose shape most closely approximates that of a circle.  

For gut images, the segmentation (Fig. 7) starts with the 
detection of the lumen (the “open” area within the gut), followed 
by an approximate segmentation of the epithelial lining, 
consisting of the columnar enterocyte cells. For the purposes of 
image transformation, we will use the exterior boundary of the 
epithelial lining (roughly corresponding to the basement 
membrane) as the outer perimeter, and the boundary of the lumen 
as the inner perimeter.  

3.1.2 Image transformation 
The perimeter points are used as a basis for extracting line 

segments of pixels from the original eye or gut histology image. 
Ideally, each line segment would start at the outer perimeter and 
be oriented more or less perpendicular to the tangent line at the 
starting point. The intersecting point on the inner perimeter would 
thus be the endpoint of the line segment. However, owing to the 
irregular shape of both perimeters, the line segment may not 
necessarily end at the desired point on the inner perimeter; in fact, 
in some cases the line perpendicular to the tangent line at the 
starting point may not even intersect with the inner perimeter at 
all. To remedy this, the algorithm identifies a set of initial control 
points evenly spaced around the outer perimeter (in practice, 12 
control points usually provides good results). Line segments are 
extracted starting from these control points and ending at the 
nearest point on the inner perimeter as measured by Euclidean 
distance. The remaining line segments are then extracted by 
interpolation between the control points (Fig. 8c). 

Following extraction of all line segments, we normalize their 
lengths to a pre-specified number of pixels. The normalized line 
segments are then rearranged as columns of the transformed 
image (Fig. 8d). Since the layers of the larval retina exhibit only 
partial rotational symmetry around the lens, the resulting image 
will be distorted at either end of the frieze expansion. In practice, 
the middle 50% of the transformed image is most highly 
representative of the retina’s partial rotational symmetry around 
the lens, so we perform our subsequent analysis only on this 
central range, and ignore the more highly distorted sections at 
either end of the original transformed image.  

3.2 Pattern characterization 
3.2.1 Recovery of dominant pattern motif 

We begin by dividing the transformed image into a contiguous 
set of tiles (texels) of equal width (default = 10 pixels), as in Fig. 
8e. We wish to determine which of these texels matches a 
plurality of the remaining texels. For each texel, proceeding from 
left to right across the image, we use correlation (performed in the 
frequency domain via discrete Fourier transform, or DFT) to score 
the degree to which the selected candidate texel matches each of 
the other texels in the image, as in Fig. 8f. More specifically, the 
score at each texel location is simply taken as the height of the 
central peak of the correlation image after normalization to a 
standard grayscale value range of zero to 255. Texels that score 
above a pre-chosen threshold (usually within 90 to 95% of the 
maximum) are identified as strong matches. The scores of the 
remaining texels are then used to identify them as either 
“marginal” or “weak” (Fig. 8g). We then compute the fractions of 
strong, marginal, and weak matches for each candidate texel. 
Once all such candidate texels have been evaluated, the dominant 
motif is the candidate texel which yields the largest fraction of 

strong correlation matches among all texels in the image. 
Optionally, this step could be repeated using candidate texels of 
different widths, but given the inherent irregularity within the 
pattern, it is probably unrealistic to expect any repeating motifs in 
the pattern to have the same width. Rather, we only wish to 
achieve a rough “segmentation” of the pattern into texels that are 
grouped according to their degree of similarity to the dominant 
motif.    

3.2.2 Feature extraction 
We are interested in seeing which image features, if any, can 

be used to discriminate between normal (wild-type) or abnormal 
(mutant) histology images. Because the image consists of 
additional texel groups whose texture patterns may vary 
significantly from the dominant motif, we cannot simply average 
the texture features from the whole image. Consequently, we 
extract three sets of features—one set for the group containing the 
dominant motif, and one set each for those texels with “marginal” 
and “weak” correlation scores. Each of the three sets of features 
includes: 

• Mean and standard deviation of four Haralick texture 
features (energy, contrast, entropy, and homogeneity)  

• Mean and standard deviation of the mutual information 
calculated between the dominant motif and all other texels in 
the current group 

• Mean and standard deviation of the matrices generated from 
convolution of all within-group texels with a bank of log-
Gabor filters (using σ / f0 = 0.65, corresponding to a 
bandwidth of roughly 1.5 octaves) applied at six orientations 
over four scales, for a total of 24 filter convolutions. 

Thus, each of the three motif sets yields 58 features, for a total 
of 174 texture features. Convolution of the log-Gabor filters with 
each texel is performed in the frequency domain via fast Fourier 
transform (FFT) as described in [22].  

3.2.3 Binary classification 
For the purpose of comparing classification results with those 

of the original SHIRAZ prototype [10], we once again make use 
of the classification and regression trees or “CART” algorithm 
[23] to classify the eye and gut images as either normal (i.e., 
“wild-type”) or abnormal (i.e., “mutant”). The CART algorithm 
works by finding a hierarchy of features that yield the best 
discrimination among the desired set of classes. At the “root 
node” of the tree, which represents the full data set, the best 
degree of discrimination (or “best split”) is computed for all 
features. Once a best split has been chosen for the root node, the 
data is partitioned into two “child” or “leaf” nodes. This process is 
repeated until a pre-chosen stopping criterion is reached, such as 
when the data has been partitioned enough so that all leaf nodes 
contain, at most, a specified maximum number of samples. After 
the tree is constructed, it may be found that “pruning” the tree 
back to a smaller number of terminal nodes may improve the 
overall classification accuracy.  

3.3 Detection of local texture defects 
One of the driving forces behind transforming irregular 

histology images into 1-D frieze-like patterns is that subtle defects 
in the image texture may be located simply by applying a log-
Gabor function in the horizontal orientation, enabling the 
automated “scanning” of the transformed image, from left to right. 



Figure 8. Illustration of algorithm for transformation of input image into frieze-like expansion, followed by recovery of dominant 
motif and extraction of features from texel groups. Please note that this figure is for illustrative purposes only and may not 
necessarily reflect the actual output from the algorithm. 



This is particularly useful for the frieze-expansion images of the 
retina, which has a generally ordered, laminar appearance, and so 
disruptions within a given layer can be readily localized by 
scanning horizontally.  

While log-Gabor filters could be applied to the original retina 
image (prior to transformation) to scan for defects, two problems 
would arise, as illustrated in Fig. 9a. First, because of the 
rotational symmetry of the retinal layers about the lens, log-Gabor 
filters would have to be generated using multiple orientations, 
since the filter cannot proceed through a curved path like the 
retinal layers do. At best, the filter can be applied in an orientation 
roughly tangent to the rotation path at a given point, but the filter 
would only be useful over a short distance before a second filter at 
another orientation would have to be applied. The fact that 
multiple orientations are used causes the second problem, in that 
while a given filter (at a particular orientation) could detect a 
potential defect within a given cell layer or region, that same filter 
would undoubtedly yield several false positive signal peaks in 
other areas of the image, because the filter itself does not 

discriminate between intra-region and inter-region texture 
differences. Presumably, if such filters could be designed to 
operate in polar coordinates, this might not be as much of a 
problem, but our solution is to instead transform the image from 
“polar-like” coordinates to a pattern that more or less varies only 
in the horizontal dimension, allowing a single log-Gabor filter to 
operate over the entire image and minimizing the risk of detecting 
false positive texture defects. Indeed, perhaps the single greatest 
advantage of using the frieze-expansion image for texture feature 
extraction and defect detection is that the results are invariant to 
the orientation of the original image. 

Here, we generated a filter bank using ten scales over six 
orientations (of which only the horizontal orientation was used), 
and while the detection results are sensitive to the choice of scale 
and other parameters used, we found that the fifth scale out of 10, 
with σ / f0  reduced to 0.001, yielded adequate bandwidth for 
detecting most of the important defects, particularly in the eye 
images, and so our results are based on those parameters.  

Figure 9. Illustration of the rationale behind using frieze-like expansions for texture defect identification by log-Gabor 
filter convolution. If we use the original, un-transformed image as in (a), we must convolve the log-Gabor filter G(f) with 
the image using several filter orientations to account for the rotational symmetry of the retinal cell layers around the lens. 
In each of the three orientations shown (as indicated by the arrow directions), the log-Gabor filter mistakenly identifies the 
retinal pigmented epithelium (RPE) as the “defect” in the image. Only after extracting the retinal cell layers and 
transforming them into a one-dimensional frieze-like pattern as in (b) are we able to properly identify the texture “defect” 
of interest (which in this case is actually the optic nerve). The spectral output of each log-Gabor convolution is shown 
adjacent to its corresponding defect detection result. Lighter regions in the spectra correspond to higher peaks. 



 
Figure 10. Example results of frieze expansion, texel grouping, and texture defect identification for selected eye and gut images. 



4. RESULTS 
4.1 Image expansion and classification 

Fig. 10 shows selected examples of frieze-like expansions of 
the zebrafish eye and gut images, as well as the results of dividing 
each pattern into groups according to the extent of each texel’s 
similarity to the dominant motif.  

For eye image classification, we used a set of 79 input images 
(38 wild-type, 41 mutant). Binary classification using the CART 
algorithm yielded 91% accuracy using both 10-fold cross 
validation as well as leave-one-out cross validation, with seven 
samples being misclassified. According to CART, the most 
discriminating feature was found to be the standard deviation of 
the log-Gabor filter convolution result, at scale 1 and orientation 4 
(orientation angle = π/2).  

Similarly, for gut image classification, we used a set of 78 
input images (28 wild-type, 50 mutant). Binary classification 
using the CART algorithm yielded 92% accuracy using both 10-
fold and leave-one-out cross validation, with only six samples 
being misclassified. In this case, the most discriminating feature 
was found to be the mean of the log-Gabor filter convolution 
result, at scale 4 and orientation 2 (orientation angle = π/6).  

Table 1. Summary of binary image classification results 

 
Proposed method 
(based on Frieze-
like expansions)  

Previous results (based 
on complete image 

segmentation,  from 
[10]) 

Organ 10-fold 
CV 

Leave-
one-out 

CV 
10-fold CV 

Leave-
one-out 

CV 
Eyes 91% 91% 90% 87% 

Guts 92% 92% 86% 86% 

4.2 Image defect detection 
Selected output results following texture defect detection for 

both eye and gut images are also shown in Fig. 10. The darker 
circles indicate the locations of peaks from the log-Gabor 
convolution output that rank in the 99.9th percentile (and are 
therefore considered “severe defects”), and the lighter circles 
correspond to peaks ranking in the 99th percentile (and are 
considered “potential defects”). For the purposes of making the 
defect detections easier to visualize, the size of the circle is equal 
to twice the equivalent diameter of the region surrounding each 
“cluster” of peaks. For the retinal images only, defects in the 
bottom third of each image are not shown due to the inherent 
variability of inter-nuclear spacing in the ganglion cell layer, 
which would otherwise result in several false-positive matches.  

5. DISCUSSION  
We believe that these results are quite promising in that they 

compare somewhat favorably to the binary classification 
accuracies we reported using the original SHIRAZ prototype [10], 
which used features extracted from images that had been 
completely segmented (see Table 1). The new results have the 
added advantage of being generated much more quickly, mainly 
because of the reduced reliance on image segmentation. While it 
previously required 3-4 minutes to completely segment and 
extract enough features from a typical retina image for 

classification, we can now process the same image in less than 
one minute, with improved classification results.  

The proposed methods do have some limitations. For example, 
the fidelity of the features extracted from the image is partially 
dependent on the quality of segmentation. Though fewer 
segmentation steps are used here, if the boundaries of the 
segmented regions are incorrect, parts of the resulting frieze-
expansion image may have significant local distortions that can 
affect the extracted texture properties, though this appears to be 
less of a problem for the eye images than for the gut, since the 
basement membrane of the gut epithelium is sometimes difficult 
to detect by grayscale intensity differences alone. Moreover, the 
presence of multiple villi (finger-like projections into the lumen) 
can contribute to greater complexity of the undulating shape of the 
interior epithelial boundary, making the pairwise correspondence 
between outer and inner perimeter pixels less obvious for the gut 
than for the retina, which may also contribute to local distortions 
in the frieze-like pattern. We are currently exploring ways to 
overcome these issues. 

Another limitation stems from the fact that we only use the 
middle 50% of pixels of the expanded retina images, due to there 
being only “partial” rotational symmetry around the lens. This 
means we are unable to use the proposed methods here to detect 
any defects in certain parts of the retina, such as the photoreceptor 
layer’s “marginal zones” located immediately adjacent to the lens.  

Finally, we have tried to optimize the parameters of the log-
Gabor filter kernel to be sensitive to subtle texture variations, 
particularly in the outer layers of the retina such as the 
photoreceptor layer, the inner nuclear layer, and the inner 
plexiform layer. Increasing that sensitivity does, however, amplify 
the detection of texture variation within the ganglion cell layer, 
which can result in a number of false positives due to variable 
spacing between ganglion cells occurring even in non-
pathological images.  

6. CONCLUSIONS AND FUTURE WORK 
This is not intended to be a complete solution to the problem of 

automated histology image classification, which is a monumental 
task that years of research have yet to come close to solving. 
Rather, what we have hoped to convey is that transforming an 
image to what is essentially a “reduced-dimension” coordinate 
system may facilitate the detection of certain kinds of features. In 
our case, we are looking to find regions in an image where the 
naturally occurring (but implicit) symmetry is disrupted.  

 Ultimately, methods such as those proposed herein can be 
integrated into an image annotation and retrieval system for 
histopathologists or for researchers who use histology as a tool for 
mutant phenotyping. For example, the proposed methods might be 
used to rapidly screen a database of images of certain types of 
tissues and retrieve previously characterized images that exhibit 
specific defects of interest to the user, who may be trying to 
assign possible functions to a previously uncharacterized genetic 
mutation that results in morphological defects and pattern 
abnormalities similar to the retrieved images. 

In terms of future work, an obvious next step might be to take 
advantage of the power of Gabor filters to recognize changes in 
texture at even higher magnification, enabling the detection of 
abnormalities between and within nuclei and other subcellular 
features. In another application best suited for the retina images, 



we might consider applying vertically-oriented Gabor filters to the 
frieze-expanded retina image so that we can rapidly identify the 
boundaries between the various retinal layers (or even better, be 
able to distinguish between true layer boundaries and within-layer 
defects). 
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