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the Quality of Crowdsourced Affective Data
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Abstract—We proposed a probabilistic approach to joint modeling of
participants’ reliability and humans’ regularity in crowdsourced affective
studies. Reliability measures how likely a subject will respond to a ques-
tion seriously; and regularity measures how often a human will agree
with other seriously-entered responses coming from a targeted popula-
tion. Crowdsourcing-based studies or experiments, which rely on human
self-reported affect, pose additional challenges as compared with typical
crowdsourcing studies that attempt to acquire concrete non-affective labels of
objects. The reliability of participants has been massively pursued for typical
non-affective crowdsourcing studies, whereas the regularity of humans in
an affective experiment in its own right has not been thoroughly considered.
It has been often observed that different individuals exhibit different feelings
on the same test question, which does not have a sole correct response
in the first place. High reliability of responses from one individual thus
cannot conclusively result in high consensus across individuals. Instead,
globally testing consensus of a population is of interest to investigators. Built
upon the agreement multigraph among tasks and workers, our probabilistic
model differentiates subject regularity from population reliability. We demon-
strate the method’s effectiveness for in-depth robust analysis of large-scale
crowdsourced affective data, including emotion and aesthetic assessments
collected by presenting visual stimuli to human subjects.

Index Terms—Emotions, human subjects, crowdsourcing, probabilistic
graphical model, visual stimuli

1 INTRODUCTION

Humans’ sensitivity to affective stimuli intrinsically varies
from one person to another. Differences in gender, age, soci-
ety, culture, personality, social status, and personal experience
can contribute to its high variability between people. Further,
inconsistencies may also exist for the same individual across
environmental contexts and current mood or affective state.
The causal effects and factors for such affective experiences
have been extensively investigated, as evident in the litera-
ture on psychological and human studies, where controlled
experiments are commonly conducted within a small group
of human subjects — to ensure the reliability of collected data.
To complement the shortcomings of those controlled experi-
ments, ecological psychology aims to understand how objects
and things in our surrounding environments effect human
behaviors and affective experiences, in which real-world studies
are favored over those within artificial laboratory environ-
ments [1, 2]. The key ingredient of those ecological approaches
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is the availability of large-scale data collected from human
subjects, remedying the high complexity and heterogeneity
that the real-world has to offer. With the growing attention
on affective computing (initiated from the seminal discussion
[3] to recent communications [4]), multiple data-driven ap-
proaches have been developed to understand what particular
environmental factors drive the feelings of humans [5, 6], and
how those effects differ among various sociological structures
and between human groups.

One crucial hurdle for those affective computing ap-
proaches is the lack of full-spectrum annotated stimuli data
at a large scale. To address this bottleneck, crowdsourcing-
based approaches are highly helpful for collecting uncontrolled
human data from anonymous participants [7]. In a recent study
reported in [8], anonymous subjects from the Internet were
recruited to annotate a set of visual stimuli (images): at each
time point, after being presented with an image stimulus,
participants were asked to assess their personal psychologi-
cal experiences using ordinal scales for each of the affective
dimensions: valence, arousal, dominance and likeness (which
means the degree of appreciation in our context). This study
also collected demographics data to analyze individual dif-
ference predictors of affective responses. Because labeling a
large number of visual stimuli can become tedious, even with
crowdsourcing, each image stimulus was examined by only a
few subjects. This study allowed tens of thousands of images
to obtain at least one label from a participant, which created
a large data set for environmental psychology and automated
emotion analysis of images.

One interesting question to investigate, however, is whether
the affective labels provided by subjects are reliable. A related
question is how to separate spammers from reliable subjects,
or at least to narrow the scope of data to a highly reliable
subgroup. Here, spammers are defined as those participants
who provide answers without serious consideration of the
presented questions. No answer from a statistical perspective
is known yet for crowdsourced affective data.

A great difficulty in analyzing affective data is caused by
the absence of ground truth in the first place, that is, there is
no correct answer for evoked emotion. It is generally accepted
that even the most reliable subjects can naturally have varied
emotions. Indeed, with variability among human responses an-
ticipated, psychological studies often care about questions such
as where humans are emotionally consistent and where they
are not, and which subgroups of humans are more consistent
than another. Given a population, many, if not the vast majority
of stimuli may not have a consensus emotion at all. Majority
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Annotator ID Valence Reliability

3474 5.1/8 0.08

2500 0.0/8 0.56

3475 0.0/8 0.34

2540 8.0/8 0.04

Image Confidence: 75% (≤ 90%)

Figure 1. An example illustrating one may need to acquire more reliable
labels, ensuring the image confidence is more than 0.9.

voting or (weighted) averaging to force an ”objective truth” of
the emotional response or probably for the sake of convenience,
as is routinely done in affective computing so that classification
on a single quantity can be carried out, is a crude treatment
bound to erase or disregard information essential for many
interesting psychological studies, e.g., to discover connections
between varied affective responses and varied demographics.

The involvement of spammers as participating subjects
introduces an extra source of variation to the emotional re-
sponses, which unfortunately is tangled with the ”appropri-
ate” variation. If responses associated with an image stimulus
contain answers by spammers, the inter-annotator variation for
the specific question could be as large as the variation across
different questions, reducing the robustness of any analysis.
An example is shown in Fig. 1. Most annotators labeling this
image are deemed unreliable, and two of them are highly
susceptible as spammers according to our model. Investigators
may be recommended to eliminate this image or acquire more
reliable labels for its use. Yet, one should not be swayed by this
example into the practice of discarding images that solicited
responses of a large range. Certain images are controversial in
nature and will stimulate quite different emotions to different
viewers. Our system acquired the reliability scores shown in
Fig. 1 by examining the entire data set; the data on this image
alone would not be conclusive, in fact, far from so.

Facing the intertwined ”appropriate” and ”inappropriate”
variations in the subjects as well as the variations in the images,
we are motivated to unravel the sources of uncertainties by
taking a global approach. The judgment on the reliability of
a subject cannot be a per-image decision, and has to leverage
the whole data. Our model was constructed to integrate these
uncertainties, attempting to discern them with the help of
big data. In addition, due to the lack of ground truth labels,
we model the relational data that code whether two subjects’
emotion responses on an image agree, bypassing the thorny
questions of what the true labels are and if they exist at all.

For the sake of automated emotion analysis of images, one
also needs to narrow the scope to parts of data, each of which
have sufficient number of qualified labels. Our work computes
image confidences, which can support off-line data filtering or
guide on-line budgeted crowdsourcing practices.

In summary, systematic analysis of crowdsourced affective
data is of great importance to human subject studies and
affective computing, while remains an open question. To sub-
stantially address the aforementioned challenges and expand
the evidential space for psychological studies, we propose a
probabilistic approach, called Gated Latent Beta Allocation
(GLBA). This method computes maximum a posteriori prob-
ability (MAP) estimates of each subject’s reliability and reg-
ularity based on a variational expectation-maximization (EM)

framework. With this method, investigators running affective
human subject studies can substantially reduce or eliminate the
contamination caused by spammers, hence improve the quality
and usefulness of collected data (Fig. 2).

1.1 Related Work

Estimating the reliability of subjects is necessary in
crowdsourcing-based data collection because the incentives of
participants and the interest of researchers diverge. There were
two levels of assumptions explored for the crowdsourced data,
which we name as the first-order assumption (A1) and the
second-order assumption (A2). Let a task be the provision
of emotion responses for one image. Consider a task or test
conducted by a number of participants. Their responses within
this task form a subgroup of data.
A1 There exists a true label of practical interest for each task.

The dependencies between collected labels are mediated
by this unobserved true label, of which noisy labels are
otherwise conditionally independent.

A2 The uncertainty model for a subgroup of data does not
depend on its actual specified task. The performance of a
participant is consistent across subgroups of data subject
to a single fixed effect.

Existing approaches that model the complexities of tasks
or reliability of participants often require one or both of these
two assumptions. Under the umbrella of assumption A1, most
probabilistic approaches using the observer models [9, 10, 11,
12] focus on estimating the ground truth from multiple noisy
labels. For example, the modeling of one reliability parameter
per subject is an established practice for estimating the ground
truth label [12]. For the case of categorical labels, modeling
of one free parameter per class per subject is a more general
approach [9, 13]. Our approach does not model the ground
truth of labels, hence it is not viable to compare our approach
with other methods in this regard. Instead, we sidestep this
issue to tackle whether the labels from one subject can agree
with labels from another on a single task. Agreement is judged
subject to a preselected criterion. Such treatment may be more
realistic as a means to process sparse ordinal labels for each
task.

Assumption A2 is also widely exploited among methods,
often conditioned on A1. It assumes that all of the tasks have
the same level of difficulty [14, 15]. Modeling one difficulty
parameter per task has been explored in [16] for categorical
labels. However, in our approach, task difficulty is modeled as
a random effect without subscribing a task-specific parameter.
Wisely choosing the modeling complexity and assumptions
should be based on availability and purity of data. As sug-
gested in [17], more complexity in a model could challenge
the statistical estimation subject to the constraint of real data.
Choices with respect to our model attempted to properly
analyze the affective data we obtained.

If the mutual agreement rate between two participants does
not depend on the actual specified task (i.e., when A2 holds),
we can essentially convert the resulting problem to a graph
mining problem, where subjects are vertices, agreements are
edges, and the proximity between subjects is modeled by
how likely they agree with each other in a general sense.
Probabilistic models for such relational data can be traced back
to early stochastic blockmodels [18, 19], latent space model [20],
and their later extensions with mixed membership [21, 22] and
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raw avg.: 4.06 out of 8 4.1→ 2.94 4.78→ 3.33 4.25→ 1.9 4.54→ 2.75 4.53→ 3
→ new: 2.51 out of 8

4.06 → 3.03 4.05→ 2.87 4.7→ 2.06 5.08→ 3.94 5.24→ 3.93

5.02 → 3.58 5.7→ 3.87 5.6→ 3 5.17→ 3.19 5.32→ 2.98 5.38→ 3.76

Figure 2. Images shown are considered of lower valence than their average valence ratings (i.e., evoking a higher degree of negative emotions) after
processing the data set using our proposed method. Our method eliminates the contamination introduced by spammers. The range of valence ratings is
between 0 and 8.

2.63→ 3.77 2.8→ 4.14 3.0→ 4.7 4.4→ 6.21 4.7→ 6.26

Figure 3. Images shown are considered of higher valence than their average valence ratings (i.e., evoking a higher degree of positive emotions) after
processing the data set using our proposed method. Our method again eliminates the contamination introduced by spammers. The range of valence
ratings is between 0 and 8.

nonparametric Bayes [23]. We adopt the idea of mixed mem-
berships wherein two particular modes of memberships are
modeled for each subject, one being the reliable mode and the
other the random mode. For the random mode, the behavior
is assumed to be shared across different subjects, whereas the
regular behaviors of subjects in the reliable mode are assumed
to be different. Therefore, we can extend this framework from
graph to multigraph in the interest of crowdsourced data anal-
ysis. Specifically, data are collected as subgroups, each of which
is composed of a small agreement graphs for a single task, such
that the covariate within a subgroup is modeled. Our approach
does not rely on A2. Instead, it models the random effects
added to subjects’ performance in each task via the multigraph
approach. Assumption A1 and A2 implies a bipartite graph
structure between tasks and subjects. In contrast, our approach
starts from the multigraph structure among subjects that is
coordinated by tasks. Finding the proper and flexible structure
that data possess is crucial for modeling [24].

1.2 Our Contributions

To our knowledge, this is the first attempt to connect prob-
abilistic observer models with probabilistic graphs, and to
explore modeling at this complexity from the joint perspective.
We summarize our contributions as follows:

• We developed a probabilistic multigraph model to analyze
crowdsourced data and its approximate variational EM
algorithm for estimation. The new method, accepting the
intrinsic variation in subjective responses, does not assume
the existence of ground truth labels, in stark contrast
to previous work having devoted much effort to obtain
objective true labels.

• Our method exploits the relational data in the construction
and application of the statistical model. Specifically, in-
stead of the direct labels, the pair-wise status of agreement
between labels given by different subjects is used. As
a result, the multigraph agreement model is naturally
applicable to more flexible types of responses, easily going
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beyond binary and categorical labels. Our work serves as
a proof of concept for this new relational perspective.

• Our experiments have validated the effectiveness of our
approach on real-world affective data. Because our exper-
imental setup was of a larger scale and more challenging
than settings addressed by existing methods, we believe
our method can fill some gaps for demands in the practical
world, for instance, when gold standards are not available.

2 THE METHOD

In this section, we describe our proposed method. Let us
present the mathematical notations first. A symbol with sub-
script omitted always indicates an array, e.g., x = (. . . , xi, . . .).
The arithmetic operations perform over arrays in the element-
wise manner, e.g., x+ y = (. . . , xi + yi, . . .). Random variables
are denoted as capital English letters. The tilde sign indicates
the value of parameters in the last iteration of EM, e.g., θ̃. Given
a function fθ , we denote fθ̃ by f̃θ or simply f̃ , if the parameter
θ̃ is implied. Additional notations, as summarized in Table 1,
will be explained in more details later.

Table 1
Symbols and descriptions of parameters, random variables, and statistics.

Symbols Descriptions

Oi subject i

τi rate of subject reliability

αi, βi shape of subject regularity

γ rate of agreement by chance

Θ union of parameters

T
(k)
j whether Oj reliably response

J
(k)
i rate of Oi agreeing with other reliable responses

I
(k)
i,j whether Oi agrees with the responses from Oj

ω
(k)
i (·) cumulative degree of responses agreed by Oi

ψ
(k)
i (·) cumulative degree of responses

r
(k)
j (·) a ratio amplifies or discounts the reliability of Oj

τ̃
(k)
i sufficient statistics of posterior T (k)

i , given Θ̃

α̃
(k)
i , β̃

(k)
i sufficient statistics of posterior J(k)

i , given Θ̃

2.1 Agreement Multigraph
We represent the data as a directed multigraph, which does not
assume a particular type of crowdsourced response. Suppose
we have prepared m questions in the study, the answers can
be binary, categorical, ordinal, and multidimensional. Given a
subject pair (i, j) who are asked to look at the k-th question,
one designs an agreement protocol that determines whether
the answer from subject i agrees with that from subject j. If
subject i’s agrees with subject j’s on task k, then we set I(k)

i,j =

1. Otherwise, I(k)
i,j = 0.

In our case, we are given ordinal data from multiple chan-
nels, we define I(k)

i,j = 1 if (sum of) the percentile difference
between two answers ai, aj ∈ {1, . . . , A} satisfies

1

2

∣∣∣P [a(k)
i

]
− P

[
a

(k)
j

]∣∣∣+
1

2

∣∣∣P [a(k)
i +1

]
− P

[
a

(k)
j +1

]∣∣∣ ≤ δ,
(1)

The percentile P [·] is calculated from the whole pool of answers
for each discrete value, and δ = 0.2. In the above equation,
we measure the percentile difference between ai and aj as

well as that between ai + 1 and aj + 1 in order to reduce
the effect of imposing discrete values on the answers that are
by nature continuous. If the condition does not hold, they
disagree and I

(k)
i,j = 0. Here we assume that if two scores for

the same image are within a 20% percentile interval, they are
considered to reach an agreement. Compared with setting a
threshold on their absolute difference, such rule adapts to the
non-uniformity of score distribution. Two subjects can agree
with each other by chance or they indeed experience similar
emotions in response to the same visual stimulus.

While the choice of the percentile threshold δ is inevitably
subjective, the selection in our experiments was guided by the
desire to trade-off the preservation of the original continuous
scale of the scores (favoring small values) and a sufficient level
of error tolerance (favoring large values). This threshold con-
trols the sparsity level of the multi-graph, and influences the
marginal distribution of estimated parameters. Alternatively,
one may assess different values of the threshold and make a
selection based on some other criteria of preference (if exist)
applied to the final results.

2.2 Gated Latent Beta Allocation

This subsection describes the basic probabilistic graphical
model we used to jointly model subject reliability, which is
independent from the supplied questions, and regularity. We
refrain from carrying out a full Bayesian inference because it
is impractical to end users. Instead, we use the mode(s) of the
posterior as point estimates.

We assume each subject i has a reliability parameter τi ∈
[0, 1] and regularity parameters αi, βi > 0 characterizing his or
her agreement behavior with the population, for i = 1, . . . ,m.
We also use parameter γ for the rate of agreement between
subjects out of pure chance. Let Θ = ({τi, αi, βi}mi=1, γ) be
the set of parameters. Let Ωk be the a random sub-sample
from subjects {1, . . . ,m} who labeled the stimulus k, where
k = 1, . . . , n. We also assume sets Ωk’s are created inde-
pendently from each other. For each image k, every subject
pair from Ω2

k, i.e., (i, j) with i 6= j, has a binary indicator
I

(k)
i,j ∈ {0, 1} coding whether their opinions agree on the

respective stimulus. We assume I
(k)
i,j are generated from the

following probabilistic process with two latent variables. The
first latent variable T (k)

j indicates whether subject Oj is reliable
or not. Given that it is binary, a natural choice of model is the
Bernoulli distribution. The second latent variable J (k)

i , lying
between 0 and 1, measures the extent subject Oi agrees with
the other reliable responses. We use Beta distribution parame-
terized by αi and βi to model J (k)

i because it is a widely used
parametric distribution for quantities on interval [0, 1] and the
shape of the distribution is relatively flexible. In a nutshell,
T

(k)
j is a latent switch (aka, gate) that controls whether I(k)

i,j can
be used for the posterior inference of the latent variable J (k)

i .
Hence, we call our model Gated Latent Beta Allocation (GLBA).
A graphical illustration of the model is shown in Fig. 4.

We now present the mathematical formulation of the
model. For k = 1, . . . , n, we generate a set of random variables
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independently via

T
(k)
j i.i.d. ∼ Bernoulli(τj), j ∈ Ωk , (2)

J
(k)
i i.i.d. ∼ Beta(αi, βi), i ∈ Ωk , (3)

I
(k)
i,j

∣∣∣T (k)
j , J

(k)
i ∼

 Bernoulli
(
J

(k)
i

)
if T

(k)
j = 1

Bernoulli(γ) if T
(k)
j = 0

(4)

where the last random process holds for any j ∈ Ω¬ik := Ωk −
{i} and i ∈ Ωk with k = 1, . . . , n, and γ is the rate of agreement
by chance if one of i, j turns out to be unreliable. Here {I(k)

i,j }
are observed data.

k = 1, . . . , n

j ∈ Ωk
i ∈ Ωk

{τj}mj=1 {αi, βi}mi=1

I
(k)
i,j J

(k)
iT

(k)
j

γ

Figure 4. Probabilistic graphical model of the proposed Gated Latent Beta
Allocation.

If a spammer is in the subject pool, his or her reliability
parameter τi is zero, though others can still agree with his
or her answers by chance at rate γ. On the other hand, if
one is very reliable yet often provides controversial answers,
his reliability τi can be one, while he typically disagrees with
others, indicated by his high irregularity E[J

(k)
i ] = αi

αi+βi
≈ 0.

We are interested in finding both types of subjects. However,
most of subjects lie in between these two extremes.

As an interesting note, Eq. (4) is asymmetric, meaning that
I

(k)
i,j 6= I

(k)
j,i is possible, a scenario that should never occur by

definitions of the two quantities. We propose to achieve sym-
metry in the final model by using the conditional distribution
of I(k)

i,j and I
(k)
j,i given that I(k)

i,j = I
(k)
j,i , and call this model

the symmetrized model. With details omitted, we state that
conditioned on T

(k)
i , T (k)

j , J (k)
i , and J

(k)
j , the symmetrized

model is still a Bernoulli distribution:

I
(k)
i,j ∼

Bernoulli

(
H

((
J

(k)
i

)T (k)
i

γ1−T (k)
i ,

(
J

(k)
j

)T (k)
j

γ1−T (k)
j

))
,

(5)

where
H(p, q) =

pq

pq + (1− p)(1− q) .

We tackle the inference and estimation of the asymmetric
model for simplicity.

2.3 Variational EM
Variational inference is an optimization based strategy for
approximating posterior distribution in complex distribu-
tions [25]. Since the full posterior is highly intractable, we
consider to use variational EM to estimate the parameters

Θ = ({τi, αi, βi}mi=1, γ) [26]. The parameter γ is assumed to be
pre-selected by the user and does not need to be estimated. To
regularize the other parameters in estimation, we use the em-
pirical Bayes approach to choose priors. Assume the following
priors

τi ∼ Beta(τ0, 1− τ0) , (6)
αi + βi ∼ Gamma(2, s0) . (7)

By empirical Bayes, τ0, s0 are adjusted. For the ease of nota-
tions, we define two auxiliary functions ω(k)

i (·) and ψ(k)
i (·):

ω
(k)
i (x) :=

∑
j∈Ω¬i

k

xjI
(k)
i,j , ψ

(k)
i (x) :=

∑
j∈Ωk

xj . (8)

Similarly, we define their siblings

ω̄
(k)
i (x) = ω

(k)
i (1− x), ψ̄

(k)
i (x) = ψ

(k)
i (1− x) . (9)

We also define the auxiliary function rj(·) as

r
(k)
j (x) =

∏
i∈Ω¬j

k

(
xi
γ

)I(k)
i,j
(

1− xi
1− γ

)1−I(k)
i,j

. (10)

Now we define the full likelihood function:

Lk(Θ;T (k), J (k), I(k)) :=
∏
j∈Ωk

(
(τj)

T
(k)
j (1− τj)1−T (k)

j

)

·
∏
i∈Ωk

(
J

(k)
i

)α(k)
i
(

1− J (k)
i

)β(k)
i

φ
(k)
i

B(αi, βi)
, (11)

where auxiliary variables simplifying the equations are

α
(k)
i = αi + ω

(k)
i

(
T (k)

)
,

β
(k)
i = βi + ψ

(k)
i − ω

(k)
i

(
T (k)

)
,

φ
(k)
i = γω̄

(k)
i (T (k))(1− γ)ψ̄

(k)
i (T (k))−ω̄(k)

i (T (k)) ,

and B(·, ·) is the Beta function. Consequently, assume the prior
likelihood is LΘ(Θ), the MAP estimate of Θ is to minimize

L(Θ;T, J, I) := LΘ(Θ)
n∏
k=1

Lk(Θ;T (k), J (k), I(k)) . (12)

We solve the estimation using variational EM method with a
fixed (τ0, s0) and varying γ. The idea of variational methods is
to approximate the posterior by a factorizable template, whose
probability distribution minimizes its KL divergence to the true
posterior. Once the approximate posterior is solved, it is then
used in the E-step in the EM algorithm as the alternative to the
true posterior. The usual M-step is unchanged. Each time Θ is
estimated, we adjust prior (τ0, s0) to match the mean of the

MAP estimates of {τi} and
{
αi + βi

2

}
respective until they

are sufficiently close.
E-step. We use the factorized Q-approximation with varia-

tional principle:

pΘ

(
T (k), J (k)

∣∣∣I(k)
)
≈
∏
j∈Ωk

q∗Tj ,Θ

(
T

(k)
j

) ∏
i∈Ωk

q∗Ji,Θ

(
J

(k)
i

)
.

(13)
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• Let

q∗Tj ,Θ

(
T

(k)
j

)
∝

exp
(
EJ,T¬j

[
logLk

(
Θ;T (k), J (k), I(k)

)])
,

(14)

whose distribution can be written as

Bernoulli

(
τjR

(k)
j

τjR
(k)
j + 1− τj

)
,

where logR
(k)
j = EJ

[∑
i∈Ω¬j

k
log
(
r

(k)
i (J (k))

)]
. As sug-

gested by Johnson and Kotz [27], the geometric mean can
be numerically approximated by

R
(k)
j ≈

∏
i∈Ω¬j

k

1

α
(k)
i + β

(k)
i

(
α

(k)
i

γ

)I(k)
i,j
(
β

(k)
i

1− γ

)1−I(k)
i,j

,

(15)
if both α(k)

i and β(k)
i are sufficiently larger than 1.

• Let

q∗Ji,Θ(J
(k)
i ) ∝

exp
(
ET,J¬i

[
logLk

(
Θ;T (k), J (k), I(k)

)])
,

(16)

whose distribution is

Beta(αi + ω
(k)
i (τ), βi + ψ

(k)
i (τ)− ω(k)

i (τ)) .

Given parameter Ω̃ = {τ̃i, α̃i, β̃i}i=1, we can compute the
approximate posterior expectation of the log likelihood, which
reads

ET,J|Θ̃,I logLk(Θ;T (k), J (k), I(k)) ≈
const .+ logLΘ(Θ) +∑
j∈Ωk

(
τ̃

(k)
i log τj + (1− τ̃ (k)

i ) log(1− τj)
)

+

∑
i∈Ωk

〈 αi

βi

 , ∇B(α̃
(k)
i , β̃

(k)
i )

B(α̃
(k)
i , β̃

(k)
i )

〉
−

∑
i∈Ωk

logB(αi, βi) + log γ
∑
i∈Ωk

ω̄
(k)
i

(
τ̃

(k)
i

)
+

log(1− γ)
∑
i∈Ωk

(
ψ̄

(k)
i

(
τ̃

(k)
i

)
− ω̄(k)

i

(
τ̃

(k)
i

))
, (17)

where relevant statistics are defined as

α̃
(k)
i = α̃i + ω

(k)
i (τ̃) ,

β̃
(k)
i = β̃i + ψ

(k)
i (τ̃)− ω(k)

i (τ̃) , and (18)

τ̃
(k)
i =

R̃
(k)
i τ̃i

R̃
(k)
i τ̃i + 1− τ̃i

.

Remark B(·, ·) is the Beta function, and R̃(k)
i is calculated from

approximation Eq. (15)
M-step. Compute the partial derivatives of L with respect

to αi and βi: let ∆i be the set of images that are labeled by

subject i. We set ∂L/∂αi = 0 and ∂L/∂βi = 0 for each i,
which reads (

αi + βi
s0

− log(αi + βi)

)
·
 1

1


=
∑
k∈∆i

∇B(α̃
(k)
i , β̃

(k)
i )

B(α̃
(k)
i , β̃

(k)
i )

− ∇B(αi, βi)

B(αi, βi)

=
∑
k∈∆i

 Ψ(α̃
(k)
i )−Ψ(α̃

(k)
i + β̃

(k)
i )

Ψ(β̃
(k)
i )−Ψ(α̃

(k)
i + β̃

(k)
i )


−|∆i| ·

 Ψ(αi)−Ψ(αi + βi)

Ψ(βi)−Ψ(αi + βi)

 , (19)

where Ψ(x) ∈ [log(x − 1), log x] is the Digamma function.
The above two equations can be practically solved by Newton-
Raphson method with a projected modification (ensuring α, β
always are greater than zero).

Compute the derivatives of L with respect to τi and set
∂L/∂τi = 0, which reads

τi =
1

|∆i|+ 1

τ0 +
∑
k∈∆i

τ̃
(k)
i

 . (20)

Compute the derivatives of L w.r.t. γ and set to zero, which
reads

γ =

∑
i∈Ωk

ω̄
(k)
i (τ̃

(k)
i )∑

i∈Ωk
ψ̄

(k)
i (τ̃

(k)
i )

. (21)

In practice, the update formula for γ needs not to be used if γ
is pre-fixed. See Algorithm 1 for details.

2.4 The Algorithm
We present our final algorithm to estimate all parameters by
knowing the multigraph data {I(k)

i,j }. Our algorithm is de-
signed based on Eqs. (19), (20), and (21). In each EM iteration,
there are two loops: one for collecting relevant statistics for
each subgraph, and the other for re-computing the parameter
estimates for each subject. Please refer to Algorithm 1 for
details.

Algorithm 1 Variational EM algorithm of GLBA
Input: A multi-graph {Iki,j ∈ {0, 1}}i,j∈Ωk

, 0 < γ < 0.5
Output: subject parameters Θ = ({(τi, αi, βi)}mi=1, γ)

Initialisation : τ0 = 0.5, αi = βi = τi = 1.0, i = 1, . . . ,m
1: repeat
2: for k = 1 to n do
3: compute statistics α̃(k)

i , β̃
(k)
i , τ̃

(k)
i by Eq. (18);

4: end for
5: for i = 1 to m do
6: solve (αi, βi) from Eq. (19) (Newton-Raphson);
7: compute τi by Eq. (20);
8: end for
9: (optional) update γ from Eq. (21);

10: until {(τi, αi, βi)}mi=1 are all converged.
11: return Θ

3 EXPERIMENTS

3.1 Data Sets
We studied a crowdsourced affective data set acquired from
the Amazon Mechanical Turk (AMT) platform [8]. The affective
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data set is a collection of image stimuli and their affective labels
including valence, arousal, dominance and likeness (degree of
appreciation). Labels for each image are ordinal: {1, ... , 9}
for the first three dimensions, and {1, ..., 7} for the likeness
dimension. The study setup and collected data statistics have
been detailed in [8], which we describe briefly here for the sake
of completeness.

At the beginning of a session, the AMT study host pro-
vides the subject brief training on the concepts of affective
dimensions. Here are descriptions used for valence, arousal,
dominance, and likeness.
• Valence: degree of feeling happy vs. unhappy
• Arousal: degree of feeling excited vs. calm
• Dominance: degree of feeling submissive vs. dominant
• Likeness: how much you like or dislike the image

The questions presented to the subject for each image are given
below in exact wording.
• Slide the solid bubble along each of the bars associated

with the 3 scales (Valence, Arousal, and Dominance) in
order to indicate how you ACTUALLY FELT WHILE YOU
OBSERVED THE IMAGE.

• How did you like this image? (Like extremely, Like
very much, Like slightly, Neither like nor dislike, Dislike
slightly, Dislike very much, Dislike extremely)

Each AMT subject is asked to finish a set of labeling tasks,
and each task is to provide affective labels on a single image
from a prepared set, called the EmoSet. This set contains
around 40,000 images crawled from the Internet using affective
keywords. Each task is divided into two stages. First, the
subject views the image; and second, he/she provides ratings
in the emotion dimensions through a Web interface. Subjects
usually spend three to ten seconds to view each image, and
five to twenty seconds to label it. The system records the time
durations respectively for the two stages of each task and
calculates the average cost (at a rate of about 1.4 US Dollars
per hour). Around 4,000 subjects were recruited in total. For
the experiments below, we retained image stimuli that have
received affective labels from at least four subjects. Under this
screening, the AMT data have 47,688 responses from 2,039
subjects on 11,038 images. Here, one response refers to the
labeling of one image by one subject conducted in one task.

Because humans can naturally feel differently from each
other in their affective experiences, there was no gold standard
criterion to identify spammers. Such a human emotion data
set is difficult to analyze and the quality of data is hard to
assess. Among several emotion dimensions, we found that
participants were more consistent in the valence dimension. As
a reminder, valence is the rated degree of positivity of emotion
evoked by looking at an image. We call the variance of the
ratings from different subjects on the same image the within-
task variance, while the variance of the ratings from all the
subjects on all the images the cross-task variance. For valence
and likeness, the within-task variance accounts for about 70%
of the cross-task variance, much smaller than for the other
two dimensions. Therefore, the remaining experiments were
focused on evaluating the regularity of image valences in the
data.

3.2 Baselines for Comparison
We discuss below several baseline methods or models with

which we compare our method.

Dawid and Skene [9]. Our method falls into the general
category of consensus methods in the literature of statistics
and machine learning, where the spammer filtering decision
is made completely based on the labels provided by observers.
Those consensus methods have been developed along the line
of Dawid and Skene [9], and they mainly deal with categorical
labels by modeling each observer using a designated confusion
matrix. More recent developments of the observer models have
been discussed in [17], where a benchmark has shown that the
Dawid-Skene method is still quite competitive in unsupervised
settings according to a number of real-world data sets for
which ground-truth labels are believed to exist albeit unknown.
However, this method is not directly applicable to our scenario.
To enable comparison with this baseline method, we first
convert each affective dimension into a categorical label by
thresholding. We create three categories: high, neural, and low,
each covering a continuous range of values on the scale. For
example, high valence category implies a score greater than
a neural score (i.e., 5) by more than a threshold (e.g., 0.5).
Such a thresholding approach has been adopted in developing
affective categorization systems, e.g. [5, 6].
Time duration. In the practice of data collection, the host
filtered spammers by a simple criterion—to declare a subject
spammer if he spends substantially less time on every task.
The labels provided by the identified spammers were then
excluded from the data set for subsequent use, and the host
also declined to pay for the task. However, some subjects who
were declined to be paid wrote emails to the host arguing for
their cases. Under this spirit, in our experiments, we form a
baseline method that uses the average time duration of each
subject to red-flag a spammer.
Filtering based on gold standard examples. A widely used
spammer detection approach in crowdsourcing is to create a
small set with known ground truth labels and use it to spot
anyone who gives incorrect labels. However, such a policy was
not implemented in our data collection process because as we
argued earlier, there is simply no ground truth for the emotion
responses to an image in a general sense. On the other hand,
just for the sake of comparison, it seems reasonable to find a
subset of images that evoke such extreme emotions that ground
truth labels can be accepted. This subset will then serve the role
of gold standard examples. We used our method to retrieve
a subset of images which evoke extreme emotions with high
confidence (see Section 3.7 for confidence score and emotion
score calculation). For the valence dimension, we were able to
identify at most 101 images with valence score ≥ 8 (on the
scale of 1 . . . 9) with over 90% confidence and 37 images with
valence score ≤ 2 with over 90% confidence. We also looked
at those images one by one (as provided in the supplementary
materials) and believe that within a reasonable tolerance of
doubt those images should evoke clear emotions in the valence
dimension. Unfortunately, only a small fraction of subjects in
our pool have labeled at least one image from this ”gold stan-
dard” subset. Among this small group, their disparity from the
gold standard enables us to find three susceptible spammers.
To see whether these three susceptible spammers can also be
detected by our method, we find that their reliability scores
τ ∈ [0, 1] are 0.11, 0.22, 0.35 respectively. In Fig. 9, we plot the
distribution of τ of the entire subject pool. These three scores
are clearly on the low end with respect to the scores of the
other subjects. Thus the three spammers are also assessed to be
highly susceptible by our model.
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In summary, while we were able to compare our method
with the first two baselines quantitatively, with results to be
presented shortly, comparison with the third baseline is limited
due to the way the AMT data were collected [8].

3.3 Model Setup
Since our hypotheses included a random agreement ratio γ that
is pre-selected, we adjusted the parameter γ from 0.3 to 0.48 to
see empirically how it affects the result in practice.
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Figure 5. (a) Reliability scores versus γ ∈ [0.3, 0.48] for the top 15 users
who provided the most numbers of ratings. (b) Visualization of the estimated
regularity parameters of each worker at a given γ. Green dots are for
workers with high reliability and red dots for low reliability. The slope of the
red line equals γ.

Fig. 5 depicts how the reliability parameter τ varies with
γ for different workers in our data set. Results are shown for
the top 15 users who provided the most numbers of ratings.
Generally speaking, a higher γ corresponds to a higher chance
of agreement between workers purely out of random. From
the figure, we can see that a worker providing more ratings
is not necessarily more reliable. It is quite possible that some
workers took advantage of the AMT study to earn monetary
compensation without paying enough attention to the actual
questions.

In Table 2, we demonstrate the valence, arousal, and domi-
nance labels for two categories of subjects. On the top, the first
category contains susceptible spammers with low estimated
reliability parameter τ ; and on the bottom, the second category

contains highly reliable subjects with high values of τ . Each
subject takes one row. For the convenience of visualization, we
represent the three-dimensional emotion scores given to any
image by a particular color whose RGB values are mapped
from the values in the three dimensions respectively. The emo-
tion labels for every image by one subject are then condensed
into one color bar. The labels provided by each subject for
all his images are then shown as a palette in one row. For
clarity, the color bars are sorted in lexicographic order of their
RGB values. One can clearly see that those labels given by
the subjects from these two categories exhibit quite different
patterns. The palettes of the susceptible spammers are more
extreme in terms of saturation or brightness. The abnormality
of label distributions of the first category naturally originates
from the fact that spammers intended to label the data by
exerting the minimal efforts and without paying attention to
the questions.

3.4 Basic Statistics of Manually Annotated Spammers
For each subject in the pool, by observing all his or her labels

in different emotion dimensions, there was a reasonable chance
of spotting abnormality solely by visualizing the distribution.
If one were a spammer, it often happened that his or her labels
were highly correlated, skewed or deviated in an extreme man-
ner from a neural emotion along different dimensions. In such
cases, it was possible to manually exclude his or her responses
from the data due to his or her high susceptibility. We applied
this same practice to identifying highly susceptible subjects
from the pool. We found about 200 susceptible participants.

We studied several basic statistics of this subset in com-
parison with the whole population: total number of tasks
completed, average time duration spent on image viewing
and survey per task. The histograms of these quantities are
plotted in Fig. 6. One can see that the annotated spammers
did not necessarily spend less time or finish fewer tasks than
the others, and the time duration has shown only marginal
sensitivity to those annotated spammers (See Fig. 6). The
figures demonstrate that those statistics are not effective criteria
for spammer filtering.

We will use this subset of susceptible subjects as a ”pseudo-
gold standard” set for quantitative comparisons of our method
and the baselines in the subsequent studies. As explained pre-
viously in 3.2, other choices of constructing a gold standard set
either conflict the high variation nature of emotion responses
or yield only a tiny (of size three) set of spammers.

3.5 Top-K Precision Performance in Retrieving the Real
Spammers
We conducted experiments on each affective dimension, and
evaluated whether the subjects with the lowest estimated τ
were supposed to be real spammers according to the ”pseudo-
gold standard” subset constructed in Section 3.4. Since there
was no gold standard to correctly classify whether one subject
was truly a spammer or not, we have been agnostic here. Based
on that subset, we were able to partially evaluate the top-K
precision in retrieving the real spammers, especially the most
susceptible ones.

Specifically, we computed the reliability parameter τ for
each subject and chose the K subjects with the lowest values
as the most susceptible spammers. Because τ depends on the
random agreement rate γ, we computed τ ’s using 10 values
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Figure 6. Normalized histogram of basic statistics including total number of tasks completed and average time duration spent at each of the two stages
per task.

τi αi βi reported emotions (sorted)

0.19 1.17 2.43

0.08 0.75 2.20

0.08 1.16 2.50

0.09 0.67 1.70

0.03 0.94 1.90

0.17 0.72 1.47

0.06 1.14 2.50

0.17 0.86 1.79

0.04 1.01 2.63

0.03 1.08 2.84

0.92 2.29 1.49

0.94 2.55 1.98

0.95 2.61 1.68

0.92 2.40 1.66

0.91 2.21 1.40

0.92 2.45 1.97

0.93 2.38 1.69

0.93 1.76 1.40

0.91 2.44 1.86

0.92 2.30 1.85

0.92 2.45 1.82

0.91 1.64 1.29

0.90 1.68 1.12

0.91 2.72 2.22

Table 2
Oracles in the AMT data set. Upper: malicious oracles whose αi/βi is among the lowest 30, meanwhile |∆i| is greater than 10. Lower: reliable oracles

whose τi is among the top 30, meanwhile αi/βi > 1.2. Their reported emotions are visualized by RGB colors. The estimates of Θ is based on the
valence dimension.
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Figure 7. The agnostic Precision-Recall curve (by valence) based on man-
ually annotated spammers. The top 20, top 40 and top 60 precision is
100%, 95%, 78% respectively (black line). It is expected that precision drops
quickly with increasing recalls, because the manually annotation process
can only identify a special type of spammers, while other types of spammers
can be identified by the algorithm. The PR curves at γ = 0.3, 0.37, 0.44
are also plotted. Two baselines are compared: the Dawid and Skene (DS)
approach and the time duration based approach.
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Figure 8. The agnostic Precision-Recall curve based on manually annotated
spammers computed from different affective dimensions: valence, arousal,
dominance, and likeness.

of γ evenly spaced out over interval [0.3, 0.48]. The average
value of τ was then used for ranking. The Precision Recall
Curves are shown in Fig. 7. Our method achieves high top-
K precision by retrieving the most susceptible subjects from
the pool according to the average τ . In particular, the top-
20 precision is 100%, the top-40 precision is 95%, and the
top-60 precision is 78%. Clearly, our algorithm has yielded
results well aligned with the human judgment on the most
susceptible ones. In Fig. 7, we also plot Precision Recall Curves
by fixing γ to 0.3, 0.37, 0.44 and using the corresponding τ . The
result at γ = 0.37 is better than the other two across recalls,
indicating that a proper level of the random agreement rate
can be important for achieving the best performance. The two
baseline methods are clearly not competitive in this evalua-
tion. The Dawin-Skene method [9], widely used in processing
crowdsourced data with objective ground truth labels, drops
quickly to a remarkably low precision even at a low recall. The

time duration method, used in the practice of AMT host, is
better than the Dawin-Skene method, yet substantially worse
than the performance of our method.

We also tested this same method of identifying spammers
using affective dimensions other than valence. As shown in
Fig. 8, the two most discerning dimensions were valence and
arousal. It is not surprising that people can reach relatively
higher consensus when rating images by these two dimensions
than by dominance or likeness. Dominance is much more
likely to draw on evidence from context and social situation
in most circumstances and hence less likely to have its nature
determined to a larger extent by the stimulus itself.

3.6 Recall Performance in Retrieving the Simulated Spam-
mers
The evaluation of top-K precision was limited in two respects:
(1) the susceptible subjects were identified because we could
clearly observe their abnormality in terms of the multivariate
distribution of provided labels. If the participant labeled the
data by acting exactly the same as the distribution of the
population, we could not manually identify him/her using the
aforementioned methodology. (2) We still need to determine if
one is a spammer, how likely we are to spot him/her.

In this study, we simulated several highly “intelligent”
spammers, who labeled the data by exactly following the
label distribution of the whole population. Every time, we
generated 10 spammers, who randomly labeled 50 images.
The labels of simulated spammers were not overlapping. We
mixed those labels of the simulated spammers with the existing
data set, and then conducted our method again to determine
how accurate our approach was with respect to finding the
simulated spammers. We repeated this process 10 times in
order to estimate the τ distribution of the simulated spammers.
Results are reported Fig. 9. We drew the histogram of the
estimated reliability of all real workers and compared them to
the estimated reliability of simulated spammers (in the table in-
cluded in Fig. 9). We noted that more than half of the simulated
spammers were identified as highly susceptible based on the τ
estimation (≤ 0.2), and none of them were supposed to have
a high reliability score (≥ 0.6). This result validates that our
method is robust enough to spot the “intelligent” spammers,
even if they disguise themselves as random labelers within a
population.

3.7 Qualitative Comparison Based on Controversial Ex-
amples
To re-rank the emotion dimensions and likenesses of stimuli
with the reliability of the subject accounted for, we adopted the
following formula to find the stimuli with “reliably” highest
ratings. Assume each rating ai ∈ [0, 1]. We define the following
to replace the usual average:

bk :=

∑
i∈Ωk

τia
(k)
i∑

i∈Ωk
τi︸ ︷︷ ︸

est. score

·
1−

∏
i∈Ωk

(1− τi)


︸ ︷︷ ︸
confidence

, (22)

where
(
1−∏i∈Ωk

(1− τi)
)
∈ [0, 1] is the cumulative confidence

score for image k. This adjusted rating bk not only allows more
reliable subjects to play a bigger role via the weighted average
(the first term of the product) but also modulates the weighted
average by the cumulative confidence score for the image.
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Figure 10. The histogram of image confidences estimated based on our
method. About 85% of images have a confidence scores higher than 90%.

Similarly, in order to find those with “reliably” lowest ratings,
we replace a(k)

i with (1 − a(k)
i ) in the above formula and then

still seek for the images with the highest bk’s.
If bk is higher than a neutral level, then the emotional

response to the image is considered high. Fig. 10 shows the his-
togram of image confidence scores estimated by our method.
More than 85% of images had acquired a sufficient number of
quality labels. To obtain a qualitative sense of the usefulness
of the reliability parameter τ , we compared our approach with
the simple average-and-rank scheme by examining controver-
sial image examples according to each emotion dimension.
Here, being controversial means the assessment of the average
emotion response for an image differs significantly between
the methods. Despite the variability of human nature, the

majority of the population were quite likely to reach consensus
for a portion of the stimuli. Therefore, this investigation is
meaningful. In Fig. 2 and Fig. 3, we show example image
stimuli that were recognized to clearly deviate from neutral
emotions by one method but not agreed upon by the other.
We skipped stimuli images that were fear inducing, visually
annoying or improper. Interested readers can see the complete
results in the supplementary material.

3.8 Cost/Overhead Analysis
There is an inevitable trade-off between the quality of the labels
and the average cost of acquiring them when screening is
applied based on reliability. If we set a higher standard for
reliability, the quality of the labels retained tends to improve
but we are left with fewer labels to use. It is interesting to
visualize the trade-off quantitatively. Let us define overhead
numerically as the number of labels removed from the data
set when quality control is imposed; and let the threshold
on either subject reliability or image confidence used to filter
labels be the index for label quality. We obtained what we call
overhead curve in Figure 11. On the left plot, the result is based
on filtering subjects with reliability scores below a threshold
(all labels given by such subjects are excluded); on the right,
it is based on filtering images with confidence scores below
a threshold. As shown by the plots, if either the labels from
subjects with reliability scores below 0.3 are discarded or those
for images with confidence scores below 90% are discarded,
roughly 10,000 out of 47,688 labels are deemed unusable. At an
even higher standard, e.g., subject reliability ≥ .5 or image
confidence level ≥ 95%, around half of the labels will be
excluded from the data set. Although this means the average
per label cost is doubled at the stringent quality standard,
we believe the screening is worthwhile in comparison with
analysis misled by wrong data. In a large-scale crowdsource
environment, it is simply impractical to expect all the subjects
to be fully serious. This contrasts starkly with a well-controlled
lab environment for data collection. In a sense, post-collection
analysis of data to ensure quality is unavoidable. It is indeed a
matter of which analysis should be applied.
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Figure 11. Left: Overhead curve based on subject filtering; Right: overhead
curve based on image filtering. The overhead is quantified by the number
of labels discarded after filtering.

4 DISCUSSIONS

Underlying Principles: Our approach to assess the reliability
of crowdsourced affective data deviates fundamentally from
the standard approaches much concerned with hunting for
”ground truth” emotion stimulated by an image. An individ-
ual’s emotion response is expected to be naturally different
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because it depends on subjective opinions rooted in the in-
dividual’s lifetime exposure to images and concepts, a topic
having been pursued long in the literature of social psychology.
The new principle we adopted here focuses on the relational
knowledge about the ratings of the subjects. Our analysis steps
away from the use of ”ground truth” by recasting the data as
relational quantities.

As pointed out by a reviewer, such a relational perspective
may be intrinsic in human cognition, going beyond our
specific problem here. For instance, the same spirit of
exploiting relationships has already appeared in studies to
understand linguistic learning. Gentner [28, 29] proposed
that one should understand linguistic learning in a relational
way. Instead of assuming there are well-formed abstract
language concepts to grasp, the human’s cognitive ability
often starts from analogical processing based on examples of a
concept, and then utilizes the symbolic systems (languages) to
reinforce and guide the learning, and to facilitate memory of
the acquired concepts. The relationships among the examples
and the abstract concept play a role in learning hand in hand,
refining recursively the understanding of each other. The
whole process is an interlocked and repeated improvement of
one side assisted by the other. In a similar fashion, our system
improves its assessment about which images evoke highly
consensus emotion responses and which subjects are reliable.
At the beginning, the lack of either kind of information
obscures the truth about the other. Or equivalently, knowing
either makes the understanding of the other easy. This is a
chicken-and-egg situation. Like the proposed way of learning
languages, our system pulls out of the dilemma by recursively
enhancing the understanding of one side conditioned on what
has been known about the other.

Results: We found that the crowdsourced affective data we ex-
amined are particularly challenging for the conventional school
of observer models, developed along the line of Dawid and
Skene [9]. We identified two major reasons. First, each image
in our data set has a much smaller number of observers, com-
pared with what are typically studied in the benchmarks [17].
In our data set, most images were only labeled by 4 to 8
subjects, while many existing benchmark data sets have tens
of subjects per task. Second, a more profound reason is that
most images do not have a ground truth affective label at the
first place. This can render ineffective many statistical methods
which model the user-task confusion matrix and hence count
on the existence of ”true” labels and the fixed characteristics of
uncertainty in responses (assumptions A1 and A2).

Our experiments demonstrate that valence and arousal are
the two most effective dimensions that can be used to analyze
the reliability of subjects. Although subjects may not reach a
consensus at local scales (say, an individual task) because the
emotions are inherently subjective, consensus at a global scale
can still be well justified.

Usage Scenarios: We would like to articulate on the scenarios
under which our method or other traditional approaches (e.g.,
those described in Section 3.2) are more suitable.

First, our method is not meant to replace traditional ap-
proaches that add control factors at the design stage of the
experiments, for example, recording task completion time, and
testing subjects with examples annotated with gold standard
labels. Those methods are effective at identifying extremely

careless subjects. But we argue that the reliability of a subject
is often not a matter of yes or no, but can take a continum
of intermediate levels. Moreover, consensus models such as
Dawid-Skene methods require that each task is assigned to
multiple annotators.

Second, our method can be integrated with other ap-
proaches so as to collect data most efficiently. Traditional
heuristic approaches require the host to come up with a num-
ber of design questions or procedures effective for screening
spammers before executing the experiments, which can be
a big challenge especially for affective data. In contrast, the
consensus models support post analyses of collected data and
have no special requirement for the experimental designs. This
suggests we may use a consensus model to carry out a pilot
study which then informs us how to best design the data
collection procedure.

Third, as a new method in the family of consensus
models, our approach is unique in terms of its fundamental
assumptions, and hence should be utilized in quite different
scenarios than the other models. Methods based on modeling
confusion matrix are more suitable for aggregating binary
and categorical labels, while the agreement-based methods
(ours included) are more suitable for continuous and multi-
dimensional labels (or more complicated structures) that
normally have no ground truth. The former are often
evaluated quantitatively by how accurately they estimate the
true labels [17], while the latter are evaluated directly by how
effectively they identify unreliable annotators, a perspective
barely touched in the existing literature.

Limitations and Future Work: Despite the fact that we did not
assume A1 or A2 and approached the problem of assessing
the quality of crowdsourced data form an unusual angle, there
are interesting questions left about the statistical model we
employed.

• Some choices of parameters in the model are quite heuris-
tic. The usage of our model requires pre-set values for
certain parameters, e.g., γ, but we have not found theoreti-
cally pinned-down guidelines on how to choose those pa-
rameters. As a result, it is always subjective to some extent
to declare a subject spammer. The ranking of reliability of
subjects seems easier to accept. Where the cutoff should be
will involve some manual checking on the result or will be
determined by some other factors such as the desired cost
of acquiring a certain amount of data.

• Although we have made great efforts to design vari-
ous measures to evaluate our method, struggling to get
around the issue of lacking an objective gold standard
(its very existence has been questioned), these measures
have limitations in one way or the other, as discussed
in Section 3. We feel that due to the subjective nature of
emotion responses to images, there is no simple and quick
solution to this. The ultimate test of the method has to
come from its usage in practice and a relatively long-term
evaluation from the real-world.

• The effects of subgroup consistency, though varied from
task to task, were random effects. We constructed the
model this way to stretch its applicability because the
number of responses collected per task in our empirical
data was often small. Some related approaches (e.g. [16])
propose to estimate a difficulty/consistency parameter for
each task, but often require a relatively large number of
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annotators per task. Which kind of probabilistic assump-
tions is more accurate or works better calls for future
exploration.

• Only one “major” reliable mode was assumed at one
time, and hereafter only the regularities conditioned on
this mode are estimated. In another word, all the reliable
users are assumed to behave consistently. One may ask
whether there exist subgroups of reliable users who be-
have consistently within a group but differ across groups
for reasons such as different demographic backgrounds.
In our current model, if such “minor” reliable mode exists
in a population, these subjects may be absorbed into
the spammer group. Our model implicitly assumes that
diversity in demography or in other aspects does not cause
influential differences in emotion responses. Because of
this, our method in dealing with culturally sensitive data
is not well justified.

Experimentally our method is only evaluated on one particular
large data set [8]. Evaluations on other affective data sets (when
publicly available) are of interest.

We have focused on the post analysis of collected data.
As a future direction, it is of interest to examine the capac-
ity of our approach to reduce time and cost in the practice
of crowdsourcing using A/B test. We hereby briefly discuss
an online heuristic strategy to dynamically allocate tasks to
more reliable subjects. Recall that our model has two sets of
parameters: parameter τi indicating the reliability of subjects
and parameter αi;βi capturing the regularity. We can use
the variance of distribution Beta(αi, βi) to determine how
confident we are with the estimation of τi. For subject i, if the
variance of Beta(αi, βi) is smaller than a threshold while τi is
below a certain percentile, this subject is considered confidently
unreliable and he/she may be excluded from the future subject
pool.

5 CONCLUSIONS

In this work, we developed a probabilistic model, namely
Gated Latent Beta Allocation, to analyze the off-line consen-
sus for crowdsourced affective data. Compared to the usual
crowdsourcing settings, where reliable workers are supposed
to have consensus, the consensus analysis of affective data is
more challenging because of the innate variation in emotion
responses even out of true feelings. To overcome this difficulty,
our model estimates the reliability of subjects by exploiting
the agreement relationships between their ratings at a global
scale. The experiments show that the relational data based on
the valence of human responses are more effective than the
other emotion dimensions for identifying spammer subjects.
By evaluating and comparing the new method with some
standard methods in multiple ways, we find that the results
have demonstrated clear advantages and the system seems
ready for use in practice.
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