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Abstract that a 3-year old child is capable of building models of a

substantial number of concepts and recognizing them using

In this paper, we present a new research direction, au- the learned models stored in her brain. Can a computer pro-
tomatic linguistic indexing of pictures, for data mining and gram learn a large collection of semantic concepts from 2-D
machine learning researchers. Automatic linguistic index- or 3-D images, build models about these concepts, and rec-
ing of pictures is an imperative but highly challenging prob- ognize them based on these models? This is the question we
lem. In our on-going research, we introduce a statistical attempt to address in our on-going research. This can be a
modeling approach to this problem. Computer algorithms new direction for next generation data mining and machine
have been developed to mine numerical features automatiearning research.
ically extracted from manually annotated categorized im-  Automatic linguistic indexing of picturds essentially
ages. These image categories form a computer-generatedmportant to content-based image retrieval and computer
dictionary of hundreds of concepts for computers to use in object recognition. It can potentially be applied to many ar-
the linguistic annotation process. In our experimental im- eas including biomedicine, commerce, the military, educa-
plementation, we focus on a particular group of stochas- tion, digital libraries, semantic Web, and counter terrorism.
tic processes for describing images. We implemented andOne potential application of such a computerized program
tested our ALIP (Automatic Linguistic Indexing of Pictures) is that it can automatically learn possible terrorist objects,
system on a photographic image database of 600 differentprocess 3-D Computed Tomography scans of luggages, and
semantic categories, each with about 40 training images. warn airport security officers if suspect objects are poten-
Tested using more than 4600 images outside the trainingtially checked in to be aboard.
database, the system has demonstrated good accuracy and Decades of research have shown that designing a generic
high potential in linguistic indexing of photographic im- computer algorithm that can learn concepts from images
ages. Such a system can potentially be used in many areaand automatically translate the content of images to lin-
such as semantic Web and counter terrorism. guistic terms is highly difficult. Many people believe that it
cannot be achieved by computers because of the high com-
plexity of the concepts we learn. Much success has been
achieved in recognizing a relatively small set of objects or
concepts within specific domains. There is a rich resource
. o ) of prior work in the fields of computer vision, pattern recog-

Human beings are constantly mining visual scenes en-pition, and their applications [4]. Space limitations do not
countered and stored in our brains. Based on the modelsyjjow us to present a broad survey. Instead we try to em-
of the world we acquired during the mining process, we can phasize some of the work that is most related to what we
tell a story by looking at a picture. Experiments have shown propose. The references below are to be taken as examples

“The Website http:/fwang.ist.psu.edu provides more information and Of related work, not as the complete list of work in the cited
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erences in this ever changing field [9]. Readers are referredhe background, we can recognize easily the concept ‘ski’.
to that article and some additional references[7, 8, 13, 12, 2]Therefore, treating an image as an entity has the potential
for more information. for modeling relatively high-level concepts as well as im-
Most of the CBIR projects aimed at general-purpose proving the modeling accuracy of low-level concepts.
image indexing and retrieval systems focusing on search- In our work, we propose to mine and model entire
ing images visually similar to the query image or a query images statistically. In our experimental implementa-
sketch. They do not have the capability to assign compre-tion, we use a 2-D multiresolution hidden Markov model
hensive textual description automatically to pictures, i.e., (MHMM) [5]. This statistical approach reduces the depen-
linguistic indexing, because of the great difficulties in rec- dence on correct image segmentation because cross-pixel
ognizing a large number of objects. However, this func- and cross-resolution dependencies are captured in the model
tion is essential for linking images to text and consequently itself. These models are created automatically by training
broadening the possible usages of an image database. on sets of images representing the same concepts. Machine-
Many researchers have attempted to use statistical datgenerated models of the concepts are then stored and used to
mining and machine learning techniques for image index- automatically index images based on linguistic terms. Sta-
ing and retrieval. The Stanford SIMPLIcity system [11], tistical image modeling is a research topic extensively stud-
developed by the authors of this paper, uses manually-ied in various fields including image processing and com-
defined statistical classification methods to classify the puter vision. Detailed review on some models used in im-
images into rough semantic classes, such as texturedage segmentation is provided in [5, 6].
nontextured, graph-photograph. Potentially, the categoriza-
tion enhances retrieval by permitting semantically-adaptive 1.3  Outline of the paper
searching methods and narrowing down the searching range
in a database. The approach is limited because these classi- The remainder of the paper is organized as follows: our
fication methods are problem specific and must be manuallyALIP (Automatic Linguistic Indexing of Pictures) system
developed and coded. A recent work in associating imagesis introduced in Section 2. In Section 3, experiments and
explicitly with words is that of University of California at  results are described. We conclude in Section 4.
Berkeley [1]. An object name is associated with a region in

an image based on previously learned region-term associa9 AL |P: Automatic Linguistic Indexing of
tion probabilities. Pictures

1.2 Our approach
PP The ALIP system has three major components, the fea-

ture extraction process, the multiresolution statistical mod-
eling process, and the statistical linguistic indexing process.
In this section, we introduce these individual components
and their relationships. Due to space limitation, we intro-
duce the most fundamental ideas here. More details about
the techniques are presented in [10].

2.1 Feature extraction

a region of an image the whole image

Figure 1. It is often impossible to accurately The system characterizes localized features of training
determine the semantics of an image by look- images using wavelets. In this process, an image is par-
ing at a single region of the image. titioned into small pixel blocks. For our experiments, the

block size is chosen to lkex 4 as a compromise between the
texture detail and the computation time. Other similar block
Intuitively, human beings recognize many concepts from sizes can also be used. The system extracts a feature vector

images based on the entire images. Often we need to viewof six dimensions for each block. Three of these features
the image as a whole in order to determine the semanticare the average color components in the block of pixels.
meanings of each region and consequently tell a completeThe other three are texture features extracted to represent
story about the image. For one example (Figure 1), if we energy in high frequency bands of wavelet transforms [3].
look at a small portion of an image, i.e., the face of a per- Specifically, each of the three features is the square root of
son, we would not know that the image depicts the conceptthe second order moment of wavelet coefficients in one of
‘ski’. But if we see in addition the clothing of the person, the three high frequency bands. The feature extraction pro-
the equipment the person is holding, and the white snow incess is performed in the LUV color space, where L encodes
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luminance, and U and V encode color information (chromi- similar. We also manually prepare a short but informa-

nance). The LUV color space is chosen because of its goodive description about any given concept in this dictionary.

perception correlation properties. Therefore, our approach has the potential to train a large
collection of concepts because we do not need to manually
create description about each image in the training database.

Block-based features are extracted from each training

LL HL . . . . .
image at several resolutions. The statistical modeling pro-
cess does not depend on a specific feature extraction al-
LH HH . . . Lo
gorithm. The same feature dimensionality is assumed for
originalimage  wavelet transform all blocks of pixels. A cross-scale statistical model about a
concept is built using training images belonging to this con-
Figure 2. Decomposition of images into fre- cept, each characterized by a collection of multiresolution
guency bands by wavelet transforms. features. This model is then associated with the textual de-

scription of the concept and stored in the concept dictionary.
The statistical modeling process studies the multireso-
To extract the three texture features, we apply either thelution features extracted from each training image in the
Daubechies-4 wavelet transform or the Haar transform to training database. A cross-scale statistical model about a
the L component of the image. These two wavelet trans- concept is obtained after analyzing all available training im-
forms have better localization properties and require lessages in a training database. This model is then associated
computation compared to Daubechies’ wavelets with longerwith the textual description of the concept and stored in the
filters. After a one-level wavelet transformdax 4 block concept dictionary.
is decomposed into four frequency bands as shown in Fig-  To describe an image by a multiresolution model, mul-
ure 2. Each band contaiisx 2 coefficients. Withoutloss  tiple versions of the image at different resolutions are ob-
of generality, suppose the coefficients in the HL band aretajined first. The original image corresponds to the highest
{er, 1, Chy1,0s o141} One feature is then com-  resolution. Lower resolutions are generated by successively
puted as filtering out high frequency information. Wavelet trans-
11 forms [3] naturally provide low resolution images in the
Z Z a il - low frequency band (the LL band). Features are extracted
i=0 j=0 at all the resolutions. The 2-D MHMM aims at describing

. .. statistical properties of the feature vectors and their spatial
The other two texture features are computed in a S'm'lardependence

manner from the LH and HH bands, respectively.

The motivation for using these features is their reflection
of local texture properties. Wavelet coefficients in differ-
ent frequency bands signal variation in different directions.
For example, the HL band shows activities in the horizon-
tal direction. A local texture of vertical strips thus has high
energy in the HL band of the image and low energy in the
LH band. The use of this wavelet-based texture feature is
a good compromise between computational complexity and
effectiveness. The use of these features in the successf
SIMPLIcity system [12] has demonstrated that they capture
the image content.

In the 2-D MHMM, features are regarded as elements
in a vector. They can be selected flexibly by users and are
treated in an integrated manner in the sequel as dependent
random variables by the model. Example features include
color components and statistics reflecting texture. To save
computation, feature vectors are often extracted from non-
overlapping blocks in an image. An element in an image is
therefore a block rather than a pixel. The numbers of blocks
in both rows and columns reduce by half successively at

ach lower resolution. Obviously, a block at a lower reso-

lution covers a spatially more global region of the image.
The block at the lower resolution is referred to as a parent
block, and the four blocks at the same spatial location at the

2.2 Multiresolution statistical modeling higher resolution are referred to as child blocks. We will al-
ways assume such a “quad-tree” split in the sequel since the

Figure 3 illustrates the flow of the statistical modeling €xtension to other hierarchical structures is straightforward.
process of the system. We first manually develop a series A 2-D MHMM reflects both the inter-scale and intra-
of concepts to be trained for inclusion in tdetionary of scale statistical dependence. The inter-scale dependence is
concepts. For each concept in this dictionary, we prepare amodeled by the Markov chain over resolutions. The intra-
training set containing images capturing the concept. Hencescale dependence is modeled by the HMM. At the coarsest
at the data level, a concept corresponds to a particular cateresolution, feature vectors are assumed to be generated by
gory of images. These images do not have to be visuallya 2-D HMM. At all the higher resolutions, feature vectors
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Figure 3. The architecture of the statistical modeling process.

of sibling blocks are also assumed to be generated by 2-Dstance of a stochastic process defined on a multiresolution
HMMs. The HMMs vary according to the states of par- grid. The similarity between the image and a category of
ent blocks. Therefore, if the next coarser resolutiontas images in the database is assessed by the log likelihood of
states, then there are, correspondinglitHMMs at the cur- this instance under the mod#f trained from images in the
rent resolution. category, that is,

The 2-D MHMM can be estimated by the maximum like-
lihood criterion using the EM algorithm. Details about the
estimation algorithm and the computation of the likelihood

(r) - (r)
of an image given a 2-D MHMM are presented in [5]. log P{u;j,r € R, (i,j) € N | M}

0,37

2.3 Statistical linguistic indexing
A recursive algorithm is used to compute the above log like-

The system automatically indexes images with linguis- Ih00d in an manner described in [5]. After determining the
tic terms based on statistical model comparison. Figure 4109 likelihood of the image depicting any given concept in
shows the statistical linguistic indexing process of the sys- the dictionary, we sort the log likelihoods to find the few
tem. For a given image to be indexed, we first extract mul- C&tegories with the highest likelihoods. The short textual
tiresolution block-based features in the same manner as th&l€Scriptions of these categories are loaded in the program
feature extraction process for the training images. in order to find the proper index terms for this image.

This collection of feature vectors is statistically com-
pared with the trained models stored in the concept dictio-
nary to obtain a series of likelihoods representing the statis-

tical similarity between the image and each of the trained pearing in the categories of an image database. For instance,

conce_pt;. These likelihoods, along with the stqred tex_tua_l many more categories may be described with the index term
descriptions about the concepts, are processed in the signif;

icance processor to extract a small set of statistically signif- landscape” than with the term "dessert’. Therefore, ob-
. ep . . ysig taining the index word “dessert” in the top ranked categories
icant index terms about the image. These index terms are

. . . . matched to an image is in a sense more surprising than ob-
then stored with the image in t_he image database for futuretaining “landscape” since the word “landscape” may have
keyword-based query processing.

. . . a good chance of being selected even by random matching.
For any given image, a collection of feature vectors at

. ) e o 1 | To measure the level of significance when a word appgars
multiple resolution{u; j,r € R, (i,j) € N} is com-  timesin the top: matched categories, we compute the prob-

puted. We regar({u(” r € R,(i,j) € N} as an in- ability of obtaining the worg or more times irk randomly

4,37

We use the most statistically significant index terms
within the textual descriptions to index the image. Anno-
tation words may have vastly different frequencies of ap-
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Figure 4. The architecture of the statistical linguistic indexing process.

selected categories. This probability is given by

k m\ (n—m
PR =Y I < m)% _

k

m! (n —m)! k! (n — k)!

D e I s ey e i

wherel () is the indicator function that equalswhen the
argument is true and otherwisen is the total number of
image categories in the database, ands the number of

image categories that are annotated with the given word.

The probabilityP(j, k) can be approximated as follows us-

ing the binomial distribution i, m >> k,

k k

PG k)=

=1 i=j

wherep = m/n is the percentage of image categories in the 2.
database that are annotated with this word, or equivalently,
the frequency of the word being used in annotation. A lower

value of P(j, k) indicates a higher level of significance for

given index term. We rank the index terms within the short
descriptions of the most likely concept categories according

(§)ramnt =3 wia-nt .

a

to their statistical significance. The terms with high signifi-

cance are used to index the image.
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2.4 Major advantages

Our system architecture has several major advantages:

1. Ifimages representing new concepts or new images in

existed concepts are added into the training database,
only the statistical models for the involved concepts
need to be trained or retrained. Hence, the system nat-
urally has good scalability without invoking any extra
mechanism to address the issue. The scalability en-
ables us to train a relatively large number of concepts
at once. This property is different from classification
approaches that aim at forming decision boundaries
between classes, e.g., neural networks, classification
and regression trees (CART), and support vector ma-
chines (SVM). To form decision boundaries by these
methods, a certain type of model needs to be estab-
lished for the entire database. Therefore, every image
is potentially involved in updating the decision bound-
aries when new images are added to the training set.

In our statistical model, spatial relations among im-
age pixels and across image resolutions are both taken
into consideration. This property is especially useful
for images with special texture patterns. Moreover,
the modeling approach enables us to avoid segment-
ing images and defining a similarity distance for any
particular set of features. Likelihood can be used as a
universal measure of similarity.
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Figure 5. Training images used to learn the concept of male with the category description: “man,
male, people, cloth, face”.
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3 Experiments While manually annotating categories, the authors made
efforts to use words that properly describe nearly all if not
allimages in one category. Itis possible that a small number

hof images are not described accurately by all words assigned
to their category. We view them as “outliers” introduced

H’nto training for the purpose of estimating the 2-D MHMM.

In practice, outliers often exist for various reasons. There
are ample statistical methods to suppress the adverse effect
of them. On the other hand, keeping outliers in training will
testify the robustness of a method. For the model we use,
the number of parameters is small relative to the amount

. of training data. Hence the model estimation is not antici-

3.1 Training concepts pated to be affected considerably by inaccurately annotated

images. We therefore simply use those images as normal
We conducted experiments on learning-based linguisticones.

indexing with a large number of concepts. The system was

trained using a subset @0, 000 photographs which are 3.2 Results

based on 600 CD-ROMSs published by COREL Corp. Typ-

ically, each COREL CD-ROM of about 100 images repre-  After the training, a statistical model is generated for

sents one distinct topic of interest. For our experiment, the each of the 600 collections of images. Depending on the

dictionary of concepts contains all 600 concepts, each assoeomplexity of the concept, the training process takes be-
ciated with one CD-ROM of images. tween 15 to 40 minutes of CPU time on an 800 MHz Pen-
We manually assigned a set of keywords to describe eachtium Il PC to converge on a model. On average, 30 minutes

CD-ROM collection of 100 photographs. The semantic de- of CPU time is spent to train a concept. The training process

scriptions of these collections of images range from as sim-is conducted only once for each concept in the list.

ple or low-level as “mushrooms” and “flowers” to as com-  These models are stored in a fashion similar to a dic-

plex or high-level as “England, landscape, mountain, lake, tionary or encyclopedia. Essentially, we use computers to

European, people, historical building” and “battle, rural, create a dictionary of concepts that will enable computers

people, guard, fight, grass”. On average, 3.6 keywords areto index images linguistically. The process is entirely paral-

used to describe the content of each of the 600 concept catlelizable because the training of one concept is independent
egories. It took the authors approximately 10 hours to an- from the training of other concepts in the same dictionary.
notate these categories. For each concept category, we train We randomly selected 3,000 test images outside the
the system with 40 training images (Figure 5). training image database and processed these images by the

To validate the methods we have described, we imple-
mented the components of the ALIP system and tested wit
a general-purpose image database including about00
photographs. These images are stored in JPEG format wit
Size384 x 256 or 256 x 384. The system is written in the
C programming language and compiled on two UNIX plat-
forms: LINUX and Solaris. In this section, we describe the
training concepts and show indexing results.
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Image Computer Computer Computer
predictions predictions predictions
building,sky,lake, snow,animal, people,European,
landscape, Euro- wildlife,sky, female

pean,tree

food,indoor, cui-
sine,dessert

skyline, sky, New
York, landmark

pattern,flower,

red,dining
San Diego,
ocean side,

beach,Florida,
Thailand,building

flower,flora,
plant,fruit, natu-
ral,texture

ancestor,
drawing,
fitness,
history, indoor

cloth,ice,people

people,
European,
man-made,
water

plant,flower, gar-
den

ocean,paradise,
San Diego, Thai-
land, beach,fish

relic,Belgium,
Portugal,art

travel,fountain,
European,
Florida,
beach,building

hair style,
occupation,face,
female,cloth

lake,Portugal,
glacier,mountain,
water

modern,parade,
people

elephant,Berlin,
Alaska

fitness,indoor,
Christmas,
cloth,holiday

Africa,Kenya,
Zimbabuwe,
animal,cave

night,cyber, fash-
ion,female

Figure 6. Annotations automatically generated by our computer-based linguistic indexing algorithm.
The dictionary with 600 concepts was created automatically using statistical modeling and learning.
Test images were randomly selected outside the training database.
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linguistic indexing component of the system. For each of References

the 3,000 test images, the computer program selected a
number of concepts in the dictionary with the highest likeli-
hood of describing the image. Next, the most significant in-
dex terms for the image are extracted from the collection of
index terms associated with the chosen concept categories.

It takes an average of two seconds CPU time on the same
PC to compute the likelihood of a testimage resembling one
of the concepts in the dictionary. Thus, for computing the
likelihoods of a test image resembling all the concepts in
the dictionary of 600 concepts can take an average of 20
minutes of CPU time. The process is highly parallelizable
because the computation of the likelihood to a conceptis in-
dependent from the computation of the likelihood to another
concept. We are planning to implement the algorithms on
massively parallel computers and provide real-time online
demonstrations in the future.

Figure 6 shows the computer indexing results of 21 ran-
domly selected images outside the training database. The
method appears to be highly promising for automatic learn-
ing and linguistic indexing of images. Some of the com-
puter predictions seem to suggest that one can control what
is to be learned and what is not by adjusting the training
database of individual concepts. As indicated in the sec-
ond example, the computer predictions of a wildlife animal
picture include “cloth” and “people”. It is possible that the
computer learned the association between animal fur and
the clothes of people from the training databases which con-
tain images with female super-models wearing fur coats.

Consequently, computer predictions are objective and with- [10]

out human subjective biases. Potentially, computer-based
indexing of images eliminates the inconsistency problems
commonly associated with manual image annotations.

(12]

4 Conclusions

In this paper, we presented a new direction for next gen-
eration data mining and machine learning research. We
demonstrated our statistical data mining and modeling ap-
proach to the problem of automatic linguistic indexing of
pictures. We have shown that the proposed methods can be
used to train 600 different semantic concepts at the same
time and these models can be used to index images linguis-
tically. The major advantages with this approach are (1)
models for different concepts can be independently trained
and retrained so that a relatively large number of concepts
can be trained and stored; (2) spatial relation among image
pixels and across image resolutions is taken into consider-
ation with probabilistic likelihood as a universal measure.
The work can be potentially applied to many areas.
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