
By combining novel
statistical modeling
techniques and the
WordNet ontology,
we offer a promising
new approach to
image search that
uses automatic
image tagging
directly to perform
retrieval.

Quick ways to capture pictures, cheap
devices to store them, and conve-
nient mechanisms for sharing them
are all part and parcel of our daily

lives. With multitudes of pictures to deal with,
everyone would benefit from smart programs to
manage photo collections, tag them automatical-
ly, and make them searchable through keywords.
To satisfy such needs, the multimedia, information
retrieval, and computer vision communities have,
time and again, attempted automated image anno-
tation, as we have witnessed in the recent past.1-4

While many interesting ideas have emerged, we
haven’t seen much attention paid to the direct use
of automatic annotation for image search. Usually,
it is assumed that good annotation implies quali-
ty image search. Moreover, most past approaches
are too slow to be of practical use for today’s mas-
sive picture collections.

The problem would not be interesting if all pic-
tures came with tags, which in turn were reliable.
Unfortunately, for today’s picture collections
such as Yahoo! Flickr, this is seldom the case.
These collections are characterized by their mam-
moth volumes, lack of reliable tags, and the
diverse spectrum of topics they cover. In Web
image search systems such as those of Yahoo!
and Google, surrounding text forms the basis of
keyword searches, which come with their own
problems.

In this article, we discuss our attempt to build
an image search system based on automatic tag-
ging. Our goal is to treat automatic annotation as

a means of satisfactory image search. We look at
realistic scenarios that arise in image search, and
propose a framework that can handle them
through a unified approach. To achieve this, we
look at how pictures can be accurately and rapid-
ly placed into a large number of categories, how
the categorization can be used effectively for
automatic annotation, and how these annota-
tions can be harnessed for image search. For this,
we use novel statistical models and the WordNet
ontology,5 as well as state-of-the-art content-
based image retrieval (CBIR) methods6-8 for com-
parison. Our method significantly outperforms
competing strategies for this problem, and also
suggests nonintuitive results.

Bridging the gap
Our motivation to bridge the annotation-

retrieval gap is driven by a desire to effectively han-
dle common, challenging cases of image search in
a unified manner. Four real-world scenarios,
schematically presented in Figure 1, are as follows:

❚ Scenario 1. Either a tagged picture or a set of
keywords is used as a query. The problem aris-
es when all or part of the image database (such
as Web images) is not tagged, making this
portion inaccessible through text queries. We
study how our annotation-driven image
search approach performs in first annotating
the untagged pictures, then performing mul-
tiple keyword queries on the partially tagged
picture collection.

❚ Scenario 2. An untagged image is used as a
query, aiming to find semantically related pic-
tures or documents from a tagged database or
the Web. We look at how our approach per-
forms in first tagging the query picture, then
in retrieval.

❚ Scenario 3. The query image as well as all or
part of the image database is untagged. This is
the case that best motivates CBIR, since the
only available information is visual content.
We study the effectiveness of our approach in
tagging the query image and the database,
then in retrieval.

❚ Scenario 4. A tagged query image is used to
search a tagged image database. The problem
is that these tags might be noisy and unreli-
able, as is common in user-driven picture tag-
ging portals. We study how our approach
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helps improve tagging by reannotation, and
subsequently performs retrieval.

In each case, we look at reasonable and prac-
tical alternative strategies for search, with the
help of a state-of-the-art CBIR system. For sce-
nario 4, we are also interested in analyzing the
extent to which our approach helps improve
annotation under varying noise levels.

Additional goals include the ability to gener-
ate precise annotations of pictures in near-real
time. While most previous annotation systems
assess performance based on annotation quality
alone, this measure is only part of our goal. For
us, the main challenge is to have the annotations
help generate meaningful retrieval. To this end,
we developed our approach by first building a
near-real-time categorization algorithm (about 11
seconds per image) capable of producing accurate
results and then generating categorization-based
annotation, ensuring high precision and recall.
With this annotation system in place, we assess
its performance as a means of image search under
the preceding scenarios.

Model-based categorization
We employ generative statistical models for

accurate, near-real-time categorization of gener-
ic images. This implies training independent sta-
tistical models for each image category using a
small set of training images. We can then assign
category labels to new pictures via smart use of
the likelihood overall models. In our system, we
use two generative models (per image category)
to provide evidence for categorization from two
different aspects of the images. We generate final
categorization by combining these evidences.

In the case of many generic image categories,

it is challenging to build a robust classifier. Feature
extraction becomes extremely critical, since it
must have the discriminative power to differenti-
ate between a broad range of image categories. We
base our models on the following intuitions: For
certain categories such as sky, marketplace, ocean,
forests, and Hawaii, or those with dominant back-
ground colors such as paintings, color and texture
features might be sufficient to characterize them.
In fact, a structure or composition for these cate-
gories may be too hard to generalize. On the other
hand, categories such as fruits, waterfalls, moun-
tains, lions, and birds might not have dominating
color or texture but often have an overall structure
or composition that helps us identify them despite
heavily varying color distributions.

Motivated by these facts, we built two models
to capture different visual aspects: a structure-
composition model that uses Beta distributions
to capture color interactions in a very flexible
manner and a Gaussian mixture model in the
joint color-texture feature space. In essence, we
want to examine each picture from two separate
viewpoints and place it in a category after con-
sulting both. While our approach models color
and texture explicitly, it models the segments
and edges implicitly through the structure-com-
position (S-C) model.

Structure-composition models
We wanted a way to represent how the colors

interact with each other in certain picture cate-
gories. The description of an average beach picture
could comprise a set of relationships between dif-
ferent colored regions—for example, orange (sun)
completely inside light blue (sky), and light blue
sharing a long border with dark blue (ocean). For
tiger pictures, we have yellow and black regions
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sharing similar borders with each other (stripes)
and remaining colors interacting without much
pattern. The description for coarse texture patterns
such as pictures of beads of different colors could
comprise any color (bead) surrounding any other
color (bead), some color (background) complete-
ly containing most colors (beads), and so on. This
idea led to a principled formulation of our rota-
tion and scale invariant S-C models.

Given the set of all training images across cat-
egories, we take every pixel from each image and
map it to the LUV color space, which is a percep-
tually uniform space consisting of the luminance
component L and the chrominance components
U and V, and perform K-means clustering on a
manageable random subsample of it. This process
yields a set of 20 cluster centroids, such as shades
of red or yellow, giving us a color palette repre-
senting the entire training set.

We then perform a nearest-neighbor-based
segmentation on each training image I by assign-
ing every pixel a cluster label closest to it in the
color space to obtain a new image J, which is
essentially a color-quantized representation. This
helps build a uniform model representation for
all image categories. To get disjoint segments
from the image, we perform an 8-connected com-
ponent labeling (that groups pixels into islands,
treating diagonally located pixels as having an

adjoint, or neighboring, relationship) on the
color-segmented image J.

Let �i be the set of neighboring segments to
segment si. Here, a neighborhood implies that for
two segments si and sj, at least one pixel is in each
of si and sj that is 8-connected. We wish to char-
acterize the interaction of colors by modeling
how each color shares (if at all) boundaries with
every other color. Let’s denote by � the length of
the shared border between a segment and one of
its neighboring segments, and by � the total
length of the segment’s perimeter.

We want to model the �/� ratios for each
color pair by the flexible Beta distribution, which
is appropriate for modeling ratios in the [0,1]
range. The distribution is characterized by shape
parameters � and �. We build models consisting
of a set of Beta distributions for every color pair.

For each category, and for every color pair, we
find instances in the training set (for that cate-
gory) in which segments of that color pair share a
common border. Let the number of such
instances be �. We then compute the corre-
sponding set of �/� ratios and estimate a Beta
distribution—that is, parameters � and �—using
these values for that color pair. Figure 2 shows
the overall process of estimating S-C models,
along with their representation.

In the model representation, diagonal entries

Matrix of segment
adjacency counts over all
color pairs for Bus model

Original
pictures

Segmented
versions

Pairwise segment
adjacency counts
over all color pairs

k 1 2 ... S
1 n/a �, �, � ... �, �, �

2 �, �, � n/a ... ...
... ... ... ... �, �, �

S �, �, � ... �, �, � n/a

Matrix of mean Δ/Θ
ratios over all color
pairs for Bus model

(a) (b)

Figure 2. Steps toward

generating the

structure-composition

(S-C) model. (a) Three

training pictures from

the bus category, their

segmented forms, and a

matrix representation

of their segment

adjacency counts. 

(b) The corresponding

matrix representations

over all three training

pictures. These

matrices combine to

produce the S-C model,

shown here

schematically as a

matrix of Beta

parameters and counts.
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are not defined, and the matrix entries are asym-
metric, since we treat colors as ordered pairs. The
number of samples � used to estimate the � and
� for each entry are stored alongside as well. We
build and store such models for every category. In
Figure 3, we show simple representations of the
learned models for three such picture categories.
(See Figure 2 to better understand these represen-
tations.) From these representations, computing
the actual model parameters is straightforward.

To make the modeling process fast, we use a
simple moment matching method (statistical para-
meter estimation by equating sample moments
to corresponding population moments) for esti-
mating the Beta distributions. Depending on the
number of samples � we have for a color pair, we
face a parameter estimation issue. For low values
of �, the estimates are undefined or poor. Yet, we

might often have training pictures with few or no
borders of a given color pair. But, this may not
necessarily mean that such borders won’t occur
in test pictures.

We play it safe here by treating those color
pairs as “unknown.” For this reason, we first esti-
mate parameters ��k and ��k for the distribution of
all �/� ratios across all color pairs in a given cat-
egory k of training images, and then store them
as part of that model. Now, for a test picture, we
segment it the same way we did in training and
find all the segment boundaries. For each such
boundary x, we compute the �/� ratio coming
from color pair (i, j). We then compute the prob-
ability of x given a model k as

P x k f x f xSC k k( | ) ( | , ) ( | , )= ′ ′
η

η
α β

η
α β

+1
+ 1

+1

Figure 3. Sample

categories and

corresponding S-C

model representations.

(a) Sample training

pictures. (b) Matrices of

segment adjacency

counts. (c) Matrices of

mean �/� ratios.

Brightness levels

represent the relative

magnitude of values.

(a)

(b)

(c)



which has parameters defined in the usual way,
for color pair (i, j) in model k. Here, Psc is the con-
ditional density for the S-C model, and f(	|�, �) is
the Beta density function. What we have here
essentially is a regularization measure often used
in statistics when the amount of confidence in
some estimate is low: a weighted probability is
computed instead of the original one, with the
weights varying with the number of samples
used for estimation. Naturally, when � gets small-
er, more importance is given to the prior esti-
mates (��k,��k) over all color pairs, because we
don’t have high confidence in the estimates for
that specific color pair.

Finally, we use a standard conditional inde-
pendence assumption for computing the overall
likelihood of a test image I given an S-C model k.
This is simply the product of the individual Psc

values corresponding to each border x in the
image. We take the logarithm of this value and
denote this log-likelihood as lSC(I|Mk). Here, the
conditional independence assumption might not
hold true in reality, but it helps reduce computa-
tion significantly, which is essential for produc-
ing rapid categorization.

Color-texture models
Many image categories, especially those not

containing specific objects, can probably be
described best by their color/texture distribu-
tions. In fact, a well-defined structure might not
even exist per se for high-level categories such as
China and Europe, but the overall ambience that
certain colors and textures form often character-
izes them.

We use a mixture of multivariate normal dis-
tributions to model the joint color-texture fea-
ture space for a given category. The motivation
is simple: In many cases, two or more represen-
tative regions in the color-texture feature space
can represent the image category best. For exam-
ple, beach pictures typically have one or more
yellow areas (sand), a blue nontextured area
(sky), and a blue textured region (sea). Mixture
models for the normal distribution are well-stud-
ied, with many tractable properties in statistics.
Yet, these simple models have not been widely
exploited in image categorization.

We extract the same color and texture features
used in the Automated Linguistic Indexing of
Pictures (ALIP),3 taking nonoverlapping 4 
 4
blocks of the image. For each category, we get
mixture-model parameter estimates out of the
features extracted from the training pictures. We

use Bouman’s cluster package for this estimation.9

As usual, this package implements the well-
known expectation-maximization (EM) algo-
rithm for mixture models. Using this package, we
compute and store color-texture models for each
picture category. Thus, for a 4 
 4 block x and
learned model �k, we denote the probability of x
given that model as Pct(x|�k).

Ignoring spatial dependence among blocks, we
finally compute the log-likelihood of a test image
I given a category k by taking the log of the prod-
uct of Pct(x|�k) values over each 4 
 4 block of the
image I. We denote by lct(I|Mk) this log-likelihood.
We argue that the conditional independence
assumption here is reasonable, for three reasons:
we intend rapid categorization, which is aided by
this simplifying assumption; our S-C model
already captures spatial relationships at a more
meaningful granularity than fixed size blocks; and
dependencies among blocks have been explicitly
modeled by Li and Wang’s method,3 which our
approach empirically outperforms.

Annotation and retrieval
We use the categorization models for annota-

tion, which in turn helps us with image search.

Automatic tagging basics
Three important considerations we make in

automatic tagging are

❚ how strongly the categorization results favor
a tag,

❚ how frequently we see that tag in the training
set—that is, the likelihood of its chance
appearance, and 

❚ whether the tag is meaningful in the context
of the picture’s other tags.

Suppose we have a 600-category training-image
data set (the setting for all our experiments), each
category annotated by three to five tags—for
example, [sail, boat, ocean] and [sea, fish,
ocean]—with many tags shared among cate-
gories. Initially, all the tags from each category
are pooled together. Tag saliency is measured in a
way similar to computing inverse document fre-
quency in the document retrieval domain. The
total number of categories in the database is C.
We count the number of categories that contain
each unique tag t, and denote it by F(t). For a
given test image I, the S-C models and the C-T
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models independently generate ranked lists of
predicted categories. We generate these lists by
placing all the categories in descending order of
log-likelihoods, for each model type. We choose
the top 10 categories that each model predicts
and pool them together for annotation. We
denote the union of all unique words from both
models by U(I), which forms the set of candidate
tags. Let the frequency of occurrence of each
unique tag t among the top 10 model predictions
be fsc(t|I) and fct(t|I), respectively.

WordNet is a semantic lexicon that groups
English words into sets of synonyms and records
the semantic relations among the synonym sets.5

Based on this ontology, researchers have pro-
posed numerous measures of word relatedness. A
measure that we observed to produce reasonable
relatedness scores was the Leacock and
Chodorow (LCH),10 which we use in our experi-
ments. We convert this relatedness measure to a
distance measure by taking the exponent and
normalizing it to get a [0, 24] range of values.
Inspired by Jin et al.,11 we measure a congruity
score for a candidate tag t and denote it by G(t|I)
for tag t and image I. (See Datta et al. for further
technical details.)12

In essence, a tag that is semantically distinct
from the rest of the words predicted will likely
have a low congruity score, while a closely relat-
ed one will have a high score. The measure can
potentially remove noisy and unrelated tags from
consideration. Having computed the three mea-
sures, for each of which higher scores indicate
better fitness for inclusion, the overall score for a
candidate tag t is given by a linear combination
as follows:

Here, a1 � a2 � a3 
 1 and f(t|I) 
 bfsc(t|I) � (1 �

b)fct(t|I) is the main model combination step for
annotation, linearly combining the evidences
each model generated for the tag. Experiments
show us that combining the models helps signifi-
cantly over either model independently. The value
of b is a measure of relative confidence in the S-C
model. A tag t is chosen for annotation only when
its score is within the top � percentile among the
candidate tags, where � basically controls the
number of annotations generated per image.

After performing experiments on a validation
set of 1,000 pictures, we arrive at a satisfactory set
of values for the aforementioned constants,

namely a1 = 0.4%, a2 
 0.2%, b 
 0.3%, and � 


60%. This choice of weights depends on the
image database used and can be determined by
an appropriate grid search. Also, after the system
chooses candidate tags, the final set of tags are
selected fairly independently of each other. Our
hope is that candidate tag selection reflects the
tags’ cooccurrence in the training set and that
the congruity measure implicitly introduces
dependence, but a joint modeling of tags might
produce better results.

Performing annotation-driven image search
We are now equipped to search pictures, using

automatic annotation and a bag-of-words dis-
tance. Whenever tags are missing in the query
image and/or the database, the system performs
automatic annotation. Next, a bag-of-words dis-
tance measure (and hence, a support for multiple
keyword queries) between query picture tags and
the database tags helps rank the pictures, which
also supports multiple keyword queries. When
tags are present but are known to be noisy, the
system intuitively combines these tags and the
learned models to improve the tagging prior to
performing search.

Our aim is to make the entire picture collec-
tion searchable by keywords and to allow all
types of searches under a common framework.
The bag-of-words distance measure we use is the
average aggregated minimum distance.13 Put plain-
ly, the approach attempts to match each word in
bag 1 to the semantically closest word in bag 2
(again, using the WordNet-based LCH distance),
then match each word in bag 2 to the closest in
bag 1, and finally compute the weighted average
of the matched distances based on the bag sizes
to ensure that the measure is symmetric.

R t I a f t I
a

C
C
F t

a G t I( | ) ( | )
log

log
( )

( | )= + +1
2
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Experimental validation
We investigate our system’s performance on

four grounds: how accurately it identifies picture
categories, how well it tags pictures, how well it
performs reannotation of noisy tags, and how
much it improves image search for the four sce-
narios we described earlier. However, the improve-
ment in image search quality is the main focus of
this work. The data sets we look at consist of 

❚ 54,000 Corel stock photos encompassing 600
picture categories and

❚ a 1,000 picture collection from Yahoo! Flickr.

Of the Corel collection, we use 24,000 to train
the two statistical models, and use the rest for
assessing performance.

Identifying picture categories
To fuse the two models for categorization, we

use a simple combination strategy14 that results
in impressive performance. Given a picture, we
rank each category k based on likelihoods from
both models, to get ranks �sc(k) and �ct(k). We
then linearly combine these two ranks for each
category, �(k) 
 ��sc(k) � (1 � �)�ct(k), with � 
 0.2
working best in practice. We then assign the cat-
egory that yields the highest linearly combined
score to this picture.

We decide how well our system is doing in

predicting categories by involving two picture
data sets. The first one is a standard 10-class
image data set that has been commonly used for
the same research question. Using 40 training
pictures per category, we assess the categorization
results on another 50 per category. We compute
accuracies while varying the number of mixture
components in the C-T model.

We present our results—along with those pre-
viously reported15-17 on the same data—in Figure
4. We see that our combined model does a better
job at identifying categories than previous
attempts. Not surprisingly, as we increase the
number of mixture components, the C-T models
become more refined. We thus continue to get
improved categorization with greater compo-
nents, although more components mean more
computation as well.

Our second data set consists of the same 600
category Corel images that were used in the ALIP
system.3 With an identical training process for
the two models (the number of mixture compo-
nents is chosen as 10), we observe the catego-
rization performance on a separate set of 27,000
pictures. What we find is that the actual picture
categories coincide with our system’s top choice
14.4 percent of the time, are within our system’s
top two choices 19.3 percent of the time, and are
within our system’s top three choices 22.7 per-
cent of the time. The corresponding accuracy val-
ues for the ALIP system are 11.9, 17.1, and 20.8
percent, respectively.

Our system takes about 26 seconds to build a
structure-composition category model and about
106 seconds to build a color-texture model, both
on a 40-picture training set. As with generative
models, we can independently and in parallel
build the models for each category and type. To
predict the top five ranked categories for a given
test picture, our system takes about 11 seconds.
Naturally, we have a system that is orders of mag-
nitude faster than the ALIP system, which takes
about 30 minutes to build a model and about 20
minutes to test on a picture. Most other auto-
matic tagging systems in the literature do not
explicitly report speed.

However, many of them depend on sophisti-
cated image segmentation algorithms, which can
easily bottleneck performance. The improved
performance in model building means that even
larger numbers of models can be built (for exam-
ple, one model per unique tag), and the model-
ing process can be made dynamic (retraining at
intervals) to accommodate changing picture col-
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lections, such as Web sites that let users upload
pictures.

Tagging the pictures
We now look at how our system performs

when it comes to automatic picture tagging.
Tagging is fast, since it depends primarily on the
categorization speed. Over a random test set of
10,000 Corel pictures, our system generates an
average of seven tags per picture. We use stan-
dard metrics for evaluating annotation perfor-
mance: precision, the fraction of tags predicted
that are correct, and recall, the fraction of tags for
the picture that are correctly guessed. Average
precision over this test set is 22.4 percent, while
average recall is 40.7 percent.

Thus, on an average, roughly one in four of
our system’s predicted tags are correct, while our
system guessed two in five correct tags. In gener-
al, results of this nature are useful for filtering
and classification. A potential domain of thou-
sands of tags can be reduced to a handful, mak-
ing human tagging much easier, as used in the
Automatic Linguistic Indexing of Pictures—Real
Time system (ALIPR; see http://alipr.com).18

Increased homogeneity and reduced ambiguity
in the tagging process are additional benefits.

We make a more qualitative assessment of tag-
ging performance on the 1,000 Flickr pictures.
We point out that the training models are still
those built with Corel pictures, but because they
represent the spectrum of photographic images
well, these models serve as fair knowledge bases.

In this case, most automatically generated tags
are meaningful and generally very encouraging.
In Figure 5, we present a sampling of these
results. Getting quantitative performance is hard-
er here because Flickr tags are often proper nouns
(such as names of buildings and people) that
aren’t contained in our training base.

Reannotating noisy tags
We assess our annotation system’s perfor-

mance in improving tagging at high noise lev-
els. The scenario of noisy tags, at a level denoted
by e, is simulated in the following manner: For
each of 10,000 test pictures with the original
(reliable) tags, a new set of tags is generated by
replacing a tag by a random tag e fraction of the
times, at random, and is unchanged at other
times. The resulting noisy tags for these test
images, when assessed for performance, give
precision and recall values that directly correlate
with e. In the absence of learned models, this is
our baseline case.

When such models are available, we can use
the noisy tags and the categorization models to
reannotate the pictures, because the noisy tags
still contain exploitable information. We per-
form reannotation by simply treating each noisy
tag t of a picture I as an additional instance of the
word in the pool of candidate tags.

In effect, we increment the values of fsc(t|I) and
fct(t|I) by a constant Z, thus increasing the chance
of t to appear as a tag. The value of Z controls how
much we want to promote these tags and is natu-

Image

Image

Our labels sky, city, modern, door pattern, Europe,  train, car, people, man, office, indoor,
 building, Boston historical building, city life, city fashion, people

Flickr labels Amsterdam, building, Tuschinski, Amsterdam honeymoon, hat, Chris, cards, 
 Maheler4, Zuitas  Amsterdam funny

Our labels lake, Europe, landscape, lion, animal, wild life,  speed, race, people, dog, glass, animal,
 boat, architecture Africa, super-model Holland, motorcycle rural, plant

Flickr labels Amsterdam, canal, leopard, cat, ragged Preakness, horse, Nanaimo Torgersons, 
 water photo, animal jockey, motion, animal, Quinn, dog, 
   unfound photo camera-phone

Figure 5. Sample

automatic tagging

results on Yahoo! Flickr

pictures taken in

Amsterdam, along with

manual tags.
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rally related to the noise in the tags. Figure 6
shows the annotation precision and recall this
approach achieves, with e varying from 0.5 (mod-
erately noisy) to 1 (completely noisy, no useful
information) for the case of Z 
 0.5. We notice
that, at high levels of noise, our reannotation pro-
duces better performance than the baseline.

Figure 7 shows a summary of a more general
analysis of the trends, with larger values of Z—

that is, greater confidence in the noisy tags. The
graph shows precision and recall for our reanno-
tation, varying Z for each of five error levels. We
observe that for the same value of Z, less noisy
tags lead to better reannotation. Moreover, after
reaching a peak near Z 
 2.5, the recall starts to
drop, while precision continues to improve. This
graph can be useful in selecting parameters for a
desired precision or recall level after reannota-
tion, given an estimated level of noise in the tags.

Searching for pictures
Compared to traditional methods, our approach

improves image search performance. We assume
that either the database is partially tagged, or the
search is performed on a picture collection visu-
ally coherent with some standard knowledge
base. In all our cases, the statistical models are
learned from the Corel data set. For scenario 4,
we assume that everything is tagged, but some
tags are incorrect or inconsistent. Once again, we
train a knowledge base of 600 picture categories,
and then use it to do categorization and auto-
matic tagging on the test set. This set consists of
10,000 randomly sampled pictures from among
the remaining Corel pictures (those not used for
training).

We now consider the four image search sce-
narios we discussed in the “Bridging the gap” sec-
tion. For each scenario, we compare results of our
annotation-driven image search strategy with
alternative strategies. For those alternative strate-
gies involving CBIR, we use the IRM distance
used in the SIMPLIcity system8 to get around the
missing tag problem in the databases and queries.

We choose the alternative strategies and their
parameters by considering a wide range of possi-
ble methods. We assess the methods based on
the standard information retrieval concepts of
precision (percentage of retrieved pictures that
are relevant) and recall (percentage of relevant
pictures that are retrieved). We consider two pic-
tures/queries to be relevant whenever there is
overlap between their set of tags. In this article,
we report performance in terms of precision,
which is usually considered a more useful metric
in information retrieval. Recall performance can
be found in our earlier work.12

Scenario 1. Here, the database doesn’t have
any tags. Queries may be in the form of either
one or more keywords or tagged pictures.

Keyword queries on an untagged picture data-
base is a key problem in real-world image search.
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Figure 7. (a) Precision and (b) recall achieved by reannotation, varying

parameter Z, shown for five noise levels.
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We look at 40 percent (out of the 417 unique
ones in the Corel set) of randomly chosen pairs
of query words (each word is chosen from the
417 unique words in our training set). In our
strategy, we perform a search by first automati-
cally tagging the database, and then retrieving
images based on bag-of-words distances between
query tags and our predicted tags.

The alternative CBIR-based strategy used for
comparison is as follows: without any image as a
query, CBIR can’t be performed directly on query
keywords. Instead, suppose the system is provid-
ed access to a knowledge base of tagged Corel pic-
tures. A random set of three pictures for each
query word is chosen from the knowledge base,
and we compute IRM distances between these
images and the database. We then use the aver-
age IRM distance over the six pictures to rank the
database pictures. We report these two results,
along with the random results, in Figure 8a.
Clearly, our method performs impressively and
significantly better than the alternative approach.

Scenario 2. In this case, the query is an
untagged picture, and the database is tagged.
First, we tag the query picture automatically, and
then rank the database pictures using bag-of-
words distance. We randomly choose 100 query
pictures from Corel and test it on the database of
10,000 pictures. The alternative CBIR-based strat-
egy we use is as follows: the IRM distance is used
to retrieve five (empirically observed to be the
best count) pictures most visually similar to the
query, and the union of all their tags is filtered
using the expression for R(t|I) to get automatic
tags for the query (the same way that we filter our
annotation, as we described in the “Annotation
and retrieval” section). Now, the search proceeds
identically to ours. We present these results,
along with the random scheme, in Figure 8b. As
the figure shows, our strategy has a significant
performance advantage over the alternate strate-
gy. The CBIR-based strategy performs almost as
poorly as the random scheme, which is probably
because of the direct use of CBIR for tagging.

Scenario 3. In this case, neither the query pic-
ture nor the database is tagged. We test 100 ran-
dom picture queries on the 10,000-image
database. Our strategy is simply to tag both the
query picture as well as the database automati-
cally, and then perform bag-of-words-based
retrieval. Without any tags present, the alterna-
tive CBIR-based strategy we used here is essen-

tially a standard use of the IRM distance to rank
pictures based on visual similarity to the query.
We present these results, along with the random
case, in Figure 8c. Once again, we see the advan-
tage of our common image search framework
over straightforward visual similarity-based
retrieval. What we witness is how, in an indirect
way, the learned knowledge base helps to
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improve search performance over a strategy that
doesn’t involve statistical learning.

Scenario 4. Here, the query picture and the
database are both fully tagged, but many tags are
incorrect. This is a situation that often arises
under user-driven tagging because of reasons
such as subjectivity. We use our reannotation
approach to refine these noisy tags prior to per-
forming retrieval. Introducing noise levels of e 


0.7, 0.8, and 0.9 and using parameter Z 
 1.5, we
test 100 random picture queries on the 10,000
images. For this, queries and the database are first
reannotated.

The alternate strategy includes the baseline
case, as we described in the “Reannotating noisy
tags” section. Figure 9 shows the precision
results over the top 100 retrieved pictures for the
three noise levels. Interestingly, even at e 
 0.7,
where our reannotation approach doesn’t sur-
pass the baseline in annotation precision, it does
so in retrieval precision, making it a useful
approach at this noise level. Moreover, the dif-
ference with the baseline is maximum at noise
level 0.8. Note that for e � 0.5, our approach did-
n’t yield a better performance than the baseline,
since the tags were sufficiently clean. These
results suggest that at relatively high noise lev-
els, our reannotation approach can lead to sig-
nificantly improved image retrieval performance
compared to the baseline.

Conclusion
The framework for our novel annotation-dri-

ven image search is standard for different scenar-
ios and different types of queries, which should
make implementation fairly straightforward. In
each scenario we discussed, our approach yields
more promising results than traditional methods.
In fact, the categorization performance in itself
improves on previous attempts. Moreover, we are
able to categorize and tag the pictures in a very
short time. All of these factors make our approach
attractive for real-world implementation. MM
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