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ABSTRACT

While personal and community-based image collections grow
by the day, the demand for novel photo management capa-
bilities grows with it. Recent research has shown that it is
possible to learn the consensus on visual quality measures
such as aesthetics with a moderate degree of success. Here,
we seek to push this performance to more realistic levels
and use it to (a) help select high-quality pictures from col-
lections, and (b) eliminate low-quality ones, introducing ap-
propriate performance metrics in each case. To achieve this,
we propose a sequential arrangement of a weighted linear
least squares regressor and a naive Bayes’ classifier, applied
to a set of visual features previously found useful for quality
prediction. Experiments on real-world data for these tasks
show promising performance, with significant improvements
over a previously proposed SVM-based method.

Categories and Subject Descriptors

H.4.m [Information Systems Applications]: Miscella-
neous

General Terms

Algorithms, Experimentation, Performance.

1. INTRODUCTION

The immense popularity of photo-sharing communities
(e.g., Flickr, Photobucket, Photo.net) and social-networking
platforms (e.g., Facebook, Myspace) has made it imperative
to introduce novel media management capabilities, which in
turn may help to stay competitive in these crowded mar-
kets. In the case of visual media management, areas such
as content-based image classification and retrieval [7], au-
tomatic annotation [1, 5], and image watermarking [2] for
rights management have been extensively studied. Comple-
menting some of these techniques, our goal is to be able
to automatically assess high-level visual quality (unlike low-
level quality such as noise/quantization level), so as to facili-
tate quality-based image management. Among other things,
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Figure 1: Example images from Photo.net where the con-
sensus aesthetics score > 6 (above), and < 4 (below), on 1—7.

it can help (a) select high-quality images from a collection
for browsing, for front-page display, or as representatives,
(b) enhance image search by pushing images of higher qual-
ity up the ranks, and (c) eliminate low-quality images under
space constraints (limited Web space, mobile device, etc.)
or otherwise. Visual quality here can be based on criteria
such as aesthetics (Photo.net, see Fig. 1) or interestingness
(Flickr), and these can be either personalized (individuals
treated separately), or consensus-based (scores averaged over
population). A major deterrent to research in this direction
has been the difficulty to precisely define their characteris-
tics, and to relate them to low-level visual features. One
way around this is to ignore philosophical/psychological as-
pects, and instead treat the problem as one of data-driven
statistical inferencing, similar to user preference modeling
in recommender systems [6].

Recent work [3] on aesthetics modeling for images has,
however, given hope that it may be possible to empirically
learn to distinguish between images of low and high aesthetic
value!. A key result presented in that work is as follows.
Using carefully chosen visual features followed by feature
selection, a support vector machine (SVM) can distinguish
between images rated > 5.8 and < 4.2 (on a 1-7 scale) with
70% accuracy and those rated > 5.0 and < 5.0 with 64%
accuracy, images being rated publicly by Photo.net users.
There are two key concerns in the context of applicability
of these results. (1) A 64% accuracy in being able to dis-
tinguish (> 5.0,< 5.0) is not a strong-enough for real-world
deployment in selecting high-quality pictures (if > 5.0 im-
plies high-quality, that is). (2) It is unclear how a 70%
accuracy on a (> 5.8, < 4.2) question can be used to help
photo management in any way. To address them, we make
the following contributions in this paper: (A) Given a set

LSince the use of the word aesthetics in this context is subject to con-
troversy, we simply treat it as one possible measure of visual quality.



of visual features known to be useful for visual quality, we
propose a new approach to exploiting them for significantly
improved accuracy in inferring quality. (B) We introduce a
weighted learning procedure to account for the trust we have
in each consensus score, in the training data, and empirically
show consistent performance improvement with it. (C) We
propose two new problems of interest that have direct ap-
plicability to image management in real-world settings. Our
approach produces promising solutions to these problems.

2. PROPOSED APPROACH

Let us suppose that there are D visual features known (or
hypothesized) to have correlation with visual quality (e.g.,
aesthetics, interestingness). An image I can thus be de-
scribed by a feature vector X € R? , where we use the
notation Xj(d) to refer to component d of feature vector
Xi. For clarity of understanding, let us assume that there
exists a true measure qi of consensus on the visual qual-
ity that is intrinsic to each ;. Technically, we can think of
this true consensus as the asymptotic average over the entire
population, i.e., g = limg— % E? 1 ki, Where gy ; is the
i*" rating received. This essentially formalizes the notion of
aesthetlcs in general’ presented in [3]. This measurement
is expected to be useful to the average user, while for those
‘outliers’ whose tastes differ considerably from the average,
a personalized score is more useful - a case that best moti-
vates recommender systems with individual user models.

In reality, it is impractical to compute this true consensus
score because it requires feedback over the entire popula-
tion. Instead, items are typically scored by a small sub-
set of the population, and what we get from averaging over
this subset is an estimator for gr. If {sk1,--- 7sk,nk} is
a set of scores provided by mi unique users for [, then
Gr = % k| Sk,i, where gy is an estimator of gi. In theory,
as nx — 00, gk — qr. Given a set of N training instances
{(X1,d¢1),- - ,(Xn~,d4n)}, our goal is to learn a model that
can help predict quality from the content of unseen images.

2.1 Weighted Least Squares Regression

Regression is a direct attempt at learning to emulate hu-
man ratings of visual quality, which we use here owing to
the fact that it is reported in [3] to have found some success.
Here, we follow the past work by learning a least squares lin-
ear regressor on the predictor variables X (1),--- , Xx(D),
where the dependent variable is the consensus score ¢,. We
introduce weights to the regression process on account of the
fact that §x are only estimates of the true consensus qx, with
less precise estimates being less trustable for learning tasks.
From classical statistics, we know that the standard error of
mean, given by %, decreases with increasing sample size n.
Since §i is a mean estimator, we compute the weights ws as
a simple increasing function of sample size ng,

nk
= k=1,---,N 1

wE= o (1)

where lim,, ~cowr = 1, wx € [%71). The corresponding

parameter estimate for squared loss is written as

- IS X 2 ’
B* = arg mén ~ ;wk (% - (ﬁ(o) + ;5(@)@@)))

Given a E* estimated from training data, the predicted score
for an unseen image I having feature vector X is given by

D

¢""" = B7(0) + Y B(d)X(d) 2
Because weighted regression is drﬁatively less popular than
its unweighted counterpart, we briefly state an elegant and
efficient linear algebraic [4] estimation procedure, for the
sake of completeness. Let us construct an N x (D+1) matrix
X =] 127 | where 1 is a N-component vector of ones, and
Z =X, --- Xn]. Let ¢be a N x 1 column matrix (or vector)
of the form (g1 --- QN)T7 and W is an N x N diagonal ma-
trix consisting of the weights, i.e., W = diag{w1, -+ ,wn}.
In the unweighted case of linear regression, the parameter
estimate procedure is given by §* = (XTX)AXT": X'q,
where X' is the pseudoinverse in the case of linearly inde-
pendent columns. The weighted linear least squares regres-
sion parameter set, on the other hand, is estimated as below:

g = (XTWX)_1XTW(I 7g3)
Letting V = diag{\/w1, - ,\Jwn}, such that W =V
= VVT, we can re-write Eq. 3 in terms of pseudoinverse:

3 = X"WX) 'X"wWgq (4)
= (VX)"(VX)) (VX)'Vq
= (VX)'vg

This form may lead to cost benefits. Note that the weighted
learning process does not alter the inference step of Eq. 2.

2.2 Naive Bayes’ Classification

The motivation for having a naive Bayes’ classifier was to
be able to complement the linear model with a probabilistic
one, based on the hypothesis that they have non-overlapping
performance advantages. The particular way of fusing re-
gression and classification will become clearer shortly. For
this, we assume that by some predetermined threshold, the
(consensus) visual quality scores g can be mapped to binary
variables Ay, € {—1,+1}. For simplification, we make a con-
ditional independence assumption on each feature given the
class, to get the following form of the naive Bayes’ classifier:

Pr(H| X(1),---,X(D)) « Pr(H HPr H) (5)
The inference for an image [ with features X . involves a
simple comparison of the form

max  Pr(H = h) Pr(Xk
he{—1,+1}

by = arg )| H = h) (6)

The training process involves estlmatlng Pr(H) and Pr(X(d)|H)

for each d. The former is estlmated as follows:
Pr(H =% ZI (hi = h) (7)

where Z(+) is the indicator fuIlCthIl. For the latter, para-
metric distributions are estimated for each feature d given
class. While Gaussian mixture models seem appropriate for
complicated feature values (e.g., too high or too low bright-
ness are both not preferred), here we model each of them
using single component Gaussian distributions, i.e.,

X(d) | (H = h) ~ ./\/’(/J,d,mad,h), Vd,h, (8)
where the Gaussian parameters pq , and oq,n are the mean
and std. dev. of the feature value Xy over those training
samples k that have hy = h. Performing weighted parameter
estimation is possible here too, although in our experiments
we restricted weighting learning to regression only.



2.3 Selecting High-quality Pictures

Equipped with the above two methods, we are now ready
to describe our approach to selecting high-quality images.
First we need a definition for ‘high-quality’. An image I
is considered to be visually of high-quality if its estimated
consensus score, as determined by a subset of the popula-
tion, exceeds a predetermined threshold, i.e., §r > HIGH.
Now, the task is to automatically select 7" high-quality im-
ages out of a collection of NV images. Clearly, this problem
is no longer one of classification, but that of retrieval. The
goal is to have high precision in retrieving pictures, such
that a large percentage of the T pictures selected are of
high-quality. To achieve this, we perform the following:

1. A weighted regression model (Sec. 2.1) is learned on
the training data.

2. A naive Bayes’ classifier (Sec. 2.2) is learned on train-
ing data, where the class labels hy are defined as

B — +1 if g, > HIGH
= -1 ifgp < HIGH

3. Given an unseen sét of N test images, we get predict
consensus scores {¢i, - ,qn} using the weighted re-
gression model, which we sort in descending order.

4. Using the naive Bayes’ classifier, we start from the top
of the ranklist, selecting images for which the predicted
class is +1, i.e., h = +1, and g:gg:fﬂig;ig;i >

0, until T of them have been selected. This filter ap-

plied to the ranked list therefore requires that only

those images at the top of the ranked list that are also
classified as high-quality by the naive Bayes’ (and con-
vincingly so) are allowed to pass. For our experiments,
we chose @ = 5 arbitrarily and got satisfactory results.

2.4 Eliminating Low-quality Pictures

Here, we first need to define ‘low-quality’. An image I
is considered to be visually of low-quality if its consensus
score is below a threshold, i.e., g < LOW. Again, the task
is to automatically filter out T' low-quality images out of a
collection of N images, as part of a space-saving strategy
(e.g., presented to the user for deletion). The goal is to have
high precision in eliminating low-quality pictures, with the
added requirement that as few high-quality ones (defined by
threshold HIGH) be eliminated in the process as possible.
Thus, we wish to eliminate as many images having score <
LOW as possible, while keeping those with score > HIGH
low in count. Here, steps 1 and 2 of the procedure are same
as before, while steps 3 and 4 differ as follows:

1. In Step 3, instead of sorting the predicted consensus
scores in descending order, we do so in ascending order.
2. In Step 4, we start from the top of the ranklist, se-
lecting images for which the predicted class is -1 (not
+1, as before), by a margin. This acts as as a two-fold
filter: (a) low values for the regressed score ensure pref-
erence toward selecting low-quality pictures, and (b) a
predicted class of —1 by the naive Bayes’ classifier pre-
vents those with HIGH scores from being eliminated.

3. EXPERIMENTS

All experiments are performed on the same dataset ob-
tained from Photo.net that was used in 3], consisting of 3581
images, each rated publicly by one or more Photo.net users
on a 1 — 7 scale, on two parameters, (a) aesthetics, and (b)
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Figure 2: Distributions of no. of ratings (left) and scores
(right) in the Photo.net dataset.

originality. As before, we use the aesthetics score as a mea-
sure of quality. While individual scores are unavailable, we
do have the average scores g, for each image Ii, and the no.
of ratings ny given to it. The score distribution in the 1 —7
range, along with the distribution of the per-image number
of ratings, is presented in Fig. 2. Note that the lowest aver-
age score given to an image is 3.55, and that the number of
ratings has a heavy-tailed distribution. The same 56 visual
features extracted in [3] (which include measures for bright-
ness, contrast, depth-of-field, saturation, shape convexity,
region composition, etc.) are used here as well, but without
any feature selection being performed. Furthermore, nonlin-
ear powers of each of these features, namely their squares,
cubes, and square-roots, are augmented with them to get
D = 224 dimensional feature vectors describing each image.

No. of high-quality pictures to select T =10 No. of high—quality pictures to select T =20

Precision (in %)
Precision (in %)
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Figure 3: Precision in selecting high-quality images, shown
here for three selection set sizes, 7' = 10, 20, and 30. Bottom-
right: Impact of using weighted model estimation vs. their

unweighted counterparts, with HIGH fixed and T varying.

3.1 Selecting High-quality Pictures

Using the procedure described in Sec. 2.3, we perform
experiments for selection of high-quality images for differ-
ent values of HIGH, ranging over 4.8 — 6.0 out of a pos-
sible 7, in intervals of 0.1. In each case, 1000 images are
drawn uniformly at random from the 3581 images for test-
ing, and the remaining are used for training the regressor
and the classifier. The task here is to select T' = 5, 10,
and 20 images out of the pool of 1000 (other values of

T < 50 showed similar trends), and measure the precision
_ #(high-quality images selected)
- #(images selected)

chosen T'. We compare our approach with three baselines.
First, we use only the regressor and not the subsequent clas-

sifier (named ‘Regression only’). Next we use an SVM, as

, where the denominator is a



Figure 4: A sample instance of T = 10 images selected by
our approach, for HIGH = 5.5. The actual consensus scores
are shown in red, indicating an 80% precision in this case.

originally used in [3], to do a (< HIGH, > HIGH) classifi-
cation to get a fixed performance independent of T (named
‘SVM’), i.e., the SVM simply classifies each test image, and
therefore regardless of the number of images (T') to select,
performance is always the same. Finally, as a worst-case
bound on performance, we plot the precision achieved on
picking any 7" images at random (named ‘Random Draw’).
This is also an indicator of the proportion of the 1000 test
images that actually are of high-quality on an average. Each
plot in Fig. 3 are averages over 50 random test sets.

We notice that our performance far exceeds that of the
baselines, and that combining the regressor with the naive
Bayes’ in series pushes performance further, especially for
larger values of HIGH (since the naive Bayes’ classifier
tends to identify high-quality pictures more precisely). For
example, when HIGH is set to 5.5, and T' = 20 images are
selected, on an average 82% are of high-quality when our
approach is employed, in contrast to less than 50% using
SVMs. For lower thresholds, the accuracy exceeds 95%. In
the fourth graph (bottom-right), we note the improvement
achieved by performing weighted regression instead of giving
every sample equal importance. Performed over a range of
HIGH values, these averaged results confirm our hypothe-
sis about the role of ‘confidence’ in consensus modeling. For
illustration, we present a sample instance of images selected
by our approach for T = 10 and HIGH = 5.5, in Fig. 4,
along with their ground-truth consensus scores.

3.2 Eliminating Low-quality Pictures

Here again, we apply the procedure presented in Sec. 2.4.
The goal is to be able to eliminate 7' images such that a
large fraction of them are of low-quality (defined by thresh-
old LOW) while as few as possible images of high-quality
(defined by threshold HIGH) get eliminated alongside. Ex-
perimental setup is same as the previous case, with 50 ran-
dom test sets of 1000 images each. We experimented with
various values of T' < 50 with consistent performance. Here
we present the cases of T = 25 and 50, fix HIGH = 5.5,
while varying LOW from 3.8 — 5.0. Along with the metric
Blovgualis impses i) ol computed in
# (high-quality images eliminated)

# (images eliminated) :
ments over both these metrics, with varying LOW thresh-
old, and in comparison with the ‘Regression Only’, ‘SVM’,
and ‘Random Draw’, are presented in Fig. 5.

These results are very encouraging, as before. For exam-
ple, it can be seen that when the threshold for low-quality
is set to 4.5, and 50 images are chosen for elimination, our
approach ensures ~ 65% of them to be of low-quality, with
only ~ 9% to be of high-quality. At higher threshold val-
ues, precision exceeds 75%, while error remains roughly the
same. In contrast, the corresponding SVM figures are 43%

precision =

this case is error = Measure-
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Figure 5: Above: Precision in eliminating low-quality im-
ages, shown here for two set sizes, namely T = 25 and 50.
Below: The corresponding errors, made by eliminating high-

quality images in the process.

and 28% respectively. We also note that the performance
with using naive Bayes’ in conjunction with regression does
improve performance on both metrics, although not to the
extent we see in high-quality picture selection. While not
shown here, we found similar improvements as before with
using the weighted methods over the unweighted ones. In
general, our approach produces lesser guarantees in elimina-
tion of low-quality than selection of high-quality.

4. CONCLUSIONS

We have presented a simple approach to selecting high-
quality images and eliminating low-quality ones from image
collections, quality being defined by population consensus.
Experiments show vast improvement over a previously pro-
posed SVM-based approach. It is found that the same visual
features proposed in [3] can show much more promising re-
sults when exploited by a different approach. Weighting the
training data by confidence levels in the consensus scores is
also found to consistently improve performance. The key
to this success lies not necessarily in a better classifier, but
in the fact that for these problems, it suffices to identify
the extremes in visual quality, for a subset of the images,
accurately.
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