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ABSTRACT
Automated annotation of digital pictures has been a
highly challenging problem for computer scientists since
the invention of computers. The capability of annotating
pictures by computers can lead to breakthroughs in a wide
range of applications including Web image search, online
picture-sharing communities, and scientific experiments.
In our work, by advancing statistical modeling and
optimization techniques, we can train computers about
hundreds of semantic concepts using example pictures from
each concept. The ALIPR (Automatic Linguistic Indexing
of Pictures - Real Time) system of fully automatic and high
speed annotation for online pictures has been constructed.
Thousands of pictures from an Internet photo-sharing site,
unrelated to the source of those pictures used in the training
process, have been tested. The experimental results show
that a single computer processor can suggest annotation
terms in real-time and with good accuracy.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
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ing
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1. INTRODUCTION
Image archives on the Internet are growing at a

phenomenal rate. With digital cameras becoming
increasingly affordable and the widespread use of home
computers possessing hundreds of gigabytes of storage,
individuals nowadays can easily build sizable personal
digital photo collections. Photo sharing through the Internet
has become a common practice. According to a report
released in June 2005, an Internet photo-sharing startup,
flickr.com, has almost one million registered users and hosts
19.5 million photos, with a growth of about 30 percent per
month. More specialized online photo-sharing communities,
such as photo.net and airliners.net, also have databases in
the order of millions of images entirely contributed by the
users.

1.1 The Problem
Image search provided by major search engines such as

Google, MSN, and Yahoo! relies on textual descriptions
of images found on the Web pages containing the images
and the file names of the images. These search engines do
not analyze the pixel content of images and hence cannot
be used to search unannotated image collections. Fully
computerized or computer-assisted annotation of images by
words is a crucial technology to ensure the “visibility” of
images on the Internet, due to the complex and fragmented
nature of the networked communities.

(a) (b)

Figure 1: Example pictures from the Website
flickr.com. User-supplied tags: (a) ‘dahlia’, ‘golden’,
‘gate’, ‘park’, ‘flower’, and ‘fog’; (b) ‘cameraphone’,
‘animal’, ‘dog’, and ‘tyson’.

Although owners of digital images can be requested to
provide some descriptive words when depositing the images,
the annotation tends to be highly subjective. Take an
example of the pictures shown in Figure 1. The users on
flickr.com annotated the first picture by the tags ‘dahlia’,
‘golden’, ‘gate’, ‘park’, ‘flower’, and ‘fog’ and the second



picture by ‘cameraphone’, ‘animal’, ‘dog’, and ‘tyson’.
While the first picture was taken at the Golden Gate Park
near San Francisco according to the photographer, this set
of annotation words can be a problem because this picture
may show up when other users are searching for images of
gates. The second picture may show up when users search
for photos of various camera phones.

A computerized system that accurately suggests annota-
tion tags to users can be very useful. If a user is too busy, he
or she can simply check off those relevant words and type in
other words. The system can also allow trained personnel to
check the words with the image content at the time a text-
based query is processed. However, automatic annotation of
images with a large number of concepts is extremely chal-
lenging, a major reason that real-world applications have
not appeared.

(a) race car (b) spinning

Figure 2: Human beings can imagine objects, parts
of objects, or concepts not captured in the image.
The images were obtained from flickr.com.

Human beings use a lot of background knowledge when
we interpret an image. With the endowed capability of
imagination, we can often see what is not captured in the
image itself. For example, when we look at the picture
in Figure 2(a), we know it is a race car although only a
small portion of the car is shown. We can imagine in our
mind the race car in three dimensions. If an individual has
never seen a car or been told about cars in the past, he
is unlikely to understand what this picture is about, even
if he has the ability to imagine. Based on the shining
paint and the color of the rubber tire, we can conclude
that the race car is of very high quality. Similarly, we
realize that the girl in Figure 2(b) is spinning based on
the perceived movements with respect to the background
grass land and her posture. Human beings are not always
correct in image interpretation. For example, a nice toy race
car may generate the same photograph as in Figure 2(a).
Computer graphics techniques can also produce a picture
just like that.

Without a doubt, it is very difficult, if at all possible, to
empower computers with the capability of imagining what
is absent in a picture. However, we can potentially train
computers by examples to recognize certain objects and
concepts. Such training techniques will enable computers
to annotate not only photographic images taken by home
digital cameras but also the ever increasing digital images
in scientific research experiments. In biomedicine, for
instance, modern imaging technologies reveal to us tissues
and portions of our body in finer and finer details, and with
different modalities. With the vast amount of image data

we generate, it has become a serious problem to examine
all the data manually. Statistical/machine learning based
technologies can potentially allow computers to screen such
images before scientists spend their precious time on them.

1.2 Prior Related Work
The problem of automatic image annotation is closely

related to that of content-based image retrieval. Since
the early 1990s, numerous approaches, both from academia
and the industry, have been proposed to index images
using numerical features automatically-extracted from the
images. Smith and Chang developed of a Web image
retrieval system [19]. In 2000, Smeulders et al. published
a comprehensive survey of the field [18]. Progresses made
in the field after 2000 is documented in a recent survey
article [5]. Due to space limitation, we review some work
closely related to ours. The references listed below are to
be taken as examples only. Readers are urged to refer to
survey articles for more complete references of the field.

Some initial efforts have recently been devoted to
automatically annotating pictures, leveraging decades
of research in computer vision, image understanding,
image processing, and statistical learning [2, 8, 9].
Generative modeling [1, 13], statistical boosting [20],
visual templates [4], Support Vector Machines [22],
multiple instance learning, active learning [26, 10], latent
space models [15], spatial context models [17], feedback
learning [16] and manifold learning [23, 11] have been
applied image classification, annotation, and retrieval.

Our work is closely related to generative modeling
approaches. In 2002, we developed the ALIP annotation
system by profiling categories of images using the 2-D
Multiresolution Hidden Markov Model (MHMM) [13, 25].
Images in every category focus on a semantic theme and
are described collectively by several words, e.g., “sail, boat,
ocean” and “vineyard, plant, food, grape”. A category of
images is consequently referred to as a semantic concept.
That is, a concept in our system is described by a set of
annotation words. In our experiments, the term concept can
be interchangeable with the term category. To annotate a
new image, its likelihood under the profiling model of each
concept is computed. Descriptive words for top concepts
ranked according to likelihoods are pooled and passed
through a selection procedure to yield the final annotation.

Barnard et al. [1] aimed at modeling the relationship
between segmented regions in images and annotation words.
A generative model for producing image segments and words
is built based on individually annotated images. Given a
segmented image, words are ranked and chosen according
to their posterior probabilities under the estimated model.
Several forms of the generative model were experimented
with and compared against each other.

The early research has not investigated real-time
automatic annotation of images with a vocabulary of several
hundred words. For example, as reported [13], the system
takes about 15-20 minutes to annotate an image on a 1.7
GHz Intel-based processor, prohibiting its deployment in the
real-world for Web-scale image annotation applications.

1.3 Contributions of the Work
We have developed a new annotation method that

achieves real-time operation and better optimization
properties while preserving the architectural advantages of



the generative modeling approach. Models are established
for a large collection of semantic concepts. The approach is
inherently cumulative because when images of new concepts
are added, the computer only needs to learn from the new
images. What has been learned about previous concepts
is stored in the form of profiling models and needs no re-
training.

The breakthrough in computational efficiency results
from a fundamental change in the modeling approach. In
ALIP [13], every image is characterized by a set of feature
vectors residing on grids at several resolutions. The profiling
model of each concept is the probability law governing the
generation of feature vectors on 2-D grids. Under the
new approach, every image is characterized by a statistical
distribution. The profiling model specifies a probability law
for distributions directly.

We show that by exploiting statistical relationships
between images and words, without recognizing individual
objects in images, the computer can automatically annotate
images in real-time and provide more than 98% images
with at least one correct annotation out of the top 15
selected words. The highest ranked annotation word for
each image is accurate with a rate above 51%. These
quantitative results of performance are based on human
subject evaluation of computer annotation for over 5, 400
general-purpose photographs.

A real-time annotation demonstration system, ALIPR
(Automatic Linguistic Indexing of Pictures - Real Time), is
provided online 1. The system annotates any online image
specified by its URL. The annotation is based only on the
pixel information stored in the image. With an average of
about 1.4 seconds on a 3.0 GHz Intel processor, annotation
words are created for each picture.

The contribution of our work is multifold:

• We have developed a real-time automatic image
annotation system. This system has been tested on
Web images acquired completely independently from
the training images. Rigorous evaluation has been
conducted. To our best knowledge, this work is the
first attempt to manually assess the performance of
an image annotation system at a large scale. Data
acquired in the experiments will set yardsticks for
related future technologies and for the mere interest of
understanding the potential of artificial intelligence.

• We have developed a novel clustering algorithm for
objects represented by discrete distributions, or bags
of weighted vectors. This new algorithm minimizes
the total within cluster distance for a data form more
general than vectors. We call the algorithm D2-
clustering where D2 stands for discrete distribution.
A new mixture modeling method has been developed
to construct a probability measure on the space of
discrete distributions. Both the clustering algorithm
and the modeling method can be applied broadly to
problems involving data other than images.

1.4 Outline of the Paper
The remainder of the paper is organized as follows:

In Sections 2 and 3, we provide details of the training
and annotation algorithms, respectively. The experimental

1Demonstration URL: http://alipr.com

results are provided in Section 4. We conclude and suggest
future work in Section 5.

2. THE TRAINING ALGORITHM
The training procedure is composed of the following steps.

An outline is provided before we present each step in details.
Label the concept categories by {1, 2, ...,M}. For the
experiments, to be explained, using the Corel database as
training data, M = 599. Denote the concept to which image
i belongs by gi, gi ∈ {1, 2, ..., M}.

1. Extract a signature for each image i, i ∈ {1, 2, ..., N}.
Denote the signature by si, si ∈ Ω. The signature
consists of two discrete distributions, one of color
features, and the other of texture features. The
distributions on each type of features across different
images have different supports.

2. For each concept m ∈ {1, 2, ..., M}, construct a
profiling model Mm using the signatures of images
belonging to concept m: {si : gi = m, 1 ≤ i ≤ N}.
Denote the probability density function under model
Mm by f(s | Mm), s ∈ Ω.

Figure 3 illustrates this training process. The annotation
process based upon the models will be described in Section 3.

2.1 The Training Database
It is well known that applying learning results to unseen

data can be significantly harder than applying to training
data [21]. In our work, we used completely different
databases for training the system and for testing the
performance.

The Corel image database, used also in the development
of SIMPLIcity [24] and ALIP [13], containing close to 60, 000
general-purpose photographs is used to learn the statistical
relationships between images and words. This database
was categorized into 599 semantic concepts by Corel during
image acquisition. Each concept, containing roughly 100
images, is described by several words, e.g., “landscape,
mountain, ice, glacier, lake”, “space, planet, star.” A total
of 332 distinct words are used for all the concepts. We
created most of the descriptive words by browsing through
images in every concept. A small portion of the words come
from the category names given by the vendor. We used 80
images in each concept to build profiling models.

2.2 Preliminaries
To form the signature of an image, two types of

features are extracted: color and texture. The RGB color
components of each pixel are converted to the LUV color
components. We use wavelet coefficients in high frequency
bands to form texture features. A Daubechies 4 wavelet
transform [6] is applied to the L component (intensity)
of each image. The LH, HL, and HH band wavelet
coefficients (in absolute values) corresponding to the same
spatial position in the image are grouped into one three
dimensional texture feature vector. The three dimensional
color feature vectors and texture feature vectors are
clustered respectively by k-means. The number of clusters
in k-means is determined dynamically by thresholding the
average within cluster variation. Arranging the cluster
labels of the pixels into an image according to the pixel
positions, we obtain a segmentation of the image. We
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Figure 3: The training process of the ALIPR system.

refer to the collection of pixels mapped to the same cluster
as a region. For each region, the average color (or
texture) vector and the percentage of pixels it contains
with respect to the whole image are computed. The color
information is thus formulated as a discrete distribution
{(v(1), p(1)), (v(2), p(2)), ..., (v(m), p(m))}, where v(j) is the

mean color vector, p(j) is the associated probability, and m
is the number of regions. Similarly, the texture information
is cast into a discrete distribution. This feature extraction
process is similar to that of the SIMPLIcity system [24].

In general, let us denote images in the database by
{β1, β2, ..., βn}. Suppose every image is mathematically
an array of discrete distributions, βi = (βi,1, βi,2, ..., βi,d).
Denote the space of βi,l by Ωl, βi,l ∈ Ωl, l = 1, 2, ..., d. Then
the space of βi is the Cartesian product space

Ω = Ω1 × Ω2 × · · · × Ωd .

The dimension d of Ω, i.e., the number of distributions
contained in βi, is referred to as the super-dimension to
distinguish from the dimensions of vector spaces on which
these distributions are defined. For a fixed super-dimension
j, the distributions βi,j , i = 1, ..., n, are defined on the
same vector space, Rdj , where dj is the dimension of the
jth sample space. Denote distribution βi,j by

βi,j = {(v(1)
i,j , p

(1)
i,j ), (v

(2)
i,j , p

(2)
i,j ), ..., (v

(mi,j)

i,j , p
(mi,j)

i,j )} , (1)

where v
(k)
i,j ∈ Rdj , k = 1, ..., mi,j , are vectors on which

the distribution βi,j takes positive probability p
(k)
i,j . The

cardinality of the support set for βi,j is mi,j which varies
with both the image and the super-dimension.

To further clarify the notation, consider the following
example. Suppose images are segmented into regions by
clustering 3-dimensional color features and 3-dimensional
texture features respectively. Suppose a region formed by
segmentation with either type of features is characterized by
the corresponding mean feature vector. For brevity, suppose
the regions have equal weights. Since two sets of regions are
obtained for each image, the super-dimension is d = 2. Let
the first super-dimension correspond to color regions and the
second to texture regions. Suppose an image i has 4 color

regions and 5 texture regions. Then

βi,1 = {(v(1)
i,1 ,

1

4
), (v

(2)
i,1 ,

1

4
), ..., (v

(4)
i,1 ,

1

4
)}, v(k)

i,1 ∈ R3;

βi,2 = {(v(1)
i,2 ,

1

5
), (v

(2)
i,2 ,

1

5
), ..., (v

(5)
i,2 ,

1

5
)}, v(k)

i,2 ∈ R3.

A different image i′ may have 6 color regions and 3 texture
regions. In contrast to image i, for which mi,1 = 4 and
mi,2 = 5, we now have mi′,1 = 6 and mi′,2 = 3. However,

the sample space where v
(k)
i,1 and v

(k′)
i′,1 (or v

(k)
i,2 vs. v

(k′)
i′,2 )

reside is the same, specifically, R3.
Existing methods of multivariate statistical modeling are

not applicable to build models on Ω because Ω is not a
Euclidean space. Lacking algebraic properties, we have to
rely solely on a distance defined in Ω. Consequently, we
adopt a prototype modeling approach.

2.3 Mallows Distance between Distributions
To compute the distance D(γ1, γ2) between two distribu-

tions γ1 and γ2, we use the Mallows distance [14, 12] in-
troduced in 1972. Suppose random variable X ∈ Rk follow
the distribution γ1 and Y ∈ Rk follow γ2. Let Υ(γ1, γ2) be
the set of joint distributions over X and Y with marginal
distributions of X and Y constrained to γ1 and γ2 respec-
tively. Specifically, if ζ ∈ Υ(γ1, γ2), then ζ has sample space
Rk × Rk and its marginals ζX = γ1 and ζY = γ2. The
Mallows distance is defined as the minimum expected dis-
tance betweenX and Y optimized over all joint distributions
ζ ∈ Υ(γ1, γ2):

D(γ1, γ2) � min
ζ∈Υ(γ1,γ2)

(E ‖ X − Y ‖p)1/p , (2)

where ‖ · ‖ denotes the Lp distance between two vectors.
In our discussion, we use the L2 distance, i.e., p = 2. The
Mallows distance is proven to be a true metric [3].

For discrete distributions, the optimization involved in
computing the Mallows distance can be solved by linear
programming. Let the two discrete distributions be

γi = {(z(1)
i , q

(1)
i ), (z

(2)
i , q

(2)
i ), ..., (z

(mi)
i , q

(mi)
i )}, i = 1, 2 .

Then Equation (2) is equivalent to the following optimiza-



tion problem:

D2(γ1, γ2) = min
{wi,j}

m1X
i=1

m2X
j=1

wi,j ‖ z(i)
1 − z

(j)
2 ‖2 (3)

subject to
Pm2

j=1 wi,j = q
(i)
1 , i = 1, ..., m1,

Pm1
i=1 wi,j = q

(j)
2 ,

j = 1, ..., m2, wi,j ≥ 0, i = 1, ..., m1, j = 1, ..., m2.
The above optimization problem suggests that the

squared Mallows distance is a weighted sum of pairwise
squared L2 distances between any support vector of γ1 and
any of γ2. With an objective to minimize the aggregated
distance, the optimization is over the matching weights
between support vectors in the two distributions. The
weights wi,j are restricted to be nonnegative and the weights

emitting from any vector z
(j)
i sum up to its probability q

(j)
i .

Thus q
(j)
i sets the amount of influence from z

(j)
i on the

overall distribution distance.

2.4 Discrete Distribution (D2-) Clustering
Since elements in Ω each contain multiple discrete

distributions, we measure their distances by the sum of
squared Mallows distances between individual distributions.
Denote the distance by D̃(βi, βj), βi, βj ∈ Ω, then

D̃(βi, βj) �
dX

l=1

D2(βi,l, βj,l) .

Recall that d is the super-dimension of Ω.
To determine a set of prototypes A = {αi : αi ∈ Ω, i =

1, ..., m̄} for an image set B = {βi : βi ∈ Ω, i = 1, ..., n}, we
propose the following optimization criterion:

L(B,A∗) = min
A

nX
i=1

min
j=1,...,m̄

D̃(βi, αj) . (4)

The objective function (4) entails that the optimal set
of prototypes, A∗, should minimize the sum of distances
between images and their closest prototypes. This is a
natural criterion to employ for clustering and is in the
same spirit as the optimization criterion used by k-means.
However, as Ω is more complicated than the Euclidean space
and the Mallows distance itself requires optimization to
compute, the optimization problem of (4) is substantially
more difficult than that faced by k-means.

For the convenience of discussion, we introduce a
prototype assignment function c(i) ∈ {1, 2, ..., m̄}, for i =

1, ..., n. Let L(B,A, c) =
Pn

i=1 D̃(βi, αc(i)). With A fixed,

L(B,A, c) is minimized by c(i) = arg minj=1,...,m̄ D̃(βi, αj).
Hence, L(B,A∗) = minA minc L(B,A, c) according to (4).
The optimization problem of (4) is thus equivalent to the
following:

L(B,A∗, c∗) = min
A

min
c

nX
i=1

D̃(βi, αc(i)) (5)

To minimize L(B,A, c), we iterate the optimization of c
given A and the optimization of A given c as follows. We
assume that A and c are initialized. The initialization will be
discussed later. From clustering perspective, the partition of
images to the prototypes and optimization of the prototypes
are alternated.

1. For every image i, set c(i) = arg minj=1,...,m̄ D̃(βi, αj).

2. Let Cj = {i : c(i) = j}, j = 1, ..., m̄. That is, Cj

contains indices of images assigned to prototype j. For
each prototype j, let αj = arg minα∈Ω

P
i∈Cj

D̃(βi, α).

The update of c(i) in Step 1 can be obtained by exhaustive
search. The update of αj cannot be achieved analytically
and is the core of the algorithm. Note that

αj = arg min
α∈Ω

X
i∈Cj

D̃(βi, α)

= arg min
α∈Ω

X
i∈Cj

dX
l=1

D2(βi,l, α·,l)

=
dX

l=1

arg min
α·,l∈Ωl

X
i∈Cj

D2(βi,l, α·,l) (6)

Equation (6) indicates that each super-dimension αj,l in
αj can be optimized separately. Due to the lack of space,
we omit the derivation of the optimization algorithm that
solves (6). We now summarize the D2-clustering algorithm,
assuming the prototypes are initialized.

1. For every image i, set c(i) = arg minj=1,...,m̄ D̃(βi, αj).

2. Let Cη = {i : c(i) = η}, η = 1, ..., m̄. Update each αη,l,
η = 1, ..., m̄, l = 1, ..., d, individually by the following
steps. Denote

αη,l = {(z(1)
η,l , q

(1)
η,l ), (z

(2)
η,l , q

(2)
η,l ), ..., (z

(m′
η,l)

η,l , q
(m′

η,l)

η,l )} .

(a) Fix z
(k)
η,l , k = 1, ..., m′

η,l. Update q
(k)
η,l , w

(i)
k,j , i ∈ Cη,

k = 1, ..., m′
η,l, j = 1, ..., mi,l by solving the linear

programming problem:

min
q
(k)
η,l

X
i∈Cη

min
w

(i)
k,j

m′
η,lX

k=1

mi,lX
j=1

w
(i)
k,j ‖ z(k)

η,l − v
(j)
i,l ‖2 ,

subject to
Pm′

η,l

k=1 q
(k)
η,l = 1; q

(k)
η,l ≥ 0, k =

1, ..., m′
η,l;

Pmi,l

j=1 w
(i)
k,j = q

(k)
η,l , i ∈ Cη, k =

1, ..., m′
η,l;

Pm′
η,l

k=1 w
(i)
k,j = p

(j)
i,l , i ∈ Cη, j =

1, ..., mi,l; w
(i)
k,j ≥ 0, i ∈ Cη, k = 1, ..., m′

η,l,
j = 1, ..., mi,l.

(b) Fix q
(k)
η,l , w

(i)
k,j , i ∈ Cη, 1 ≤ k ≤ m′

η,l, 1 ≤ j ≤ mi,l.

Update z
(k)
η,l , k = 1, ..., m′

η,l by

z
(k)
η,l =

P
i∈Cη

Pmi,l

j=1 w
(i)
k,jv

(j)
i,lP

i∈Cη

Pmi,l

j=1 w
(i)
k,j

.

(c) Compute

m′
η,lX

k=1

mi,lX
j=1

w
(i)
k,j ‖ z(k)

η,l − v
(j)
i,l ‖2 .

If the rate of decrease from the previous iteration
is below a threshold, go to Step 3; otherwise, go
to Step 2a.



3. Compute L(B,A, c). If the rate of decrease from
the previous iteration is below a threshold, stop;
otherwise, go back to Step 1.

The initial prototypes are generated by tree structured
clustering. At each iteration, the leaf node with the
maximum sum of within cluster distances is chosen to split.
The prototype of the leaf node obtained from previous
computation serves as one seed and a randomly chosen
image in the leaf node serves as the second. Starting with the
seeds, the two prototypes are optimized by the D2-clustering
algorithm, yielding two new leaf nodes at the end.

The number of prototypes m̄ is determined adaptively
for different concepts of images. Specifically, the value of
m̄ is increased gradually until the loss function is below
a given threshold or m̄ reaches an upper limit. In our
experiment, the upper limit is set to 20, which ensures
that on average, every prototype is associated with 4
training images. Concepts with higher diversity among
images tend to require more prototypes. The histogram
for the number of prototypes in each concept, shown in
Figure 4(a), demonstrates the wide variation in the level
of image diversity within one concept.

2.5 Modeling
With the prototypes determined, we employ a mixture

modeling approach to construct a probability measure on
Ω. Every prototype is regarded as the centroid of a mixture
component. Here, the term component refers to a cluster
formed by partitioning a set of images. Each element
in the component is the signature of an image. For an
image generated by a component, the further it is from
the corresponding prototype, the lower the likelihood of the
image under this component.

Figure 4 (b) shows the histogram of distances between
images and their closest prototypes in one experiment. The
curves overlaid on it are the probability density functions
(pdf) of two fitted Gamma distributions. The pdf function
is scaled so that it is at the same scale as the histogram.
Denote a Gamma distribution by (γ : b, s), where b is the
scale parameter and s is the shape parameter. The pdf of
(γ : b, s) is [7]:

f(u) =
(u

b
)s−1e−u/b

bΓ(s)
, u ≥ 0

where Γ(·) is the Gamma function [7]. Consider multivariate
random vector X = (X1,X2, ..., Xk) ∈ Rk that follows
a normal distribution with mean µ = (µ1, ..., µk) and
a covariance matrix Σ = σ2I , where I is the identity
matrix. Then the squared Euclidean distance between
X and the mean µ, ‖ X − µ ‖2, follows a Gamma
distribution (γ : k

2
, 2σ2). Based on this fact, we assume

that the neighborhood around each prototype in Ω can
be locally approximated by Rk, where k = 2s and σ2 =
b/2. The parameters s and b are estimated from the
distances between images and their closest prototypes. In
the local conjectural space Rk, images belonging to a given
prototype are assumed to be generated by a multivariate
normal distribution with a mean vector being the map of
the prototype in Rk. The pdf for a multivariate normal
distribution N(µ, σ2I) is:

ϕ(x) = (
1√

2πσ2
)ke

− ‖x−µ‖2

2σ2 .
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Figure 4: Statistical modeling results. (a)
Histogram for the number of prototypes in each
class. (b) Fitting a Gamma distribution to the
distance between an image and its closest prototype:
the histogram of the distances is shown with the
correspondingly scaled probability density function
of an estimated Gamma distribution. (c) The
ranked concept posterior probabilities for three
example images.



Formulating the component distribution back in Ω, we
note that ‖ x − µ ‖2 is correspondingly the D̃ distance
between an image and its prototype. Let the prototype be
α and the image be β. Also express k and σ2 in terms of the
Gamma distribution parameters b and s. The component
distribution around α is:

g(β) = (
1√
πb

)2se−
D̃(β,α)

b .

For an M component mixture model in Ω with
prototypes {α1, α2, ..., αM}, let the prior probabilities for

the components be ωη, η = 1, ..., M ,
PM

η=1 ωη = 1. The
overall model for Ω is then:

φ(β) =
MX

η=1

ωη(
1√
πb

)2se−
D̃(β,αη)

b . (7)

The prior probabilities ωη can be estimated by the
percentage of images partitioned into prototype αη, i.e., for
which αη is their closest prototype.

Next, we discuss the estimation of b and s. Let the
set of distances be {u1, u2, ..., un}. Denote the mean ū =
1
n

Pn
i=1 ui. The maximum likelihood (ML) estimators b̂ and

ŝ are solutions of the equations:(
log ŝ− ψ(ŝ) = log

h
ū/(

Qn
i=1 ui)

1/n
i

b̂ = ū/ŝ

where ψ(·) is the di-gamma function [7]:

ψ(s) =
d log Γ(s)

ds
, s > 0 .

The above set of equations are solved by numerical
methods. As 2s = k, the dimension of the conjectural space,
needs to be an integer, we adjust the ML estimation ŝ to
s∗ = �2ŝ + 0.5�/2, where �·� is the floor function. The
ML estimator for b with s∗ given is b∗ = ū/s∗. Based on the
training data we used, the histogram of the distances and the
fitted Gamma distribution are shown in Figure 4(b). The
Gamma distribution estimated is (γ : 3.5, 86.34), indicating
that the conjectural space is of dimension 7.

In summary, the modeling process comprises the following
steps: (1) For each image category, find a set of prototypes,
partition images into these prototypes, and compute the
distance between each image and the prototype it belongs
to. (2) Collect the distances in all image categories and
estimate a Gamma distribution parameterized by s∗ and
b∗. For robustness, if a prototype contains too few images,
for instance, less than 3 images in our system, distances
computed from these images are not used. (3) Construct a
mixture model for each image category using Equation (7).

3. THE ANNOTATIONMETHOD
Let the set of distinct annotation words for the M

concepts be W = {w1, w2, ..., wK}. In the experiment with
the Corel database as training data, K = 332. Denote the
set of concepts that contain word wi in their annotations
by C(wi). For instance, the word ‘castle’ is among the
description of concept 160, 404, and 405. Then C(castle) =
{160, 404, 405}.

To annotate an image, its signature s is extracted first.
We then compute the probability for the image being in

each concept m:

pm(s) =
ρmf(s | Mm)PM
l=1 ρlf(s | Ml)

, m = 1, 2, ...,M ,

where ρm are the prior probabilities for the concepts and are
set uniform. The probability for each word wi, i = 1, ..., K,
to be associated with the image is

q(s,wi) =
X

m:m∈C(wi)

pm(s) .

We then sort {q(s, w1), q(s, w2), ..., q(s, wK)} in descending
order and select top ranked words. Figure 4(c) shows
the sorted posterior probabilities of the 599 semantic
concepts given each of three example images. The posterior
probability decreases slowly across the concepts, suggesting
that the most likely concept for each image is not strongly
favored over the others. It is therefore important to quantify
the posterior probabilities rather than simply classifying an
image into one concept.

To further improve computational efficiency for real-time
annotation, the Mallows distance between an image to be
annotated and each prototype is first approximated by
the IRM distance [24], which is much faster to compute.
Then, for a certain number of prototypes that are closest
to the image according to IRM, the Mallows distances are
computed precisely. Thus, the IRM distance is used as a
screening mechanism rather than a simple replacement of
the more complex distance. Invoking this speed-up method
causes negligible change on annotation results.

4. EXPERIMENTAL RESULTS
The training process takes an average of 109 seconds CPU

time, with a standard deviation of 145 seconds, for each
category of 80 training images on a 2.4 GHz AMD processor.

Annotation results for more than 54, 700 images created
by users of flickr.com are viewable at the Website:
alipr.com. This site also hosts the ALIPR demonstration
system that performs real-time annotation for any online
image specified by its URL. Annotation words for 12 images
downloaded from the Internet are obtained by the online
system and are displayed in Figure 5. Six of the images
are photographs and the others are digitized impressionism
paintings. For these example images, it takes a 3.0 GHz Intel
processor an average of 1.4 seconds to convert each from the
JPEG to raw format, abstract the image into a signature,
and find the annotation words.

It is not easy to find completely failed examples. However,
we picked some unsuccessful examples, as shown in Figure 6.
In general, the computer does poorly (a) when the way an
object is taken in the picture is very different from those in
the training, (b) when the picture is fuzzy or of extremely
low resolution or low contrast, (c) if the object is shown
partially, (d) if the white balance is significantly off, and (e)
if the object or the concept has not been learned.

To numerically assess the annotation system, we manually
examined the annotation results for 5,411 digital photos
deposited by random users at flickr.com. Due to limited
space, we will focus on reporting the results on these images.

Although several prototype annotation systems have been
developed previously, a quantitative study on how accurate
a computer can annotate images in the real-world has never
been conducted. The existing assessment of annotation



people, man-made, car, flower, plant, rose, indoor, food, dessert,

landscape, bus, boat, cactus, flora, grass, man-made, bath, kitchen,

sport, royal guard, ocean landscape, water, perennial texture, landscape, bead

landscape, building, historical, grass, people, animal, grass, animal, wild life,

mountain, man-made, indoor, horse, rural, dog, sport, people, rock,

people, lake, animal landscape, tribal, plant tree, horse, polo

texture, indoor, food, landscape, indoor, color, grass, landscape, house,

natural, people, animal, sky, sunset, sun, rural, horse, animal,

landscape, rock, man-made bath, kitchen, mountain people, plant, flower

people, landscape, animal, man-made, indoor, painting, grass, landscape, tree,

cloth, female, painting, people, food, fruit, lake, autumn, people,

face, male, man-made mural, old, poster rural, texture, natural

Figure 5: Automatic annotation for photographs and paintings. The words are ordered according to estimated
likelihoods. The photographic images were obtained from flickr.com. The paintings were obtained from online
Websites.

accuracy is limited in two ways. First, because the
computation of accuracy requires human judgment on the
appropriateness of each annotation word for each image, the
enormous amount of manual work has prevented researchers
from calculating accuracy directly and precisely. Lower

bounds [13] and various heuristics [1] are used as substitutes.
Second, test images and training images are from the same
benchmark database. Because many images in the database
are highly similar to each other, it is unclear whether the
models established are equally effective for general images.



(a) building, people, water, (b) texture, indoor, food, (c) texture, natural, flower, (d) texture, painting, flower,

modern, city, work, natural, cuisine, man-made, sea, micro image, fruit landscape, rural, pastoral,

historical, cloth, horse fruit, vegetable, dessert food, vegetable, indoor plant, grass, natural

User annotation: photo, User annotation: User annotation: me, User annotation: 911,

unfound, molly, dog, animal phonecamera, car selfportrait, orange, mirror records, money, green, n2o

Figure 6: Unsuccessful cases of automatic annotation. The words are ordered according to estimated
likelihoods. The photographic images were obtained from flickr.com. Underlined words are considered
reasonable annotation words. Suspected problems: (a) object with an unusual background, (b) fuzzy shot,
(c) partial object, wrong white balance, and (d) unlearned object or concept.
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Figure 7: Annotation performance based on manual evaluation of 5, 411 flickr.com images. (a) Percentages
of images correctly annotated by the nth word. (b) Percentages of images correctly annotated by at least
one word among the top n words. (c) Histogram of the numbers of correct annotation words for each image
among the top 15 words assigned to it.

Our evaluation experiments, designed in a realistic manner,
will shed light on the level of intelligence a computer can
achieve for describing images.

A Web-based evaluation system is developed to record
human decision on the appropriateness of each annotation
word provided by the system. Each image is shown together
with 15 computer-assigned words in a browser. A trained
person, who did not participate in the development of the
training database or the system itself, examines every word
against the image and checks a word if it is judged as correct.
For words that are object names, they are considered correct
if the corresponding objects appear in an image. For more
abstract concepts, e.g., ‘city’ and ‘sport’, a word is correct
if the image is relevant to the concept. For instance, ‘sport’
is appropriate for a picture showing a polo game or golf, but
not for a picture of dogs. Manual assessment is collected
for 5, 411 images at flickr.com. Optimism in performance
evaluation is avoided by employing independently acquired
training and testing images.

Annotation performance is reported from several aspects
in Figure 7. Each image is assigned with 15 words listed
in the descending order of the likelihood of being relevant.
Figure 7(a) shows the accuracies, that is, the percentages
of images correctly annotated by the nth annotation word,

n = 1, 2, ..., 15. The first word achieves an accuracy of
51.17%. The accuracy decreases gradually with n except for
minor fluctuation with the last three words. This reflects
that the ranking of the words by the system is on average
consistent with the true level of accuracy. Figure 7(b) shows
the coverage rate versus the number of annotation words
used. Here, coverage rate is defined as the percentage of
images that are correctly annotated by at least one word
among a given number of words. To achieve 80% coverage,
we only need to use the top 4 annotation words. The top
7 and top 15 words achieve respectively a coverage rate
of 91.37% and 98.13%. The histogram of the numbers
of correct annotation words among the top 15 words is
provided in Figure 7(c). On average, 4.1 words are correct
for each image.

5. CONCLUSIONS AND FUTUREWORK
Images are a major media on the Internet. To ensure

easy sharing of and effective searching over a huge and
fast growing number of online images, real-time automatic
annotation by words is an imperative but highly challenging
task. We have developed and evaluated the ALIPR,
Automatic Linguistic Indexing of Pictures - Real Time,
system. Our work has shown that the computer can



annotate general photographs with substantial accuracy by
learning from a large collection of example images. Novel
statistical modeling and optimization methods have been
developed for establishing probabilistic associations between
images and words. By manually examining annotation
results for over 5, 400 real-world pictures, we have shown
that more than 51% of the images are correctly annotated
by their highest ranked words alone. When the top 15 words
are used to describe each image, above 98% of the images
are correctly annotated by some words.

There are many directions future work can take to improve
the accuracy of the system. First, the incorporation of
3-D information in the learning process can potentially
improve the models. This can be done through learning
via stereo images or 3-D images. Shape information can be
utilized to improve the modeling process. Second, better
and larger amount of training images per semantic concept
may produce more robust models. Contextual information
may also help in the modeling and annotation process.
Third, the applications of this method to various application
domains including biomedicine can be interesting. Finally,
the system can be integrated with other retrieval methods
to improve the usability.
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