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Abstract

Internet piracy has been one of the major concerns for Web publishing. In this study we
present a system, RIME, that we have prototyped for detecting unauthorized image copying
on the World-WideWeb. To speed up the copy detection, RIME uses a new clustering/hashing
approach that �rst clusters similar images on adjacent disk cylinders and then builds indexes
to access the clusters made in this way. Searching for the replicas of an image often takes just
one IO to look up the location of the cluster containing similar objects and one sequential
�le IO to read in this cluster. Our experimental results show that RIME can detect image
copies both more e�ciently and e�ectively than the traditional content-based image retrieval
systems that use tree-like structures to index images. In addition, RIME copes well with
image format conversion, resampling, requantization, and geometric transformations.
Keywords: clustering, copy detection, multidimensional indexes, similarity search.

1 Introduction

Advancement in the internet and World-Wide Web technology has led to the growth of informa-
tion dissemination at an unprecedent pace. The resulting more and more e�cient distribution of
data, however, has increased the problems associated with copyright enforcement [11].

Many studies have proposed schemes for detecting copies of text documents [5, 22]. In this
paper, we present an image copy detection service. We call this service RIME, for Replicated
IMage dEtector. Given an image registered by its creator or distributor, RIME checks if near-
replicas of the image (i.e., copies of the image that may have gone through altercations such
as format conversion, resampling, requantization, and geometric transformations) exist on the
internet and returns a list of suspect URLs. The creator or distributor of the image can then
check if the suspect images are indeed unlawful copies (for instance by using watermarks).

Since images are characterized by high-dimensional feature vectors (RIME characterizes im-
ages using 192 wavelet coe�cients), searching near-replicas of an image means essentially search-
ing vectors in the neighborhood of the given image vector in high-dimensional spaces. A \brute-
force" way to perform similarity queries is to read in all images, compute their distances to the
query image, and select the closest images. However, the running time of this approach is propor-
tional to the dimension (D) and size (N) of the dataset, or O(ND), which can be very large. A
logical way to improve upon this brute-force method is to reduce the search space. Many tree-like
structures (e.g., R-trees, RStar-trees, TV-trees, SS-trees, SR-trees, X-trees, PK-trees, etc.) have
been proposed to achieve search space reduction. However, recent studies [26, 28] point out that
these tree-like structures su�er from the curse of dimensionality in that the time to traverse the
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index structure to �nd the neighboring blocks (e.g., by using the branch-and-bound algorithm)
and the number of neighboring blocks to check for similar images grow exponentially with the
data dimension. Kleinberg [16] shows that, theoretically, using the brute-force algorithm provides
a faster query time than using these indexing structures when D � logN . Worse yet, we show in
Section 2 that when the data dimension is high, the traditional tree-like structures disperse the
similar objects randomly on the disk. This random data placement together with the exponen-
tial growth of IOs makes these tree-like index structures very ine�cient in performing similarity
search in high-dimensional spaces.

In this paper, we present a new similarity search paradigm: a clustering/indexing combined
scheme. Both clustering and indexing have been intensively researched, but these two subjects
have been studied separately for di�erent optimization objectives: clustering optimizes classi�ca-
tion accuracy while indexing minimizes the storage requirement and the number of IOs. Because
of these con
icting goals, the indexing schemes often do not preserve the clusters of the dataset
and project objects that are close (hence similar) in high-dimensional spaces onto a 2D plane
(the disk geometry) randomly. This is analogous to breaking a vase (cluster) apart to �t it into
minimum number of small packing boxes (disk blocks). Although the space required to store the
vase may be reduced, �nding the boxes in a high-dimensional warehouse to restore the vase is an
astronomical job.

Given a large set of images, the data space is usually not uniformly occupied [21, 29]. Data
clustering identi�es the distribution patterns of the dataset and groups similar images into clus-
ters. Therefore, we propose to store these clusters of similar images contiguously on disk and
build indexes to locate them. Our clustering/indexing scheme �rst divides feature spaces into
small cells like the longitudes and latitudes that divide a map into small sub-regions. These
cells are used for clustering records that are similar and then for indexing the clusters. In the
clustering phase, we tally the number of images residing in each cell and then group adjacent cells
containing images into clusters. One can build a hierarchy of clusters by changing the resolution
of the grid; that is, the �ner the grid, the smaller the cell, and the �ner the resulting clusters.
(This clustering method is similar to using rectangles to approximate polynominal functions of
any degree in calculus.) To improve IO e�ciency, we store the �nest grained clusters (we call
them mountains) as individual sequential �les and, as much as possible, the coarser-grained clus-
ters (we call them islands, continents, etc.) in the same cylinder group. After the clusters are
formed, the algorithm builds a mapping table for indexing the clusters. To answer a similarity
query, we �rst hash the query image's feature vector to obtain its cell ID. Using the cell ID, we
�nd the cluster where the query image resides by using the mapping table. The total number
of IOs for a similarity query is usually two: one IO for the cluster lookup and one sequential
�le IO to read in the cluster. Intuitively, if an image has been replicated on the web, a cluster
containing the image and its replicas is formed and the replicas can thus be found. If the query
image is an outlier (i.e., no mountain contains the image), then the image may not have been
copied. Therefore, this clustering/indexing scheme not only achieves high search e�ciency, but
also attains high copy detection accuracy.

Clustering data poses many challenges. We present the parameters that a�ect the size and
the number of the clusters and outline the procedure to tune the parameters. Building indexes
to support fast lookup in high-dimensional spaces and to conserve storage space at the same time
is also a nontrivial task. We maintain a heap structure that keeps the size of the index structure
linear with respect to the size of the database.

Summarize the contributions of this study:

� We propose the idea of mapping the data clusters onto storage clusters and building indexes
to access the clusters made in this way.
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� We present the algorithm to form the clusters and steps to adapt to the distribution of the
dataset.

� We show that a similarity query can be conducted e�ciently by the algorithm returning
the cluster near the query image.

� We demonstrate that our index structure can support query re�nement e�ectively.

We have built a Replicated IMage dEtector (RIME) prototype using the techniques presented
in this paper to detect unlawful copy images. Our experimental results show that RIME can
discover almost all suspect images (with format conversion, resampling, requantization, and
geometric transformation) in the database. The prototype is available on the Web [1].

1.1 Related Work

Nearest-neighbor search techniques have been used to implement similarity search in high-
dimensional spaces. However, due to the curse of dimensionality, some recent studies suggest
doing similarity search only approximately. For example, White and Jain [28] suggest returning
only the bucket of data in which the query object resides. This approach is fast but can su�er from
very low recall and hence is not acceptable for detecting image replicas. Kleinberg [16] proposes
two approximation algorithms that can run in O((D log2D)(D + logN)) and O(N +D log3N)
time. Two other approaches have also been proposed to deal with the curse of dimensionality:
reducing the dimensionality and using parallel resources. These techniques make implementation
feasible for some high-dimensional applications, but neither technique confronts the core issue
directly.

At a �rst glance, image copy detection may be done by the traditional content-based image
retrieval databases such as QBIC [10], Virage [13], VisualSEEk [23], and WISE [25], which retrieve
images similar to a given one. However, these systems may su�er from the curse of dimensionality
if they employed the traditional tree-like structures to search image replicas precisely, or they
may su�er from poor recall if they employed the approximate search approach proposed in [28].
The clustering/indexing approach we propose in this paper avoids the curse of dimensionality
by clustering similar images on disk. Although our clustering/indexing approach also performs
similarity search approximately, it enjoys much higher recall since if replicas exist, a cluster is
likely to form and thereby be detected.

Clustering techniques have been studied in statistics, machine learning, and database com-
munities, all of which have focused on di�erent aspects of the techniques. In the machine learning
community, Self-Organizing Map (SOM) [17] and k-Mean are the most popular techniques devel-
oped for non-supervised training. SOM forms clusters given the size of a map and k-Mean forms
clusters given the value of k (the number of clusters). But the best map size and the best value of
k for a given dataset is di�cult to learn. Consequently, these techniques may fragment what we
call the natural clusters of the dataset. For instance, if the number of the natural clusters is not
equal to k but we force the algorithm to generate k clusters, the resulting clusters may fragment
the natural clusters. Indeed, our experimental results reported in [6] using Vector Quantization
(VQ) [12] (a variant of k-Mean for high-dimensional data) show that VQ su�ers from lower recall
than that of the scheme proposed in this paper.

Recent clustering work in the database community includes CLARANS [19], BIRCH [29],
DBSCAN [9], and CLIQUE [2]. These techniques have high degree of success in identifying
clusters in a very large dataset, but they do not deal with search and retrieval e�ciency. BIRCH,
for example, uses a tree-like structure to form clusters. Since each leaf is limited to the page size,
a cluster may have to be split to be stored on random parts of the disk.
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Finally, many studies have proposed using watermark schemes to safeguard image copyright.
These schemes add to the images the creator's or the distributor's identity. A watermark, how-
ever, is vulnerable to image processing, geometric distortions, and subterfuge attacks [8]. In
addition, working with a large variety of watermark schemes increases the detection time dras-
tically since for each internet image we may need to process it many times, each time with a
di�erent watermark scheme. Safeguarding copyright by checking the image directly has two dis-
tinct advantages: although a copied image can also be altered, it is unlikely that a pirate will
change the image substantially and thereby lose its original appearance, and each image needs
to be pro�led only once. We believe that the watermark still plays an important role in authen-
ticating images in courts of laws. After using our approach to provide the creator or distributor
with a suspect list, the actual owner of the images can use watermark or other authentication
techniques to prove ownership.

The rest of the paper is organized as follows: Section 2 shows the shortcomings of the tra-
ditional index structures in performing similarity queries in high-dimensional spaces. Section 3
presents our clustering/indexing algorithm. In Section 4, we show how a similarity query is
conducted using our scheme. Section 5 brie
y describes a prototype, RIME, that has been
built for detecting image replicas on the Web and evaluates our clustering/indexing scheme both
experimentally and analytically. Finally, we o�er our conclusions in Section 6.

2 Traditional Index Structures

Many tree-like structures have been proposed to index high-dimensional data (e.g., R�-tree [3, 14],
SS-tree [27], SR-tree [15], TV-tree [18], X-tree [4], M-tree [7], and K-D-B-tree [20]). In this section
we discuss the shortcomings of using these tree-like structures in conducting similarity queries in
high-dimensional spaces.

A tree-like structure divides the high-dimensional space into a number of sub-regions, each
containing a subset of objects that can be stored in a small number of disk blocks. Given a vector
that represents an object, a similarity query takes the following steps in most systems [24]:

1. It performs a where-am-I search to �nd out in which sub-region the given vector resides.

2. It then performs a nearest-neighbor search to locate the neighboring regions where similar
vectors may reside. This search is often implemented using a range search, which locates
all the regions that overlap with the search sphere, i.e., the sphere centered at the given
vector with a diameter d.

3. Finally, it computes the Euclidean distances between the vectors in the nearby regions
(obtained from the previous step) and the given vector. The search result includes all the
vectors that are within distance d from the given vector.

The performance bottleneck of similarity queries lies in the �rst two steps.1 In the �rst step,
if the index structure does not �t in the main memory and the search algorithm is ine�cient,
a large portion of the index structure must be fetched from the disk. In the second step, the
number of neighboring sub-regions can grow exponentially with respect to the dimension of the
feature vectors. If D is the number of dimensions, the number of neighboring subregions can be
on the order of O(2D) [24] Reading in the data from all neighboring regions can thus take an
exponential number of IOs.

1To reduce search cost, some systems perform only the where-am-I lookup step and return all images in the
same disk block where the query image is stored. This approach is not acceptable for applications like image copy
detection [6] since having high recall is critical for the success of the system.
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Figure 1: Clustering by Indexing
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Figure 2: Random Placement Example

In addition to the large number of IOs, these IOs can be random and hence exceedingly
expensive. An example can illustrate what we call the random-placement syndrome that the
traditional index structures face. Figure 1 shows a 2D Cartesian space divided into 16 equal
stripes in both the vertical and the horizontal dimensions, forming a 16� 16 grid structure. The
integer in a cell indicates how many points (objects) are in the cell. Most index structures divide
the space into sub-regions of equal points in a top-down manner. Suppose each disk block holds
40 objects. One way to divide the space is to �rst divide it into three vertical compartments,
left, middle, and right, and then to divide the left compartment horizontally. We are left with
four sub-regions A, B, C, and D containing about the same number of points. Given a query
object residing near the border of A, B and D, the similarity query has to retrieve blocks A, B
and D. This problem is analogous to having very short aisles in a library so that similar books
must be shelved on di�erent aisles. To �nd similar books, one must walk many aisles. For the
index structure, the number of aisles (sub-regions) to look up for the neighboring points grows
exponentially with respect to the data dimension. Furthermore, since in high-dimensional spaces
the aisles cannot be arranged in a manner sequential to all possible query objects, the IOs must
be random. Figure 2 shows a 2D example of this random phenomenon. The numbers in the
�gure represent the cell IDs. If a query point falls among cells 1, 2, 5, and 6 (point A in the
�gure), we wish these cells to be contiguous on disk so that the IO can be sequential. Suppose
they are indeed contiguous on disk. Then a query point that falls among cells 2, 3, 6, and 7
(point B in the �gure) must su�er from random IOs since it is impossible to keep these blocks,
too, contiguous on disk. When the dimension is large, the neighboring blocks of a given object
are scattered randomly on disk.
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We summarize the shortcomings of the traditional structures for indexing in high-dimensional
spaces as follows:

1. The search cost is high when the index structure cannot �t in the memory due to large D
(number of dimensions) and large N (database size).

2. The cost of retrieving the blocks containing the neighboring objects can be very high
because of the randomness and exponential growth of IOs.

To reduce the search cost, we propose a hashing approach. To overcome the random-
placement syndrome we propose clustering and placing only similar objects in the same disk
track or cylinder to make IOs sequential. We discuss our proposal in detail in Section 3.

3 Clustering for Indexing

In this section, we describe our clustering and indexing scheme. The main ideas of our scheme
are to

� Cluster similar data on disk to minimize disk latency for retrieving similar objects, and

� Use hashing, rather than tree-like structures, to index clusters, thereby minimizing the cost
of looking up a cluster.

Our approach consists of three steps:

1. We divide the ith dimension into 2� stripes. In other words, at each dimension, we choose
2��1 points to divide the dimension. (We describe how to adaptively choose these dividing
points in Section 3.4.) This way, using a small number of bits (� bits in each dimension)
we can encode to which cell a feature vector belongs. Figure 3 shows a 2D sample grid
structure that divides both x and y dimensions into 16 evenly divided stripes.

2. We group the cells into clusters. A cell is the smallest building block to construct clusters
of di�erent shapes. This is similar to the idea in calculus of using small rectangles to
approximate polynominal functions of any degree. The �ner the stripes, the smaller the
cells and the �ner the building blocks that approximate the shapes of the clusters (details
described in Section 3.1). Each cluster is stored as a sequential �le on disk.

3. We build an index structure to refer to the clusters. A cell is the smallest addressing unit.
A simple encoding scheme can hash an object to a cell id and retrieve the cluster it belongs
to in one IO (details described in Section 3.2).

3.1 CF Clustering Algorithm

To perform e�cient clustering in high-dimensional spaces, we propose the algorithm cluster-
forming (CF). To illustrate the procedure, Figure 3 shows some points distributed on a 2D evenly
divided grid. The CF algorithm works in the following way:

1. CF �rst tallies the height (the number of objects) of each cell.
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Figure 4: CF Example

2. CF starts with the cells with the highest point concentration. These cells are the peaks of
the initial clusters. (In the example in Figure 3, we start with the cells marked 7.)

3. CF descends one unit at a time. At each height, a cell can be in one of three conditions: it
is not adjacent to any cluster, it is adjacent to only one cluster, or it is adjacent to more
than one cluster. The corresponding actions that CF takes are

(a) If the cell is not adjacent to any cluster, the cell is the seed of a new cluster.

(b) If the cell is adjacent to only one cluster, we join the cell with the cluster.

(c) If the cell is adjacent to more than one cluster, the CF algorithm invokes the cli�-
cutting algorithm (CC) to determine to which cluster the cell belongs, or if the clusters
should be combined.

4. CF terminates when the height drops to a threshold, which we call the horizon. The cells
that do not belong to any cluster (i.e., that are below the horizon) are grouped into an
outlier cluster and stored in one sequential �le.

Figure 4 shows the result of applying the CF algorithm to the data presented in Figure 3. In
contrast to how the traditional indexing schemes split the data (shown in Figure 1), the clusters
in Figure 4 follow what we call the natural clusters of the dataset.
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The formal description of the CF algorithm is presented in Figure 5. The input to CF includes
the dimension (D), the number of bits to encode each dimension (�), the threshold to terminate
the clustering algorithm (�), and the dataset (P ). The output consists of a set of clusters (�)
and a heap structure (H) sorted by cell ID for indexing the clusters. For each cell that is not
empty, we allocate a structure C that records the cell ID (C:id), number of points in the cell
(C:#p), and the cluster the cell belongs to (C:�). The cells are inserted into the heap. CF is a
two-pass algorithm. After the initialization step (step 0), its �rst pass (step 1) tallies the number
of points in each cell. For each point p in the data set P , it hashes the point into a cell ID.
It then checks if the cell exists in the heap (by calling the procedure HeapFind, which can be
found in a standard algorithm book). If the cell exists, the algorithm increments the point count
for the cell. Otherwise, it allocates a new cell structure, sets the point count to one, and inserts
the new cell into the heap (by calling the procedure HeapInsert, also in standard textbooks).
Both HeapFind and HeapInsert run in O(lgN) time. Therefore, the running time of the �rst
pass is thus O(NlgN).

In the second pass, the CF algorithm clusters the cells. In step 2 in the �gure, CF copies
the cells from the heap to a temporary array S and then in steps 3 and 4 sorts the cells in the
array in descending order on the point count (C:#p). In the �fth step, the algorithm checks if a
cell is adjacent to some existing clusters starting from the cell with the greatest height down to
the termination threshold �. If a cell is not adjacent to some existing clusters, a new cluster �
is formed in step 5.2(a). The CF algorithm records the centroid cell for the new cluster in �:C
and inserts the cluster into the cluster set �. If the cell is adjacent to more than one cluster, the
algorithm calls the procedure CC (cli� cutting) in step 5.2(b) to determine which cluster the cell
should join. (Procedure CC is described shortly.) In step 5.3, the cell joins the identi�ed cluster
(new or existing). Finally, the cells that are below the threshold are grouped into one cluster in
steps 6 to 8 as outliers. Let jH j denote the number of cells in the heap H: The running time of
the second pass is �(jH j2) because for each cell the algorithm needs to check the cells that are
\higher" than that cell (jH j=2 cells on average). Notice that the value of jH j depends only on
how the N points are clustered and is independent from D. The storage requirement of CF is
O(ND), which we discuss this requirement in Section 3.2 in conjunction with discussion of the
storage requirement for the object-to-cluster mapping table.

If a cell is adjacent to more than one cluster, the cli�-cutting (CC) algorithm determines to
which cluster the cell belongs according to the following heuristics:

1. If the cell has a height only slightly below the peaks (e.g., one third from the peaks) of some
adjacent clusters, CC combines these clusters.

2. If the neighboring cells of di�erent clusters have the same altitude, CC joins the cluster with
the smaller number of objects to make the points more evenly distributed.

3. Otherwise, CC connects the cell to a random adjacent cluster.

Many other heuristics exist. For instance, some boundary cells can be replicated in more than one
cluster. Which rules are \better" depend on the dataset and the precision/recall requirements of
the application.

3.2 Indexing the Clusters

After the clusters are formed, the �nal step is to build indexes to support fast access to them.
Two structures are needed for book-keeping: a mapping table is maintained to map an object
(represented by a vector) to a cluster and a cluster directory is built to record the information
for the clusters.
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The Cluster Forming Algorithm

� Input:
�D, �, �, P ;

�Output:
��; /* cluster set */

�H ; /* heap */

�Variables:
� � ,  , S;

�Execution Steps:
0: Init:
  0; � ;; S  ;;

1: for each p 2 P
1.1: �  Hash(p); /* hash the point into a cell id */

1.2: C  HeapFind(H; �)

1.3(a): if (C 6= nil)
C:#p C:#p+ 1;

1.3(b): else
new C;

C:id � ; C:#p 1;

HeapInsert(H;C);

2: S  fCjC 2 Hg;

3: Sort(S); /* sort cells in descending order on C:#p */

4: i 0; C  S[i];

5: while ((C 6= nil) and (C:#p � �))
5.1: 	 FindNeighborClusters(S;C:id)

5.2(a): if (	 = ;) /* not attach to any cluster */
new �; /* create a new cluster */

�:C  C:id;

� � [ f�g;

5.2(b): else If (j	j > 1)
�  CC(C;	;�; H; S);

5.3: C:� �;

5.4: i i+ 1;

6: new �; �:C  0;

7: � � [ �;

8: for (C = S[i];C 6= nil; i++) C:id �;

Figure 5: The Cluster Forming (CF) Algorithm
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The size of the mapping table is proportional to the size of the heap. The heap records the
information about each cell. In the worst case, we have one cell for each point, so we can have
at most N cell structures. Each cell structure records the cell ID, the point count, cluster ID,
and some pointers for heap maintenance. The storage requirement for point count, cluster ID,
and pointers is a small constant. The size of the cell ID is proportional to the data dimension D.
The total storage requirement for the heap is thus on the order of O(ND). Given an object in
this heap, the time to look up a cluster is O(lnN). In contrast to the tree-like index structures
(shown in Section 2), our technique does not have a large memory requirement since we only
read the block that contains the cell into memory when a search is conducted. The table's disk
storage requirement is comparable to the tree-like index structures.

The second structure needed is a cluster directory. The cluster directory records for each
cluster its ID, the name of the �le in which the cluster stores the objects, and the cluster's
centroid cell IDs. (The centroid cells are those with the highest point population.) Figure 4 in
Section 4 shows an example of these data structures and how they are used.

3.3 Control Parameters

The granularity of the clusters is controlled by four parameters:

� D: the number of data dimensions or object features.

� �: the number of bits used to encode each dimension.

� N : the number of objects.

� �: the horizon parameter.

The number of cells is determined by parameters D and � and can be written as 2D��. The
average population of a cell is thus N

2D��
. Two factors decide the desired point density. On the

one hand, we do not want to have low point density because it results in a large number of cells
but a relatively small number of points in each cell. Having low point density tends to create
many small clusters. On the other hand, we do not want to have densely populated cells either.
Having high point density results in a small number of very large clusters that cannot help us
to tell objects apart. Changing the value of � a�ects the resolution of the grid and hence a�ects
the number and the size of the clusters.

The value of � also a�ects the number and the size of the clusters. Figure 6 shows an
example in a one-dimensional space. The horizontal axis is the cell number and the vertical
axis the number of points in the cells. The � value set at the \A" level threshold forms three
mountains (the shaded areas). The cells that do not belong to any mountain are clustered into
a lake. Note that if we reduce the threshold, we may increase the mountain number or size,
and decrease the size of the lake. We have two aims. On the one hand, we want the lake to
be relatively small in terms of the number of points that fall into the lake to �t it into a few
sequential disk blocks for IO e�ciency. On the other hand, we want the lake to be relatively
large in terms of the space it covers to keep the mountains well separated. The system should
tune the values of � and � properly by considering the data distribution and the desirable cluster
size.
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3.4 Adaptive Clustering

Due to the uneven distribution of the objects, it is possible that some areas are sparsely populated
and others densely populated. To handle this situation, we need to be able to perform adaptive
clustering.

Suppose we divide each dimension into 2� stripes. For densely populated stripes, we can
increase the quantization level. For instance, we can divide the regions with more points into
smaller substripes. This way, we may avoid very large clusters, if such is desirable. In a way, this
approach is similar to the extensible hashing scheme: for buckets that have too many points, the
extensible hashing scheme splits the buckets. In our case, we can build clusters adaptively with
di�erent resolutions by choosing the dividing points carefully based on the data distribution. For
example, for image feature vectors, since the luminescence is neither very high nor very low in
most pictures, it makes sense to divide the luminescence spectrum coarsely at the two extremes
and �nely in the middle.

To summarize, CF is a bottom-up clustering algorithm that can approximate the cluster
boundaries to any �ne detail and is adaptive to data distributions. Since each cluster is stored
contiguously on disk, a cluster can be accessed with much more e�cient IOs than in traditional
index-structure methods.

4 Similarity Search

Given a query object, we �rst map the object to a cluster using the mapping table. To illustrate,
Figure 7 shows a simple 2D example.2 Each cell is represented by a binary code starting from
the x-axis and then the y-axis. For instance, the cell 0001 is at the intersection of the left-most
stripe on the x-axis and the second stripe from the top on the y-axis. Figure 8 shows the index
structures for the example. At the left side of the �gure is the cell-to-cluster mapping table (we
show the table uncompressed). Once the cluster is found, we use the cluster directory in the
middle of the �gure to �nd the sequential �le where the cluster is stored.

In this example, the � value is set to 3. The non-empty cells with a point population below
3 are thus clustered into a lake. (Note that empty cells do not take up space in the mapping
table.) We have three clusters: two mountains and one lake. Mountain #1 consists of cells 0000
and 0100, and mountain #2 consists of cells 0110, 1010, 1110, and 1011. The cluster directory

2Our technique is most e�ective when the data dimension is high. However, we are constrained to use a
low-dimensional example to illustrate our technique.
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shows three clusters. The centroids of mountain #1 and #2 are cells 0000 and 1010, respectively.
The names of the �les storing the clusters are also recorded in the directory.

Given a query object, we �rst quantize its x and y attributes into a four-bit code. We then
look up in the mapping table on which cluster the object resides. If the query object falls on a
mountain, we read in the disk blocks belonging to the mountain sequentially from the disk, rank
the points using some distance functions, then present the result to the user. For instance, if the
query object is hashed into the 0000 cell, we return those 13 objects on mountain #1 in some
sorted order.

4.1 Query Re�nement

Supporting query re�nement is important for similarity queries. Users may not at all know what
they are looking for in the �rst place, so the queries must be interactive. If the query object
belongs to a mountain cluster, returning the mountain is likely to satisfy the user. If the query
object does not belong to any mountain cluster, then the user needs to have a way to progressively
move toward his/her desired result.

When the query object does not belong to a mountain, it falls into a lake. For example, a
query object belonging to cell 0001 falls into the lake (shown in Figure 7). Although a lake may
contain objects from far-away cells, some distance functions can help �lter out those objects. At
the same time, we can obtain samples from the near-by mountains by retrieving their centroid
cells (the objects in the centroid are stored near the beginning of the cluster's �le). For instance,
if the query object falls into cell 0001, we return all points in the lake and the points in cells
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Figure 9: The Results of Querying Image #29974

0000 (centroid of mountain #1) and 1010 (centroid of mountain #2). If the user picks an object
residing on, say, mountain #1, then the subsequent re�nement returns all points belonging to
this mountain.

5 Evaluation

We evaluate the e�ectiveness of our clustering/indexing scheme in two parts. First, we show
some experimental results using the prototype we have built to detect image near-copies. Second,
through analysis we show the reasons why our scheme can detect image replicas both e�ciently
and e�ectively.

5.1 Experimental Results

We built an image database with about 30; 000 images. For each image we prepared its feature
vector in three steps. First, we converted the image into a canonical size and format. Second,
we applied Daubechies' wavelet transformation on the image to produce coe�cients. Finally, we
stored the selected 8 � 8 wavelet coe�cients in three color spaces, C1, C2, and C3, respectively
as the image's feature vector. For the detailed steps of feature vector preparation, please refer
to [6].

To cluster the dataset properly we tuned parameters � and � iteratively to calibrate the
clustering algorithm and thereby to �nd the patterns in the dataset. We experimented with
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di�erent values of � and � to adjust the cluster size and cluster number. When � was set to
two (four stripes per dimension) and � to one, we obtained 215 clusters with an average size of
139 images. Most similar images fall into the same cluster, which shows that our method can be
more accurate than the the vector quantization method reported in [6] to index the same set of
images.

For testing the accuracy, we inserted a sequence of 10 images modi�ed from the same image
to the database of 30,000 images. The image was processed through sharpening, softening,
despeckling, posterizing, and watercoloring, and requantization. Figure 9 shows a sample query
result obtained from the system. The image at the top and at the upper-left corner of the query
result in the �gure is the query image. We were able to detect all ten near-replicas. This result
is better than our previous attempt using the VQ technique to index the feature vectors, where
only 80% of the near-replicas were detected. Due to the limited space, we cannot report all our
experimental results. However, our prototype is available on-line [1] for the readers to conduct
veri�cation and further experiments.

We close our experiment report with two notes. First, in addition to the accuracy, RIME
returns query results (including locating the cluster, reading in the cluster from disk, computing
and ranking the results, and returning the top 20 similar images) very fast, in about two seconds.
However, if the test is run at a remote site with a slow network connection, the transmission
delay of the results may take a few more seconds. Second, we index the images using only the
color features. We are currently adding shape and texture information to the feature vectors to
enhance the precision (and hence further reduces the IO cost) of the system.

5.2 Analysis

Let p denote the probability that the user is able to �nd the desired result in the �rst attempt,
Tread the IO time to read in the �nal desired cluster, and Trefine the IO time spent in the query
re�nement stage. The search time Tsearch can be modeled as

Tsearch = (1� p)Trefine + Tread: (1)

To minimize Tsearch, we want to maximize p as well as minimize the IO time. The value of
p is the probability that the query object is placed correctly into the cluster it belongs to. The
cost of the search is on the order of one sequential �le IO, and it depends on the average size of
the clusters.

5.2.1 Clustering Accuracy

When a query image is near the middle of a cluster, there is little chance that we can miss
detecting the near-replicas of the image. Mis-detection can happen if the query image is around
the rim of a mountain or is in a lake. In these cases, some of the query image's adjacent points
may be classi�ed into some neighboring clusters and can escape from being detected. However,
if an image has been replicated, the cell where the query image is in and its neighboring cells are
likely to contain enough points to form a cluster. In other words, the more an image is replicated,
the more likely the clustering scheme can �nd the near-replicas.

Using the tree-like structures or VQ to detect replicas approximately, on the other hand,
can miss-detecting a large number of replicas, regardless if the query image has been copied
extensively. The mis-detection results from that these techniques often fragment a natural cluster,
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Parameter Name Value

Disk Capacity 9.0 GBytes

Avg. Transfer Rate TR 15 MBytes

Avg. Rotational Latency Time 4.17 milliseconds

Min. Seek Time 1.5 millisecond

Avg. Seek Time 7.1 milliseconds

Table 1: Seagate Barracuda 9L Disk Parameters
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as we have illustrated in Figure 1. Worse yet, the more an image is replicated, the more near-
replicas of the image can be mis-detected, if these techniques return only the points in the bucket
where the query image resides.

5.2.2 Sequential versus Random IOs

Using our cluster/indexing scheme tends to read in more data than that of using the traditional
tree-like structures (i.e., lower precision). In this section we show that since the IOs performed
by our scheme are sequential, the performance is much more likely to be better. Moreover,
reading in more data helps increasing recall, which is critical for an image copy detector. The
copy detector using our scheme may have more points to evaluate after they are read into main
memory. But since IO, not in-memory distance computation, is the performance bottleneck of
the search, being able to read in more data in a sequential manner is far more important than
reading in less data in a random manner, as we illustrate next.

For a sequential read, the disk pays an average seek and an average rotational latency and
then the time to transfer S amount of data. Let 
(d) denote the seek time function, which
computes seek time given seek distance d, Trot denote the average rotational delay, and S/TR
denote the transfer time for S amount of data at transfer rate TR. A sequential IO time can be
modeled as

Tread = 
(d) + Trot + S=TR:

For a random read (by which we mean that the blocks belonging to S are scattered randomly
on the disk), the read time is the number of blocks to transfer (S=B, where B is the block size)
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times the IO time to seek and then transfer a block, or

Tread = S=B(
(d) + Trot) + S=TR:

If an elevator-like disk scheduling policy is employed, the seek distance for a random read can be
amortized among the blocks the read retrieves. Assume that two sweeps of the disk �nd all the
needed blocks (the average seek distance is 2� CY L divided by S=B).

Using the disk parameters listed in Table 1, we compare the performance of sequential versus
random IOs under di�erent data dimensions D in Figure 10. The x-axis of the �gure shows
the dimension of the data, from D = 5 to 12. The y-axis shows the IO time from retrieving 3D

number of blocks. It is obvious that the random IOs are much more expensive than the sequential
IOs. For instance, the time to read in 1; 000 random disk blocks can be used to read in 28; 000
sequential blocks. The time to read in 10; 000 random blocks (D = 9) can be used to read in
more than 300; 000 sequential blocks. It is also obvious that even a sequential �le may contain
points that are not close to the query object (i.e., lower precision), our clustering approach is
very likely to perform much better than the traditional index structures.

6 Conclusions

In this paper, we presented a new paradigm for performing similarity search for high-dimensional
data. Instead of translating a similarity search into a range search, we cluster the data and nav-
igate the search among clusters. This approach improves the IO e�ciency by clustering and
retrieving relevant information sequentially on and from the disk. It also provides a way to in-
corporate a user's relevant feedback to perform query re�nement by moving the subsequent search
towards a more relevant cluster. We have built a Replicated IMagE Copy Detector (RIME) using
this clustering algorithm. The system enjoys both high copy-detection accuracy and e�ciency.

We are currently crawling more internet images to build a much larger database to test out
the robustness of the feature vector and index structure.
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