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Image-Specific Prior Adaptation for Denoising
Xin Lu, Zhe Lin, Hailin Jin, Jianchao Yang, James. Z. Wang

Abstract—Image priors are essential to many image restoration
applications, including denoising, deblurring, and inpainting.
Existing methods use either priors from the given image (internal)
or priors from a separate collection of images (external). We
find through statistical analyses that unifying the internal and
external patch priors may yield a better patch prior. We propose
a novel prior learning algorithm that combines the strength
of both internal and external priors. In particular, we first
learn a generic Gaussian Mixture Model from a collection of
training images and then adapt the model to the given image
by simultaneously adding additional components and refining
the component parameters. We apply this image-specific prior to
image denoising. Experimental results show that our approach
yields better or competitive denoising results in terms of both
the peak signal-to-noise ratio and structural similarity.

Index Terms—Image denoising, Internal and external denois-
ing, Online-GMM, Patch-based denoising.

I. INTRODUCTION
Noise is a fundamental problem in measuring light. No

matter how good the sensors are, there is noise in images,
especially in low-light conditions. Image denoising is the
problem of reducing undesired noise in images. It has been
studied extensively over the last half century because of its
practical importance. The problem is mathematically ill-posed
and image priors are used to regularize it such that meaningful
solutions exist.

There are two kinds of image priors one can use: pri-
ors learned from the given image and priors learned from
a separate set of images. We follow the common naming
convention and refer to the former as internal priors and
the latter as external priors (or generic priors). Smoothness
and piecewise smoothness are probably the simplest form
of internal priors. They led to many successes of PDE-
based denoising algorithms in the nineties. Recently, more
interesting internal priors, such as patch self-similarity, have
been proposed. They have led to methods such as BM3D [1]
which is still regarded as one of the state-of-the-art methods
in image denoising. The obvious limitation of internal priors
is that external images are completely ignored. For instance,
for any given image, one can find similar images (at least
in terms of parts) that contain significantly less noise and
use these similar images to do a better job of denoising.
It was a breakthrough in image denoising in going beyond
internal priors to external priors. Allowing external images
opens a wide range of possible priors. Popular priors that one
learns from external images include sparse representations and
nonlinear regression functions between clean and noisy patch
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pairs. One of the top-performed image denoising algorithms
is based on external images [2]. There is one problem with
external priors: It is well known that images form a heavy-
tail distribution. No matter how large the external image set
is, some images will fall in the heavy tail, i.e., will not be
well-modeled by the learned priors. We believe this problem
prevents methods that use external images from significantly
outperforming those that do not.

There exists a natural question which is if there is a way
to combine internal and external priors. It turns out that we
are not the first to ask this question. For instance, [3] and
[4] explored similar problems. They discovered that internal
and external priors are good for different types of image
patches and proposed methods to combine them. Strictly
speaking, both [3] and [4] focus on combining internal and
external denoising algorithms rather than internal and external
priors. Instead, in this paper, we focus on priors rather than
specific denoising algorithms. It is our belief that in addition
to mathematical elegance, priors are more fundamental than
specific algorithms. One can use different denoising algorithms
with the same priors. The main idea in this work is that we
can learn generic priors from external images and adapt them
to a specific image using internal priors learned from that
image. We overcome the heavy-tail problem in external priors
by adapting generic priors to a specific image.

A. Related Work
State-of-the-art image denoising approaches leverage vari-

ous types of patch priors for regularizing the ill-posed nature
of the problem. In general, the priors can be categorized into
internal patch priors and external patch priors.

Internal patch priors refer to patch statistics derived from the
image itself. Typical examples include patch self-similarity [5],
[1], sparsity prior [6], structural similarity [7], and patch
recurrence across image scales [8]. The local patch self-
similarity has been quite successful for denoising due to its
effectiveness and simplicity. Non-Local Means [5] denoises
each pixel of an image based on the weighted average of
central pixels of similar patches. BM3D [1] exploits both
patch self-similarity and 3d transform domain collaborative
filtering, which achieves state-of-the-art performance in de-
noising. Mairal et al. [6] further advanced the patch similarity
idea with sparse coding priors. To use patch recurrence across
image scales, Zontak et al. [8] attempted to find clean versions
of noisy patches by searching similar patches across multiple
image scales. To leverage structural similarity, Dong et al. [8]
examined the structural information of the entire image and
considered the joint sparsity for noise removal.

External patch priors refer to patch statistics or denoising
operators learned from external image sets, such as statistical
distribution of image patches in natural images [9], sparse
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representation [10], global statistical prior [11], and regres-
sion functions from noisy patches to clean patches [2], [12],
[13]. Roth and Black [11] used Markov Random Field to
learn generic image priors. In [10], a dictionary learning-
based method is introduced for compact patch representation,
whereas in [9], a Gaussian Mixture Model (GMM) is learned
from external patch databases and used as a prior for de-
noising. More recent work favors mapping functions learned
through neural networks. Burger et al. [2] employed a plain
multi-layer perceptron to learn the mapping functions between
pairs of noisy patches and noise-free patches. Cho [12] applied
the Boltzmann machines to map noisy images to clean images.
In the same vein, Xie et al. [13] combined sparse coding and
deep networks pre-trained with denoising auto-encoder for the
training scheme to learn external priors.

Although internal and external priors have been widely used
in previous work, little effort has been devoted to combining
them in a principled way. In this work, we propose a novel,
unified prior model combining internal and external priors.
Most recent works, such as Mosseri et al. [4] and Burger et
al. [3], are related to ours in that they also leverage both
internal and external priors. Mosseri et al. [4] developed
a Patch-SNR measure to decide whether a noisy patch is
denoised using internal priors or external priors. Burger et
al. [3] attempted to learn a non-linear regression function that
can map two denoising results, one with the internal prior
and the other with the external prior, to produce a better
denoising result. Unlike these methods where the denoising
is conducted separately with either the internal or external
priors on image patches, we introduce a unified prior which
is fundamentally different from those methods. The prior is
general and thus can be applied to any image restoration
application. Specifically, we derive the prior in the context
of denoising. During the offline phase, a generic patch prior
is learned from an external set of natural images; and during
the online phase, we adapt the generic patch distribution to
the test image by analyzing patch statistics in the test image.
Our work is also related to EPLL [9] in that both use GMM to
represent patch distributions. The difference is that our method
adapts the generic prior to the test image while EPLL relies
on the fixed prior model, additionally, our method does not
require the reconstruction term and computationally expensive
iterations as in EPLL.

The approach proposed by Wang and Morel [14] is very
close to ours; they also adapt the generic prior, which is a
mixture model, to the test images. The difference is that their
approach conducts an “in-place” modification to the prior (i.e.,
components of the mixture model are shifted and deformed
according to image-specific information) while ours augments
the prior model by image-specific component addition (see
Section III.A for details). Lebrun et al. [15] proposes a patch-
based denoising method where a noisy patch is restored by
nearby similar patches assuming from a Gaussian model.

B. Contributions
The main contributions of the paper are the following: 1. We

propose a unified algorithm that learns a generic prior from
external images and adapts the prior to a specific image. This

is fundamentally different from combining different denoising
algorithms as done in [3], [4]. 2. We show that by adapting
a generic prior into an image-specific one, we do not need
global image reconstruction1 as done in [9]. This significantly
speeds up the algorithm.

II. MODELING PATCH STATISTICS USING GAUSSIAN
MIXTURE MODEL

This section introduces learning patch prior using Gaussian
Mixture Model. We learn the GMM model using an external
patch database (external patch statistics) and using patches in
one image (internal patch statistics), respectively. We empir-
ically analyze the internal and external GMM patch priors,
and then discuss ideas of leveraging both priors into a unified
natural image patch prior.

A. Gaussian Mixture Model

We learn finite Gaussian Mixture Model (GMM) over
natural image patches {xi} as patch priors. Using the GMM
model, the log likelihood of a given patch xi is:

p(xi) =

K∑
k=1

πkN (xi|µk,Σk) (1)

where xi is a D-dimensional vector, K is the total number of
mixture components chosen for the GMM, N is the total num-
ber of patches in the training set, and the GMM model is pa-
rameterized by mean vectors {µk}, covariance matrices {Σk},
and mixture weights of mixture components {πk}. We collec-
tively represent these parameters by Θ = {µk,Σk, πk}Kk=1,
and Θ is learned using Expectation Maximization algorithm
(EM).

In the E-Step, we calculate the posterior probability for the
component k as:

Pr(k|xi,Θ) =
πkN (xi|µk,Σk)∑K
k=1 πkN (xi|µk,Σk)

, (2)

nk =

N∑
i=1

Pr(k|xi,Θ). (3)

In the M-Step, we update the model parameters as follows:

πk = nk/N (4)

µk =

∑N
i=1 πkxi∑N
i=1 πk

(5)

Σk =

∑N
i=1 Pr(k|xi,Θ)xix

t
i

nk
(6)

We iterate over the E-Step and M-Step until convergence.

B. Building External and Internal GMM

1The “global image reconstruction” refers to using a cost function on
overlapping patches extracted from the noisy image for image denoise, rather
than merely applying denoising operators on each individual noisy patch, e.g.,
the algorithm presented in [9], Section 3.1.
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Fig. 1. Internal and external patch statistics. Given an image patch, the posterior probability of patches are computed using both the internal and external
GMM patch priors. A blue pixel indicates the patch that centered at the pixel has low probability in the external GMM model; a red pixel indicates the patch
has low probability in the internal GMM model. The figure is better viewed in color.

1) External/Generic GMM: We built a generic, external
GMM (denoted as GMMext with parameters Θext) following
the settings in [9]. We used the same image collection as
used in [9], i.e., the BSD training dataset2 (200 images in
total). We densely sampled 50K 8 × 8 zero-mean patches
for GMM model training as discussed in Section II-A3. We
set K = 200 for the external GMM model learning, and all
images are converted into gray scale in this work.

2) Internal GMM: We took the BSD test set (100 images)
for the analysis purpose, and none of the images in the BSD
test set was used for external GMM training. We built an
internal GMM model of each individual image in the BSD test
set. For each image, we extracted all 8×8 overlapping patches,
generated zero-mean patches, and trained the GMM model as
discussed in Section II-A. We let all internal GMM models
(denoted as {GMMint} with parameters {Θint}) to have the
same number of components with the external GMM model,
i.e., K = 200.

C. Internal Statistics vs. External Statistics

For each image in the BSD test set, we extracted all
8 × 8 overlapping patches. For each patch x, we computed
Prext = maxk Pr(k|x,Θext) and Print = maxk Pr(k|x,Θint)
presented in Equation 3. For some patches that have low
probabilities in the GMMext (i.e., these patches are not very
frequent across all images) but higher probabilities in GMMint
(i.e., many self-similar examples), we might be able to model
them better. There are some patches that cannot be modeled
well with either GMMext or GMMint (i.e., not self-repeating
patterns). We present example images in Figure 1, where each
pixel refers to a patch’s center pixel ((4, 4) in a 8× 8 patch).
We annotate the pixel as blue if the corresponding patch has
a low probability in GMMext, and otherwise we annotate the
pixel in red. These results indicate that we may get a better
patch prior by unifying the GMMint and GMMext priors.

2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
3We represent a patch by a D-1 vector, and zero-mean patches refers to

the mean-subtracted patches.

III. DENOISING WITH IMAGE-SPECIFIC PRIOR

Based on our analysis of the patch statistics in Section II,
we propose a novel method to learn image-specific prior
by unifying internal and external GMM image patch priors.
Figure 2 gives an overview of our approach. We first train
a generic GMM model on a collection of patches randomly
sampled from a set of clean natural images (as presented
in Section II-B), which serves as our generic GMM patch
prior. The training is off-line and only needs to be performed
once. Given a noisy image, we conduct a two-step adapta-
tion to generate an image-specific patch prior inspired by
the Kolmogorov-Smirno (KS) Test. The first step consists
in constructing new Gaussian components for individual or
image-specific patches that the generic GMM prior fails to
model, and the second step performs GMM adaptation to
better fit the distribution of both generic patches and image-
specific patches. Equipped with the image-specific prior, we
can conduct more effective denoising on the input. In the
following, we first detail the two steps for learning an image-
specific prior for a clean image, and then we describe how to
adapt the procedure to noisy inputs for denoising.

A. Image-Specific Components Addition

A generic GMM may not be able to model every image
patch well, considering the large space of natural image
patches (e.g., 8 × 8 patches). The image-specific patches of
a given image will be outliers in the view of a generic
GMM prior, and thus we need to construct new compo-
nents to model these outlier patches. This process is essen-
tially similar to the online clustering or online GMM in the
statistics literature. We build the new Gaussian components
and add them through online GMM. Specifically, given an
image represented by a collection of overlapping patches
Y = {yi}Mi=1, where M is the total number of patches
in the image. We first generate an image-specific(internal)
GMM model as presented in Section II-B, where we learn
parameters Θy = {µkin,Σkin, πkin}

Ky

k=1, where Ky is the total
number of components. We let Ky = 200, the same num-
ber of Gaussian components as in the generic GMM. To
accelerate the process, we first do a k-means clustering on
the internal patches and do one EM iteration to generate a
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Fig. 2. Approach overview. We first trained a generic GMM patch prior using a collection of natural image patches as introduced in Section II. We represent the
generic GMM model in magenta. Given a noisy image, we conduct a two-step adaptation to generate an image-specific patch prior. In the component addition,
new Gaussian components (in yellow) are constructed for individual or image-specific patches that the generic GMM prior fails to model. In component
adaptation, GMM adaptation is performed to better fit the distribution of both generic and image-specific patches of the given image. Equipped with the
image-specific prior, we can conduct more effective denoising on the input.

coarse image-specific GMM model. Given the generic GMM
model Θg = {µkg ,Σkg , πkg}

Kg

k=1, we discover representative
components and add them to the generic GMM prior following
Algorithm 1, where DKL(Θk

y ,Θ
k
g) is the Kullback-Leibler

(KL) divergence4 defined as follows:

DKL(Θk
y ,Θ

k
g)

=

∫
[log(Θk

y(t))− log(Θk
g(t))]Θk

y(t)dt

=
1

2
[log
|Σky |
|Σkg |

− d+ tr((Σky)−1Σkg)

+ (µky − µkg)T (Σky)−1(µky − µkg)]

(7)

where d is the dimension of the patch vector. δ is the
threshold for detecting new Gaussian components: if the
divergence between the current component and the nearest
generic component is larger than δ, a new component is added.
We empirically determine the value of δ for denoising in the
experimental section. Note that the image-specific GMM Θy is
coarsely constructed for efficiency. We discuss how to refine
the new GMM to fit the patch distribution in the following
subsection.

B. Gaussian Mixture Model Adaptation

Equipped with the added new Gaussian components cap-
turing the image-specific patches, we are ready to adapt

4While the Kullback-Leibler (KL) divergence is not symmetrical, the same
generic GMM is used for all images. In our implementation, we computed
the KL divergence on pairs of an internal GMM component and an external
GMM component, where we fixed the order of internal and external GMM
components in each of the pairs. We thus avoid the problem caused by the
unsymmetrical KL divergence.

Algorithm 1: Component Addition
Input: Generic GMM model with parameters of Θg ,

a coarse image-specific GMM model Θxy

1: Θoutput = Θg , Kmod = Kg

2: for Θk
y ∈ Θxy , k ∈ [1,Ky]

3: flag = true
4: for Θk

g ∈ Θg , k ∈ [1,Kg]
5: if DKL(Θk

y ,Θ
k
g) < δ

6: flag = false; break;
7: end if
8: end for
9: if flag == true

10: ΘKmod+1
output = Θk

y

11: Kmod = Kmod + 1
12: end if
13: end for

our complete image specific GMM to the patch distribu-
tion of the given image. To avoid notation clutter, we use
Θ0 = {µk,Σk, πk}Kk=1 (K is the number of mixtures) to
denote the current GMM after component addition. Given the
patches extracted from the input image Y = {yi}i=1...M ,
we want to estimate the image-specific GMM parameters
Θ̂ = {µ̂k, Σ̂k, π̂k}Kk=1, which can be solved via maximizing a
posteriori (MAP) estimation:

Θ̂MAP = arg max
Θ
p(Θ|Y )

= arg max
Θ
f(Y |Θ)g(Θ)

(8)

where g(Θ) denotes the prior information of the unknown
GMM parameters.

The adaptive GMM model is derived by following the GMM
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adaptation algorithm proposed in [17]. In the E-Step, we
calculate the posterior probability for the component k as:

Pr(k|yi,Θ) =
πkN (yi|µk,Σk)∑K
k=1 πkN (yi|µk,Σk)

, (9)

nk =

N∑
i=1

Pr(k|yi,Θ). (10)

In the M-Step, we update the model parameters as follows:

π̂k = [απnk/N + (1− απ)πk]γ (11)

µ̂k = αµ
∑N
i=1 πkyi∑N
i=1 πk

+ (1− αµ)µk (12)

Σ̂k = αΣ

∑N
i=1 Pr(k|yi,Θ)yiy

t
i

nk
+ (1− αΣ)Σk (13)

where γ is the scale factor to ensure
∑K
k=1 π̂k = 1. We iterate

over the E-Step and M-Step until convergence. In practice, we
find that it is good enough to just run one iteration of EM by
setting the parameter adaptation rates απ , αµ and αΣ to be 1,
which means we fully trust the new input patches. We detail
the parameter selection of απ , αµ and αΣ in the experimental
results.

C. Learning Image-Specific Prior for Denoising

The above image-specific prior learning assumes clean
input images. To learn an image-specific prior from noisy
images for denoising, we have two options for the model
construction:

1) Assuming zero mean for the noise, the model parameters
affected are mainly the covariance matrices. Also assum-
ing a diagonal covariance matrix Σn for the noise, we
can estimate the coarse image-specific GMM parameters
with Σkin−Σn for component addition5. For GMM adap-
tation, we can similarly subtract Σn from the estimation
in Equation 13. We found that this scheme works well
for small noise cases (noise with low variance).

2) We first apply the generic GMM prior for denoising
to get an initial result, from which we can learn an
image-specific prior, which is more accurate for the final
denoising. In practice, we find this scheme works well
for strong noise cases.

After we have learned an image-specific prior for the noisy
input image, we first extracted overlapping noisy patches
from the input image. For each noisy patch y, the Bayes
Least Square solution of its denoised version ŷ is ŷ =
E[x|y] =

∑K
k=1[Pr(k|y)E[x|y,Θk]], where Θk represents the

parameters of k-th component of the mixture. Considering the
large number of overlapping patches in an image (more than
60K patches in a 256× 256 image), this solution is costly if
we utilize all Gaussian components to denoise each patch. In
practice, we took an approximate solution as presented in [9]

5Through out the paper, we assume the noise is additive and zero-mean
and the variance of signal is far larger than the variance of noise to apply
Σk

in − Σn. Practically, to avoid singularity of covariance matrix in GMM
computation, we add very small value (e.g., 1e-5) to its diagonal elements.

and found that this simple solution worked well in general.
We discuss this approximation in the experimental section.

Specifically, for each noisy patch y, we select the Gaussian
component with the maximum posterior probability:

k∗ = arg max
k

Pr(k|y,Θ). (14)

We then apply the Wiener filter for noise removal as discussed
in [9]:

ŷ = (Σ̂k + Σn)−1(Σ̂ky + Σnµ̂k) (15)

where Σn = σ2I. With all overlapping denoised ŷ, we
generate the final denoised image by averaging the overlapping
pixels.

D. Discussions

There are alternative ways of learning an image-specific
patch prior. One could be to adapt the generic GMM to the
given image without constructing any new components (adap-
tive GMM), and the other is to directly learn a GMM based on
the internal examples only (internal GMM). Compared with
these two methods, our method is superior in terms of speed
and potentially performance:

1) As we mentioned before, the image-specific patches are
outliers in the view of the generic GMM. As a result,
adapting the generic GMM takes more iterations in order
to model those outlier patches well.

2) Building an internal GMM based on the internal exam-
ples alone is prone to overfitting to noise. It is also very
slow for the algorithm to converge to a reasonably good
model for denoising. Note that in our component addi-
tion step, we also train a coarse image-specific GMM
for finding new components based on fast kmeans for
efficiency. The coarse image-specific GMM is different
from the internal GMM, which needs to be well trained
and thus is much slower.

We demonstrate the superior performance of image-specific
prior generated by the online GMM approach compared to
the internal GMM and adaptive GMM approaches in the
experimental results.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our approach by comparing
the image-specific prior generated by the proposed approach
with priors generated by internal GMM and adaptive GMM
(discussed in Section III-C) as well as state-of-the-art de-
noising approaches such as BM3D [1], EPLL [9], MLP [2],
NLB [15], SPLE [14], combined internal and external method
(CBIE)[4]6, and combined BM3D and MLP (CBBM)[3]7.
Our approach achieves better or competitive image denoising
results in terms of PSNR (i.e., Peak Signal-to-Noise Ratio)
and SSIM [18] (i.e., Structural Similarity). In the following, we
refer to our approach as “OL-GMM”, internal GMM as “ING-
GMM”, and adaptive GMM as “ADA-GMM”. We also use the

6The results of [4] are based on our implementation of [4]. NLM[5] is used
for both internal denoising and external denoising.

7The results of BM3D [1], EPLL [9], MLP [2], NLB [15], SPLE [14], and
CBBM[3] are based on authors’ source codes released on the Web.
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Fig. 3. Denoising Results (average PSNR) on standard images with different
δ. The x-axis denotes δ, and the y-axis refers to average PSNR.

global reconstruction term as in [9] to refine the performance
of OL-GMM, and we denoted it as “OL-GMM-RT”. We
made a single EM iteration for OL-GMM and ADA-GMM. In
OL-GMM-RT, we iterate once using the reconstruction term
defined in [9] with the OL-GMM result.

To evaluate our performance quantitatively, we corrupted
clean images with the white Gaussian noise and used the same
noisy test images to generate the results of all the methods for
fair comparison. All our experiments reported in this paper are
conducted on gray-scale images.

The training patches used in our experiments were sampled
from the Berkeley segmentation dataset (training images)8.
The performance of our approach is evaluated on the four
benchmark datasets including standard test images [1], Berke-
ley segmentation dataset (testing images)8, Pascal VOC2007
dataset9, and McGill dataset10.

A. Evaluation on the standard test images

We empirically determined the value of δ for image denois-
ing when noise is of different variance. We evaluated average
PSNR on the standard images as δ changes, and we present
results in Figure 3, where the x-axis denotes δ, and the y-axis
refers to average PSNR. As shown in the figure, the PSNR
drops when δ is larger than 10 for all the four noise levels. In
particular, we found that setting δ to 1 provided the highest
PSNR for denoising when the σ is 5 or 10, and setting δ to
10 provided the highest PSNR for denoising when σ is 20 or
30. We thus set δ as 1 for all the remaining evaluation when
σ is 5 or 10 and set δ as 10 when σ is 20 or 30.

Similarly, we empirically determined the value of α (i.e.,
απ , αµ and αΣ). We evaluated denoising results in terms of
PSNR on standard images by setting α as 0.2, 0.4, 0.6, 0.8, and
1, respectively. In all these experiments, we ran one iteration
of EM for GMM adaptation, and present results in Table I. As
shown in the table, for all the four noise levels, the highest
PSNR is achieved when α is 1. We thus set α as 1 for all the
remaining evaluation.

8http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
9http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
10http://pirsquared.org/research/mcgilldb/

TABLE I
AVERAGE PSNR ON STANDARD IMAGES WITH DIFFERENT α

0.2 0.4 0.6 0.8 1.0
σ = 5 38.07 38.08 38.09 38.12 38.16
σ = 10 34.34 34.35 34.36 34.36 34.37
σ = 20 30.9 30.92 30.94 30.94 30.95
σ = 30 28.88 28.9 28.93 28.94 28.95

We present our evaluation results (average PSNR and SSIM)
on the standard test images in Figure 4, with different noise
levels (σ = 5, 10, 20, 30). The test image dataset includes 14
images: pepper, house, boat, couple, man, lena, fingerprint
(denoted as “fprint”), barbara, montage, monarch, hill, straw,
cameraman (denoted as “caman”), and hex.

As shown in Figure 4, compared with image priors gen-
erated with ADA-GMM and INT-GMM, OL-GMM produces
significantly better denoising performance at all noise levels.
Also, the OL-GMM approach achieves competitive results to
both [4] and [3] that leverage internal and external patch priors,
respectively. As shown in Figure 4, OL-GMM outperforms
all other competing methods at σ = 5 in terms of average
performance on standard images. In particular, our method
outperforms BM3D by 0.15db in average PSNR, which is a
remarkable improvement considering that BM3D is still the
state of the art for image denoising with low variance (small
noise) cases.

By comparing OL-GMM with OL-GMM-RT, we identify
that with an image-specific prior, we do not need global
image reconstruction as in [9]. Compared with EPLL [9],
we achieved a better denoising result with a single EM
iteration while the former requires multiple iterations. For
large σ, our approach can be further improved if we use
complimentary internal self-similarity-based methods such as
BM3D to initialize our internal GMM model. We leave this
fusion method as our future work.

Individual results of σ = 5, 10, 20, 30 are presented in
Figure 5, where the proposed OL-GMM approach was com-
pared with EPLL [9] and BM3D [1]. The advantage of our
method at small noise levels can be further validated from the
comparisons for individual test images, shown in Figure 5,
which demonstrate that the proposed OL-GMM approach
achieves the best result on 12 out of the 14 benchmark images.
Small noise levels (σ < 5) has practical importance since real-
world images are mostly corrupted by such noises.

To examine the accuracy of the adopted approximated
solution in Section III-C, we empirically evaluated denoising
results in terms of PSNR using 1 to 10 largest GMM posterior
probability components, respectively, and present the results in
Figure 6. As shown in the figure, when σ is 5, the highest
average PSNR is achieved when the two largest-posterior-
probability components are used; and when σ is 10, 20, or
30, the highest average PSNR is achieved by only using the
component with the maximum posterior probability. These
results demonstrate the accuracy of the approximated solution
of only using the component with the maximum posterior
probability for noising. The phenomenon that the average
PSNR decreases when using more GMM components may
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Fig. 4. Average PSNR and SSIM on standard images.
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Fig. 5. Denoising performance on standard images. The proposed online GMM approach (OL-GMM) (in green) was compared with EPLL [9] (in blue) and
BM3D [1] (in red) for σ = 5, 10, 20, 30. The figure is better viewed in color.
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Fig. 6. Denoising Results (average PSNR) on standard images as the number
of GMM components increases. The x-axis denotes the number of components
used for denoising, and the y-axis refers to average PSNR.

be caused by the imperfect statistical patch model (i.e., the
GMM model).

With Matlab implementation using Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz, it took about 2 minutes to denoise a 256×
256 image (all overlapping patches were used in denoising).
The computational bottlenecks lie in two parts: 1) clustering
internal patch and generating a coarse image-specific GMM
model and 2) one iteration GMM adaptation. The running time
could be significantly improved by code optimization.

B. Evaluation on VOC2007, McGill, and BSD-Test

To further verify the effectiveness of the proposed approach,
we compared our results produced by OL-GMM to those
produced by BM3D [1] and EPLL [9] on the BSD-test, Pascal
VOC2007, and McGill datasets. We used all of the 100 images
in the BSD-test set, and we randomly sampled 100 images
from both the Pascal VOC2007 set and the McGill set. We
present the average PSNR and SSIM results on different
noise levels (σ = 5, 10, 15, 20, 25, 30). The comparison of
denoising performance is presented in Figure 7. As shown
in the figure, with the image-specific prior, we achieve com-
petitive denoising results on all noise levels. In particular,
for small noise levels (i.e., σ = 5 and σ = 10), the OL-
GMM consistently generate better denoising results than do
the EPLL [9] approach on the test images in all three datasets,
and it approaches BM3D in terms of quality.

C. Qualitatively Analysis of Image-Specific Patches

In addition to performing quantitative analyses, we also
qualitatively analyze patches that are the referred to as “image-
specific patches”. We take the image of “barbara” as an
example, and visualize examples of added components given
the noisy image (σ = 5). As shown in Figure 8, frequently
recurring patches in the test image tend to form new com-
ponents, which indicates that those patches are the referred
“image-specific patches”. Those patches have higher density
among patches in the same image than patches sampled from a
diverse collection of images have. For instance, the texture of
stripe frequently recurred in the “barbara” image, and patches

with those patterns may not recur frequently in natural image
patches. As shown in Figure 8, when we conduct denoising
on the corrupted “barbara” image, patches with stripe texture
tend to form new Gaussian components, and the new Gaussian
components are used to denoise the image. Patches with low-
contrast patterns also tend to be “image-specific patches” in
case they appear frequently in the test image, as shown in the
third component in Figure 8.

We found that image-specific patches are spatially clustered
together, i.e., “image-specific patches” tend to cluster in some
region of the image and forms new Gaussian components.
By forming individual GMM components for these “image-
specific patches”, we adapt the generic GMM prior to an
image-specific prior, which leverages the local patch similarity
for image denoising.

V. CONCLUSIONS AND FUTURE WORK

We present a unified algorithm for learning an image-
specific patch prior and applied the prior to the image de-
noising problem. Rather than combining internal and external
denoising results, we unified the two types of priors in a
principled way in order to use more fully the internal and
external information. We demonstrate the effectiveness of our
approach by comparing with image-specific priors generated
by alternative approaches. Experimental results demonstrate
that with the novel prior, we achieved a better or competitive
denoising performance in terms of the peak signal-to-noise
ratio and structural similarity.

As a future work, the proposed image-specific patch prior
could be used for other restoration tasks, such as image deblur-
ring and image super-resolution. Since our method provides
an improved prior over EPLL, it can be applied to deblurring
by following the deblurring algorithm in Zoran and Weiss,
ICCV2011 [19]. The image specific prior can be first learned
from any existing deblurring algorithm and then the blurred
input image can be restored based on the learned prior, with
which the restoration result could be iteratively improved.
For super-resolution, we can learn the image-specific prior
from the low-resolution input and then use it to constrain re-
constructed patches in high resolution in an MAP framework.
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