
1

More About Turing Machines

“Programming Tricks”
Restrictions
Extensions

Closure Properties

2

Overview

At first, the TM doesn’t look very
powerful.
 Can it really do anything a computer can?

We’ll discuss “programming tricks” to
convince you that it can simulate a real
computer.

3

Overview – (2)

We need to study restrictions on the
basic TM model (e.g., tapes infinite in
only one direction).
Assuming a restricted form makes it

easier to talk about simulating arbitrary
TM’s.
 That’s essential to exhibit a language that

is not recursively enumerable.

4

Overview – (3)

We also need to study generalizations
of the basic model.
Needed to argue there is no more

powerful model of what it means to
“compute.”
Example: A nondeterministic TM with

50 six-dimensional tapes is no more
powerful than the basic model.

5

Programming Trick: Multiple Tracks

Think of tape symbols as vectors with k
components.
Each component chosen from a finite

alphabet.
Makes the tape appear to have k tracks.
Let input symbols be blank in all but one

track.

6

Picture of Multiple Tracks

q

X
Y
Z

Represents one symbol [X,Y,Z]

0
B
B

Represents
input symbol 0

B
B
B

Represents
the blank

7

Programming Trick: Marking

A common use for an extra track is to
mark certain positions.
Almost all cells hold B (blank) in this

track, but several hold special symbols
(marks) that allow the TM to find
particular places on the tape.

8

Marking

q

X
Y

B
Z

B
W

Marked Y

Unmarked
W and Z

9

Programming Trick: Caching
in the State

The state can also be a vector.
First component is the “control state.”
Other components hold data from a

finite alphabet.

10

Example: Using These Tricks

This TM doesn’t do anything terribly
useful; it copies its input w infinitely.
Control states:
 q: Mark your position and remember the

input symbol seen.
 p: Run right, remembering the symbol and

looking for a blank. Deposit symbol.
 r: Run left, looking for the mark.

11

Example – (2)

States have the form [x, Y], where x is
q, p, or r and Y is 0, 1, or B.
 Only p uses 0 and 1.

Tape symbols have the form [U, V].
 U is either X (the “mark”) or B.
 V is 0, 1 (the input symbols) or B.
 [B, B] is the TM blank; [B, 0] and [B, 1]

are the inputs.

12

The Transition Function

Convention: a and b each stand for
“either 0 or 1.”
δ([q,B], [B,a]) = ([p,a], [X,a], R).
 In state q, copy the input symbol under

the head (i.e., a) into the state.
Mark the position read.
 Go to state p and move right.

13

Transition Function – (2)

δ([p,a], [B,b]) = ([p,a], [B,b], R).
 In state p, search right, looking for a blank

symbol (not just B in the mark track).
δ([p,a], [B,B]) = ([r,B], [B,a], L).
When you find a B, replace it by the

symbol (a) carried in the “cache.”
 Go to state r and move left.

14

Transition Function – (3)

δ([r,B], [B,a]) = ([r,B], [B,a], L).
 In state r, move left, looking for the mark.

δ([r,B], [X,a]) = ([q,B], [B,a], R).
When the mark is found, go to state q and

move right.
 But remove the mark from where it was.
 q will place a new mark and the cycle

repeats.

15

Simulation of the TM

q

B

. . . B B B B . . .

. . . 0 1 B B . . .

16

Simulation of the TM

p

0

. . . X B B B . . .

. . . 0 1 B B . . .

17

Simulation of the TM

p

0

. . . X B B B . . .

. . . 0 1 B B . . .

18

Simulation of the TM

r

B

. . . X B B B . . .

. . . 0 1 0 B . . .

19

Simulation of the TM

r

B

. . . X B B B . . .

. . . 0 1 0 B . . .

20

Simulation of the TM

q

B

. . . B B B B . . .

. . . 0 1 0 B . . .

21

Simulation of the TM

p

1

. . . B X B B . . .

. . . 0 1 0 B . . .

22

Semi-infinite Tape

We can assume the TM never moves
left from the initial position of the head.
Let this position be 0; positions to the

right are 1, 2, … and positions to the
left are –1, –2, …
New TM has two tracks.
 Top holds positions 0, 1, 2, …
 Bottom holds a marker, positions –1, –2, …

23

Simulating Infinite Tape by
Semi-infinite Tape

0 1 2 3 . . .

* -1 -2 -3 . . .

q

U/L

State remembers whether
simulating upper or lower
track. Reverse directions
for lower track.

Put * here
at the first
move

You don’t need to do anything,
because these are initially B.

24

More Restrictions – Read in Text

Two stacks can simulate one tape.
 One holds positions to the left of the head;

the other holds positions to the right.

In fact, by a clever construction, the
two stacks to be counters = only two
stack symbols, one of which can only
appear at the bottom.

Factoid: Invented by Pat Fischer,
whose main claim to fame is that
he was a victim of the Unabomber.

25

Extensions

 More general than the standard TM.
 But still only able to define the RE

languages.
1. Multitape TM.
2. Nondeterministic TM.
3. Store for key-value pairs.

26

Multitape Turing Machines

Allow a TM to have k tapes for any
fixed k.
Move of the TM depends on the state

and the symbols under the head for
each tape.
In one move, the TM can change state,

write symbols under each head, and
move each head independently.

27

Simulating k Tapes by One

Use 2k tracks.
Each tape of the k-tape machine is

represented by a track.
The head position for each track is

represented by a mark on an additional
track.

28

Picture of Multitape Simulation

q

X head for tape 1
. . . A B C A C B . . . tape 1

X head for tape 2
. . . U V U U W V . . . tape 2

29

Nondeterministic TM’s

Allow the TM to have a choice of move
at each step.
 Each choice is a state-symbol-direction

triple, as for the deterministic TM.

The TM accepts its input if any
sequence of choices leads to an
accepting state.

30

Simulating a NTM by a DTM

 The DTM maintains on its tape a
queue of ID’s of the NTM.

 A second track is used to mark certain
positions:

1. A mark for the ID at the head of the
queue.

2. A mark to help copy the ID at the head
and make a one-move change.

31

Picture of the DTM Tape

ID0 # ID1 # … # IDk # IDk+1 … # IDn # New ID
X

Front of
queue

Y

Where you are
copying IDk with
a move

Rear of
queue

32

Operation of the Simulating DTM

The DTM finds the ID at the current
front of the queue.
It looks for the state in that ID so it can

determine the moves permitted from
that ID.
If there are m possible moves, it

creates m new ID’s, one for each move,
at the rear of the queue.

33

Operation of the DTM – (2)

The m new ID’s are created one at a
time.
After all are created, the marker for the

front of the queue is moved one ID
toward the rear of the queue.
However, if a created ID has an

accepting state, the DTM instead
accepts and halts.

34

Why the NTM -> DTM
Construction Works

There is an upper bound, say k, on the
number of choices of move of the NTM
for any state/symbol combination.
Thus, any ID reachable from the initial

ID by n moves of the NTM will be
constructed by the DTM after
constructing at most (kn+1-k)/(k-1)ID’s.

Sum of k+k2+…+kn

35

Why? – (2)

If the NTM accepts, it does so in some
sequence of n choices of move.
Thus the ID with an accepting state will

be constructed by the DTM in some
large number of its own moves.
If the NTM does not accept, there is no

way for the DTM to accept.

36

Taking Advantage of Extensions

We now have a really good situation.
When we discuss construction of

particular TM’s that take other TM’s as
input, we can assume the input TM is
as simple as possible.
 E.g., one, semi-infinite tape, deterministic.

But the simulating TM can have many
tapes, be nondeterministic, etc.

37

Real Computers

Recall that, since a real computer has
finite memory, it is in a sense weaker
than a TM.
Imagine a computer with an infinite

store for name-value pairs.
 Generalizes an address space.

38

Simulating a Name-Value
Store by a TM

The TM uses one of several tapes to
hold an arbitrarily large sequence of
name-value pairs in the format
#name*value#…
Mark, using a second track, the left end

of the sequence.
 A second tape can hold a name whose

value we want to look up.

39

Lookup

Starting at the left end of the store,
compare the lookup name with each
name in the store.
When we find a match, take what

follows between the * and the next #
as the value.

40

Insertion

Suppose we want to insert name-value
pair (n, v), or replace the current value
associated with name n by v.
Perform lookup for name n.
If not found, add n*v# at the end of

the store.

41

Insertion – (2)

If we find #n*v’#, we need to replace
v’ by v.
If v is shorter than v’, you can leave

blanks to fill out the replacement.
But if v is longer than v’, you need to

make room.

42

Insertion – (3)

Use a third tape to copy everything from
the first tape at or to the right of v’.
Mark the position of the * to the left of

v’ before you do.
Copy from the third tape to the first,

leaving enough room for v.
Write v where v’ was.

43

Closure Properties of
Recursive and RE Languages

Both closed under union, concatenation,
star, reversal, intersection, inverse
homomorphism.
Recursive closed under difference,

complementation.
RE closed under homomorphism.

44

Union

Let L1 = L(M1) and L2 = L(M2).
Assume M1 and M2 are single-semi-

infinite-tape TM’s.
Construct 2-tape TM M to copy its input

onto the second tape and simulate the
two TM’s M1 and M2 each on one of the
two tapes, “in parallel.”

45

Union – (2)

Recursive languages: If M1 and M2 are
both algorithms, then M will always halt
in both simulations.
Accept if either accepts.
RE languages: accept if either accepts,

but you may find both TM’s run forever
without halting or accepting.

46

Picture of Union/Recursive

M1

M2

Input w

Accept

Accept

Reject

Reject

OR

Reject

Accept

AND

M

Remember: = “halt
without accepting

47

Picture of Union/RE

M1

M2

Input w

Accept

Accept

OR Accept

M

48

Intersection/Recursive – Same Idea

M1

M2

Input w

Accept

Accept

Reject

Reject

AND

Reject

Accept

OR

M

49

Intersection/RE

M1

M2

Input w

Accept

Accept

AND Accept

M

50

Difference, Complement

Recursive languages: both TM’s will
eventually halt.
Accept if M1 accepts and M2 does not.
 Corollary: Recursive languages are closed

under complementation.

RE Languages: can’t do it; M2 may
never halt, so you can’t be sure input is
in the difference.

51

Concatenation/RE

 Let L1 = L(M1) and L2 = L(M2).
 Assume M1 and M2 are single-semi-

infinite-tape TM’s.
 Construct 2-tape Nondeterministic TM M:

1. Guess a break in input w = xy.
2. Move y to second tape.
3. Simulate M1 on x, M2 on y.
4. Accept if both accept.

52

Concatenation/Recursive

Can’t use a NTM.
Systematically try each break w = xy.
M1 and M2 will eventually halt for each

break.
Accept if both accept for any one

break.
Reject if all breaks tried and none lead

to acceptance.

53

Star

Same ideas work for each case.
RE: guess many breaks, accept if M1

accepts each piece.
Recursive: systematically try all ways to

break input into some number of
pieces.

54

Reversal

Start by reversing the input.
Then simulate TM for L to accept w if

and only wR is in L.
Works for either Recursive or RE

languages.

55

Inverse Homomorphism

Apply h to input w.
Simulate TM for L on h(w).
Accept w iff h(w) is in L.
Works for Recursive or RE.

56

Homomorphism/RE

Let L = L(M1).
Design NTM M to take input w and

guess an x such that h(x) = w.
M accepts whenever M1 accepts x.
Note: won’t work for Recursive

languages.

