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More About Turing Machines

“Programming Tricks”
Restrictions
Extensions

Closure Properties
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Overview

At first, the TM doesn’t look very 
powerful.
 Can it really do anything a computer can?

We’ll discuss “programming tricks” to 
convince you that it can simulate a real 
computer.
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Overview – (2)

We need to study restrictions on the 
basic TM model (e.g., tapes infinite in 
only one direction).
Assuming a restricted form makes it 

easier to talk about simulating arbitrary 
TM’s.
 That’s essential to exhibit a language that 

is not recursively enumerable.
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Overview – (3)

We also need to study generalizations 
of the basic model.
Needed to argue there is no more 

powerful model of what it means to 
“compute.”
Example: A nondeterministic TM with 

50 six-dimensional tapes is no more 
powerful than the basic model.
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Programming Trick: Multiple Tracks

Think of tape symbols as vectors with k 
components.
Each component chosen from a finite 

alphabet.
Makes the tape appear to have k tracks.
Let input symbols be blank in all but one 

track.
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Picture of Multiple Tracks

q

X
Y
Z

Represents one symbol [X,Y,Z]

0
B
B

Represents
input symbol 0

B
B
B

Represents
the blank
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Programming Trick: Marking

A common use for an extra track is to 
mark certain positions.
Almost all cells hold B (blank) in this 

track, but several hold special symbols 
(marks) that allow the TM to find 
particular places on the tape.
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Marking

q

X
Y

B
Z

B
W

Marked Y

Unmarked
W and Z
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Programming Trick: Caching 
in the State

The state can also be a vector.
First component is the “control state.”
Other components hold data from a 

finite alphabet.
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Example: Using These Tricks

This TM doesn’t do anything terribly 
useful; it copies its input w infinitely.
Control states:
 q: Mark your position and remember the 

input symbol seen.
 p: Run right, remembering the symbol and 

looking for a blank.  Deposit symbol.
 r: Run left, looking for the mark.
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Example – (2)

States have the form [x, Y], where x is 
q, p, or r and Y is 0, 1, or B.
 Only p uses 0 and 1.

Tape symbols have the form [U, V].
 U is either X (the “mark”) or B.
 V is 0, 1 (the input symbols) or B.
 [B, B] is the TM blank; [B, 0] and [B, 1] 

are the inputs.



12

The Transition Function

Convention: a and b each stand for 
“either 0 or 1.”
δ([q,B], [B,a]) = ([p,a], [X,a], R).
 In state q, copy the input symbol under 

the head (i.e., a ) into the state.
Mark the position read.
 Go to state p and move right.
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Transition Function – (2)

δ([p,a], [B,b]) = ([p,a], [B,b], R).
 In state p, search right, looking for a blank 

symbol (not just B in the mark track).
δ([p,a], [B,B]) = ([r,B], [B,a], L).
When you find a B, replace it by the 

symbol (a ) carried in the “cache.”
 Go to state r and move left.
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Transition Function – (3)

δ([r,B], [B,a]) = ([r,B], [B,a], L).
 In state r, move left, looking for the mark.

δ([r,B], [X,a]) = ([q,B], [B,a], R).
When the mark is found, go to state q and 

move right.
 But remove the mark from where it was.
 q will place a new mark and the cycle 

repeats.
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   B   B  . . .



16

Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

p

1

. . . B   X   B   B  . . .

. . . 0   1   0   B  . . .
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Semi-infinite Tape

We can assume the TM never moves 
left from the initial position of the head.
Let this position be 0; positions to the 

right are 1, 2, … and positions to the 
left are –1, –2, …
New TM has two tracks.
 Top holds positions 0, 1, 2, …
 Bottom holds a marker, positions –1, –2, …



23

Simulating Infinite Tape by 
Semi-infinite Tape

0   1   2   3   . . .

*  -1  -2  -3  . . .

q

U/L

State remembers whether
simulating upper or lower
track.  Reverse directions
for lower track.

Put * here
at the first
move

You don’t need to do anything,
because these are initially B.
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More Restrictions – Read in Text

Two stacks can simulate one tape.
 One holds positions to the left of the head; 

the other holds positions to the right.

In fact, by a clever construction, the 
two stacks to be counters = only two 
stack symbols, one of which can only 
appear at the bottom. 

Factoid: Invented by Pat Fischer,
whose main claim to fame is that
he was a victim of the Unabomber.
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Extensions

 More general than the standard TM.
 But still only able to define the RE 

languages.
1. Multitape TM.
2. Nondeterministic TM.
3. Store for key-value pairs.
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Multitape Turing Machines

Allow a TM to have k tapes for any 
fixed k.
Move of the TM depends on the state 

and the symbols under the head for 
each tape.
In one move, the TM can change state, 

write symbols under each head, and 
move each head independently.
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Simulating k Tapes by One

Use 2k tracks.
Each tape of the k-tape machine is 

represented by a track.
The head position for each track is 

represented by a mark on an additional 
track.
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Picture of Multitape Simulation

q

X                        head for tape 1
. . .  A   B   C   A   C   B   . . .     tape 1

X              head for tape 2
. . .  U   V   U   U  W   V   . . .    tape 2
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Nondeterministic TM’s

Allow the TM to have a choice of move 
at each step.
 Each choice is a state-symbol-direction 

triple, as for the deterministic TM.

The TM accepts its input if any 
sequence of choices leads to an 
accepting state.
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Simulating a NTM by a DTM

 The DTM maintains on its tape a 
queue of ID’s of the NTM.

 A second track is used to mark certain 
positions:

1. A mark for the ID at the head of the 
queue.

2. A mark to help copy the ID at the head 
and make a one-move change.
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Picture of the DTM Tape

ID0 # ID1 # …  # IDk # IDk+1 …        # IDn # New ID
X

Front of
queue

Y

Where you are
copying IDk with 
a move

Rear of
queue
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Operation of the Simulating DTM

The DTM finds the ID at the current 
front of the queue.
It looks for the state in that ID so it can 

determine the moves permitted from 
that ID.
If there are m possible moves, it 

creates m new ID’s, one for each move, 
at the rear of the queue.
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Operation of the DTM – (2)

The m new ID’s are created one at a 
time.
After all are created, the marker for the 

front of the queue is moved one ID 
toward the rear of the queue.
However, if a created ID has an 

accepting state, the DTM instead 
accepts and halts.
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Why the NTM -> DTM 
Construction Works

There is an upper bound, say k, on the 
number of choices of move of the NTM 
for any state/symbol combination.
Thus, any ID reachable from the initial 

ID by n moves of the NTM will be 
constructed by the DTM after 
constructing at most (kn+1-k)/(k-1)ID’s. 

Sum of k+k2+…+kn
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Why? – (2)

If the NTM accepts, it does so in some 
sequence of n choices of move.
Thus the ID with an accepting state will 

be constructed by the DTM in some 
large number of its own moves.
If the NTM does not accept, there is no 

way for the DTM to accept.
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Taking Advantage of Extensions

We now have a really good situation.
When we discuss construction of 

particular TM’s that take other TM’s as 
input, we can assume the input TM is 
as simple as possible.
 E.g., one, semi-infinite tape, deterministic.

But the simulating TM can have many 
tapes, be nondeterministic, etc.
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Real Computers

Recall that, since a real computer has 
finite memory, it is in a sense weaker
than a TM.
Imagine a computer with an infinite 

store for name-value pairs.
 Generalizes an address space.
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Simulating a Name-Value
Store by a TM

The TM uses one of several tapes to 
hold an arbitrarily large sequence of 
name-value pairs in the format 
#name*value#…
Mark, using a second track, the left end 

of the sequence.
 A second tape can hold a name whose 

value we want to look up.
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Lookup

Starting at the left end of the store, 
compare the lookup name with each 
name in the store.
When we find a match, take what 

follows between the * and the next # 
as the value.
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Insertion

Suppose we want to insert name-value 
pair (n, v), or replace the current value 
associated with name n by v.
Perform lookup for name n.
If not found, add n*v# at the end of 

the store.
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Insertion – (2)

If we find #n*v’#, we need to replace 
v’ by v.
If v is shorter than v’, you can leave 

blanks to fill out the replacement.
But if v is longer than v’, you need to 

make room.
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Insertion – (3)

Use a third tape to copy everything from 
the first tape at or to the right of v’.
Mark the position of the * to the left of 

v’ before you do.
Copy from the third tape to the first, 

leaving enough room for v.
Write v where v’ was.
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Closure Properties of 
Recursive and RE Languages

Both closed under union, concatenation, 
star, reversal, intersection, inverse 
homomorphism.
Recursive closed under difference, 

complementation.
RE closed under homomorphism.
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Union

Let L1 = L(M1) and L2 = L(M2).
Assume M1 and M2 are single-semi-

infinite-tape TM’s.
Construct 2-tape TM M to copy its input 

onto the second tape and simulate the 
two TM’s M1 and M2 each on one of the 
two tapes, “in parallel.”
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Union – (2)

Recursive languages: If M1 and M2 are 
both algorithms, then M will always halt 
in both simulations.
Accept if either accepts.
RE languages: accept if either accepts, 

but you may find both TM’s run forever 
without halting or accepting.
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Picture of Union/Recursive

M1

M2

Input w

Accept

Accept

Reject

Reject

OR

Reject

Accept

AND

M

Remember: = “halt
without accepting
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Picture of Union/RE

M1

M2

Input w

Accept

Accept

OR Accept

M
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Intersection/Recursive – Same Idea

M1

M2

Input w

Accept

Accept

Reject

Reject

AND

Reject

Accept

OR

M
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Intersection/RE

M1

M2

Input w

Accept

Accept

AND Accept

M
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Difference, Complement

Recursive languages: both TM’s will 
eventually halt.
Accept if M1 accepts and M2 does not.
 Corollary: Recursive languages are closed 

under complementation.

RE Languages: can’t do it; M2 may 
never halt, so you can’t be sure input is 
in the difference.
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Concatenation/RE

 Let L1 = L(M1) and L2 = L(M2).
 Assume M1 and M2 are single-semi-

infinite-tape TM’s.
 Construct 2-tape Nondeterministic TM M:

1. Guess a break in input w = xy.
2. Move y to second tape.
3. Simulate M1 on x, M2 on y.
4. Accept if both accept.
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Concatenation/Recursive

Can’t use a NTM.
Systematically try each break w = xy.
M1 and M2 will eventually halt for each 

break.
Accept if both accept for any one 

break.
Reject if all breaks tried and none lead 

to acceptance.
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Star

Same ideas work for each case.
RE: guess many breaks, accept if M1

accepts each piece.
Recursive: systematically try all ways to 

break input into some number of 
pieces.
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Reversal

Start by reversing the input.
Then simulate TM for L to accept w if 

and only wR is in L.
Works for either Recursive or RE 

languages.
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Inverse Homomorphism

Apply h to input w.
Simulate TM for L on  h(w).
Accept w iff h(w) is in L.
Works for Recursive or RE.
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Homomorphism/RE

Let L = L(M1).
Design NTM M to take input w and 

guess an x such that h(x) = w.
M accepts whenever M1 accepts x.
Note: won’t work for Recursive 

languages.


