
Trio: A System for Data,
Uncertainty, and Lineage

Search “stanford trio”

2

Stanford Report: March ‘06

3

Trio

1. Data
Student #123 is majoring in Econ: (123,Econ) ∈ Major

2. Uncertainty
Student #123 is majoring in Econ or CS:

(123, Econ ∥ CS) ∈ Major
With confidence 60% student #456 is a CS major:

(456, CS: 0.6) ∈ Major

3. Lineage
(456) ∈ HardWorker derived from:

(456, CS) ∈ Major
“CS is hard” ∈ some web page

4

The Picture

Data

Uncertainty

Lineage
(“sourcing”)

5

Why Uncertainty + Lineage?

Many applications seem to need both

• Information extraction systems

• Scientific and sensor data management

• Information integration

• Deduplication (data cleaning)

• Approximate query processing

6

Why Uncertainty + Lineage?

From a technical standpoint, it turns out that
lineage...

1. Enables simple and consistent representation
of uncertain data

2. Correlates uncertainty in query results with
uncertainty in the input data

3. Can make computation over uncertain data
more efficient

7

Goal

A new kind of DBMS in which:
1. Data
2. Uncertainty
3. Lineage

are all first-class interrelated concepts

With all the usual DBMS features
Scalable, reliable, efficient, ad-hoc declarative
queries and updates, …

TrioTrio}

8

The Trio Trio

1. Data Model
 Simplest extension to relational model that’s

sufficiently expressive

2. Query Language
 Simple extension to SQL with well-defined

semantics and intuitive behavior

3. System
 A complete open-source DBMS that people

want to use

9

The Trio Trio

1. Data Model
 Uncertainty-Lineage Databases (ULDBs)

2. Query Language
 TriQL

3. System
 First prototype built on top of standard DBMS

10

Running Example: Crime-Solving

Saw(witness,car) // may be uncertain

Drives(person,car) // may be uncertain

Suspects(person) = πperson(Saw ⋈ Drives)

11

Data Model: Uncertainty

An uncertain database represents a set of
possible instances

• Amy saw either a Honda or a Toyota

• Jimmy drives a Toyota, a Mazda, or both

• Betty saw an Acura with confidence 0.5 or a
Toyota with confidence 0.3

• Hank is a suspect with confidence 0.7

12

Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences

13

Our Model for Uncertainty

1. Alternatives: uncertainty about value

2. ‘?’ (Maybe) Annotations

3. Confidences

Saw (witness,car)
(Amy, Honda) ∥ (Amy, Toyota) ∥ (Amy, Mazda)

witness car

Amy { Honda, Toyota, Mazda }
=

Three possible
instances

14

Six possible
instances

Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe): uncertainty about presence

3. Confidences

Saw (witness,car)
(Amy, Honda) ∥ (Amy, Toyota) ∥ (Amy, Mazda)

(Betty, Acura) ?

15

Our Model for Uncertainty

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences: weighted uncertainty

Saw (witness,car)
(Amy, Honda): 0.5 ∥ (Amy,Toyota): 0.3 ∥ (Amy, Mazda): 0.2

(Betty, Acura): 0.6 ?

Six possible instances,
each with a probability

16

Deficiency in Model

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jimmy, Toyota) ∥ (Jimmy, Mazda)

(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

Suspects

Jimmy

Billy ∥ Frank

Hank

Suspects = πperson(Saw ⋈ Drives)

?
?
?

Does not correctly
capture possible
instances in the
result

CANNOT

17

Lineage to the Rescue

Lineage (provenance): “where data came from”
• Internal lineage

• External lineage

In Trio: A function λ from alternatives to other
alternatives (or external sources)

18

Example with Lineage

ID Saw (witness,car)

11 (Cathy, Honda) ∥ (Cathy, Mazda)

ID Drives (person,car)

21

22

23

(Jimmy, Toyota) ∥ (Jimmy, Mazda)

(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

ID Suspects

31

32

33

Jimmy

Billy ∥ Frank

Hank

?
?
?

Suspects = πperson(Saw ⋈ Drives)

λ(31) = (11,2),(21,2)
λ(32,1) = (11,1),(22,1); λ(32,2) = (11,1),(22,2)
λ(33) = (11,1), 23

Correctly captures
possible instances in
the result

19

Uncertainty-Lineage Databases (ULDBs)

1. Alternatives

2. ‘?’ (Maybe) Annotations

3. Confidences

4. Lineage

The ULDB model is “complete”

20

Querying ULDBs

• Simple extension to SQL

• Formal semantics, intuitive meaning

• Query uncertainty, confidences, and lineage

TriQLTriQL

21

Initial TriQL Example

ID Saw (witness,car)

11 (Cathy, Honda) ∥ (Cathy, Mazda)

ID Drives (person,car)

21

22

23

(Jimmy, Toyota) ∥ (Jimmy, Mazda)

(Billy, Honda) ∥ (Frank, Honda)

(Hank, Honda)

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

ID Suspects

31

32

33

Jimmy

Billy ∥ Frank

Hank

?
?
?

λ(31) = (11,2),(21,2)
λ(32,1)=(11,1),(22,1); λ(32,2)=(11,1),(22,2)
λ(33) = (11,1), 23

22

Formal Semantics

Query Q on ULDB D

DD

D1, D2, …, DnD1, D2, …, Dn

possible
instances

Q on each
instance

representation
of instances

Q(D1), Q(D2), …, Q(Dn)Q(D1), Q(D2), …, Q(Dn)

D’D’
implementation of Q

operational semantics
D + ResultD + Result

23

TriQL: Querying Confidences

Built-in function: Conf()

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car
AND Conf(Saw) > 0.5 AND Conf(Drives) > 0.8

24

TriQL: Querying Lineage

Built-in join predicate: Lineage()

SELECT Saw.witness INTO AccusesHank
FROM Suspects, Saw
WHERE Lineage(Suspects,Saw)
AND Suspects.person = ‘Hank’

25

Operational Semantics

Over conventional relational database:
For each tuple in cross-product of X1, X2, ..., Xn

1. Evaluate the predicate

2. If true, project attr-list to create result tuple

3. If INTO clause, insert into table

SELECT attr-list [INTO table]
FROM X1, X2, ..., Xn
WHERE predicate

26

Operational Semantics

Over ULDB:
For each tuple in cross-product of X1, X2, ..., Xn

1. Create “super tuple” T from all combinations of
alternatives

2. Evaluate predicate on each alternative in T ;
keep only the true ones

3. Project attr-list on each alternative to create
result tuple

4. Details: ‘?’, lineage, confidences

SELECT attr-list [INTO table]
FROM X1, X2, ..., Xn
WHERE predicate

27

Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

28

Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

29

Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

30

Operational Semantics: Example

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

31

Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)

32

Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)

33

Operational Semantics: Example

(Cathy,Honda,Jim,Mazda)∥(Cathy,Honda,Bill,Mazda)∥(Cathy,Mazda,Jim,Mazda)∥(Cathy,Mazda,Bill,Mazda)

SELECT Drives.person
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

(Cathy,Honda,Hank,Honda) ∥ (Cathy,Mazda,Hank,Honda)

34

Operational Semantics: Example

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

Saw (witness,car)
(Cathy, Honda) ∥ (Cathy, Mazda)

Drives (person,car)
(Jim, Mazda) ∥ (Bill, Mazda)

(Hank, Honda)

Suspects
Jim ∥ Bill

Hank

?
?
λ() = ...
λ() = ...

35

Confidences

Confidences supplied with base data

Trio computes confidences on query results
• Default probabilistic interpretation
• Can choose to plug in different arithmetic

Saw (witness,car)
(Cathy, Honda): 0.6 ∥ (Cathy, Mazda): 0.4

Drives (person,car)
(Jim, Mazda): 0.3 ∥ (Bill, Mazda): 0.6

(Hank, Honda)

Suspects
Jim: 0.12 ∥ Bill: 0.24

Hank: 0.6

?

?

?

0.3 0.4

0.6
ProbabilisticProbabilisticMin

36

Additional Query Constructs

• “Horizontal subqueries”
Refer to tuple alternatives as a relation

• Unmerged (horizontal duplicates)

• Flatten, GroupAlts

• NoLineage, NoConf, NoMaybe

• Query-computed confidences

• Data modification statements

37

Final Example Query

PrimeSuspect (crime#, accuser, suspect)

(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score

Amy

Betty

Cathy

10

15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

List suspects with conf values based on accuser credibility

38

Final Example Query

PrimeSuspect (crime#, accuser, suspect)

(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score

Amy

Betty

Cathy

10

15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)

39

Final Example Query

PrimeSuspect (crime#, accuser, suspect)

(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score

Amy

Betty

Cathy

10

15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)

40

Final Example Query

PrimeSuspect (crime#, accuser, suspect)

(1, Amy, Jimmy) ∥ (1, Betty, Billy) ∥ (1, Cathy, Hank)

(2, Cathy, Frank) ∥ (2, Betty, Freddy)

person score

Amy

Betty

Cathy

10

15

5

Suspects
Jimmy: 0.33 ∥ Billy: 0.5 ∥ Hank: 0.166

Frank: 0.25 ∥ Freddy: 0.75

Credibility

SELECT suspect, score/[sum(score)] as conf
FROM (SELECT suspect,

(SELECT score FROM Credibility C
WHERE C.person = P.accuser)

FROM PrimeSuspect P)

41

Trio System: Version 1

Standard relational DBMS

Trio API and translator
(Python)

Trio API and translator
(Python)

Command-line
client

Command-line
client

Trio
Metadata

TrioExplorer
(GUI client)

TrioExplorer
(GUI client)

Trio Stored
Procedures

Encoded
Data Tables

Lineage
Tables

Standard SQL
• “Verticalize”
• Shared IDs for

alternatives
• Columns for

confidence,“?”

• One per result
table

• Uses unique IDs

• Table types
• Schema-level

lineage structure• conf()
• lineage() “==>”

• DDL commands
• TriQL queries
• Schema browsing
• Table browsing
• Explore lineage
• On-demand

confidence
computation

42

Future Features (sample)

Uncertainty
• Incomplete relations
• Continuous uncertainty
• Correlated uncertainty

Lineage
• External lineage
• Update lineage

Query processing
• “Top-K” by confidence

but don’t forget
the lineage…

