Performance Impact of
Optimizations

Agenda

m Performance Impact of Optimizations

m Case Study: Optimizing for Oracle™
Database

m Case Study: Disambiguation

Stanford University CS243 Winter 2006

*Qther names and brands may be claimed as the property of others

Overview of Intel Compiler

m Optimizing compiler on 4 Architectures
= [tanium, IA32, IXP, Xscale

m Platforms
= Windows32/64, Linux32/64, ...

m C/C++/FORTRAN9S5

m Record setting performance
m Spec, TPC-C, ...
m Close to 3 million lines of code

Stanford University CS243 Winter 2006

Compiler Architecture

Profiler (PGO)

Interprocedural Analysis and
Optimizations (IPO)

Compiler

Memory Optimizations (HLO), Optimizations
Parallelization and

Vectorization

Global Scalar Optimizations

Predication, Scheduling,
Register Allocation and SWP Code Generation

Stanford University

CS243 Winter 2006

Impact of HLO Component

Q
=]
o
o
o
Q
n
©
=
Q
7p)

Stanford University CS243 Winter 2006

Impact of Transformations

Stanford University

CS243 Winter 2006

178.galgel Code Example

POP1(1:N) = MATMUL(POP(1:N,1:N), Y(K+1:K+N))

do ii=1,N
POP1(ii) = 0.0
do jj=1,N

POPL(ii) = POPL(ii)
+POP(ii,]])*Y(j]+K)
enddo
enddo

(€:))
doii =1, N
POP1(ii) = 0.0
enddo di stri buti on
do jj =1, NI nterchange
doii =1, N
POP1(ii) = POP1(ii)
+POP(ii,jj)*Y(jj+K)
enddo
enddo

(b)

Stanford University

do jj=1, N

t5 = &POP1(prefdist)
t6 = &POP(prefdist,jj)
do ii=1,N,2

t1,t2 = | df dp(&PoP1(ii))
t3,t4 = | df dp(&POP(ii,jj))
POP1(ii) = t1+t3*Y(jj+K)
POP1(ii+1) = t2+t4*Y(]] +K)

| f et ch(ts)

t7 = t5+i ncrenment

t5 =t6 // MOPY

t6 =t7 [/ MOPY
enddo

...remai nder ...
enddo

(c)

CS243 Winter 2006

IPO and PGO

-
o
o

o
oo
o

o
»
o

o
D
o

o
N
o

[e
(4+]
(<b)
e
o
(<b)
o)
[T
o
o
-
o
(<b)
(«b)
o
(7]
©
—
(<b)
(/]

o
(=]
o

All=HLO+IPO+Profile All-IPO All-Profile feedback
feedback

Stanford University CS243 Winter 2006

Agenda

m Performance Impact of Optimizations

m Case Study: Optimizing for Oracle”™
Database

m Case Study: Disambiguation

Stanford University CS243 Winter 2006

*Qther names and brands may be claimed as the property of others

Additional Optimizations

m Register Stack Traffic Reduction

= Data Layout Optimizations

m Setjmp() Overhead Reduction

m Speculation and Instruction Prefetching
= Preemption Models

Stanford University CS243 Winter 2006

10

Speed-Ups

45.00%

40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

Stanford University CS243 Winter 2006

Speed-Ups of Code Layout
Optimizations

3]
=
o
T

o
O
O
o

D]

inline function speculation instr functio
recovery splitting for latency prefetch inlinin
code hints

Stanford University CS243 Winter 2006

Speed-Ups of Data Access
Optimizations

9.00% -

8.00%
327.00% -
=6.00%
2500%
S 4.00% -
3.00%
22.00%

1.00% 1

0.00%

Local Data ~ Read-Only Small Setjmp() Registerization Linux
Sorting Data preemptic

Stanford University CS243 Winter 2006

Agenda

m Performance Impact of Optimizations

m Case Study: Optimizing for Oracle™
Database

m Case Study: Disambiguation

Stanford University CS243 Winter 2006

*Qther names and brands may be claimed as the property of others

14

Introduction

m Pointer analysis is an active research area
s Reasonably accurate and efficient algorithms
m Metrics focused on analysis itself
m [he real problem is memory disambiguation
= Pointer analysis is one piece of the puzzle
= What is the pay off for this and other methods?
= Building a disambiguator

= Very important component of compiler
= Little published on how to build framework

Stanford University CS243 Winter 2006

15

Disambiguation Methods

m Intraprocedural methods

= Direct memory references (direct)

= Indirect references without points-to (indirect)

= Simple base + offset analysis (sbo)

= Local points-to analysis (Ipt)

= Array data dependence analysis (array)
m Interprocedural methods

= Global address taken analysis (global)

= WWhole program points-to analysis (wpt)
= Methods requiring user assertion

= Type-based disambiguation (type)

Note This Order

Stanford University CS243 Winter 2006

16

Disambiguation Result

Stanford University

Summarv

Dlndependent lmaybe Ddependent

85% of Queries Proven Independent

CS243 Winter 2006

17

Breakdown of

Independent Results
A0 R LB l|lll
=Il|l l'l'l BE 'R l

B type

O wpt
M global

O array

O Ipt

B sbo_ind
@ direct

sanford | EVery Method Important for Some Benchmark .

Performance for Methods

Odirect Bsbo ind Olpt Darray Mglobal Ewpt Btype

|

Fi IN I‘l |

sanford Univs - OQverall Gain of 12% from Disambiguation

19

Key Insights: Successful

Disambiguation
s Simpler methods very effective
= Steal from more complex ones

m Distinguishing structure fields important

m Recognition of memory allocators
important

m Points-to set size not reliable indicator of
usefulness of points-to information

Stanford University CS243 Winter 2006 20

Unsuccessful Disambiguation:
Top Five Reasons

1. User memory allocation

Lack of knowledge of library behavior
Indirect calls with many potential targets
Difficult array dependence cases

Loss of accuracy due to not
distinguishing structure instances

S

Stanford University CS243 Winter 2006

21

References

m Somnath Ghosh, Abhay Kanhere, Rakesh
Krishnaiyer, Dattatraya Kulkarni, Wei Li, Chu-
Cheow Lim, John Ng, “Integrating High-Level
Optimizations in a Production Compiler: Design

and Implementation Experience”, Compiler
Construction 2003.

m Gerolf Hoflehner, Rod Skinner, Knud Kirkegaard,
Daniel Lavery, Yong-fong Lee, Wei Li, “Compiler
Optimizations for Transaction Processing
\2/\(/)%réll<loads on Itanium® Linux* Systems”, MICRO

m Rakesh Ghiya, Daniel Lavery, David Sehr, “On
the Importance of Points-To Analysis and Other

Memory Disambiguation Methods For C
Programs”, PLDI 2001

Stanford University CS243 Winter 2006

*Qther names and brands may be claimed as the property of others

