Performance Impact of
Optimizations



Agenda

m Performance Impact of Optimizations

m Case Study: Optimizing for Oracle™
Database

m Case Study: Disambiguation

Stanford University CS243 Winter 2006

*Qther names and brands may be claimed as the property of others



Overview of Intel Compiler

m Optimizing compiler on 4 Architectures
= [tanium, IA32, IXP, Xscale

m Platforms
= Windows32/64, Linux32/64, ...

m C/C++/FORTRAN9S5

m Record setting performance
m Spec, TPC-C, ...
m Close to 3 million lines of code
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Compiler Architecture

Profiler (PGO)

Interprocedural Analysis and
Optimizations (IPO)

Compiler

Memory Optimizations (HLO), Optimizations
Parallelization and

Vectorization

Global Scalar Optimizations

Predication, Scheduling,
Register Allocation and SWP Code Generation
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Impact of HLO Component
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Impact of Transformations
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178.galgel Code Example

POP1(1:N) = MATMUL( POP(1:N,1:N), Y(K+1:K+N) )

do ii=1,N
POP1(ii) = 0.0
do jj=1,N

POPL(ii) = POPL(ii)
+POP(ii,]])*Y(j]+K)
enddo
enddo

(€:))
doii =1, N
POP1(ii) = 0.0
enddo di stri buti on
do jj =1, NI nterchange
doii =1, N
POP1(ii) = POP1(ii)
+POP(ii,jj)*Y(jj+K)
enddo
enddo

(b)

Stanford University

do jj=1, N

t5 = &POP1(prefdist)
t6 = &POP(prefdist,jj)
do ii=1,N,2

t1,t2 = | df dp(&PoP1(ii))
t3,t4 = | df dp( &POP(ii,jj))
POP1(ii) = t1+t3*Y(jj+K)
POP1(ii+1) = t2+t4*Y(]] +K)

| f et ch(ts)

t7 = t5+i ncrenment

t5 =t6 // MOPY

t6 =t7 [/ MOPY
enddo

...remai nder ...
enddo

(c)
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IPO and PGO
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Additional Optimizations

m Register Stack Traffic Reduction

= Data Layout Optimizations

m Setjmp() Overhead Reduction

m Speculation and Instruction Prefetching
= Preemption Models

Stanford University CS243 Winter 2006

10



Speed-Ups
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Speed-Ups of Code Layout
Optimizations
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Speed-Ups of Data Access
Optimizations
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Introduction

m Pointer analysis is an active research area
s Reasonably accurate and efficient algorithms
m Metrics focused on analysis itself
m [he real problem is memory disambiguation
= Pointer analysis is one piece of the puzzle
= What is the pay off for this and other methods?
= Building a disambiguator

= Very important component of compiler
= Little published on how to build framework
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Disambiguation Methods

m Intraprocedural methods

= Direct memory references (direct)

= Indirect references without points-to (indirect)

= Simple base + offset analysis (sbo)

= Local points-to analysis (Ipt)

= Array data dependence analysis (array)
m Interprocedural methods

= Global address taken analysis (global)

= WWhole program points-to analysis (wpt)
= Methods requiring user assertion

= Type-based disambiguation (type)

Note This Order

Stanford University CS243 Winter 2006
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Disambiguation Result
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Breakdown of

Independent Results
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Key Insights: Successful

Disambiguation
s Simpler methods very effective
= Steal from more complex ones

m Distinguishing structure fields important

m Recognition of memory allocators
important

m Points-to set size not reliable indicator of
usefulness of points-to information
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Unsuccessful Disambiguation:
Top Five Reasons

1. User memory allocation

Lack of knowledge of library behavior
Indirect calls with many potential targets
Difficult array dependence cases

Loss of accuracy due to not
distinguishing structure instances

S
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