Data Dependences and Parallelization

Agenda

- Introduction
- Single Loop
- Nested Loops
- Data Dependence Analysis

Motivation

- DOALL loops: loops whose iterations can execute in parallel

$$
\begin{aligned}
& \text { for } \mathrm{i}=11,20 \\
& a[\mathrm{i}]=a[\mathrm{i}]+3
\end{aligned}
$$

- New abstraction needed
- Abstraction used in data flow analysis is inadequate
- Information of all instances of a statement is combined

Examples

for $\mathrm{i}=11,20$ $a[1]=a[1]+3$

for $\mathrm{i}=11,20$

$$
a[i]=a[i-1]+3
$$

Examples

$$
\begin{aligned}
& \text { for } \mathrm{i}=11,20 \\
& a[\mathrm{i}]=a[\mathrm{i}]+3
\end{aligned}
$$

for $\mathrm{i}=11,20$

$$
a[i]=a[i-1]+3
$$

for $\mathrm{i}=11,20$

$$
a[i]=a[i-10]+3
$$

Not parallel

Parallel?

Agenda

- Introduction
- Single Loop
- Nested Loops
- Data Dependence Analysis

Data Dependence of Scalar Variables

- True dependence

$$
\begin{aligned}
a & = \\
& =a
\end{aligned}
$$

- Anti-dependence

$$
\begin{aligned}
& =a \\
& a=
\end{aligned}
$$

- Input dependence
$=\mathbf{a}$
$=a$

Array Accesses in a Loop

for $\mathrm{i}=2,5$
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+3$

Array Anti-dependence

for $\mathrm{i}=2,5$

$$
a[i-2]=a[i]+3
$$

Array True-dependence

for $\mathrm{i}=2,5$
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{i}-2]+3$

Dynamic Data Dependence

- Let o and o' be two (dynamic) operations
- Data dependence exists from o to o', iff
- either o or o' is a write operation
- o and o' may refer to the same location
- o executes before o'

Static Data Dependence

- Let a and a' be two static array accesses (not necessarily distinct)
- Data dependence exists from a to a', iff
- either a or a' is a write operation
- There exists a dynamic instance of a (o) and a dynamic instance of a' (0^{\prime}) such that
- o and o' may refer to the same location
- o executes before 0^{\prime}

Recognizing DOALL Loops

- Find data dependences in loop
- Definition: a dependence is loop-carried if it crosses an iteration boundary
- If there are no loop-carried dependences then loop is parallelizable

Compute Dependence

$$
\begin{aligned}
& \text { for } \mathrm{i}=2,5 \\
& a[\mathrm{i}-2]=a[\mathrm{i}]+3
\end{aligned}
$$

- There is a dependence between $a[i]$ and a[i-2] if
- There exist two iterations i_{r} and i_{w} within the loop bounds such that iterations i_{r} and i_{w} read and write the same array element, respectively
- There exist $i_{r}, i_{w}, 2 \leq i_{r}, i_{w} \leq 5, i_{r}=i_{w}-2$

Compute Dependence

$$
\begin{aligned}
& \text { for } i=2,5 \\
& a[i-2]=a[i]+3
\end{aligned}
$$

- There is a dependence between a[1-2] and a[1-2] if
- There exist two iterations i_{v} and i_{w} within the loop bounds such that iterations i_{v} and i_{w} write the same array element, respectively
- There exist $i_{v}, i_{w}, 2 \leq i_{v}, i_{w} \leq 5, i_{v}-2=i_{w}-2$

Parallelization

$$
\begin{aligned}
& \text { for } \mathrm{i}=2,5 \\
& \quad a[\mathrm{i}-2]=a[\mathrm{i}]+3
\end{aligned}
$$

- Is there a loop-carried dependence between a[i] and a[i-2]?
- Is there a loop-carried dependence between a[i-2] and a[i-2]?

Agenda

- Introduction
- Single Loops
- Nested Loops
- Data Dependence Analysis

Nested Loops

- Which loop(s) are parallel?

$$
\begin{aligned}
& \text { for } \mathrm{i} 1=0,5 \\
& \text { for } \mathrm{i} 2=0,3 \\
& \quad a[11, i 2]=a[11-2, i 2-1]+3
\end{aligned}
$$

Iteration Space

- An abstraction for loops
for $\mathrm{il}=0,5$
for $\mathrm{i} 2=0,3$

$$
a[\mathbf{i} 1, \mathbf{i} 2]=3
$$

- Iteration is represented as coordinates in
 iteration space.

Execution Order

- Sequential execution order of iterations:
Lexicographic order [0,0], [0,1], ..[0,3], [1,0], [1,1], ...[1,3], [2,0]...
- Let $I=\left(i_{1}, i_{2}, \ldots i_{n}\right)$. I is lexicographically less than $l^{\prime}, \mid<l^{\prime}$, iff there exists k such that $\left(i_{1}, \ldots i_{k-1}\right)=$ ($i_{1}^{\prime}, \ldots i_{k-1}$) and $i_{k}<i_{k}^{\prime}$

Parallelism for Nested Loops

- Is there a data dependence between $a[11, i 2]$ and a[i1-2,i2-1]?
- There exist $i 1_{r}, i 2_{r}, i 1_{w}, i 2_{w}$, such that
$-0 \leq i 1_{r}, 1_{w} \leq 5$,
$-0 \leq i 2_{\mathrm{r}}, \mathrm{i} 2_{\mathrm{w}} \leq 3$,
$-\mathrm{i1}{ }_{\mathrm{r}}-2=\mathrm{i} 1_{\mathrm{w}}$
- $\mathrm{i} 2_{\mathrm{r}}-1=\mathrm{i} 2_{\mathrm{w}}$

Loop-carried Dependence

- If there are no loop-carried dependences, then loop is parallelizable.
- Dependence carried by outer loop: - $\mathrm{i} 1_{\mathrm{r}} \neq \mathrm{i} 1_{\mathrm{w}}$
- Dependence carried by inner loop: $-\mathrm{i} 1_{\mathrm{r}}=\mathrm{i} 1_{\mathrm{w}}$ - $\mathrm{i} 2_{\mathrm{r}} \neq \mathrm{i} 2_{\mathrm{w}}$
- This can naturally be extended to dependence carried by loop level k.

Nested Loops

- Which loop carries the dependence?

$$
\begin{aligned}
& \text { for } \mathbf{i} 1=0,5 \\
& \text { for } \mathbf{i} 2=0,3 \\
& \quad a[\mathbf{i} 1, \mathrm{i} 2]=a[\mathbf{i} 1-2, \mathrm{i} 2-1]+3
\end{aligned}
$$

$i 1$

Agenda

- Introduction
- Single Loop
- Nested Loops
- Data Dependence Analysis

Solving Data Dependence Problems

- Memory disambiguation is un-decidable at compile-time.

read(n)
for $\mathrm{i}=0,3$
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{n}]+3$

Domain of Data Dependence Analysis

- Only use loop bounds and array indices which are integer linear functions of variables.

$$
\begin{aligned}
& \text { for } \mathrm{i} 1=1, \mathrm{n} \\
& \text { for } \mathbf{i} 2=2 *_{i 1}, 100 \\
& \quad a[\mathrm{i} 1+2 * \mathrm{i} 2+3]\left[4 *_{i} 1+2 *_{i} 2\right]\left[i 1 *_{i} 1\right]=\ldots \\
& \quad \ldots=a[1][2 * i 1+1][i 2]+3
\end{aligned}
$$

Equations

- There is a data dependence, if
- There exist $i 1_{r}, i 2_{r}, i 1_{w}, i 2_{w}$, such that
$-0 \leq i 1_{r}, i 1_{w} \leq n, 2^{* i 1} 1_{r} \leq i 2_{r} \leq 100,2^{* i j} 1_{w} \leq i 2_{w} \leq 100$,
- $\mathrm{i} 1_{w}+2^{*} \mathrm{i} 2_{w}+3=1,4^{*} \mathrm{i} 1_{w}+2^{*} \mathrm{i} 2_{w}=2^{*} \mathrm{i} 1_{\mathrm{r}}+1$
- Note: ignoring non-affine relations

$$
\begin{aligned}
& \text { for } \mathrm{i} 1=1, \mathrm{n} \\
& \text { for } \mathbf{i} 2=2 *_{i 1}, 100 \\
& \quad a\left[\mathrm{i} 1+2 *_{i} 2+3\right]\left[4 *_{i} 1+2 *_{i} 2\right]\left[i 1 *_{i} 1\right]=\ldots \\
& \quad \ldots=a[1][2 * i 1+1][i 2]+3
\end{aligned}
$$

Solutions

- There is a data dependence, if
- There exist $i 1_{r}, i 2_{r}, i 1_{w}, i 2_{w}$, such that
- $0 \leq i 1_{r}, i 1_{w} \leq n, 2^{*} 11_{w} \leq i 2_{w} \leq 100,2^{*} i 1_{w} \leq i 2_{w} \leq 100$,
- $\mathrm{i} 1_{\mathrm{w}}+2^{* *} 2_{\mathrm{w}}+3=1,4^{*} \mathrm{i} 1_{w}+2^{*} \mathrm{i} 2_{w}-1=\mathrm{i} 1_{\mathrm{r}}+1$
- No solution \rightarrow No data dependence
- Solution \rightarrow there may be a dependence

Form of Data Dependence Analysis

- Data dependence problems originally contains equalities and equalities
- Eliminate inequalities in the problem statement:
- Replace $\mathrm{a} \neq \mathrm{b}$ with two sub-problems: $\mathrm{a}>\mathrm{b}$ or a<b
- We get

$$
\exists \operatorname{int} \vec{i}, A_{1} \vec{i} \leq \vec{b}_{1}, A_{2} \vec{i}=\vec{b}_{2}
$$

Form of Data Dependence Analysis

- Eliminate equalities in the problem statement:
- Replace a =b with two sub-problems: a ab and $\mathrm{b} \leq \mathrm{a}$
- We get

$$
\exists \operatorname{int} \vec{i}, A \vec{i} \leq \vec{b}
$$

- Integer programming is NP-complete, i.e. Expensive

Techniques: Inexact Tests

- Examples: GCD test, Banerjee's test
- 2 outcomes
- No \rightarrow no dependence
- Don't know \rightarrow assume there is a solution \rightarrow dependence
- Extra data dependence constraints
- Sacrifice parallelism for compiler efficiency

GCD Test

- Is there any dependence?

$$
\begin{aligned}
& \text { for } i=1,100 \\
& \quad a[2 * i]=\ldots \\
& \ldots=a[2 * i+1]+3
\end{aligned}
$$

- Solve a linear Diophantine equation
$-2^{*} i_{w}=2^{*} i_{r}+1$

GCD

- The greatest common divisor (GCD) of integers $a_{1}, a_{2}, \ldots, a_{n}$, denoted $\operatorname{gcd}\left(a_{1}, a_{2}\right.$, $\left.\ldots, a_{n}\right)$, is the largest integer that evenly divides all these integers.
- Theorem: The linear Diophantine equation

$a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=c$

has an integer solution $x_{1}, x_{2}, \ldots, x_{n}$ iff $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ divides c

Examples

- Example 1: $\operatorname{gcd}(2,-2)=2$. No solutions

$$
2 x_{1}-2 x_{2}=1
$$

- Example 2: $\operatorname{gcd}(24,36,54)=6$. Many solutions

$$
24 x+36 y+54 z=30
$$

Multiple Equalities

$$
\begin{aligned}
& x-2 y+z=0 \\
& 3 x+2 y+z=5
\end{aligned}
$$

- Equation 1: $\operatorname{gcd}(1,-2,1)=1$. Many solutions
- Equation 2: $\operatorname{gcd}(3,2,1)=1$. Many solutions
- Is there any solution satisfying both equations?

The Euclidean Algorithm

- Assume a and b are positive integers, and a > b.
- Let c be the remainder of a / b. If $\mathrm{c}=0$, then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{b}$.
- Otherwise, $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{c})$.
$\cdot \operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), a_{3} \ldots\right.$, a_{n})

Exact Analysis

- Most memory disambiguations are simple integer programs.
- Approach: Solve exactly - yes, or no solution
- Solve exactly with Fourier-Motzkin + branch and bound
- Omega package from University of Maryland

Incremental Analysis

- Use a series of simple tests to solve simple programs (based on properties of inequalities rather than array access patterns)
- Solve exactly with Fourier-Motzkin + branch and bound
- Memoization
- Many identical integer programs solved for each program
- Save the results so it need not be recomputed

State of the Art

- Multiprocessors need large outer parallel loops
- Many inter-procedural optimizations are needed
- Interprocedural scalar optimizations
- Dependence
- Privatization
- Reduction recognition
- Interprocedural array analysis
- Array section analysis

Summary

- DOALL loops

- Iteration Space
- Data dependence analysis

