Register Allocation

Register Allocation

- Introduction
- Problem Formulation
- Algorithm

Register Allocation Goal

- Allocation of variables (pseudo-registers) in a procedure to hardware registers
- Directly reduces running time by converting memory access to register access
- What's memory latency in CPU cycles?

Example

How long will the loop take, if a, b, and c are all in memory?

Example

Example

How long will the loop take?

Revisit SSA Example

- Mapping a_{i} to a is like register allocation

High-level Steps

- Find an assignment for all pseudoregisters or alias-free variables.
- Assign a hardware register for each variable.
- If there are not enough registers in the machine, choose registers to spill to memory

Register Allocation

- Introduction
- Problem Formulation
- Algorithm

Problem Formulation

- Two pseudo-registers interfere if at some point in the program they can not both occupy the same register.
- Interfere Graph:
- nodes = pseudo-registers
- There is an edge between two nodes if their corresponding pseudo-registers interfere

Pseudo-registers

$$
\begin{aligned}
& a=1 \\
& b=2 \\
& c=a+b \\
& d=a+3 \\
& e=a+b
\end{aligned}
$$

$\mathrm{t} 1=1$
$\mathrm{t} 2=2$
$\mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 2$
$\mathrm{t} 4=\mathrm{t} 1+3$
$\mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 2$

Interference Graph

Graph Coloring

- A graph is n-colorable, if every node is the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.
- To determine if a graph is n-colorable is NP-complete, for $n>2$
- Too expensive
- Heuristics

Example

- How many colors are needed?

Graph Coloring and Register Allocation

- Assigning n registers (without spilling) = Coloring with n colors
- Assign a node to a register (color) such that no two adjacent nodes are assigned same registers (colors)
- Is spilling necessary? = Is the graph ncolorable?

Register Allocation

- Introduction
- Problem Formulation
- Algorithm

Algorithm

- Step 1: Build an interference graph
- Refining the notion of a node
- Finding the edges
- Step 2: Coloring
- Use heuristics to find an n-coloring
- Successful \rightarrow colorable and we have an assignment
- Failure \rightarrow graph not colorable, or graph is colorable, but it is too expensive to color

Step 1a: Nodes in Interference Graph

$$
\begin{aligned}
\mathrm{t} 1 & =1 \\
\mathrm{t} 2 & =2 \\
\mathrm{t} 3 & =\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & =\mathrm{t} 1+3 \\
\mathrm{t} 5 & =\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

Every pseudo-register is a node

Step 1b: Edges of Interference Graph

- Intuition

- Two live ranges (necessarily different variables) may interfere if they overlap at some point in the program

Live Ranges

- Motivation: to create an interference graph that is easier to color
- Eliminate interference in a variable's "dead" zones
- Increase flexibility in allocation: can allocation same variable to different registers
- A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.

Merged Live Ranges

- Two overlapping live ranges for same variable must be merged

Merging Live Ranges

- Merging definitions into equivalence classes
- Start by putting each definition in a different equivalence class
- For each point in a program
- If variable is live and there are multiple reaching definitions for the variable
- Merge the equivalence classes of all such definitions into one equivalence class
- From now on, refer to merged live ranges simply as live ranges

Algorithm for Edges

- Algorithm
- For each instruction i
- Let x be live range of definition at instruction i
- For each live range y present at end of instruction i
- Insert en edge between x and y

Example

$\begin{aligned} \mathrm{b} & = \\ \mathrm{d} & =\mathrm{a}(\mathrm{~d} 2) \\ & =\mathrm{b}+\mathrm{d} \end{aligned}$	$\begin{aligned} \mathrm{c} & = \\ \mathrm{d} & =\mathrm{a}(\mathrm{~d} 1) \\ & =\mathrm{d}+\mathrm{c} \end{aligned}$	liveness \{a\} $\{\mathrm{a}, \mathrm{c}\}$ $\{\mathrm{c}, \mathrm{d}\}$ \{d\}	$\begin{aligned} & \text { reaching def } \\ & \{\mathrm{a} 1\} \\ & \{\mathrm{a} 1, \mathrm{c}\} \\ & \{\mathrm{a} 1, \mathrm{c}, \mathrm{~d} 1\} \\ & \{\mathrm{a} 1, \mathrm{c}, \mathrm{~d} 1\} \end{aligned}$
		$\begin{aligned} & \{\mathrm{a} 1, \mathrm{l} \\ & \{\mathrm{a} 2,1 \end{aligned}$	$\begin{aligned} & \text { :, d1,d2\} } \\ & \{, \mathrm{d} 1, \mathrm{~d} 2\} \end{aligned}$

Interference Graph

$$
\begin{aligned}
& \mathrm{t} 1=1 \\
& \mathrm{t} 2=2
\end{aligned}
$$

$\mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 2$
$\mathrm{t} 4=\mathrm{t} 1+3$
$\mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 2$
1

t1-t5 are not live

Interference Graph

$$
\begin{aligned}
& \mathrm{t} 1=1 \\
& \mathrm{t} 2=2 \\
& \mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{t} 4=\mathrm{t} 1+3 \\
& \mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

$$
1
$$

t1-t5 are not live

Interference Graph

$$
\begin{aligned}
& \mathrm{t} 1=1 \\
& \mathrm{t} 2=2 \\
& \mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{t} 4=\mathrm{t} 1+3 \\
& \mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

$$
1
$$

t1-t5 are not live

Step 2: Coloring

- Reminder: coloring for $n>2$ is NP-complete
- Observations
- A node with degree < n?
- A node with degree = n?
- A node with degree > n?

Coloring Algorithm

- Algorithm
- Iterate until stuck or done
- Pick any node with degree < n
- Remove the node and its edges from the graph - If done (no nodes left)
- Reverse process and add colors
- Note: degree of a node may drop in iteration

Colorable by 3 Colors?

$$
\begin{aligned}
\mathrm{t} 1 & =1 \\
\mathrm{t} 2 & =2 \\
\mathrm{t} 3 & =\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & =\mathrm{t} 1+3 \\
\mathrm{t} 5 & =\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

$$
1
$$

t1-t5 are not live

Colorable by 3 Colors?

Pick t5 and remove its edges

Colorable by 3 Colors?

Pick t4 and remove its edges

Colorable by 3 Colors?

Pick t3 and remove its edges

Colorable by 3 Colors?

Pick t2 and remove its edges

Register Assignment

- Reverse process and add color different from all its neighbors

Register Assignment

Color t2

Register Assignment

- Color t3

Register Assignment

- Color t4

Register Assignment

- Color t5

After Register Allocation

$$
\begin{aligned}
& \mathrm{t} 1=1 \\
& \mathrm{t} 2=2 \\
& \mathrm{t} 3=\mathrm{t} 1+\mathrm{t} 2 \\
& \mathrm{t} 4=\mathrm{t} 1+3 \\
& \mathrm{t} 5=\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

r1 $=1$
$\mathrm{r} 2=2$
$\mathrm{r} 3=\mathrm{r} 1+\mathrm{r} 2$
$\mathrm{r} 3=\mathrm{r} 1+3$
$\mathbf{r} 1=\mathrm{r} 1+\mathrm{r} 2$

When Coloring Fails

- Use heuristics to improve its chance of success and to spill code
- Algorithm
- Iterate until done
- If there exists a node v with degree $<n$
- Place v on stack to register allocate
- Else
- Pick a node v to spill using heuristics (e.g. least frequently executed, with many neighbors etc)
- Remove vand its edges from the graph
- If done (no nodes left)
- Reverse process and add colors

Colorable by 2 Colors?

$$
\begin{aligned}
\mathrm{t} 1 & =1 \\
\mathrm{t} 2 & =2 \\
\mathrm{t} 3 & =\mathrm{t} 1+\mathrm{t} 2 \\
\mathrm{t} 4 & =\mathrm{t} 1+3 \\
\mathrm{t} 5 & =\mathrm{t} 1+\mathrm{t} 2
\end{aligned}
$$

$$
1
$$

t1-t5 are not live

Colorable by 2 Colors?

Pick t5 and remove it edges

Need to spill!

Is the Algorithm Optimal?

2-colorable?

3-colorable?

Summary

- Problems:
- Given n registers in a machine, is spilling avoidable?
- Find an assignment for all pseudo-registers.
- Solution
- Abstraction: an interference graph
- Nodes: merged live ranges
- Edges: presence of live range at time of definition
- Register allocation and assignment problems = $\mathrm{n}=$ colorability of interference graph (NP-complete)
- Heuristics to find an assignment for n colors
- Successful: colorable, and finds assignment
- Not successful: colorability unknown and no assignment

backup

Predication Example

Predication

- Identifying region of basic blocks based on resource requirement and profitability (branch misprediction rate, misprediction cost, and parallelism).
- Result: a single predicated basic block

Predicate-aware Register Allocation

- Use the same register for two separate computations in the presence of predication, even if there is live-range overlap without considering predicates

Example

$(p 1)$ v1 $=10$
$(p 2)$ v2 $=20 ;$
(p1) st4 [v10]= v1
(p2) v11 = v2 + 1 ;;
(p1) r32 = 10
(p2) r32 = 20 ;;
(p1) st4 [r33]= r32
(p2) r34 = r32 + 1 ;;

same register for v1 and v2

overlapped live ranges

