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Abstract

Most Peer-to-Peer (P2P) systemsassumethat all peers
are cooperating for the benefitof the community. How-
ever in practice, there is a significant portion of peers
who leech resourcesfrom the systemwithout contributing
any in return. In this paper, we proposea simpleSelfish
Link-basedInCentive(SLIC) mechanismfor unstructured
P2P file sharing systemsto createan incentivestructure
where in exchange for better service, peers are encour-
agedto sharemoredata,givemorecapacityto handleother
peers’ queries,andestablishmore connectionsto improve
theP2Poverlaynetwork.Our SLICalgorithmdoesnot re-
quire nodesto bealtruistic anddoesnot rely on third par-
ties to provideaccurate informationaboutotherpeers. We
demonstrate, throughsimulation,thatSLIC’s locally selfish
and greedyapproach is sufficient for the systemto evolve
into a “good” state.

1. Intr oduction

Peer-to-Peer(P2P)file-sharingsystemsorganizeusers
into an overlay network to facilitatethe exchangeof data.
However, currentdeployed systemslack any “viable” in-
centive structuresfor encouragingusersto behave in the
bestinterestof thecommunity. As aresult,variousformsof
abuseandattackhave beenobservedin practice.Themost
common onesare free loaders[2] and denial-of-service
(DOS) attacks.A free loader is a user who only down-
loadsfilesfrom aP2Pnetwork while neversharingany files.
Theseusersbecomeleechesanddrain resourcesfrom the
community. Unlike free loaderswho only reducesthe re-
sourcein the network, therearealsomalicioususerswho
launchactive DOS attacksagainstP2Poverlay networks.
Theseattackstypically take theform of servingbogusfiles
or strainingthenetwork by floodingbogusqueries.
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Figure 1: Example of mutual access contr ol

Some researchershave proposeda global reputation-
basedsystemfor combatingtheseproblems[8, 1, 5, 6, 10].
In sucha system,eachuseris assigneda reputationby the
communitythatreflectsits contribution to andits participa-
tion in thecommunity. This reputationcanthenbeusedto
filter out free loadersor malicioususers.Othershave sug-
gestedimposinga barteringeconomy[11, 14] on the en-
tire communitywhereusersexchangeservices.The econ-
omycanbeimplementedasmicro-paymentsor IOU certifi-
cates.

In contrastto building a global systemwith reputations
or economicsthat requiresusersto cooperateor somecen-
tral authorities,this paperproposesa simplealternative so-
lution SLIC (SelfishLink-basedInCentive)whereeachuser
can,and in fact is encouragedto, act selfishlyandgreed-
ily. We will show that SLIC allows an unstructuredP2P
overlay network, suchas Gnutella [7], to “evolve” into a
statewherefreeloadersandattackersareostracizedquickly
withoutaskingany userto behaveagainsthis bestinterest.

SLIC operatesby takingadvantageof onekey property
of the flooding-basedsearchmechanismusedin unstruc-
turedP2Poverlaynetwork. In flooding,whenanodewants
to find a particularpieceof data,it sendsa searchqueryto
all its neighborson theP2Poverlaynetwork. Its neighbors
then in turn forwardsthe searchquery to their neighbors,
andsoforth. Observethatthisflooding-basedsearchmech-
anismallowsneighboringnodesto control each other’sac-
cessto the restof the network. For example,considertwo
nodes� and � in Figure1 thatshareanoverlaylink. In or-
der for node � ’s queriesto reachother nodesin the net-
work fragment� , node � mustforward � ’s queries.Simi-
larly, node � canonly reachnodesin network fragment�
if node� forwardsits queries.

SLIC exploits this relationshipby allowing eachnodeto



“rate” its neighborsand to usethe ratingsto control how
many queriesfrom eachneighborto processand to for-
wardon. Intuitively, for node � in Figure1, if � is provid-
ing greatserviceeitherdirectly by � itself or indirectly by
nodesreachablevia � in thefragment� , then � wouldgive
a high rating to � andprocessand forward morequeries
from � . Conversely, badservicewould reducerating and
thenumberof queriesserviced.In otherwords,SLIC uses
this mutualaccesscontrol relationshipasa meansof retal-
iation if a nodedoesnot play fair or connectsto nodesthat
do not play fair. To improve their service,nodesareincen-
tivized to provide contentand/orto connectto nodesthat
providecontent.

Our simpleapproachhastwo significantadvantages:(1)
eachuser is greedyin that he is trying to maximizehis
own advantagein gettingbetterservice;(2) eachuseronly
keepsstatisticsaboutits neighborsanddoesnot rely upon
a trustedauthorityor othersto give accurate“reputations”
aboutunknown users.For the remainderof this paper, we
will developthis intuition into our selfishlink-basedincen-
tivemechanism(SLIC).Wewill show thatSLIC is effective
in controlling free-loadersandmaliciousnodes.Our main
contributionsare

� proposetheSLIC algorithmthat is usedby eachnode
to manipulatetherating(Section2)� illustratethat the incentive structurefrom nodesexe-
cutingSLIC doesthe“right thing” (Section3)� show thatSLIC canrespondquickly whentheoverlay
network is dynamicallychanging(Section4)

2. BasicAlgorithm

Informally, SLIC is a generalalgorithmthatoperatesin
periods,e.g.,every minute.During eachperiod,a nodehas
certaincapacitythatit is willing to usefor servicingqueries
from neighboringnodeson theP2Poverlay. To distinguish
goodneighborsfrom badones,anode� maintainsaweight��� �
	���
 for eachneighbor� , where ��� ��� �
	���
���� . A
weightof � indicatesanexcellentneighborwhile a weight
of � implies a uselessone.With theseweights,a node �
thenallocatesits capacityto serviceincomingqueriesfrom
its neighborsproportionallyto theweights.For instance,if� hastwo links to nodes� and � with weights � and ��� � re-
spectively, thenin this periodnode � will give �� of its ca-
pacityto queriesfromnode� and �� of its capacitytoqueries
from node� .

At theendof aperiod,eachnodereevaluatesits opinion,
or weights,of its neighborsbasedon how muchservicethe
neighborshadprovided during the currentperiod. In par-
ticular, we measurethe numberof query hits that a node
hasreceived from eachneighbor. A hit in this casemeans
a pieceof datathat satisfiesa searchquery. If a neighbor

gave moreservicethanpreviously expected,then the cor-
respondingweightwill increase.Similarly, lessservicewill
result in lower weight. Sincequality of servicemay fluc-
tuatefrequently, SLIC usesan exponentialdecaymecha-
nismfor updatingweights.Specifically, if

��� ��	���
 denotes
the weight usedin the previous period,

�! "� ��	���
 denotes
thenew weightfor thenext period,and # � ��	���
 denotesthe
quality of servicefrom neighbor� during this period,then�! "� ��	���
%$'& ��� ��	���
)( � �+*,&-
.# � �
	���
 for some& where�0/1&2/3� .

Theweightadjustmentandthecapacityallocationin the
SLIC algorithmcreateafeedbacksystem.In otherwords,if
node� is receiving mostof its queryhits from node� , then� will reciprocateby increasingtheweight

��� �
	���
 andre-
ducingotherweights.As a result,node � will give mostof
its sparecapacityto handlequeriesfrom � . In this section,
wefirst introduceasimplemodelandsomenotationfor for-
mally describingthealgorithmin thecontext of anunstruc-
turedP2Pfile sharingsystem.We thengive the detailsof
the SLIC algorithmstatedabove. We finish by illustrating
how SLIC worksthroughtwo examples.

2.1. A Simple Model and Notation

We usea very simplemodelto capturethe key charac-
teristicsof anunstructuredP2Pfile sharingsystemthatare
relevant to our study andsimulation.We model the over-
lay network asa graph 45$ �"6 	�7�
 . Thevertex set

6
rep-

resentsnodes(users)in thenetwork. Theedgeset 7 repre-
sentstheoverlaylinks.

We modeltheperiodicbehavior of SLIC asnodesoper-
atingin rounds;althoughtheroundsdo not have to besyn-
chronized,for simplicity, we will assumesynchrony in this
paper. During a single round,eachnode � can handleup
to 8%9 queries.This capacity 8%9 is divided betweengen-
eratingnew queriesandansweringqueriesfrom theneigh-
bors.Thusanodegeneratingtoomany querieswill havelit-
tle capacityto processandforwardqueriesfrom its neigh-
bors,andvice versa.We use : 9 , where �;�<: 9 �=� , to
denotethe fractionof capacityusedby node � to generate
new queries.Thusamaliciousnodethatfloodsthenetwork
with queriesis capturedby a nodewith :;$>� . Here we
have assumedthateachnodecangenerate:?90@A8%9 queries
eachround.In practicewheretheP2Poverlaynetwork con-
sistsof super-nodes1, thereshouldbe enoughnew queries
from clientsof a super-node.Moreover, evenif anodegen-
eratesfewernew queries,it still canusetheextracapacityto
serviceneighbors’queries.If anodereceivesmorethan 8%9
queriesfrom its neighbors,it canchoosewhich 8 9 queries
to accept.Whenchoosingqueriesfrom asinglelink, weas-

1 A super-nodeis a high capacitynodethatactsasa proxy for a large
numberof slower or low capacitynodes.



sumenodeswill always preferquerieswith high time-to-
live (TTL). (Previous work in [12] showed that preferring
highTTL queriesresultin themostqueriesprocessed.)

We model the flooding-basedsearchmechanismas a
simple forwarding step where eachnode � sendsits 8%9
querieschosenduringround B to its neighborsfor process-
ing during round BC(D� . In the processof this forwarding
step,eachquery’sTTL is decremented.If a queryhasTTL� , it is removedfrom thesystem.

We alsomodeltheamountof datathata node � is shar-
ing by a parameterwe call theansweringpower �FE where�G�H�IEJ��� . This answeringpowerrepresentsthe proba-
bility of node � having a hit that satisfiesa query. In other
words, a large �IE value meansnode � is sharingmany
files. Similarly, a low �FE value (e.g., � ) representsa free
loader. Note that we have simplified the answeringpower
by assumingthat a nodeis equally likely to have a hit for
any queries,thuswe areignoringclusteringeffectsin data
sharedby users.We alsoassumethat eachnodecanonly
contributezeroor onehit.

In this model, we have only capturednode capacity,
querygeneration,querypropagation,andlikelihoodof hav-
ing a hit at individual nodes.We arenot modelingthe ac-
tualfile downloads.Section6 briefly addresseshow to gen-
eralizeourSLIC algorithmfor handlingfile downloads.We
alsousethefollowing notationin describingour algorithm.

� 7 9 denotesthesetof edgesfrom node � .� �GKL� �
	���
 denotestheweightof thelink
� ��	���
 in roundB .�NM K�� �O
 denotesthesetof queriesinitiatedby � whose

TTLs have expired during round B . For our simple
model, nodescan determineexactly which queries
haveexpiredby theroundnumber. In practice,we can
usea fixedtime-outfor this purpose.�QP K � �
	���
 denotesthe numberof hits for query P that
werereceivedfrom thelink

� �
	���
 by round B .�SR denotesthemaximumTTL for eachquery.� & denotestheexponentialdecayrate,e.g., �T� U .
2.2. Description of the Algorithm

TheSLIC algorithmhastwo components:(1) how nodes
operatewhile usingtheweights,and(2) how nodesupdate
theweightseachround.Figure2 providesthepseudo-code
for how nodesoperatewhenrunningSLIC. Whenthesys-
tem first starts,all weights

�GV?� ��	���
 are initialized to � .
Subsequently, during eachround,nodesfirst usesomeof
theircapacityto generatenew queriesasin step� . Thenum-
ber of new queriesis controlledby the parameter: 9 . As
mentionedpreviously, a maliciousnodethatfloodsthenet-
work with queriesis equivalentto having a large :?9 value.

During round B , node� performsthefollow actions:

1: generate:�9W@X8 new queries
2:
�GY[Z.Y[\^] $'_!` 9ba EdcfeAgOh � K � �
	���


3: for eachedge
� �
	���
%iJ7 9 do

4: Processandforward
� �j*k:�9�
�8G@Xlnm ` 9ba Edclnoqprots�u querieswith

thehighestTTL from thelink
� �
	���


5: end for
6: if therearestill sparecapacity, repeatstepsv through �

to divide thesparecapacity.
7: Tally numberof hits for newly expired queriesgener-

atedby � , i.e., M K � �j
 .
8: for eachedge

� �
	���
%iJ7 9 do
9:

� Ktw � � �
	���
x$;y{z}|0~����.� �F�XB"�T��� �"� K � �
	���
d	 M K � �j
�

10: end for

Figure 2: Pseudo-code for node operation.

Procedure y{z}|0~����.� �I��Br�T�T� �r��� �
	���
d	 M K�� �O
�

1: for eachedge

� �
	��O
%iJ7+9 do

2: # � ��	���
x$ �� m eA� m ` 9 c
P � ��	���
_ ` 9ba � c�eAg h P KL� �
	��T


3: end for
4: #{� \d� $;�����F�}# � ��	���
�� � ��	���
�i�7 9��
5: return &�@ ��� ��	���
�( � �n*,&-
 # � �
	���
#{� \d�

Figure 3: Pseudo-code for computing new weight

Oncenodeshave generatedtheir new queries,in stepsv
through � , eachnodedividesthe remainingcapacitiespro-
portionally,accordingto theweights,amongits links to pro-
cessremotequeriesfrom neighbors.Note,however, that it
is possiblefor a nodeto still havesparecapacityafterstepsv through � . For example,supposetheweightsdictatethat
node� shouldchoose���b� queriesfrom link

� �
	���
 . If node�
only sends��� queries,thentherewouldbeanunusedcapac-
ity of ��� queries.In therareeventof having unusedcapac-
ity, wereallocatethecapacityamongtheremaininglinks as
in step � .

After nodeshave chosenwhich queriesto processand
forward,in steps� through ��� , eachnode � thenconsiders
its own queriesM K�� �j
 whoseTTLs have expiredat thecur-
rent round B . Node � usesthe statisticson how many hits
for thequeriesin M KL� �j
 werereceivedfrom eachlink to up-
datethelink weights.

Therearemany waysto performthisweightupdate.Fig-
ure 3 shows the pseudo-codefor one suchupdateproce-
dure.In this case,for eachquery P i M K � �O
 , we first deter-
mine the fractionof hits contributedby a particularneigh-
bor � . Thecontributionof a link

� ��	���
 in this round # � �
	���

is thensimply thesumof thesefractionsoverall queriesin



Figure 4: Example netw ork of v white nodes with:k$;��� � and black node with :0$��T� U
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Figure 5: Weight adjustments by the white node

M K � �O
 asin step v . Oncewe have thecontribution for each
link, we find the maximumcontribution by any link #{� \d�
in step � . We finally computethenew weight in step � us-
ing an exponentialdecayrateof & with the new contribu-
tion # � �
	���
 normalizedby themaximum# � \d� . Besidesthe
weight adjustmentshown in Figure3, we also tried com-
puting # � �
	���
 asthe raw numberof hits or the numberof
querieswith atleastonehit. Bothvariationsyield similarre-
sults.

During our SLIC evaluation, we noticed that the per
roundcontribution # � ��	���
 , ascomputedin step v of com-
puteweight, is very noisybecauseof the stochasticnature
of thenumberof hits a nodeprovides. To reducenoise,in-
steadof usingthesingleroundcontribution,wekeepamov-
ing window of ��� roundsandusetheaverageof thecontri-
butionsin this window.

2.3. A SimpleExample

To illustratehow weightschangeovertimewhenrunning
SLIC, let usbegin with a simpleexampleof threenodesas
shown in Figure4. Thethreenodesareconnectedin a ring.
Thetwo whitenodesareusing �A�?� of theircapacityto gen-
eratenew queries,whereasthe black nodeis trying to get
extra serviceby using UA��� of its capacityto generatenew
queries.All threenodeshaveanansweringpowerof � , i.e.,
everyquerywill haveahit ateachnode.

Intuitively, we hopethat when running SLIC, the two
white nodeswill detectthat the black nodeis dedicating
fewer resourceto processtheir queriesandretaliateby re-
ducing their servicefor the black node’s queries.And in-
deed,thissituationdoesoccur. Figure5 showshow a white
nodeadjustits weightsasafunctiontime.Thedashedcurve
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Figure 6: Weight adjustments by the black node

correspondsto the link to the other white node,and the
solid curve representthe link to theblacknode.Thex-axis
givesthe roundnumber. The y-axis shows the weight. As
expected,thewhite nodequickly reducesits weight for the
blacknodewhile booststheweightfor theotherwhitenode.
It is also interestingto note that the weight for the black
nodedoesnot drop to � , as it stabilizesaround ��� �?� . The
reasonis that althoughthe black nodeis generatingmore
queries,it is still providing someservicewith its ����� spare
capacity, thusgettinga smallamountof servicein return.

For completeness,we show how the blacknodeadjusts
its weight for the white nodesin Figure6. Sinceit is get-
ting the samekind of servicefrom both white nodes,the
weightsareboostedto � . Note that in both Figures5 and
6, the weightsinitially dropsbeforereaching � . This drop
is the side effect of our implementationthat usesa mov-
ing window of size ��� for computingtheper-roundcontri-
bution. Whenthe simulationstartsinitially, the first round
hasa zerocontribution becauseno querieshasbeenpropa-
gatedyet.Theeffect of this initial zerolingersarounduntil
it expiresfrom themoving window.

2.4. A More Involved Example

Now considerafully connectedgraphof �X� nodeswhere
eachnodehas:�$;��� v , i.e.,devotes A��� capacityto theoth-
ers.Supposewelet � nodeshaveanansweringpowerof ���  
andtheother � nodeswith answeringpowerof �T�t� . Running
SLIC on this network, onemight expectthenodesto form
two cliquesof five nodes:one for high answeringpower
nodesandone for low answeringpower nodes.However,
thatis not true.

Figure7 illustrateshow the weightschangefor a node
with high answeringpower over time. Thex-axisgivesthe
round number. The y-axis gives the weights.Thereare U
curves,one for eachlink to the other nodes.Initially, the
weights for links to the high answeringpower nodesin-
creasewhile theweightsfor thelow answeringpowernodes
decreasedramatically. However, the weights for low an-
sweringpower nodesdo not all go to � ; several of them
stabilizesaround ���¡� . The reasonfor this stability is be-
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Figure 7: Illustration of weights changing over
time for a complete graph of ��� nodes.

causesomelow answeringpowernodesdecidedto process
all queriesfrom a high powernode,thusensuringits corre-
spondingweightdoesnot diminishto � .

An interestingquestion,then,is whatkind of network re-
sultsfrom runningSLIC on this �X� nodescompletegraph.
Figure8(a) shows the final network with weightsfor each
edge.Theedgesnotshown haveweight � . In thisfigure,the
high answeringpower nodesarecoloredblackandlow an-
sweringpower nodeswhite. The style of the lines andar-
rowsindicatedifferentweights.To helpdecipherthedatain
thefigure,solid lineshavehigherweightsthandashedlines
which have higherweightsthandottedlines. Also for the
samestyle of lines, a filled arrow indicatedhigherweight
thana hollow arrow.

Obviously the high power nodesdo prefer eachother
more.Fortunately, they still leakenoughcapacityto prevent
thenetwork from beingdisconnected.Notice theasymme-
try in termsof theweightsbetweena highpoweranda low
power node.Theseasymmetriclinks alsoprevent the low
answeringpowernodesfrom formingacliqueof theirown.

We alsoshow whathappensto thefinal network if every
nodeuses:�$£�T� � , that is doublingthe numberof queries
they eachgenerate,in Figure 8(b). The network becomes
lessconnectedas nodestend to pair up becausethe lack
of capacityin thesystem.If we further increase: for each
node,thenetwork will eventuallybecomedisconnected.As
asidenote,thepreciseconfigurationwith weightsis noten-
tirely deterministicbecausethe answeringpower of nodes
introducerandomness.However, thegeneralshapeof thefi-
nal configurationis similar.

From the two examples,we seethat SLIC’s greedyap-
proachof adjustingweightsdo indeedcapturea node’s in-
dividual preferenceof their neighbors.What is unclearis
how theselocally determinedweightsinteracton a global
scale.In next section,we will show that eachnode’s self-
ish decisionsdo indeedleadto a good incentive structure
for the systemasa whole wherenodesareencouragedto
sharemoredata,givemorecapacityto othernodes,andes-
tablishmorelinks to increasethenetwork connectivity.

3. Incentive Structure

WhenrunningSLIC, anodewill receivebetterserviceif
its neighborsgive it a high weight.To influenceits neigh-
borsdecisions,a nodehasthreeoptions:� Increaseansweringpower. By sharingmore data,a

nodecanbecomemoreattractive.� Increasethe numberof edges(or connectivity). By
having more edges,a neighbor’s queriescan be for-
wardedto more nodes,which leadsto more hits for
neighbors’queries.� Increasetheamountof capacityusedto serviceneigh-
bors’queries.By giving morecapacity, anodecanfor-
ward more queriesto reachdistantpartsof the net-
work.

For the purposeof creatinga goodincentive structure,we
alsowantSLIC to reduceanode’sserviceif it doesnotpro-
vide a reasonableamountof resourcein any of the above
threecategories.To assesstheeffectivenessof SLIC in es-
tablishing an incentive structure,we considertwo utility
functions:

1. �+�b��¤JBf��¥ K � �j
 : Theaverageof numberof hitsperquery
generatedby node� in round B .

2. ¦Fz}�.§�¨[¤�Br��¥ K�� �O
 : Thetotalnumberof hitsfor all queries
generatedby node� in round B .

For themostpart,bothutility functionsbehavesimilarly,
thuswewill illustratethatSLIC hasagoodincentivestruc-
tureby using �+�b��¤JBf��¥ K�� �j
 . We will alsohighlight scenar-
ioswhere¦Fz}�.§�¨[¤JBf��¥ K � �j
 is amoreappropriateutility func-
tion. With thesetwo utility functionsin mind,we will now
demonstratevia simulationthat SLIC rewardsnodesthat
provide more data,dedicatemore capacityfor neighbors’
queries,andestablishmoreconnections.Ourresultwill also
verify thatSLIC ostracizednodeswho do not play fair.

3.1. Answering Power

To assessthe impact of varying answeringpower, we
conductedsimulationsusing �X� randomlygeneratedgraphs
of vA��� nodeswhere averagenode degree is � . (We also
ranexperimentswith vA��� nodespower law topologiesand
larger graphs.The resultsshow similar trends,but arenot
shown dueto spacelimitations.)We first rana baselineex-
perimentwhereall nodeshave anansweringpower of ��� � ,
i.e.,eachnodehasa �?�?� chanceof having ahit for aquery.
For eachnode � , : 9 $©�T�t� , or dedicatingUb�?� capacityfor
servicingneighbors’queries.

After collectingthe baselinedata,we thenmadeoneof
the vb��� nodesa probenode. For this probenode,we varied
its answeringpower from �T�t� to �T� U . Sincegraphstructure
andthe locationof the probenodealsoinfluencea node’s
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quality of service,we ranmultiple experimentswith differ-
entgraphsandprobenodes.With thesedifferentdatapoints
on differentgraphs,simply comparingthe utility function�+�b��¤JBf��¥ K � �O
 or ¦Iz}�.§?¨"¤JBf��¥ K � �j
 doesnot make sense.In-
stead,wecomparetherelative improvementor reductionin
the theprobenode’s utility againstthe baselinedatapoint.
In particular, wecomputetheratioof theutility of theprobe
nodedivided by the baselineutility when the probenode
alsohadanansweringpower of �T� � . Thusan improvement
ratio of greaterthan � implies the nodehasreceived bet-
ter service.Similarly, a ratio of lessthan � meansdimin-
ishedservice.For this experiment,both �+�b��¤�Br��¥ K�� �j
 and¦Fz}�.§�¨[¤JBf��¥ K�� �j
 havethesamebehave,sowewill only show
theresultfor �F�A��¤JBf��¥ K�� �O
 .

Figure9 givestheresultof oursimulationwith theasso-
ciatedconfidenceintervals.Thex-axis shows differentan-
sweringpowerfor theprobenode.They-axisshowstheav-
erageimprovementratioacrossdifferentruns.As expected,
thenumberof hits decreasesalmostlinearly to � if a node
hasa smalleransweringpower thantherestof thenetwork.
On the otherhand,providing moreansweringpower than
therestof thenetwork doesincreaseanode’sutility, though
lessdramatically. The datapoint for the answeringpower�T� � doesnot have a confidenceinterval becauseit corre-
spondto thebaselineexperimentwhereall theimprovement
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Figure 10: Utility versus varying degree .

ratiosare � . From this simulationresult,we canconclude
thata free-loaderwho sharesmuchlessdatathanan aver-
ageuserwill havedifficulty in obtainingquality service.

3.2. Connectivity

The numberof links a nodehasdirectly influencesthe
node’s quality of service.Intuitively, if a node � hasmany
links, then its queriesare servicedby morenodes.More-
over, when � forwardsoneof its neighbor’s query, it will
also reachmany nodes;thus the neighborsof � will also
givea high weightto � aswell, which in turnsleadsto bet-
ter servicefor � . To quantifythis intuition, we examinethe
utility of the nodesasa function of the nodedegree(con-
nections).We againused ��� randomlygeneratedgraphsofvA�A� nodes.

Figure 10 shows the result of the experiment with
confidence intervals. On the x-axis is the node de-
gree (i.e., number of connections).The y-axis shows
the raw �F�A��¤JBf��¥ K � �j
 utility value. (The utility function¦Fz}�.§�¨[¤JBf��¥ K � �j
 behaves similarly.) Clearly, more connec-
tions result in muchbetterservice.However, notethat the
confidenceintervalsdo have significantoverlapsfor nodes
with degree differenceof � . Thus to “guarantee”a sig-
nificant improvementin utility, a node must increaseits
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Figure 11: Utility of a node with varying : .
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Figure 12: Total hits with varying : .
numberof links by at least ­ or � . Notice that the util-
ity doesnot increaselinearly with the nodedegree.The
maincauseis thateventuallyanodewill runoutof spareca-
pacity to keepall of its neighborshappy. The datapoints
for node degrees �X­ and �X� do not have confidencein-
tervals becausethere was only one node of that specific
degree.

3.3. Spare Capacity

Theparameter: determineshow many new queriesare
generatedby a nodeeachround. It also determineshow
muchsparecapacityis givento the neighbors.To seehow
this choiceof balancingbetweeninjectingnew queriesand
providingcapacityto theneighborsaffectutility, wefirst set:�$H�T�t� for all nodes.We thenpickedoneprobenodeand
variedits : value.

Figure 11 shows the simulation result. The x-axis is
the : setting for the probe node. The y-axis shows the�+�b��¤JBf��¥ K.� �O
 utility. As onewould hope,the utility drops
exponentially as the node increasesits : to pump more
queriesinto the system.However, this figure doesnot tell
thewholestory. Figure12 shows thesamedataexceptthe
y-axisnow givesthe ¦Fz}�.§�¨[¤JBf��¥ K � �j
 utility. We noticethat
the probenodecanactuallyget more hits by pumpingin
a little bit more queriesthan the rest of the system(e.g.,:2$®���¡�}� ). It is possible,thoughmaynot be desirable, to
preventthis phenomenonby scalingbacka link’s weight if
theneighboringnodeis generatingtoomany queries.Dueto
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Figure 13: Effect of processing capacity

spaceconstraints,we deferthedetailsto theextendedver-
sion[13].

3.4. More Overall Capacity

A nodemay also obtain more sparecapacityby sim-
ply allocatingor buying moreprocessingcapacity. In this
experiment,we varied the total processingcapacityfor a
single probe node from vb��� to �����A� queriesper round,
while all othernodeshave a capacityof ���A�b� queriesper
round.Whenchangingthe processingcapacity, the probe
nodealwaysuses:0$��T�t� for generatingnew queries.Thus
for largercapacity, theprobenodeis alsogeneratingmore
queries.Theresultis shown in Figure13.Thex-axisshows
theprocessingcapacityof theprobenode.They-axisshows
theimprovementratio in termsof totalnumberof hits,com-
paredto thebaselineof �X�A�b� queriesperround.Not surpris-
ingly, theimprovementdropslinearlywhenanodehaveless
capacitythantherest.On theotherhand,the improvement
dueto having morecapacityflattensout.Performanceflat-
tensoutbecause,eventhoughneighboringnodesareprefer-
ring theprobenodemoreandmore,they still havethesame
amountof capacityfor forwardingtheprobenode’squeries
asbefore.Therefore,whentheir capacityareexhausted,no
more improvementis possibleregardlesshow muchextra
capacitytheprobenodehas.

3.5. Remarks

In thissectionwehavedemonstratedthatusingSLIC re-
sultsin anincentivestructurethatencouragesnodesto share
moredata,provide morecapacity, andestablishmorecon-
nections.Wehaveperformedcontrolledexperimentswhere
we only variedoneparameterat a time to quantify the ef-
fects.Whenmultiple parametersarechanging,the effects
arenot cumulative. For instance,addingnew connections
is likely to be more effective in termsof increasingutil-
ity thansharingmoredatabecausethe benefitof reaching
a new of groupof nodesoutweighsthe benefitof a single
nodeproviding a little moredata.For this precisereason,
a free-loaderwho sharesvery little datacanstill thrive in



asystemrunningSLIC if it is willing to providebandwidth
thatfacilitateothernodesof reachingeachother. Webelieve
this scenariois actuallydesirablebecausethefree-loaderis
not truly “free-loading” sinceit is providing valuableser-
vice to thesystemasa whole.

4. Dynamic Envir onment

The previous sectionhasshown that SLIC cansetupa
goodincentive structureundera staticenvironmentwhere
theoverlaynetwork doesnot change.In orderfor SLIC to
beusablein practice,it mustalsobeableto adaptquickly
to dynamicoverlay network changes.Thereare many is-
suesinvolvedin dealingwith dynamism.For example,

� Whena new nodejoins, which existing nodesshould
it connectto?� Whena nodereceivesa connectionrequest,shouldit
accepttheconnectionunconditionally?� Whena new overlay link is created,what shouldthe
initial SLIC weightbe?� Shouldan overlay link with “very” low SLIC weight
bedropped?� Shouldanexistingnodewith low utility attemptto cre-
atenew overlaylinks to improveits utility?

In thissection,westudytwo of theabovefivequestions:ini-
tial weight for a new overlay links andallowing a nodeto
createnew links if it is unsatisfied.

4.1. Initial weight for new links

Whenanew link is created,akey designdecisionis how
to initialize theweight for this link. We could initialize the
weightto � ; however, thiswouldallow free-loadersto drain
resourcesfrom the systemby reconnecting.We couldalso
initialize the weight to a small value,which unfortunately
createsa high barrierof entryfor new nodes.Herewe pro-
poseasimplesolutionandacoupleof variationsfor initial-
izing theweightof edge

� ��	���
 where � is anold nodeand� is anew node.

1. Average: Initialize
�GKL� �
	���
 to be the averageof the

weightsmaintainedby node � . In otherwords,if node� has ° neighbors,thenthe new node � is given �± of
thesparecapacity.

2. Average Inverse: Initialize
��K�� ��	���
 to be theaverage

weightmultipliedby �² E^³d´ K Y[µ m ` 9 c .
3. Average Exponential: Initialize

��� �
	���
 to be the av-
erageweightmultipliedby �b¶ ² E^³^´ K Y[µ m ` 9 c

TheAverageschemeis fair in thatit doesnotbiasagainst
a new connection,thoughit is susceptibleto free-loaders.
Average InverseandAverage Exponentialaddressthiscon-
cernby noting that if a nodeis alreadyhappy with its cur-
rentutility, thenthereis little needto take a big risk in ac-
ceptinga new connection.On the otherhand,if a nodeis
unhappy, thenit might aswell try its luck with a new node.
Thusboth variationsadjuststhe new weight by a function
of thecurrentutility with differentaggressiveness.

To seehow thesevariationsof the averageschemeper-
form, we ransimulationson our vA��� nodesrandomgraphs
whereeachnodehasan answeringpower of ��� � and :Q$�T�t� . In thesedynamicexperiments,we first remove a node
and its associatededgesfrom the graphat the beginning
andlet thesimulationrununtil it stabilizes.Wethenaddthe
removed nodeand edgesback into the network and con-
tinue the simulation to seehow quickly SLIC responds.
We also vary whetherthe nodebehavesnormally or ma-
liciously whenit rejoinsthenetwork. For maliciousbehav-
ior, we considertwo cases:rejoining with low answering
power andrejoining with high : value(i.e., lessspareca-
pacity).

Due to spacelimitations, we only show the resultsfor
one of our simulationswhere a nodeof degree � joined
the network late and with different behaviors. (Although
theexactnumbersvarywith differentsimulationsetups,the
generaltrendsare identical to the resultspresentedhere.)
Figure14 shows the outcomeof our simulationwherethe
weight for the new edgeis initialized to be the average
weight.The x-axis shows the numberof roundssincethis
nodeof degree� joined.They-axisshowsits �F�A��¤JBf��¥ K�� �j

utility. For referenceto thestaticenvironment,thetopcurve
shows the utility of the nodeif it waspart of the network
sincethebeginning.Thesecondcurveshowsthattheutility
of thenoderapidlyapproachesthestaticcasewhenit joined
lateandbehavednormally. Thethird andforth curvesillus-
tratethat SLIC will respondto badbehavior quickly, even
if thebadnodejoinedlateandwasinitially givena reason-
ableamountof sparecapacityby its neighbors.

Of course,by using the two variationsof average,we
canreducetheresourcedrainedby a maliciousnodeat the
expenseof askinga goodnodeto prove itself for a longer
period.Figures15 and16 demonstratethis trade-off. Fig-
ure 15 shows that if the new nodeis behaving normally,
thenscalingdown the new weight by eitherthe inverseor
an exponentialwill causea delay of about vb� roundsbe-
fore the nodereachesits properutility level. At the same
time, Figure 16 shows that a maliciousnode is not able
to take advantageof the systemas its utility settleddown
quickly without significantly exceedingits true level. Al-
thoughAverage Exponentialdoesperformquitewell in our
experiments,we believe Average Inverseis moreappropri-
atebecausefor large networks whereutility valueis high,
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Figure 14: Newly joined nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  20  30  40  50  60  70  80  90  100

U
til

ity
 (

A
vg

 #
 o

f h
its

 p
er

 q
ue

ry
)

Round #

Average
Average * Inverse

Average * Exp

Figure 15: A new normal node .
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Figure 16: A new low AP node

Average Exponentialmaybetoo aggressive in discriminat-
ing againstnew nodes.

4.2. RespawnOverlay Links

Onefundamentalprinciple in SLIC is to allow nodesto
actselfishlyandgreedilyto increasetheir own utility. Thus
it is alsonaturalfor anodeto createnew overlaylinks if its
own utility is too low. We couldallow eachnodeto addany
numberof new links until it is satisfied.However, in prac-
tice eachnodehasa certain“budget” in the numberlinks
that they cansupport.In this section,we examinethis lat-
ter case,which we call the respawnlinks scenario,wherea
nodemustmaintainthe samenodedegreewhenit wishes
to changeneighbors,i.e.,whencreatinga new link, it must
dropanexistingone.

Weuseafour-wayswapmechanismasillustratedin Fig-
ure17 to preserve nodedegrees.Supposenode � is unsat-
isfied,andwantsto createa new link to node � . Node �
mustbreakanexisting link to oneof its neighbor, saynode8 . Similarly, node � mustalsobreakanexisting link, say
to node · , to acceptthenew connectionfrom � . We then
createthe link

� ��	��0
 . We also pair up 8 and · with a
new link sincethey bothhave lost a connection.This swap
clearlypreservesthenodedegreeat eachnode.

To evaluateSLIC underrespawning, it doesnot make
sensefor all nodesto be identicalbecausewe are just re-
placingonegraphof a givendegreesequencewith another
of thesamedegreesequence.Thustherewill not besignif-
icantchangein termsof utility at all. Instead,we usethree
typesof nodes:(1) normalnodeswith answeringpower of�T� � and :Q$¸�T�t� , (2) lowAP nodeswith answeringpower
of �T�t� and :1$¹���¡� , and(3) highRhonodeswith answer-
ing power �T� � and :Q$®�T�º� . For our simulations,we usedvA��� nodesrandomgraphswith equalnumberof nodesfor
eachtype. Whena nodebreaksa link, it choosesthe link
with thelowestweight.

We conductedsimulationson different initial graphs
with respawningwhereanodechoosesanothernodeat ran-
domwhenit wantsto exchangeneighbors.We alsoforcea

nodeto accepta new link if asked.We useAverage Inverse
for the new edgeweight.For eachrun, we first ran a sim-
ulation for ���b�A� rounds.We thenfor eachnodecomputed
how its �+�b��¤JBf��¥ K � �j
 utility hasimproved or deteriorated
as a ratio againstthe baselinecomparisonwhen there is
no respawning.Dueto spacelimitations,we presentthere-
sult from onerun in Figure18. (Otherrunsproducedsim-
ilar results.) We plot threecumulative distribution plots,
onefor eachtypeof nodes(normal,lowAP, andhighRho).
The x-axis shows the improvementratio (e.g.,biggerthan� meansbetterutility). They-axisshows thepercentageof
nodes.Noticethatfor a normalnodethatis behaving prop-
erly,  b�?� of themhave improvedutility (ratio greaterthan� ) after respawning. In contrast,���?� of lowAP nodesand A��� of highRhonodesexperiencedreductionin utility (ra-
tio lessthan � ). Also notice that thereis a significantgap
betweenthenormalnodesandthemaliciousnodesin their
improvments.Thereforewe canconfidentlyconcludethat
whenallowing nodesto reconnect,goodnodeswill derive
greatbenefitswhile badnodescannottake significantad-
vantagesof thesystem.

As previouslydiscussed,nodesthatgive lesscapacityto
thesystemarepenalizedmoreseverely thannodessharing
lessdata.Thisintuition is verifiedin Figure18asthelowAP
nodesexperiencelessdeteriorationin utility thanhighRho
nodes.Curiously, onemightexpectthatnodeswith highde-
greewouldachievebetterimprovementratio.This intuition
is incorrectascanbeseenin thescatterplot of nodedegree
versusimprovementratio in Figure19.Thereis no trendor
clusteringto draw any correlationbetweennodedegreeand
improvement.

5. RelatedWork

Similar to SLIC’s retaliation-basedapproach,BitTor-
rent[4], a P2Pclient for sharinga singlefile, usesa similar
ideafor controllingdownload/uploadratesbetweenpartic-
ipating clients.Our greedyapproachis alsosimilar to the
gametheoreticapproachof [9] whereLai et.al. analyzethe
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Figure 18: CDF of utility impr ovement
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impactof a typeof tit-for-tat strategy. In contrastto our lo-
cal approach,reputation-basedandtrust-basedsystemsen-
forcea globalstructure.For example,theEigenTrustalgo-
rithm [8] “collects” all pair-wisepreferencevaluesbetween
peersandcomputestheeigenvectorastheglobalreputation.
Alternatively, Cornelliet.al. in [5] proposeavotingscheme
where a peer solicits “votes of confidence”when decid-
ing betweenwhich peersto downloaddatafrom. Onecan
alsotranslatethe notion of trust into hardcurrency by us-
ing payment-basedideaslikeMojo Nation[11] andor PPay
[14] wherepeersearncreditsfor providingservice.Theidea
of partitioningprocessingcapacityof anode“f airly” among
its neighborshasalsobeingusedin the designof Gia [3].
However, Gia is focusedon managingflow control rather
thanincentives.

6. Concluding Remarks

ThegreedySLIC approachis quitegeneral:a nodepro-
vides service,and in return receives servicefrom others.
The amountof serviceit providesa neighboris relatedto
theserviceanodereceives,andthis createstheright incen-
tives.Thepaperhasdealtwith only onetypeof service,an-
sweringqueries,to quantify the benefitsof SLIC, but the
ideacanbeusedfor otherservices,e.g.,downloadingfiles,
indexing contentof nearbynodes,doingcomputations,etc.
If a nodeprovidesa varietyof services(e.g.,queryanswer-
ing and file download) one can either: (1) aggregateser-
vices(renderedor received)into a singlemetric,soa node
cantell theoverall level of servicereceivedfrom others,or
(2) runSLIC in parallel,whereeachclassof serviceis han-
dledseparately. We areperforminga moreextensivestudy
of SLIC by allowing eachnodeto dynamicallyadjustits pa-
rametersaccordingto its needs.Moreover, agametheoretic
analysiscanshedmore light on the SLIC incentive struc-
ture.
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