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Abstract

Most Peerto-Peer (P2P) systemsassumehat all pees
are coopeating for the benefitof the community How-
ever in practice there is a significant portion of pees
who leedh resoucesfrom the systemwithout contributing
any in return. In this paper we proposea simple Selfish
Link-basedinCentive (SLIC) medanismfor unstructued
P2P file sharing systemdo create an incentive structue
whee in exchange for better service peers are encour
agedto share more data,givemore capacityto handleother
pees’ queries,and establishmore connectiongo improve
the P2P overlay network.Our SLIC algorithmdoesnot re-
quire nodesto be altruistic and doesnot rely on third par-
tiesto provide accurate informationaboutother pees. We
demonstate, throughsimulation,that SLIC’slocally selfish
and greedyapproad is suficient for the systento evolve
into a “good” state

1. Intr oduction

Peerto-Peer(P2P) file-sharingsystemsorganize users
into an overlay network to facilitate the exchangeof data.
However, currentdeployed systemsack ary “viable” in-
centie structuresfor encouragingusersto behae in the
bestinterestof thecommunity As aresult,variousformsof
aluseandattackhave beenobsenedin practice.The most
commononesare free loaders[2] and denial-of-service
(DOS) attacks.A free loader is a userwho only down-
loadsfilesfrom aP2Pnetwork while neversharingary files.
Theseusersbecomeleechesand drain resourcedrom the
community Unlike free loaderswho only reducesthe re-
sourcein the network, thereare alsomalicioususerswho
launchactive DOS attacksagainstP2P overlay networks.
Theseattackstypically take the form of servingbogusfiles
or strainingthe network by floodingbogusqueries.

0 Thiswork is supportedn partby NSF Graduateg-ellovshipandNSF
GrantllS-9817799.
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Figure 1. Example of mutual access contr ol

Someresearcherdiave proposeda global reputation-
basedsystemfor combatingtheseproblems8, 1, 5, 6, 10].
In sucha system eachuseris assignedh reputationby the
communitythatreflectsits contribution to andits participa-
tion in the community This reputationcanthenbe usedto
filter out free loadersor malicioususers.Othershave sug-
gestedimposinga barteringeconomy[11, 14] on the en-
tire communitywhereusersexchangeservices.The econ-
omy canbeimplementedasmicro-paymentsr IOU certifi-
cates.

In contrastto building a global systemwith reputations
or economicghatrequiresusersto cooperater somecen-
tral authorities this paperproposes simplealternatve so-
lution SLIC (SelfishLink-basednCentve)whereeachuser
can,andin factis encouragedo, act selfishly and greed-
ily. We will shav that SLIC allows an unstructuredP2P
overlay network, suchas Gnutella[7], to “evolve” into a
statewherefreeloadersandattaclersareostracizedjuickly
withoutaskingary userto behae againsthis bestinterest.

SLIC operatedy taking advantageof onekey property
of the flooding-basedsearchmechanisnusedin unstruc-
turedP2Poverlaynetwork. In flooding, whena nodewants
to find a particularpieceof data,it sendsa searchqueryto
all its neighborson the P2Poverlay network. Its neighbors
thenin turn forwardsthe searchqueryto their neighbors,
andsoforth. Obsenethatthis flooding-basedearctmech-
anismallows neighboringnodeso control ead other’'sac-
cessto the restof the network. For example,considertwo
nodesA andB in Figurel thatshareanoverlaylink. In or-
der for node A’s queriesto reachother nodesin the net-
work fragmentB, node B mustforward A’s queries.Simi-
larly, node B canonly reachnodesin network fragmentA
if nodeA forwardsits queries.

SLIC exploitsthis relationshipby allowing eachnodeto



“rate” its neighborsandto usethe ratingsto control how

mary queriesfrom eachneighborto processandto for-

wardon. Intuitively, for node A in Figurel, if B is provid-

ing greatserviceeitherdirectly by B itself or indirectly by

nodegeachableia B in thefragmentB, thenA would give

a high rating to B and processand forward more queries
from B. Corversely bad servicewould reducerating and
the numberof queriesserviced.In otherwords,SLIC uses
this mutualaccessontrol relationshipasa meansof retal-
iationif anodedoesnot play fair or connectgo nodesthat
do not play fair. To improve their service,nodesareincen-
tivized to provide contentand/orto connectto nodesthat
provide content.

Our simpleapproachastwo significantadvantages(1)
eachuseris greedyin that he is trying to maximize his
own adwantagein gettingbetterservice;(2) eachuseronly
keepsstatisticsaboutits neighborsanddoesnot rely upon
a trustedauthority or othersto give accurate‘reputations”
aboutunknawn users.For the remainderof this paper we
will developthisintuition into our selfishlink-basedncen-
tivemechanisn{SLIC). Wewill shav thatSLIC is effective
in controlling free-loadersand maliciousnodes.Our main
contritutionsare

e proposethe SLIC algorithmthatis usedby eachnode
to manipulateherating (Section2)

o illustratethatthe incentve structurefrom nodesexe-
cuting SLIC doesthe “right thing” (Section3)

e shaw thatSLIC canrespondquickly whenthe overlay
network is dynamicallychanging(Sectiord)

2. BasicAlgorithm

Informally, SLIC is a generalalgorithmthatoperatesn
periods.e.g.,every minute.During eachperiod,a nodehas
certaincapacitythatit is willing to usefor servicingqueries
from neighboringnodeson the P2Poverlay. To distinguish
goodneighbordrom badones,anodeu maintainsaweight
W (u,v) for eachneighbory, where0 < W(u,v) < 1. A
weightof 1 indicatesan excellentneighborwhile a weight
of 0 implies a uselessone. With theseweights,a nodeu
thenallocatests capacityto serviceincomingqueriesfrom
its neighborgproportionallyto the weights.For instancejf
u hastwo links to nodesz andy with weights1 and0.5 re-
spectvely, thenin this periodnodew will give % of its ca-
pacityto queriesrom nodex and% of its capacityto queries
from nodey.

At theendof aperiod,eachnodereevaluatests opinion,
or weights,of its neighborsasedon how muchservicethe
neighborshad provided during the currentperiod. In par
ticular, we measurethe numberof query hits that a node
hasreceved from eachneighbor A hit in this casemeans
a pieceof datathat satisfiesa searchquery If a neighbor

gave more servicethan previously expected thenthe cor-
respondingveightwill increaseSimilarly, lessservicewill
resultin lower weight. Since quality of servicemay fluc-
tuate frequently SLIC usesan exponentialdecaymecha-
nismfor updatingweights.Specifically if W (u,v) denotes
the weight usedin the previous period, W' (u,v) denotes
the new weightfor the next period,andI(u, v) denoteshe
quality of servicefrom neighborv during this period,then
W!'(u,v) = aW (u,v) + (1 — a)I(u,v) for somea where
O<ax<l

Theweightadjustmenaindthe capacityallocationin the
SLIC algorithmcreatea feedbacksystemIn otherwords,if
nodeu is receving mostof its queryhits from nodew, then
u will reciprocateby increasingheweightW (u, v) andre-
ducingotherweights.As aresult,nodeu will give mostof
its sparecapacityto handlequeriesfrom . In this section,
wefirstintroducea simplemodelandsomenotationfor for-
mally describingthealgorithmin the context of anunstruc-
tured P2Pfile sharingsystem.We then give the detailsof
the SLIC algorithm statedabove. We finish by illustrating
how SLIC worksthroughtwo examples.

2.1. A Simple Model and Notation

We usea very simple modelto capturethe key charac-
teristicsof anunstructured®2Pfile sharingsystemthatare
relevantto our study and simulation.We modelthe over
lay network asa graphG = (V, E). The vertex setV rep-
resentsnodes(users)in thenetwork. TheedgesetE repre-
sentstheoverlaylinks.

We modelthe periodicbehavior of SLIC asnodesoper
atingin rounds;althoughthe roundsdo not have to be syn-
chronizedfor simplicity, we will assumesynchroly in this
paper During a single round, eachnodew can handleup
to C, queries.This capacityC,, is divided betweengen-
eratingnew queriesandansweringgueriesfrom the neigh-
bors.Thusanodegeneratingoo mary querieswill havelit-
tle capacityto processandforward queriesfrom its neigh-
bors,andvice versa.We usep,,, where0 < p, < 1,to
denotethe fraction of capacityusedby nodew to generate
new queries Thusa maliciousnodethatfloodsthe network
with queriesis capturedby a nodewith p = 1. Herewe
have assumedhat eachnodecangenerate,, - C,, queries
eachround.In practicewherethe P2Poverlaynetwork con-
sistsof supernodes, thereshouldbe enoughnew queries
from clientsof a supernode.Moreover, evenif anodegen-
eratedewernew queriesit still canusetheextracapacityto
serviceneighbors'querieslf anoderecevesmorethanC,
queriesfrom its neighborsjt canchoosewhich C,, queries
to acceptWhenchoosingqueriesrom a singlelink, we as-

1 A supernodeis a high capacitynodethatactsasa proxy for a large
numberof slower or low capacitynodes.



sumenodeswill always prefer querieswith high time-to-
live (TTL). (Previouswork in [12] showved that preferring
high TTL queriesresultin themostqueriesprocessed.)

We model the flooding-basedsearchmechanismas a
simple forwarding step where eachnode v sendsits C,,
qguerieschosenduringrounds to its neighborsfor process-
ing during rounds + 1. In the processof this forwarding
step,eachquery’s TTL is decrementedf aqueryhasTTL
0, it is removedfrom the system.

We alsomodelthe amountof datathata nodew is shar
ing by a parametewve call the answeringpower A, where
0 < A, < 1. This answeringpowerrepresentshe proba-
bility of nodev having a hit that satisfiesa query In other
words, a large 4, value meansnode v is sharingmary
files. Similarly, a low A, value (e.g.,0) represents free
loader Note that we have simplified the answeringpower
by assuminghat a nodeis equallylikely to have a hit for
ary queriesthuswe areignoring clusteringeffectsin data
sharedby users.We also assumehat eachnode canonly
contributezeroor onehit.

In this model, we have only capturednode capacity
guerygenerationguerypropagationandlik elihoodof hav-
ing a hit at individual nodes.We are not modelingthe ac-
tualfile downloads.Section6 briefly addressebow to gen-
eralizeour SLIC algorithmfor handlingfile downloads We
alsousethefollowing notationin describingour algorithm.

e FE, denoteghesetof edgesrom nodeu.
e W;(u,v) denotegsheweightof thelink (u, v) in round

2.

e ();(u) denoteghe setof queriesinitiated by « whose
TTLs have expired during round <. For our simple
model, nodes can determineexactly which queries
have expired by theroundnumber In practice we can
usea fixedtime-outfor this purpose.

e g;(u,v) denotesthe numberof hits for query ¢ that
wererecevedfrom thelink (u, v) by roundi.

e 7 denotegshemaximumTTL for eachquery
e a denotegheexponentialdecayrate,e.g.,0.9.

2.2. Description of the Algorithm

The SLIC algorithmhastwo components{1) how nodes
operatewhile usingthe weights,and(2) how nodesupdate
theweightseachround.Figure2 providesthe pseudo-code
for how nodesoperatewhenrunningSLIC. Whenthe sys-
tem first starts,all weights Wy (u,v) areinitialized to 1.
Subsequentlyduring eachround, nodesfirst use someof
theircapacityto generateew queriesasin stepl. Thenum-
ber of new queriesis controlledby the parameterp,. As
mentionedoreviously, a maliciousnodethatfloodsthe net-
work with queriesis equivalentto having alarge p,, value.

During rounds, nodeu performsthefollow actions:

1: generate,, - C new queries

 Wiotal = 2o (u,0)ep, Wilu,v)

. for eachedge(u,v) € E, do
Procesaindforward(1—p,,)C- W querieswith

thehighestTTL from thelink (u,v)

: endfor

6: if therearestill sparecapacityrepeatsteps2 through5
to divide the sparecapacity

7: Tally numberof hits for newly expired queriesgener
atedby u, i.e., Q;(u).

8: for eachedge(u,v) € E, do

9 Wit (u,v) = compute_weight(W;(u,v), Q;(u))

10: endfor

5w N

)]

Figure 2: Pseudo-code for node operation.

Procedure compute_weight(W (u,v), Q;(u))
1: for eachedge(u, z) € E,, do

q(u, 7)
I(U, .CL') = Z
2 €Q;i (u) Z(u,y)eEu g (U, y)

N

3: endfor
4 Imee = max{I(u,z)|(u,z) € E,}

I
5: returna - Wu,v) + (1 — ) wY

Imaw

Figure 3: Pseudo-code for computing new weight

Oncenodeshave generatedheir new queries,n steps2
throughb, eachnodedividesthe remainingcapacitiegro-
portionally, accordingo theweights,amondits links to pro-
cessremotequeriesfrom neighborsNote, however, thatit
is possiblefor anodeto still have sparecapacityaftersteps
2 through5. For example,supposehe weightsdictatethat
nodeu shouldchoosel 00 queriefromlink (u, v). If nodev
only sends$0 queriesthentherewouldbeanunusedcapac-
ity of 50 queriesIn therareeventof having unusedcapac-
ity, we reallocatehe capacityamongtheremaininglinks as
in step6.

After nodeshave chosenwhich queriesto processand
forward,in stepsr through10, eachnodewu thenconsiders
its own queries®;(v) whoseTTLs have expiredatthecur-
rentroundi. Nodew usesthe statisticson how mary hits
for thequeriesn @;(u) werereceivedfrom eachlink to up-
datethelink weights.

Therearemary waysto performthisweightupdate Fig-
ure 3 shaws the pseudo-coddor one suchupdateproce-
dure.In this casefor eachqueryq € Q;(u), we first deter
mine the fraction of hits contributedby a particularneigh-
borwv. Thecontribution of alink (u, v) in thisroundI (u, v)
is thensimply the sumof thesefractionsover all queriesin



Figure 4: Example network of 2 white nodes with
p = 0.5 and black node with p=0.9
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Figure 5: Weight adjustments by the white node

Q;(u) asin step2. Oncewe have the contribution for each
link, we find the maximumcontribution by ary link 7,,,,

in step4. We finally computethe new weightin step5 us-
ing an exponentialdecayrate of a with the new contribu-
tion I(u,v) normalizedby themaximum1,,,.. Besideshe
weight adjustmentshowvn in Figure 3, we alsotried com-
puting I (u, v) astheraw numberof hits or the numberof

guerieswith atleastonehit. Bothvariationsyield similarre-
sults.

During our SLIC evaluation, we noticed that the per
round contribution I(u,v), ascomputedn step2 of com-
puteweight is very noisy becausef the stochastimature
of the numberof hits a nodeprovides. To reducenoise,in-
steadf usingthesingleroundcontribution, we keepamov-
ing window of 10 roundsandusethe averageof the contri-
butionsin this window.

2.3. A Simple Example

Toillustratehow weightschangeovertimewhenrunning
SLIC, let usbegin with a simpleexampleof threenodesas
shawvn in Figure4. Thethreenodesareconnectedn aring.
Thetwo white nodesareusing50% of their capacityto gen-
eratenew queries,whereaghe black nodeis trying to get
extra serviceby using90% of its capacityto generatenew
gueries All threenodeshave anansweringpowerof 1, i.e.,
every querywill have ahit ateachnode.

Intuitively, we hope that when running SLIC, the two
white nodeswill detectthat the black nodeis dedicating
fewer resourcelo procesgheir queriesandretaliateby re-
ducingtheir servicefor the black nodes queries.And in-
deedthis situationdoesoccur Figure5 shavs how awhite
nodeadjustits weightsasafunctiontime. Thedashedurve

Weight
o
[{e]

0.86
0.84 White nodes
082 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Round #

Figure 6: Weight adjustments by the black node

corresponddo the link to the other white node, and the
solid curve representhelink to the blacknode.The x-axis
givesthe round number The y-axis shavs the weight. As
expectedthe white nodequickly reducests weightfor the
blacknodewhile boostgheweightfor the otherwhite node.
It is alsointerestingto note that the weight for the black
nodedoesnot dropto 0, asit stabilizesaround0.05. The
reasonis that althoughthe black nodeis generatingmore
queriesit is still providing someservicewith its 10% spare
capacitythusgettinga smallamountof servicein return.

For completenessye shav how the black nodeadjusts
its weight for the white nodesin Figure6. Sinceit is get-
ting the samekind of servicefrom both white nodes,the
weightsare boostedto 1. Note thatin both Figures5 and
6, the weightsinitially dropsbeforereachingl. This drop
is the side effect of our implementationthat usesa mov-
ing window of size 10 for computingthe perroundcontri-
bution. Whenthe simulationstartsinitially, the first round
hasa zerocontribution becausao querieshasbeenpropa-
gatedyet. Theeffect of thisinitial zerolingersarounduntil
it expiresfrom the moving window.

2.4. A More Involved Example

Now considemafully connectedjraphof 10 nodeswhere
eachnodehasp = 0.2, i.e.,devotes’80% capacityto theoth-
ers.Supposeve let 5 nodeshave anansweringpower of 0.8
andtheother5 nodeswith answeringpowerof 0.1. Running
SLIC on this network, onemight expectthe nodesto form
two cliquesof five nodes:one for high answeringpower
nodesand onefor low answeringpower nodes.However,
thatis nottrue.

Figure 7 illustrateshow the weightschangefor a node
with high answeringpower over time. The x-axis givesthe
round number The y-axis givesthe weights. Thereare 9
cunves,one for eachlink to the othernodes.Initially, the
weightsfor links to the high answeringpower nodesin-
creasavhile theweightsfor thelow answeringpowernodes
decreasadramatically However, the weightsfor low an-
swering power nodesdo not all go to 0; several of them
stabilizesaround0.1. The reasonfor this stability is be-
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Figure 7: lllustration of weights changing over
time for a complete graph of 10 nodes.

causesomelow answeringpower nodesdecidedto process
all queriesfrom a high power node thusensuringts corre-
spondingweightdoesnot diminishto 0.

An interestingquestionthen,is whatkind of network re-
sultsfrom running SLIC on this 10 nodescompletegraph.
Figure 8(a) shaws the final network with weightsfor each
edge.Theedgesotshavn have weight0. In thisfigure,the
high answeringpower nodesare coloredblackandlow an-
sweringpower nodeswhite. The style of the lines and ar-
rowsindicatedifferentweights.To helpdeciphethedatain
thefigure,solid lineshave higherweightsthandashedines
which have higherweightsthandottedlines. Also for the
samestyle of lines, a filled arrow indicatedhigherweight
thanahollow arrow.

Obviously the high power nodesdo prefer eachother
more.Fortunatelythey still leakenoughcapacityto prevent
the network from beingdisconnectedNotice the asymme-
try in termsof theweightsbetweera high power andalow
power node.Theseasymmetridinks also preventthe low
answeringpower nodesfrom forming a clique of their own.

We alsoshov whathappendo thefinal network if every
nodeusesp = 0.4, thatis doublingthe numberof queries
they eachgeneratejn Figure 8(b). The network becomes
lessconnectedas nodestend to pair up becausehe lack
of capacityin the system.f we furtherincreasep for each
node thenetwork will eventuallybecomedisconnectedAs
asidenote,thepreciseconfiguratiorwith weightsis noten-
tirely deterministichecausahe answeringpower of nodes
introducerandomnesg-owever, thegenerakhapeof thefi-
nal configurationis similar.

Fromthe two exampleswe seethat SLIC’s greedyap-
proachof adjustingweightsdo indeedcapturea nodes in-
dividual preferenceof their neighbors.Whatis unclearis
how theselocally determinedweightsinteracton a global
scale.In next section,we will showv that eachnodes self-
ish decisionsdo indeedleadto a goodincentie structure
for the systemas a whole wherenodesare encouragedo
sharemoredata,give morecapacityto othernodesandes-
tablishmorelinks to increasehe network connectvity.

3. Incentive Structure

WhenrunningSLIC, anodewill recevebetterserviceif
its neighborsgive it a high weight. To influenceits neigh-
borsdecisionsa nodehasthreeoptions:

e Increaseansweringpower. By sharingmore data, a
nodecanbecomemoreattractive.

e Increasethe numberof edges(or connectity). By
having more edges,a neighbors queriescan be for-
wardedto more nodes,which leadsto more hits for
neighbors’queries.

e Increasdheamountof capacityusedto serviceneigh-
bors’ queriesBy giving morecapacityanodecanfor-
ward more queriesto reachdistantparts of the net-
work.

For the purposeof creatinga goodincentie structure,we
alsowantSLIC to reduceanodes serviceif it doesnotpro-
vide a reasonablemountof resourcen ary of the above
threecateyories.To assesshe effectivenesf SLIC in es-
tablishing an incentive structure,we considertwo utility
functions:

1. AvgHits;(u): Theaverageof numberof hitsperquery
generatedby nodew in rounds.

2. Total Hits;(u): Thetotalnumberof hitsfor all queries
generatedby nodew in rounds.

For themostpart,bothutility functionsbehave similarly,
thuswe will illustratethatSLIC hasa goodincentive struc-
ture by using AvgHits;(u). We will alsohighlight scenar
ioswhereT otal Hits;(u) is amoreappropriatautility func-
tion. With thesetwo utility functionsin mind, we will now
demonstratevia simulationthat SLIC rewards nodesthat
provide more data,dedicatemore capacityfor neighbors’
gueriesandestablishmoreconnectionsOurresultwill also
verify thatSLIC ostracizechodeswho do not play fair.

3.1. Answering Power

To assesghe impact of varying answeringpower, we
conductedsimulationsusing10 randomlygeneratedjraphs
of 250 nodeswhere averagenode degreeis 5. (We also
ran experimentswith 250 nodespower law topologiesand
larger graphs.The resultsshowv similar trends,but are not
shavn dueto spacdimitations.) We first ran a baselineex-
perimentwhereall nodeshave anansweringoower of 0.4,
i.e.,eachnodehasa40% chanceof having a hit for aquery
For eachnodeu, p, = 0.1, or dedicatingd0% capacityfor
servicingneighbors’queries.

After collectingthe baselinedata,we thenmadeone of
the 250 nodesa probenode For this probenode,we varied
its answeringoower from 0.1 to 0.9. Sincegraphstructure
andthe locationof the probenodealsoinfluencea nodes
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quality of service we ran multiple experimentswith differ-

entgraphsandprobenodesWith thesedifferentdatapoints
on differentgraphs,simply comparingthe utility function

AvgHits;(u) or Total Hits;(u) doesnot make senseln-

steadwe compareherelative improvementor reductionin

thethe probenodes utility againstthe baselinedatapoint.

In particular we computetheratio of theutility of theprobe
nodedivided by the baselineutility whenthe probenode
alsohadanansweringpower of 0.4. Thusanimprovement
ratio of greaterthan1 implies the nodehasreceved bet-
ter service.Similarly, a ratio of lessthan1 meansdimin-

ishedservice.For this experiment,both AvgH'its;(u) and
Total Hits;(u) havethesamebehae,sowewill only shav

theresultfor AvgHits;(u).

Figure9 givestheresultof our simulationwith theasso-
ciatedconfidenceintervals. The x-axis shows differentan-
sweringpower for theprobenode.They-axisshavs theav-
eragemprovementratio acrosdifferentruns.As expected,
the numberof hits decreasealmostlinearly to 0 if a node
hasa smalleransweringpower thantherestof the network.
On the other hand,providing more answeringpower than
therestof thenetwork doesincreaseanodes utility, though
lessdramatically The datapoint for the answeringpower
0.4 doesnot have a confidenceinterval becauset corre-
spondo thebaselinexperimentwhereall theimprovement

ratiosare 1. From this simulationresult,we can conclude
that a free-loademwho sharesnuchlessdatathanan aver-
ageuserwill have difficulty in obtainingquality service.

3.2. Connectvity

The numberof links a nodehasdirectly influencesthe
nodes quality of service.Intuitively, if anodeu hasmary
links, thenits queriesare servicedby more nodes.More-
over, whenwy forwardsone of its neighbors query it will
alsoreachmary nodes;thusthe neighborsof v will also
give ahigh weightto » aswell, whichin turnsleadsto bet-
ter servicefor u. To quantify this intuition, we examinethe
utility of the nodesasa function of the nodedegree(con-
nections) We againused10 randomlygeneratedyraphsof
250 nodes.

Figure 10 shows the result of the experiment with
confidence intervals. On the x-axis is the node de-
gree (i.e., number of connections).The y-axis shavs
the raw AvgHits;(u) utility value. (The utility function
Total Hits;(u) behaes similarly.) Clearly, more connec-
tions resultin much betterservice.However, notethatthe
confidencdntervals do have significantoverlapsfor nodes
with degree differenceof 1. Thusto “guarantee”a sig-
nificant improvementin utility, a node must increaseits
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numberof links by at least3 or 4. Notice that the util-
ity doesnot increaselinearly with the node degree. The
maincausas thateventuallyanodewill runoutof spareca-
pacity to keepall of its neighborshapypy. The datapoints
for node degrees13 and 15 do not have confidencein-
tenals becausehere was only one node of that specific
degree.

3.3. Spare Capacity

The parametep determinehow mary new queriesare
generatedoy a node eachround. It also determineshow
muchsparecapacityis givento the neighborsTo seehow
this choiceof balancingbetweeninjectingnew queriesand
providing capacityto theneighborsaffect utility, wefirst set
p = 0.1 for all nodes We thenpicked oneprobenodeand
variedits p value.

Figure 11 shaws the simulation result. The x-axis is
the p setting for the probe node. The y-axis shows the
AvgHits;(u) utility. As onewould hope,the utility drops
exponentially as the node increasests p to pump more
gueriesinto the system.However, this figure doesnot tell
the whole story. Figure 12 showvs the samedataexceptthe
y-axisnow givesthe T'otal Hits;(u) utility. We noticethat
the probe node can actually get more hits by pumpingin
a little bit more queriesthanthe rest of the system(e.g.,
p = 0.15). It is possible thoughmay not be desiable, to
preventthis phenomenoiby scalingbackallink’ s weightif
theneighboringhodeis generatingoomary queriesDueto

spaceconstraintsye deferthe detailsto the extendedver-
sion[13].

3.4. More Overall Capacity

A node may also obtain more sparecapacityby sim-
ply allocatingor buying more processingcapacity In this
experiment,we varied the total processingcapacityfor a
single probe node from 250 to 1750 queriesper round,
while all othernodeshave a capacityof 1000 queriesper
round. When changingthe processingcapacity the probe
nodealwaysusesp = 0.1 for generatingnew queries.Thus
for larger capacity the probenodeis alsogeneratingmore
gueriesTheresultis shovn in Figure13. Thex-axisshavs
theprocessingapacityof theprobenode.They-axisshavs
theimprovementatioin termsof total numberof hits,com-
paredto thebaselineof 1000 queriegperround.Not surpris-
ingly, theimprovemendropslinearlywhenanodehaveless
capacitythantherest.On the otherhand,the improvement
dueto having morecapacityflattensout. Performancdilat-
tensoutbecausegventhoughneighboringhodesareprefer
ring theprobenodemoreandmore,they still havethesame
amountof capacityfor forwardingtheprobenodes queries
asbefore.Therefore whentheir capacityareexhaustedno
more improvementis possibleregardlesshow much extra
capacitythe probenodehas.

3.5. Remarks

In this sectionwe have demonstratethatusingSLIC re-
sultsin anincentive structurehatencouragesodedo share
moredata,provide more capacity andestablishmorecon-
nectionsWe have performedcontrolledexperimentsvhere
we only variedone parametegt a time to quantify the ef-
fects. When multiple parametersare changing,the effects
are not cumulative. For instanceaddingnen connections
is likely to be more effective in termsof increasingutil-
ity thansharingmore databecausehe benefitof reaching
a new of group of nodesoutweighsthe benefitof a single
nodeproviding a little more data.For this precisereason,
a free-loademwho sharesvery little datacanstill thrive in



asystemrunningSLIC if it is willing to provide bandwidth
thatfacilitateothernodesof reachingeachother We believe
this scenarids actuallydesirablebecausehefree-loadeiis

not truly “free-loading” sinceit is providing valuableser

viceto the systemasawhole.

4. Dynamic Environment

The previous sectionhasshavn that SLIC cansetupa
goodincentie structureundera static ervironmentwhere
the overlay network doesnot changeln orderfor SLIC to
be usablein practice,it mustalsobe ableto adaptquickly
to dynamicoverlay network changesThereare mary is-
suesinvolvedin dealingwith dynamismFor example,

e Whena new nodejoins, which existing nodesshould
it connecto?

e Whena noderecevesa connectiorrequestshouldit
accepthe connectiorunconditionally?

e Whena new overlay link is createdwhat shouldthe
initial SLIC weightbe?

e Shouldan overlaylink with “very” low SLIC weight
bedropped?

e Shouldanexistingnodewith low utility attemptto cre-
atenew overlaylinks to improveits utility?

In this sectionwe studytwo of theabovefive questionsini-
tial weightfor a new overlay links andallowing a nodeto
createnew links if it is unsatisfied.

4.1. Initial weightfor newlinks

Whenanew link is createdakey designdecisionis how
to initialize theweightfor this link. We couldinitialize the
weightto 1; however, thiswould allow free-loadergo drain
resourcegrom the systemby reconnectingWe could also
initialize the weightto a small value,which unfortunately
createsa high barrierof entryfor nev nodesHerewe pro-
posea simplesolutionanda coupleof variationsfor initial-
izing the weightof edge(u, v) wherew is anold nodeand
v is anew node.

1. Average: Initialize W;(u,v) to be the averageof the
weightsmaintainedby nodew. In otherwords,if node
u hasd neighborsthenthe new nodev is given% of
the sparecapacity

2. Average_Inverse Initialize W;(u,v) to bethe average
weightmultiplied by W’tw(u)'

3. Average_Exponential Initialize W (u,v) to be the av-
erageweightmultiplied by e~ AvgHitsi(u)

TheAverage schemas fair in thatit doesnotbiasagainst
a new connectionthoughit is susceptibleo free-loaders.
Average_InverseandAverage_ Exponentiabddresshis con-
cernby notingthatif a nodeis alreadyhappy with its cur-
rentutility, thenthereis little needto take a big risk in ac-
ceptinga new connection.On the otherhand,if a nodeis
unhapyy, thenit mightaswell try its luck with a new node.
Thusboth variationsadjuststhe new weight by a function
of thecurrentutility with differentaggressieness.

To seehow thesevariationsof the averageschemeper
form, we ran simulationson our 250 nodesrandomgraphs
whereeachnodehasan answeringpower of 0.4 andp =
0.1. In thesedynamicexperimentswe first remove a node
and its associatededgesfrom the graphat the beginning
andlet thesimulationrun until it stabilizesWethenaddthe
removed node and edgesbackinto the network and con-
tinue the simulationto seehow quickly SLIC responds.
We also vary whetherthe node behares normally or ma-
liciously whenit rejoinsthe network. For maliciousbehar-
ior, we considertwo casesrejoining with low answering
power andrejoining with high p value (i.e., lessspareca-
pacity).

Due to spacelimitations, we only shown the resultsfor
one of our simulationswhere a node of degree4 joined
the network late and with different behaiors. (Although
theexactnumbersvary with differentsimulationsetupsthe
generaltrendsare identicalto the resultspresentechere.)
Figure 14 shows the outcomeof our simulationwherethe
weight for the new edgeis initialized to be the average
weight. The x-axis shavs the numberof roundssincethis
nodeof degree4 joined.They-axisshavsits AvgHits;(u)
utility. For referenceo thestaticernvironment thetop curve
shaws the utility of the nodeif it was part of the network
sincethebeginning. Thesecondcurve shovsthatthe utility
of thenoderapidly approachethestaticcasewhenit joined
lateandbeharednormally. Thethird andforth curvesillus-
tratethat SLIC will respondo badbehaior quickly, even
if thebadnodejoinedlate andwasinitially givenareason-
ableamountof sparecapacityby its neighbors.

Of course,by using the two variationsof average,we
canreducethe resourcedrainedby a maliciousnodeat the
expenseof askinga goodnodeto prove itself for a longer
period. Figures15 and 16 demonstratehis trade-of. Fig-
ure 15 shaws that if the new nodeis behaing normally
thenscalingdown the new weight by eitherthe inverseor
an exponentialwill causea delay of about25 roundsbe-
fore the nodereachesdts properutility level. At the same
time, Figure 16 shows that a malicious node is not able
to take advantageof the systemasits utility settleddown
quickly without significantly exceedingits true level. Al-
thoughAverage Exponentiadoesperformquitewell in our
experimentswe believe Average_Inverseis moreappropri-
ate becausdor large networks whereutility valueis high,
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Average_Exponentialmaybetoo aggressie in discriminat-
ing againstew nodes.

4.2. RespawnOverlay Links

Onefundamentaprinciplein SLIC is to allow nodesto
actselfishlyandgreedilyto increaseheir own utility. Thus
it is alsonaturalfor anodeto createnew overlaylinks if its
own utility is too low. We couldallow eachnodeto addary
numberof new links until it is satisfied. However, in prac-
tice eachnodehasa certain“budget”in the numberlinks
thatthey cansupport.In this section,we examinethis lat-
ter case which we call the respawnlinks scenariowherea
nodemustmaintainthe samenodedegreewhenit wishes
to changeneighborsj.e., whencreatinga new link, it must
dropanexistingone.

We useafour-way swapmechanisnasillustratedin Fig-
ure 17 to presere nodedegrees.Supposaode A is unsat-
isfied, and wantsto createa new link to node B. Node A
mustbreakan existing link to oneof its neighbor saynode
C'. Similarly, node B mustalsobreakan existing link, say
to nodeD, to acceptthe new connectionfrom A. We then
createthe link (A, B). We also pair up C' and D with a
new link sincethey both have losta connectionThis swap
clearlypreseresthenodedegreeat eachnode.

To evaluateSLIC underrespavning, it doesnot make
sensefor all nodesto be identicalbecausewve are just re-
placingonegraphof a givendegreesequencevith another
of the samedegreesequenceThustherewill notbe signif-
icantchangen termsof utility atall. Insteadwe usethree
typesof nodes:(1) normalnodeswith answeringoower of
0.4 andp = 0.1, (2) lowAP nodeswith answeringpower
of 0.1 andp = 0.1, and(3) highRhonodeswith answer
ing power 0.4 andp = 0.5. For our simulations,we used
250 nodesrandomgraphswith equalnumberof nodesfor
eachtype. Whena nodebreaksa link, it chooseghe link
with the lowestweight.

We conductedsimulationson different initial graphs
with respavning wherea nodechoosesnothemodeatran-
domwhenit wantsto exchangeneighborsWe alsoforcea

nodeto accepta new link if asled.We useAverage_Inverse

for the new edgeweight. For eachrun, we first ran a sim-

ulation for 5000 rounds.We thenfor eachnodecomputed
how its AvgHits;(u) utility hasimproved or deteriorated
as a ratio againstthe baselinecomparisonwhen there is

no respavning. Dueto spacdimitations,we presenthere-

sult from onerunin Figure 18. (Otherrunsproducedsim-

ilar results.) We plot three cumulative distribution plots,

onefor eachtype of nodes(normal,lowAP, andhighRho).
The x-axis shawvs the improvementratio (e.g.,biggerthan

1 meansetterutility). They-axis shavs the percentagef

nodesNoticethatfor a normalnodethatis behaing prop-

erly, 80% of themhave improved utility (ratio greaterthan
1) afterrespavning. In contrast,70% of lowAP nodesand
80% of highRhonodesexperiencedeductionin utility (ra-

tio lessthan1). Also notice that thereis a significantgap
betweerthe normalnodesandthe maliciousnodesin their

improvments.Thereforewe can confidentlyconcludethat
whenallowing nodesto reconnectgoodnodeswill derive

greatbenefitswhile bad nodescannottake significantad-

vantage®f thesystem.

As previously discussednodesthatgive lesscapacityto
the systemarepenalizedmore seserely thannodessharing
lessdata.Thisintuition is verifiedin Figure18asthelowAP
nodesexperiencdessdeteriorationin utility thanhighRho
nodesCuriously onemightexpectthatnodeswith highde-
greewould achiese betterimprovementratio. Thisintuition
is incorrectascanbeseenin the scattemplot of nodedegree
versusmprovementratio in Figure19. Thereis no trendor
clusteringto draw ary correlationbetweemodedegreeand
improvement.

5. RelatedWork

Similar to SLIC's retaliation-basedapproach,BitTor-
rent[4], aP2Pclientfor sharinga singlefile, usesa similar
ideafor controlling download/uploadatesbetweenpartic-
ipating clients. Our greedyapproachs alsosimilar to the
gametheoreticapproactof [9] whereLai et. al. analyzethe
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impactof atype of tit-for-tat stratey. In contrasto our lo-
cal approachreputation-basedndtrust-basedystemsen-
force a global structure For example,the EigenTrustalgo-
rithm [8] “collects” all pairwise preferencevaluesbetween
peersandcomputegheeigervectorastheglobalreputation.
Alternatively, Cornelliet.al. in [5] proposeavoting scheme
where a peer solicits “votes of confidence”when decid-
ing betweerwhich peersto download datafrom. Onecan
alsotranslatethe notion of trustinto hardcurrengy by us-
ing payment-baseidieaslik e Mojo Nation[11] andor PPay
[14] wherepeersearncreditsfor providing service Theidea
of partitioningprocessingapacityof anode“f airly” among
its neighborshasalsobeingusedin the designof Gia [3].
However, Gia is focusedon managingflow control rather
thanincenties.

6. Concluding Remarks

The greedySLIC approachs quite general:a nodepro-
vides service,and in return receives servicefrom others.
The amountof serviceit providesa neighboris relatedto
theserviceanodereceves,andthis creategheright incen-
tives.The paperhasdealtwith only onetype of service an-
sweringqueries,to quantify the benefitsof SLIC, but the
ideacanbeusedfor otherservicesg.g.,downloadingfiles,
indexing contentof nearbynodesdoingcomputationsetc.
If anodeprovidesavarietyof servicege.g.,queryanswer
ing and file download) one can either: (1) aggreate ser
vices(renderedr received)into a singlemetric,soa node
cantell theoverall level of servicerecevedfrom others,or
(2) run SLIC in parallel,whereeachclassof serviceis han-
dledseparately We areperforminga moreextensie study
of SLIC by allowing eachnodeto dynamicallyadjustits pa-
rametersccordingo its needsMoreover, agametheoretic
analysiscan shedmorelight on the SLIC incentive struc-
ture.
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