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Abstract

Information Retrieval systems such as web search en-
gines offer convenient keyword-based search interfaces. In
contrast, relational database systems require the user to
learn SQL and to know the schema of the underlying data
even to pose simple searches. We propose an architecture
that supports highly efficient keyword-based search over re-
lational databases: A relational database is ”crawled” in
advance, text-indexing virtual documents that correspond
to interconnected database content. At query time, the
text index supports keyword-based searches with interac-
tive response, identifying database objects corresponding
to the virtual documents matching the query. Our system,
EKSO, creates virtual documents from joining relational tu-
ples and uses the DB2 Net Search Extender for indexing
and keyword-search processing. Experimental results show
that index size is manageable and database updates (which
are propagated incrementally as recomputed virtual docu-
ments to the text index) do not significantly hinder query
performance. We also present a user study confirming the
superiority of keyword-based search over SQL for a range
of database retrieval tasks.

1. Introduction

Relational Database Management Systems provide a
convenient data model and versatile query capabilities over
structured data. However, casual users must learn SQL and
know the schema of the underlying data even to pose sim-
ple searches. For example, suppose we have a customer
order database, shown in Figure 1, which uses the TPC-H
[4] schema in Figure 2. We wish to search for Bob’s pur-
chases related to his aquarium fish hobby. To answer this
query, we must know to join the Customer, Lineitem, Or-
ders, and Part relations on the appropriate attributes, and
we must know which attributes to constrain for ”Bob” and
”fish”. The following SQL query is formulated:

Figure 1. Example database instance

SELECT c.custkey, o.orderkey, p.partkey
FROM Customer c, Lineitem l, Orders o, Part p
WHERE c.custkey = o.custkey AND l.partkey = p.partkey
AND o.orderkey = l.orderkey AND c.name LIKE ’%Bob%’
AND p.name LIKE ’%fish%’

In our example database instance, this query re-
turns a single tuple 〈custkey, orderkey, partkey〉 of
〈100, 10001, 10〉. In contrast, keyword-based search, exem-
plified by web search engines, offers an intuitive interface
for searching textual content that requires little knowledge
about the underlying data. In this paradigm, for the above
example a user should be able to enter the keywords ”Bob
fish” and find the relevant information from the results.



Figure 2. TPCH Schema

Figure 3. Architecture

We have developed a system, EKSO (for Efficient Key-
word Search through Offline Indexing), that supports highly
efficient keyword-based search on relational databases. For
the above example, on query ”Bob fish” EKSO returns a re-
sult equivalent to the SQL query result. EKSO also supports
much more complex searches over complex data. Our novel
use of DB2’s Net Search Extender (NSE) [7, 13] enabled us
to build a powerful system that is extensible, and that can
incorporate future text indexing and search features in NSE
without modification. Our system is the first we know of for
expressive keyword-based search over interconnected rela-
tional database content that operates within the database en-
gine and performs full offline indexing for highly efficient
searches.

EKSO is an instance of a general architecture we propose
in this paper, depicted in Figure 3 and consisting of three
main components:

• The Crawler traverses the entire database offline, con-
structing virtual documents from database content.

The Crawler can construct textual virtual documents
in any fashion from the database (typically based on
interconnected tuples from multiple relations if the
database is relational), as long as each virtual doc-
ument is associated with some logical or physical
database object that makes sense when returned to the
user. The Crawler includes an Update Handler that
computes changes to virtual documents when the un-
derlying database is updated.

• Virtual documents are sent to the Indexer, which
builds an inverted index over the virtual documents in
the usual Information Retrieval (IR) style. When the
Crawler identifies new or modified virtual documents
as a result of database updates, the Indexer refreshes
the inverted index incrementally.

• At search time, the Keyword Search Processor takes
a keyword query and probes the inverted index (again
in an IR style) to find the virtual documents satisfying
the query. The database objects associated with these
documents are returned to the user. The user may then
choose to explore the database or refine the query.

The key features and advantages of our approach, and
the contributions of this paper, are summarized as follows:

• Most previous approaches to keyword-based search in
structured databases (reviewed in Section 2) perform a
significant amount of database computation at search
time. Our offline indexing approach does all signifi-
cant work in advance so it can provide interactive an-
swers. We show in our performance study that the
potential obstacles to this approach-index construction
and update handling-are manageable. Index construc-
tion performance depends primarily on DB2, but can
easily be parallelized. Updates do not have a dramatic
impact on query performance, although for databases
with very high update rate, one of the existing online
approaches may be more appropriate.

• Our approach is extensible. We construct virtual doc-
uments through user-defined functions (UDFs) that in
turn execute SQL queries. Currently our virtual docu-
ments are formed by concatenating text fields in inter-
connected relational tuples. However, without chang-
ing the infrastructure we could plug in a different UDF
to construct virtual documents differently. For exam-
ple, we could produce XML or some other textual
format as virtual documents, possibly incorporating
schema information. If the text search engine provides
XML search capabilities such as XPath [3], our system
automatically inherits those capabilities.

• We exploit existing relational database extensions for
text indexing and search that is highly expressive and



extensible in its treatment of database content. By
using DB2’s Net Search Extender as the back end,
we completely avoid reimplementing basic IR capa-
bilities. Furthermore, our method for exploiting the
text extension ensures that all features are automati-
cally available in our search tool, including stemming,
stopword elimination, case-folding, Boolean queries,
proximity queries, relevance-ranked results, wildcards,
fuzzy searches, and natural language searches [7].

• The premise of our work is that keyword-based search
is more intuitive and convenient than SQL for many
query tasks over relational databases. To verify this as-
sumption, we conducted the only study we are aware
of that quantifies the relative performance of SQL
queries versus keyword searches on a variety of query
tasks.

1.1. Outline of Paper

We provide a thorough survey of related work in Sec-
tion 2. Section 3 is the core of the paper. It describes the
EKSO system, including functionality, algorithms, and sys-
tem implementation details. Section 4 presents our perfor-
mance study of the EKSO system, while Section 5 presents
our user study demonstrating the advantages of keyword-
based searches over SQL queries. We conclude and suggest
future directions in Section 6.

2. Related Work

An early paper [12] proposes implementing abstract data
types, user-defined operators, and specialized indexes for
textual databasesa precursor to current relational database
vendors’ approaches to integrating full-text search function-
ality. IBM DB2 [13], Microsoft SQL Server [9], Oracle
[6], PostgreSQL, and MySQL all provide text search en-
gine extensions that are tightly coupled with the database
engine. However, in all cases each text index is defined over
a single column. Using this feature alone to do meaningful
keyword search over an interconnected database would re-
quire merging the results from many column text indexes.
If our interconnected tuples contain N text attributes, and
our keyword query contains M conjunctive terms, then in
addition to joining relations to generate the interconnected
tuples (as we do offline; see Section 3.1), we must invoke
the text search engine up to NM times to match the query
keywords to the text columns.

Three systems share the concept of crawling databases to
build external indexes. Verity [15] crawls the content of re-
lational databases and builds an external text index for key-
word searches, as well as external auxiliary indexes to en-
able parametric searches. This approach is similar to ours

in terms of the index-all-data-offline paradigm. However,
by leveraging the database vendor’s integrated text search
engine tool, we avoid transporting data outside the database
for external processing, which can be expensive and diffi-
cult to synchronize, and we inherit all DBMS features auto-
matically.

DataSpot [5] extracts database content and builds an
external, graph-based representation called a hyperbase to
support keyword search. Graph nodes represent data ob-
jects such as relations, tuples, and attribute values. Query
answers are connected subgraphs of the hyperbase whose
nodes contain all of the query keywords. Similar to our
concept of a root tuple (Section 3.1.1), each answer is rep-
resented by a node associated with a tuple in the database,
from which the user can navigate to related tuples. As with
Verity, DataSpot requires transporting content to be indexed
outside the database.

DbSurfer [19] indexes the textual content of each rela-
tional tuple as a virtual web page. For querying and navi-
gation, the database foreign-key constraints between tuples
are treated as hyperlinks between virtual web pages. Given
a keyword query, the system computes a ranked set of vir-
tual web pages that match at least one keyword. Then a
best-first expansion algorithm finds a ranked set of naviga-
tion paths originating from the starting web pages. The nav-
igation path concept is similar to our definition of a text ob-
ject (Section 3.1.2). However, even though the web pages
are indexed offline, significant query time computation is
required to expand the starting web page set to find navi-
gation paths satisfying the full query, work that we perform
offline.

Three systems, DBXplorer, BANKS, and DISCOVER,
share a similar approach: At query time, given a set of key-
words, first find tuples in each relation that contain at least
one of the keywords, usually using auxiliary indexes. Then
use graph-based approaches to find tuples among those
from the previous step that can be joined together, such that
the joined tuple contains all keywords in the query. All three
systems use foreign-key relationships as edges in the graph,
and point out that their approach could be extended to more
general join conditions. We discuss the three systems in
more detail.

Given a set of keywords, DBXplorer [1] first finds the
set of tables that contain at least one of the keywords. Then
using the undirected schema graph (where each node is a
relation and each edge is a foreign-key relationship), a set
of subgraphs is enumerated, such that each subgraph repre-
sents a joining of relations where the result contains rows
that potentially contain all of the query keywords. For each
candidate join subgraph generated, a SQL statement is ex-
ecuted to join the specified relations and select rows that
do contain all of the keywords. The system is evaluated
on TPC-H (100MB to 500MB) and three internal Microsoft



Figure 4. EKSO System

databases (130MB to 375MB, from 19 tables to 84 tables).
The paper focuses on matching keywords to an entire at-
tribute value. It briefly discusses extending the system to
work with subattribute granularity matches and to provide
more sophisticated search options.

BANKS [2] uses a data graph where each tuple is a node
and each foreign-key relationship between tuples is repre-
sented as a bidirectional edge. The keyword query result
is a connected subgraph of tuples, where each keyword is
found in at least one tuple node. Dijkstra’s algorithm is used
to find the shortest path such that the nodes covered collec-
tively contain all query keywords. The system can rank the
results based on the sum of the node relevance scores and
edge weights.

DISCOVER [11] uses schema graph information to enu-
merate minimum joining networks, which are sequences of
tuples that can be joined together (based on foreign-key re-
lationships) into a single tuple that contains all of the key-
words. The algorithm models a tuple-set graph. Execution
plans for the set of joining networks are generated and op-
timized to share intermediate results, then translated into
SQL statements to build the join tuples that contain all of
the query keywords. The performance evaluation focuses
primarily on two aspects, efficiency of pruning irrelevant
joining networks, and comparison of several algorithms
for deciding what intermediate results to build and share.
Execution time increases significantly with the number of
candidate joining networks or the number of keywords in
the query. [10] extends DISCOVER to perform relevance-
ranked and top-k keyword queries.

An alternate approach, taken in [14, 16], translates key-

word searches to SQL based on the schema, but does
not focus on efficient implementation techniques. [8] de-
scribes a system for keyword and proximity search in graph-
structured databases based on shortest-path computations,
focusing on a combination of offline and online computa-
tion.

While a direct empirical comparison between our system
and some of the other approaches mentioned in this sec-
tion would be very interesting, the systems are not publicly
available, and any effort to implement them well enough for
a fair comparison would be prohibitive.

3. The EKSO System

The system we have developed, EKSO, is an instanti-
ation of the general architecture we propose for keyword-
based search over structured databases that was shown in
Figure 3. Figure 4 shows details of the EKSO system, which
will be described as this section proceeds.

3.1. Text Objects and Virtual Documents

Recall from Section 1 that our goal is to perform a full
crawl of the database, generating virtual documents from
database content that define the granularity of text search
and retrieval in the system. In EKSO we separate two con-
cepts: Text objects are generated from interconnected tuples
based on joining relational tables. Virtual documents are
generated from text objects by concatenating their string at-
tributes. This separation has at least two advantages: First,



input : Schema graph G where nodes are relations and edges are
foreign key constraints and set of root relationsRS

output : Set of text objects T

T ← {};
foreach root relationR inRS do

foreach tuple r inR do
text object t← {r} ;
start atR, do breadth-first traversal on G ;
foreach relationR’ traversed do

add to t the set ofR’ tuples that foreign-key join
with existing tuples in t ;

add t to T ;

return T ;

Figure 5: Text Object Construction (TOC) algorithm

Example: Consider the text object construction process for one root
tuple P1 from relation Part in the database instance in Figure 1.
Starting with tuple P1, in the first step of the traversal we select
Partsupp tuple PS1 and Lineitem tuple L1, which both join with
P1 on the partkey attribute. Next we select Supplier tuple S1,
which joins with PS1 on suppkey, and Orders tuple O1, which
joins with L1 on orderkey. Then we select Customer tuple C1,
which joins with O1 on custkey. The text object for P1 consists of
the set of tuples {P1, PS1, L1, S1, O1, C1}.

Figure 6: Text Object Construction example

we can use SQL queries, which are optimized automatically
by the DBMS, to generate text objects. Secondly, we can
independently plug in different functionality for generating
text objects from the database, or for generating virtual doc-
uments from text objects.

In EKSO we define a text object to be the set of tuples
in the database that are related to a given root tuple. When
a virtual document D is part of the answer to a keyword
query, the system returns an identifier for the root tuple as-
sociated with the text object from which D was generated.

3.1.1 Root Relations and Tuples

Root tuples are defined as all of the tuples in root relations.
Root relations can be designated automatically or set by the
database administrator. Designating a relation R as a root
relation creates text objects and virtual documents associ-
ated with each tuple of R. In EKSO as a default we select as
root relations all ”entity relations,” i.e., all relations whose
primary key is not composed entirely of foreign-keys.

3.1.2 Text Objects

We define the text object for a particular root tuple r as the
set of all tuples in the database that join with r through a se-
quence of zero or more foreign-key joins. We do not back-
track, i.e., the sequence of foreign-key joins joins with any
relation at most once. See example in Figure 6.

Figure 5 outlines the text object construction (TOC) al-
gorithm. To construct the text object for a root tuple r of
root relation R, we start with r. Logically we perform a
breadth-first traversal of the schema graph. For all neighbor
relations of R, we select those tuples that join with r, based
on foreign-key constraints. Next we join those tuples with
relations two away from the root relation R, and so on, un-
til we have traversed all relations reachable from R in the
schema graph. In the schema graph traversal, we treat for-
eign key constraints as bidirectional. We mark each relation
during the breadth-first traversal to avoid backtracking and
cycles in the schema graph.

The algorithm as described is not guaranteed to cover the
entire database when creating text objects, unless certain
conditions hold. We must have a set of root relations such
that all relations in the database are reachable from some
root relation via the schema graph. Otherwise we may have
”dangling relations”, in which case we could use a second
pass to create additional text objects from the dangling con-
tent. Note that because we follow foreign key edges, there
will be no dangling tuples within connected relations.

Alternate definitions could be used for text objects from
a given root tuple. For example, we could follow equijoins
as well as foreign-key joins (with a second pass to handle
dangling tuples), and we could backtrack. In the Figure 6
example, the text object for Part tuple P1 includes the sup-
pliers who supply P1, as well as customers who have or-
dered P1. We could backtrack to include other parts sup-
plied by those suppliers who supply P1, as well as other
parts ordered by those customers who ordered P1.

3.1.3 Virtual Documents

After a text object has been computed, we concatenate all
textual attributes of all tuples in the text object to form the
virtual document. The order of the tuples selected during
traversal is nondeterministic due to SQL semantics, and in
the current system we are not concerned about the concate-
nation order. However, if we extend the system to richer
virtual documents, as we will discuss next, we may need to
be careful about concatenation order. We can also include
nontextual fields, such as numbers and dates, by simply us-
ing their string representation. As an example, we concate-
nate the textual attributes of the six tuples that comprise the
text object for root tuple P1 from the Figure 6 example. For
one possible ordering the virtual document would look like:
Discus fish Acme Wisconsin Bob Madison.

Note that for now we have chosen one particular defi-
nition of text objects and virtual documents. We can eas-
ily plug in different definitions. For example, we might
generate richer structures in virtual documents. If the In-
dexer and the Keyword Search Processor supported XML
content, we could generate an XML fragment that captures



database structure and uses tags to encode attribute and re-
lation names. Such virtual documents enable XPath [3] or
other XML-based queries.

3.2. Crawler

The Crawler is responsible for traversing a structured
database to produce virtual documents to be indexed. In
Figure 4, the three relations on the left-hand side labeled
R1, R2, and R3 correspond to the Structured Database in
Figure 3. The Crawler in Figure 3 maps to the bulk of the
system diagram in Figure 4, enclosed in the dashed box.
It centers on a user-defined function (UDF) implemented in
DB2 that takes as input an identifier for a root tuple, invokes
a Text Object Construction (TOC) query, and constructs and
returns a virtual document. The TOC queries are composed
in advance following the TOC algorithm from Figure 5.
There is one such query for each root relation. With knowl-
edge of the schema, SQL WITH queries parameterized by
each root relation’s primary key values are used.

Before indexing, a special table called Text Object Key
Relation(TOKR) is populated with keys that individually
identify all of the root relations and tuples in those rela-
tions. At indexing time, the Crawler UDF decodes each key
to find the root relation that the tuple belongs to, then looks
up the corresponding TOC query, parameterizes it with the
root tuple identifier values, and executes it. The query result
is the text object, whose textual attributes are concatenated
into a Binary Large Object (BLOB). At this point, the UDF
discards the text object and returns the BLOB as the virtual
document.

3.3. Indexer

The Indexer is the box labeled NSE in the right-hand por-
tion of Figure 4. It is managed by the DB2 Net Search Ex-
tender (NSE). NSE is a full-featured text search engine in-
tegrated with the IBM DB2 DBMS product. NSE supports
the creation of text indexes on individual columns, and can
index the output of applying a user-defined function to a
column, which is the feature we exploit. We create an NSE-
managed IR-style inverted index over the virtual documents
returned by the Crawler UDF described in the previous sec-
tion. NSE indexes all of the virtual documents, associating
each one with its corresponding text object key.

3.4. Keyword Search Processor

In Figure 4, the Keyword Search Processor from Figure 3
is the box labeled ”Translate Keywords to NSE Query”.
A user’s keyword-based query is translated to an NSE in-
vocation in the form of a SQL query invoking the spe-
cial CONTAINS function. For example, after indexing our

input : Schema graph G where nodes are relations and edges are
foreign key constraints, set of root relationsRS, and an
inserted, deleted, or updated tuple r from RelationR

output : Root tuplesRT whose text objects and virtual
documents need to be recomputed

RT ← {};
RT ’← {r.old, r.new};
start atR, do breadth-first traversal on G ;
foreach relationR’ traversed do
D← set of tuples fromR’ that foreign-key join with existing
tuples inRT ’;
add D toRT ’;
ifR’ inRS then

add D toRT ;

returnRT ;

Figure 7: Text Object Update (TOU) algorithm

Root tuple r Non-root tuple r

r inserted Index TOC(r), Modify TOU(r)
Modify TOU(r)

r deleted Delete index entries Modify TOU(r)
for r, Modify TOU(r)

r updated Delete index entries Modify TOU(r)
for r.old, Modify TOU(r)

Index TOC(r.new),

Table 1. Text Object Update action

database instance from Figure 1, the conjunctive keyword
query ”Bob fish” is translated into the following SQL query:

SELECT key FROM Tokr WHERE CONTAINS(key,’"Bob"&
"Fish"’)=1

The CONTAINS function automatically invokes the
NSE search engine, which probes its inverted index and
returns text object keys as query results, which are then
returned to the user. The user may choose to explore the
database from these keys, or further refine the search. We
describe our user interface that enables these activities in
Section 3.6. Currently user exploration begins from scratch.
To speed up user traversal we could consider caching traver-
sal path from text object construction.

By building on commercial DBMS text search features,
we automatically inherit all of its capabilities, current as
well as future. For example, EKSO automatically deliv-
ers ranked search results based on NSE’s built-in ranking
functions.

3.5. Update Handler

The Update Handler that is a part of the Crawler com-
ponent in Figure 3 corresponds to the box labeled ”TOU
Triggers” at the top right of the system diagram in Figure 4.
When one or more tuples in the underlying database are
modified (inserted, deleted, or updated), some text objects



and virtual documents may need to be created, deleted, or
updated. For a given modified tuple r, the first step is to
compute the delta set of root tuples whose text object and
virtual document must be recomputed. We call this compu-
tation Text Object Update (TOU) and we denote the delta set
of root tuples as TOU(r). Given a modified tuple r, TOU(r)
is the union of the following two sets: the set of existing
root tuples whose text object includes the old version of r

and the set of existing root tuples whose text object should
now include the new version of r.

If tuple r is inserted, the old-version set is empty. If tuple
r is deleted, the new-version set is empty. Once the delta
set TOU(r) is computed, for every root tuple r′ in TOU(r),
we repeat the crawling and indexing procedure described
earlier: The Crawler computes the text object and virtual
document of r′, then the Indexer removes any existing index
entries of r′ and indexes the recomputed virtual document.

In Figure 7 we present the TOU algorithm to compute the
delta set of root tuples whose text objects and virtual doc-
uments must be recomputed as a result of modifications to
an arbitrary tuple. Note the TOU algorithm is a dual of the
TOC algorithm, since the TOU algorithm must find affected
root tuples based on the text object semantics. Hence if the
text object definition were to change (e.g., to permit back-
tracking), then both the TOC and the TOU algorithms must
change accordingly. Like the TOC algorithm, the TOU al-
gorithm can be implemented as a SQL WITH query com-
posed offline using schema information. There is one TOU
query per relation in the database.

Once the delta set of root tuples is identified, our update
actions depend on whether the modified tuple r is itself a
root tuple, and whether the original modification to r was an
insert, delete, or update. Table 1 enumerates all the cases.
r.old denotes the old version of a modified tuple r, i.e., a
tuple being deleted, or a tuple before it is updated. r.new

denotes the new version of a modified tuple r, i.e., a tuple
being inserted, or a tuple after it has been updated. ”Modify
TOU(r)” denotes asking the Crawler to recompute the text
objects and virtual documents of each root tuple in the delta
set TOU(r), and asking the Indexer to update its index with
the recomputed virtual documents. When we insert a new
root tuple r we must also ask the Crawler to execute the
TOC algorithm for r and ask the Indexer to index the virtual
document generated by the Crawler, which we denote by
”Index TOC(r)”. When we delete a root tuple, we must
have the Indexer remove index entries associated with the
deleted root tuple.

The Update Handler is implemented using triggers. We
create three TOU triggers (insert, delete and update) on each
database relation. The main trigger action for all three trig-
gers is an insert statement that executes the TOU query to
find the set of root tuples whose virtual document is affected
by changes to a given tuple, and then inserts into the NSE

Figure 8. Auction dataset schema

update log table requests to update the NSE index entries
for these root tuples. At the next NSE index update (either a
manual NSE index refresh request or automatic periodic in-
dex refresh), NSE automatically invokes the Crawler UDF
to reconstruct the requested virtual documents, which are
used to rebuild the inverted index.

In the case of the insert trigger on a root relation, a sec-
ond trigger action inserts a corresponding tuple into the
TOKR, which automatically creates an NSE update request
that a new virtual document be generated and indexed. For
the delete trigger on a root relation, a second trigger action
deletes the corresponding TOKR tuple, thus generating an
NSE update request that the appropriate entries in the NSE
index be removed.

3.6. User Interface

We have developed an Application Programming Inter-
face (API) to our system that enables an administrator to
quickly and easily deploy a customized web-based front end
to the search system for any database schema. Recall that
our approach yields search results that are simply identifiers
for the root tuples of the virtual documents matching the
search. Thus we have also developed a servlet-based web
user interface that supports navigation starting from the root
tuples returned by the keyword search, and following the
same breadth-first traversal our TOC algorithm follows. In
Section 5, we present a user study comparing the effective-
ness of keyword versus SQL searches through our interface
and system.

4. System Evaluation

Our system is implemented on a PC with dual Pentium
III 800MHz processors and 1GB of RAM, running Win-
dows 2000, IBM DB2 UDB version 8.1, and DB2 Net
Search Extender version 8.1.



Relation Data Source Root Reln #Tuples Bulkload
File Size

ITEMS Ebay Yes 500,000 795MB

USERS TPC dbgen Yes 26,913 4MB

FEEDBACK TPC dbgen No 500,000 76MB

BIDS TPC dbgen No 1,000,000 54MB

Table 2. Auction dataset characteristics

Dataset Bulkload DB Size Root Tuples NSE Index
File Size Size

TPCH500 500MB 597MB 930,000 4.16GB

Auction 929MB 1128MB 526,913 2.76GB

Table 3. Dataset space utilization

4.1. Datasets

We evaluate our text indexing and search system on two
datasets, a 500MB TPC-H database, and a 929MB Auction
database. The TPCH500 dataset follows the complete TPC-
H schema in Figure 2 and is generated using the official
TPC-H data generator (DBGEN) [4]. Schema information
including relation names, attribute names, and join condi-
tions are provided to our TOC Query construction applica-
tion. We designate Customer, Orders, Part, and Supplier as
the root relations. The system default would also include
Region and Nation, but they are of too coarse a granularity
to be useful to users. The four parameterized TOC Queries
for the four root relations constitute our workload at index-
ing time, since each UDF invocation executes one of these
queries and concatenates the resulting tuples. We optimized
the indexing process by submitting this four-query work-
load to the DB2 Design Advisor, which suggested indexes
to build on the database tables.

The Auction dataset consists of a mixture of primar-
ily real-world data and some synthetic data. It models
a database for an online auction service and the schema
is shown in Figure 8. Whereas the TPC-H schema has
many relatively short textual fields and is fairly complex
with many join relationships, the Auction dataset contains
a few long textual fields and is very simple in terms of join
relationships. The Items table is populated with 500,000
Ebay auction items crawled in 2001, provided courtesy of
the University of Wisconsin database group. The Users ta-
ble is populated from a subset of the Supplier table in our
TPCH500 dataset. The Feedback and Bids tables are syn-
thetically generated, with the comment attributes populated
with pseudo-random text output from the TPC DBGEN util-
ity. We designate the two entity relations, Items and Users,
as the root relations.

Table 2 summarizes the Auction dataset. The two TOC
Queries were presented to DB2 Design Advisor for opti-

Full Results Top 100 Ranked
Query Query 95% Conf Result Query 95% Conf
Length Time Interval Size Time Interval

(words) (sec) (sec) (tuples) (sec) (sec)
2 24.05 0.55 157970 3.89 0.29

3 21.82 0.44 82994 3.99 0.24

4 21.48 0.30 51996 4.69 0.26

Table 4. TPCH500 query performance

Full Results Top 100 Ranked
Query Query 95% Conf Result Query 95% Conf
Length Time Interval Size Time Interval

(words) (sec) (sec) (tuples) (sec) (sec)
2 6.02 0.43 25604 2.21 0.11

3 3.46 0.20 6851 1.64 0.07

4 2.29 0.36 3002 1.38 0.15

Table 5. Auction query performance

mization. Table 3 presents the space utilization for the two
datasets. Database sizes are obtained using the DB2 table
size estimation utility and does not include database indices.
The TPCH500 dataset contains 930,000 root tuples from the
Customer, Orders, Part, and Supplier relations, representing
930,000 TOC Queries executed at indexing time. The Auc-
tion dataset contains 526,913 root tuples from the Items and
Users relations for 526,913 TOC Queries at indexing time.

Our system executes several TOC Queries per second
on average, though performance could improve with vari-
ous levels of tuning. Also, the TOC query workload is well
suited for parallelization.

4.2. Keyword Searches

We evaluate search performance by submitting conjunc-
tive keyword queries of length 2, 3, and 4 words. We eval-
uate returning full result set and the top 100 ranked results.
In each trial, we generate 50 queries by randomly choosing
words from the appropriate corpus with replacement. The
reported time for a trial is the average of the 50 query exe-
cution times (prepare plus execute plus fetch time) reported
by DB2’s query performance monitoring utility, db2batch.
We perform 20 trials for each type of query (number of key-
words plus full or top-100 results) to report average query
time with a 95% confidence interval.

The TPC-H dataset is generated by the TPC data gen-
erator which produces text attributes such as the comment
field from a probability distribution file. Our TPC-H key-
word queries are generated from the set of about 300 words
that are used to generate the comment field.

In the Auction dataset, keyword queries are generated
from the description field of the auction items table, which



Update Rate 0 .125 .25 .5 .75 1 2 4
(tuples/sec)
Avg Query .933 1.29 1.33 1.34 1.30 1.28 1.23 1.25

Wkld Time (sec)

Table 6. Update performance

came from real Ebay auction pages. We exclude words of
length 3 letters or less. Query keywords are chosen from a
bag of 51 million words.

4.3. Query Performance

Table 4 shows query performance on the TPCH500
dataset. The performance of queries returning the full re-
sult set are not interactive, at 21-24 seconds, due to the size
of the result (50K-160K tuples). Typically users are only in-
terested in the top few results of a keyword query. Our top-
100 ranked query performance is interactive at under 4.7
seconds. TPC-H is not an ideal dataset for keyword search
because the text attributes are generated from a very limited
corpus, producing large results for experiments. Auction
queries return many fewer results. Table 5 shows that query
times for both the full results and the ranked queries are in-
teractive for the Auction dataset, at under 6.1 seconds and
under 2.3 seconds, respectively.

4.4. Update Performance

We generate a 500MB database by randomly selecting
half of the tuples from a 1GB TPC-H dataset. From the re-
maining tuples, we pick 10,000 tuples to form 100 batches
of 100 tuples each. Within each batch, the proportion of tu-
ples from each relation reflects the relation’s proportion in
the TPC-H dataset specification. The update workload con-
sists of a sequence of inserting 100 batches of 100 tuples
each. We pause for some time between consecutive insert
batches in order to achieve a target insert rate (tuples per
second). We measure query performance at insert rates of
0, 0.125, 0.25, 0.5, 0.75, 1, 2, and 4 tuples per second. The
low insert rates are due to the fact that NSE index update
saturates at 0.75 tuple inserts per second, and database up-
date saturates at about 10 tuple inserts per second.

Query performance is measured by a client that exe-
cutes keyword queries concurrently with the update work-
load. The query client repeatedly executes a workload of
9 randomly generated TPCH500 keyword queries, with a
one-second pause between workload executions. We report
the average time to execute one query workload during the
period that the update workload of 100 batches are being
inserted into the database, which means we measure thou-
sands of query workload executions.

Task Avg Query Avg # Queries
ID Time (sec) Submitted

SQL Keyword SQL Keyword
1 193 54 1.43 1

2 332 76 3.75 1.43

3 206 49 2.29 1.13

4 76 58 2 1.25

5 228 160 1.88 3

6 149 96 1.38 1.5

7 99 126 1.5 2

Table 7. User study results

Our results are shown in Table 6. Without inserts, our av-
erage query workload time is 0.933 seconds. For the seven
insert workloads, the average query workload time ranges
from 1.23 to 1.34 seconds, without obvious correlation be-
tween query time and update load. Our hypothesis is that
the variation from 1.23 to 1.34 seconds probably reflects
noise in normal system fluctuation, while the jump from
0.933 to about 1.3 seconds is indicative of the actual over-
head from the update workload. At the insert rate of 0.75
tuples per second, the background NSE index update pro-
cess becomes saturated. See technical report [18] for more
detailed discussion.

5. User Study

We conducted a study involving 17 doctoral students and
faculty in the Stanford Database Group to quantify the rel-
ative effectiveness of keyword and SQL interfaces in ac-
cessing content in relational databases. We used a movie
database [20] consisting of three relations, Movies, Casts,
Actors, and a view, Movie actor. Using our API described
in Section 3.6, we deployed a servlet-based web interface
using Apache Tomcat on the same PC used in our system
evaluation. See technical report [18] for more details on the
user study.

Two classes of questions were formulated. The first
class, questions 1, 2, and 3, clearly favors keyword searches.
For example, for question 1, the 3-keyword query ”Burton
Taylor Cinecitta” returns a single movie tuple for the movie
Cleopatra, which is the correct answer. On the other hand,
questions 4-7 were more difficult with keyword search: The
best keyword queries return many result tuples that the user
must browse to find the answer. Furthermore, for ques-
tions 5 and 6 the user must submit two consecutive key-
word queries to find the correct answer. In comparison, all
7 questions could be answered with a single SQL query.

Our results in Table 7 show that even for a group of
knowledgeable SQL users, in most cases keyword search
is more effective than SQL. Even for the category of ques-



tions that do not favor keyword search, our users answered
three out of four questions faster using keyword search than
using SQL.

For questions 1 through 6, on average the keyword
search time is 48% of the SQL search time. For ques-
tion 7, the keyword search time is 127% of the SQL time.
Even though all questions could be answered with a single
SQL query, the average number of SQL queries submitted
column illustrates that SQL is error-prone (even with our
schema-driven query formulation interface). Of course SQL
is inherently more verbose than keyword search, which may
somewhat bias the task completion times, but we believe the
overall results are still meaningful.

6. Conclusion and Future Work

We presented a general architecture for supporting
keyword-based search over structured databases, and an in-
stantiation of the architecture in our fully implemented sys-
tem EKSO. EKSO indexes interconnected textual content
in relational databases, providing intuitive and highly effi-
cient keyword search capabilities over this content. Our sys-
tem trades storage space and offline indexing time to signifi-
cantly reduce query time computation compared to previous
approaches.

Experimental results show that index size is manageable
and keyword query response time is interactive for typical
queries. Update experiments demonstrate that our concur-
rent incremental update mechanism does not significantly
hinder query performance. We also present a user study
confirming the superiority of keyword-based search over
SQL for a range of database retrieval tasks.

We have identified at least three main directions for fu-
ture work:

• Indexing Performance: We plan to investigate better
computation sharing when constructing text objects, as
well as using parallelism to speed up indexing.

• Enhanced Search: By incorporating more structure
into text objects, we can exploit (future) search ca-
pabilities for semistructured data. We will investigate
how to generate text objects with structural informa-
tion, focusing first on XML and exploiting work on
publishing relational content as XML, e.g. [17].

• User Interface: We plan to refine and enhance our cur-
rent search result presentation and navigation schemes.
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