A Scalable Framework for the Interoperation
of Information Sources

Prasenjit Mitra, Gio Wiederhold, and Stefan Decker
Infolab, Stanford University
Stanford, CA, USA 94305
{mitra, gio, stefah@db.stanford.edu

Abstract. Resolving heterogeneity among information systems is a crucial necessity

if we wish to gain value from the many distributed resources available to us. Problems
of heterogeneity in hardware, operating systems, and data structures have been widely
addressed, butissues of diverse semantics have been handled mainly in an ad-hoc fash-
ion. In this paper, we present ONION, a system based on a scalable approach to inter-
operation of information systems that articulates their associated ontologies. An artic-
ulation focuses on the semantically relevant intersection of information resources with
respect to a type of application. However, ontologies obtained from diverse sources are
represented using different formats. We have designed a simple intermediate format
- the ONION ontology format - that we transform ontologies to before we generate
semantic correspondences or articulations between them.

In ONION, application-dependent articulation rules that capture the correspon-
dence between concepts in different ontologies are established between source on-
tologies semi-automatically. Finally we present an ontology algebra, based on the ar-
ticulation rules, for the composition of ontologies.

1 Introduction

Today a large number of diverse information sources - databases, knowledge bases, collec-
tions of documents - are available on the Internet. Often, we cannot answer a query by using
a single source, and need to compose knowledge from multiple sources. Intelligent searching
and querying on the World Wide Web - the largest collection of distributed information and
knowledge sources - often requires composing information from heterogeneous information
sources. Today, the bulk of this composition is done by the end-user. Not only is this process
extremely tedious and time-consuming, but also, often, the end-user does not have any idea
about the semantics used by the builder of the information source. In this paper, we present
a brief overview of the ONION (ONtology compositlON) system, which takes a systematic
approach to enable semi-automatic interoperation among heterogeneous information sources.

1.1 Heterogeneity

Most information sources have been independently constructed and are autonomously main-
tained. Attempts have been made to integrate information from these various information

* This work was partially supported by a grant from the Air Force Office of Scientific Research (AFOSR).

sources into a monolithic information source [1], [2]. Such an approach, however, creates
maintenance and scalability problems. When an information source is to be added, the large
information source must be restructured, and often, this kind of maintenance leads to sub-
stantial delays [3].

Some researchers have tried to first build a standard ontology or global schema and then
build information sources that conform to that ontology or schema [4], [5]. Even though
this approach has worked for small communities, coming up with an agreed-to-standard for
knowledge in larger domains is almost impossible, especially among groups that have diffe-
rent applications in mind.

Besides, it is prohibitively expensive to restructure existing knowledge so that it conforms
to the standard ontology even if one were able to.

1.2 Maintenance

Everyday new discoveries expand our knowledge and change our views of the universe that
we live in. Therefore, even if information sources start off with a common ontology, this on-
tology has to be updated periodically. The maintainers of the information sources that use the
standard ontology will have to agree on the updates being proposed and on the restructuring
of the ontology. They may have entirely different applications in mind or may not subscribe
to a newly discovered theory. Furthermore, some participants might see the changes required
to support the proposed updates as an unnecessary imposition since restructuring the infor-
mation source will require substantial effort on their part. Thus generating new consensus
on updates to the standard ontology is a time-consuming and tenuous process. For quickly
changing fields, arriving at a consensus within a short period of time is not even feasible.
Therefore, we need a system where the information sources are autonomous.

1.3 A Realistic Setting

We believe that the information sources should be autonomous and that they should not be
required to conform to a standard ontology in order for a user to get a composition of knowl-
edge from them. Instead of integrating information sources, we intend to enable interopera-
tion among them.

Unfortunately, the composition of knowledge from multiple independently maintained
information sources is a hard problem. Independently constructed information sources are
heterogeneous and often use different vocabularies and data formats. The organization of
class-subclass hierarchies are substantially different. Often, they use different terms to repre-
sent the same concept and the same term to represent entirely different concepts. In order to
interoperate among such information sources we need to resolve their semantic heterogeneity.

Karp [6] proposes a strategy for database interoperation. We extend Karp’s approach to
apply to not only databases, but also to knowledge bases and information sources.

As in [7], [8], and [6], we assume that information sources are independently created
and maintained. In Karp’s system, each database comes with a schem a which is saved in
a Knowledge Base of Databases. Correspondingly, we assume that associated with each in-
formation source is an ontology. However, we do not require all ontologies to be saved in a
central repository.

The ontologies associated with information sources are based on some existing, known
vocabularies and data formats. Native drivers and wrappers provide access to the ontol ogies
and help us restructure the information if needed. We establish application-speaifita-
tion rules i.e., rules that establish correspondence between concepts in different ontologies,
semi-automatically.

Queries are rewritten using the articulation rules. Before a query is dispatched to a source,
the terms in the query are rewritten using the articulation rules that indicate the semantic cor-
respondence between the terms in the query and those in the source. This rewriting ensures
that a source gets a query that conforms to the vocabulary and the semantics of the source.
During query planning, optimization is enabled based on the algebraic properties of the op-
erations.

In this paper, we describe the ONION system and highlight our approach to interop-
eration. In Section 2, we describe the common conceptual model that ONION uses for its
internal representation of ontologies. In Section 3 we discuss the semi-automatic articula-
tion of ontologies. In Section 4 we outline an Ontology Composition Algebra that we use to
compose ontologies. Section 5 concludes the paper.

2 The ONION Ontology Format

ONION’s articulation generator needs all source ontologies to conform to a common ontol-
ogy format. Heterogeneity among information sources needs to be resolved to enable mean-
ingful information exchange or interoperation among them. The two major sources of hetero-
geneity among the sources are as follows: First, different sources use different data formats
and modeling languages to represent their data and meta-data. In the rest of the paper, we
will refer to the data format and the modeling language together as the ontology format. Sec-
ond, sources using the same data format differ in their semantics. The ONION system uses
a common ontology format, which we describe below. It first converts all external ontologies
to this common format and then resolves the semantic heterogeneity among the objects in the
ontologies that it is articulating.

Melnik, et al., [9] have shown how to convert documents from one modeling format to
another, e.g., from RDFS [10] to DAML+OIL [11]. We can use wrappers to convert the
ontologies represented using the formats that we want to support to the ONION format.

Instead of writing a wrapper to convert all ontologies from their native formats to the
ONION format, we could do so declaratively. That is, we could first write rules that trans-
form parts of one ontology from one format to another. However, such an approach is not
feasible. Often, the transformations are quite complex and can be more naturally expressed
procedurally. Expressing them declaratively requires a very expressive rule language. Deduc-
tions in more expressive rule languages are often not tractable. Also, we would have to create
and manipulate articulation rules that not only have semantic information but also have infor-
mation about transforming ontology formats. Besides, by converting to the ONION format,
we eliminate the necessity af pariwise conversions amomgontologies and instead reduce
it to n. conversions (of all the ontologies to the common format).

We solve the problem of establishing correspondences among ontology formats and the
problem of establishing articulations among the concepts in the ontologies differently because
we believe that the small number of ontology formats that we intend to support (currently
XML, RDF, DAML+OIL) can be converted to use one common format, whereas the number

of concepts and thus objects used in ontologies are rather large and creating a huge, integrated,
common, global ontology is untenable and if such an ontology could be created it would be
unmaintainable.

Information sources were, are and will be modeled using different formats. We do not
foresee the creation of de factostandard data format that will be used by all information
sources. On the other hand, we need a common ontology format for our internal representa-
tion. We use the ONION format to which the source ontologies are converted. ONION then
matches the converted ontologies to create the articulation ontology. The common ontology
format could be arbitrarily complex so that we could transform all features from various on-
tology formats minimally. However, to make the articulation generation simple, we take a
different approach and strive to keep our model simple.

2.1 A Graph-Oriented Conceptual Model

Our common ontology format is based on the work done by Gyssens, et al.,[12]. At its core,
we represent an ontology as a graph. Formally, an ontaldgy (G, R) is represented as a
directed labeled grapfi and a set of rule®. The graphz = (V, E') comprises a finite set of
nodesl” and a finite set of edgées. R is expressed as Horn clauses.

An edgee is written as(ny, a, ny), wheren; andn, are two nodes belonging to the set
of nodesV and« is the label of the edge between them. The label of a modagiven by a
function \(n) that maps the node to a non-null string. In the context of ontologies, the label
is often a noun-phrase that represents a concept. Thedatfedn edge: = (ny, @, ny) is a
string given bya = d(e). The label of an edge is the name of a semantic relationship among
the concepts and it can be null if the relationship is not known. The domain of the funations
ando is the universal set of all nodes and edges, respectively (from all graphs), and their range
is the set of strings (from all lexicons). For the rest of the paper, we assume that the function
A maps a node to a unique label (i.e., the name of the node in the ontology is concatenated
with the name of the ontology). Thus, we will use the label of a node as a unique identifier
of the node. To represent an edge, we can substitute the label of a node for a node and write
edgee = (A(n1), o, A(ng).

The graph in the ONION data format can be expressed using RDF [13]. Each edge in
our graph is coded as an RDF sentence, with the two nodes in the edge being the subject and
the predicate and the relationship being the property. However, in order to keep our model
simple, we have not included the containers that provide collection semantics in RDF. If the
children of a node need to be ordered we use a special relationship, as explained below. By
choosing RDF, we can use the various tools that are available for RDF and do not have to
write parsers and other tools for our model.

Rules in an ontology are expressed in a logic-based language. Although, theoretically, it
might make sense to use first-order logic as the rule language due to its greater expressive
power, in order to limit the computational complexity we will use a simpler language like
Horn Clauses. A typical rule € R is of the form :

CompoundStatement —> Statement

A Statemenis of the form(Concept Relationship Concept). A Concept is either a label
of a node or a variable that can be bound to one or more nodes in the ontology graph. A
Retationship expresses a realtion between tWoncepts.

2.2 Semantic Relationships@NION

The ONIONarticulation generatocan improve the semantic matches it derives among con-
cepts in a pair of ontologies if it has some semantic information about the relationships used
in the ONION ontology model.

Certain data formats allow only strictly-typed relationships with pre-defined semantics.
For instance, relationships likeubC'lassO f, AttributeO f, etc., have very clearly defined
semantics in most object-relational databases. A system that knows the exact semantics of
the relationships in a conceptual model can use the information, for instance, to find better
matches between concepts in two ontologies or to perform type-checking and flag errors.

Other models allow any user-defined relationships, without any restriction. For instance,
relationships likeOwnerO f tend to be interpreted according to the semantics associated
with them by the local application. Such relationships need not be strictly typed, and a gen-
eral system that imports a model allowing them does not know of the application-specific
semantic interpretation of the relationships. This approach provides enormous flexibility and
can accommodate a large number of relationships. However, since the semantics of these
relationships are not exactly known by the system, it cannot use them for matching related
concepts or for type-checking.

The ONION data formating encourages the use of a set of strictly-typed relationships
with precisely defined semantics. The set of relationships that our articulation generator
knows the semantics of SubClassO f, PartO f, AttributeO f, InstanceO f, ValueO f }.

In ONION, we assign the conventional semantics to each of these relationships. Some of
these relationships impose type-restrictions on the two nodes they relate. Some of the rela-
tionships (likeSubClassO f, InstanceO f) are somewhat similar to those in RDF-Schema
but we have chosen a different and much smaller set of relationships to define semantics in
ONION so as to maintain its simplicity.

In the following description, we use the termiteral to denote a string and the terms
Class and Object to denote classes and objects in the sense it is used in object-oriented
databases. The semantics of the set of pre-defined relationships available in our common
ontology format are as follows:

SubClassO f: relates two concepts each of typ@ass. The relationship indicates that
one concept is a subclass of another. For example, the stat@thentubClassO f Vehicle)
denotes that the conceptr is a subclass of concepiehicle. Any instance of the clasSar
is also an instance of the cla&%hicle and all the attributes of the cla$&hicle are also
attributes of the clasS'ar. The relationshigpubClassO f is transitive, and in the absence of
an explicit rule in an ontology that states that $w)ClassO f relationship is transitive, we
will add one to the ontology before reasoning or rewriting the queries using the rules.

AttributeO f: This relationship indicates that a concept is an attribute of another concept,
e.g., an edgéConceptA AttributeO f ConceptB) indicates thaConcept A is an attribute
of ConceptB. ConceptB is of typeClass or of type Object and’oncept A is of typeC'lass.

This relationship, also referred to &sopertyO f in some information models, has typically
the same semantics as attributes in (object-)relational databases . The following rule holds:

((A AttributeOf B) A (B SubClassOf C)) = (A AttributeOf C')

PartO f: This relationship indicates that a concept is a part of another concept, e.g., an
edge(Chassis PartOf Car) indicates thatChassis is part of aCar. The first concept

is of type Class while the second concept can be of typéuss or Object. In relational
databases, such relationships are often coded as attributes, but we believe that this relationship
is sufficiently different semantically from the relationshiptributeO f to warrant separate
consideration.

InstanceO f: This relationship indicates that an object is an instance of a class. Therefore,
the first concept in the relationship is of typ®ject and the second of typ€lass. For
example, an edgéMyCar InstanceO f Car) indicates thatMyCar is an instance of the
ClassCar. The following rule holds:

((A InstanceOf B) A (B SubClassOfC)) = (A InstanceOf C'))

ValueO f: This relationship is used to indicate the value of an attribute of an object,
e.g.,(“29” ValueO f Age). Thus, the first concept is of typeiteral and the second of type
Class. Typically, the second concept (in our example, the ckgs, in turn, has an edge (in
our exampld Age AttributeO f PersonA)) from the object it describes.

2.3 Sequences

XML is becoming a popular format for expressing data and meta-data on the web. Like
SGML and other markup languages primarily designed to express documents, XML imposes
order among its elements. By itself, the graphical ONION model, described above, does
not impose order among the children of a node. To express order, we introduce a special
relationship, namelyequence, which is very similar to the containéfequence in RDF. For
example, a list ranking cars can be described using the edges

(MoneyLineRanking Sequence Car RankingList),
(CarRankingList : 1 HondaAccord), and
(CarRankingList : 2 FordTaurus).

The intermediate nod€'ar RankingList represents the list object and its elements form an
ordered sequence. In an edge of the f¢€fancept A Sequence Concept B) the first concept

can be alass or anObject and the second concept is @bject representing the list. The
individual elements of the list can be objects or classes and are related to the list-object via
the relationships1,: 2,...,: N, where the list hagV elements.

In the ONION format, we do not require that every relationship must belong to the small
set of relationships whose semantics are predefined. The model is flexible enough to allow
any other user-defined relationship. The articulation generator will not be able to use the
relationships, whose semantics it is not aware of, unless the semantics are captured using rules
in the source ontology. For example, if the source ontology uses a relatiadhship and has
a rule that says that "Is-A” is transitive, the articulation generator can use that information
to generate matches. The articulation rules that the articulation generator generates uses only
the relationships whose semantics are predefined to establish correspondences among nodes
in the source ontologies.

The articulation generator generates matches among nodes in the two source ontologies
that is supplied to it and does not attempt to match relationships among ontologies. The
articulation generator uses only relationships whose semantics are clearly defined to it to
derive meaningful matches among the nodes and ignores the relationships that it does not
know the semantics of. Therefore, if two RDF models have the relationships "Buyer” and

"Owner” and for the purposes of the application we want to generate a match between the
two, we need to represent these relationships as nodes in the ONION model and then run the
articulation generator to match them.

2.4 Reference and Subsumption

In data formats, especially those used to model documents, like XML, SGML, OEM etc.
[14], where there are nested objects and entities, an object is modeled as a subtree in a graph.
The entire subtree rooted at a node comprises the object that the node represents. When a
query asks for the object, the entire subtree is returned. Such models assume that an object
subsumes all objects that are in its subtree. If any relationship needs to be expressed between
two objects a reference to the second object is used. The reference is denoted by having a
node with the the identifier of the second object and having an edge to this node. The use of
this additional node that refers to a different object helps preserve the tree structure of the
models, which is required for documents, since they are in essence serialized entities.

In our model, however, even though many of the relationships, with pre-defined seman-
tics, are essentially subsumptive in nature, we intend to keep the concept of an object as
simple as possible. Faced with the question of defining the scope of an object in our common
data format, we take the minimal approach. In our world, a single node represents a concept:
a class, an object, or a value. All edges are referential in nature. Thus, when a query asks to
select an object, only the node representing the object is returned and not the entire subtree
rooted at the node. This minimal definition of an object helps us keep the articulation rules
and the resulting ontology intersections as small as possible. As we will see later, the larger
the intersection, the greater the cost when using the articulation to answer queries. Thus we
make the choice to keep the definition of an object as simple as possible.

Apart from the graph model, our data format allows us to declaratively supply rules. Some
features in other models can be converted using the rules to capture their semantics. If this is
not possible, relationships which are not interpreted by ONION can be used. Some features
still cannot be expressed using the ONION model.

The common data format is used to bring ontologies to a common format - so that the
articulation generator needs to understand only one format. So if a feature cannot be translated
into our common data format, it will not be matched with similar features carrying similar
semantic messages in other ontologies. However, such information will still be accessible
from the individual ontology and the engine associated with the individual sources.

We resolve the heterogeneity with respect to ontology models and modeling languages
by building wrappers that convert ontologies using various conceptual models to an ontology
in our common data format. However, the second problem of semantic heterogeneity among
the concepts used in the source models still remains. In the next section, we will summarize
various methods that we use to automatically suggest ontology articulations.

3 Resolving Semantic Heterogeneity

An important requirement for the application scenarios that our system will be used for is
high precision. In distinction to research tasks, casual browsing, and web-surfing, the cost of
eliminating false hits is very high in business environments. At this point we believe that re-
solving semantic heterogeneity entirely automatically is not feasible. We, therefore, advocate

a semi-automatic approach wherein an autonaaticulation generatosuggests matches be-
tween concepts in the two ontologies it is articulating. A human expert, knowledgeable about
the semantics of concepts in both ontologies, validates the generated suggested matches using
a GUI tool. An expert can delete a suggested match or say that the match is irrelevant for the
application at hand. The expert can also indicate new matches that the articulation generator
might have missed. The process of constructing an articulation is an iterative process and af-
ter the expert is satisfied with the rules generated, they are stored and used when information
needs to be composed from the two ontologies.

In order to keep the cost of computation and especially maintenance (which often dom-
inates other costs in established business environments) low, we strive to make the articula-
tions minimal. Currently, the onus is on the expert to keep the articulation minimal. In future,
we hope to make the automated heuristics aware of the needs of the application and minimize
the articulations.

The matching algorithms that we use can be classified into two types - iterative and non-
iterative.

Non-iterative Algorithms

Non-iterative algorithms are ones that generate the concepts that match in the two ontologies
in one pass. These algorithms do not generate any new matches based on existing matches.
The non-iterative algorithms that we employ involve matching the nodes based on their con-
tent.

The articulation generator looks at the words that appear in the label of the two nodes (or
associated with the two nodes, e.g., if the nodes are documents or if more elaborate descrip-
tions of the concepts that are represented using the nodes are available) that it seeks to match
and generates a measure of the similarity of the nodes depending upon the similarity of the
words used in their descriptions or labels.

The non-iterative methods that we currently use primarily refer to dictionaries and the
Nexus [15] and also use several semantic indexing techniques based on the context of occur-
rence of words in a corpus. Since the articulation generator is modular in nature, it should be
easy to add any other sophisticated heuristic (like consulting WordNet [16]) that allows us to
generate semantic similarity measures between phrases.

Iterative Algorithms

Iterative algorithms require multiple iterations over the two source ontologies in order to
generate semantic matches between them. These algorithms look for structural isomorphism
between subgraphs of the ontologies, or use the rules available with the ontologies and any
seed rules provided by an expert to generate matches between the ontologies. Iterative al-
gorithms are typically used after the non-iterative algorithms have already generated some
semantic matches between the ontologies and use these generated matches as its base.

For example, one heuristic we use is to look at the attributes of each node and see if
the attributes of the two nodes have matched. If a reasonably large number of attributes are
the same, the two nodes are related. If all the attributes of one node are also attributes of
another node, the articulation generator indicates that the second node is a subclass of the
first node. Another heuristic matches nodes based on the matches between their parent (or

child) nodes. The expert has the final decision whether to bless this educated guess generated
by the articulation generator.

Due to space limitations, we will not describe in detail all the heuristic algorithms that we
use to match ontologies, but refer the interested reader to [17].

In the next section, we will briefly define an Ontology Algebra, which allows us to sys-
tematically compose information from diverse information sources. Since we focus on small,
well-maintained ontologies in order to achieve high-precision, but we still want to serve sub-
stantial applications, we will often have to combine results of prior articulations. The ontol-
ogy algebra provides the compositional capability, and thus enhances the scalability of our
approach.

4 Ontology Composition Algebra

In this section, we present an algebra for Ontology Composition that allows us to compose
information systematically. Depending upon the properties of the algebraic operators, we
optimize the composition of ontologies.

By retaining a log of the articulation and subsequent composition process, we can also,
with minimal adaptations, replay the composition whenever any of the sources change[15].
Without such a capability, integrated ontologies soon became stale and useless. Redoing a
substantial integration manually is rare, because of the cost, and the realization that the work
will be obsolete again in a short time.

The algebra has one unary operator: Select, and three binary operations:Intersection,
Union, and Difference.

4.1 Select

Select: allows us to highlight and select portions of an ontology that are relevant to the task at
hand. Given an ontology and a node, t select operator selects the subtree rooted at the node.
Given an ontology and a nodes, the select operator selects only those edges in the ontology
that connect nodes in the given set.

4.2 Intersection

Each binary operator takes as operands two ontologies that we want to articulate, and gener-
ates an ontology as a result, using the articulation rules. The articulation rules are generated
by an articulation generation function briefly discussed above.

Intersection is the most important and interesting binary operation. The intersection of
two ontologiexD1 = (N1, E1, R1), andO2 = (N2, E2, R2) with respect to the set of artic-
ulation rule generating f unctioAR is:

OI, 5 = 01Nsg O2, whereOI,, = (NI, EI, RI),

NI = Nodes(AR(O1,02)),

EI = Edges(E1, NI N N1) + Edges(E2, NI N N2) + Edges(Arules(0O1,02)),

andRI = Rules(O1, NINN1)+Rules(O2, NINN2)+AR(0O1,02)—Edges(AR(0O1,02)).

The nodes in the intersection ontology are those nodes that appear in the articulation rules.
The edges in the intersection ontology are the edges among the nodes in the intersection

. Ca SubClass
CinexpCar SRR 3" @

ArticulationRules = { (O2.LuxuryCar SubClass O1.Car),
(0O1.MSRP Equ O2.Price)}

Figure 1: The Intersection Ontology! of Source Ontologie®1 andO2

ontology that were either present in the source ontologies or have been established as an ar-
ticulation rule. The rules in the intersection ontology are the articulation rules that have not
already been modeled as edges and those rules present in the source ontology that use only
concepts that occur in the intersection ontology.

The articulation rules are of two types - ones that are simple statements expressing binary
relationships and the more complex rules expressed in Horn Clauses that are mostly supplied
by the expert. An example of rules of the former typg((31.CarSubclassO fO2.Vehicle)
and one of the more complex logic-based ones is a conjunctive rule of the form: e.g. con-
junctive rules of the form(O1.X InstanceO fO1.Car), (Y PriceOfX), (Y > 30000) =
(0O1.X SubClassO fO2. LuzuryCar). The former set of rules are modeled as edges in the
articulation ontology and the second set of rules which require some form of reasoning to
derive statements from are left as rules belonging to the articulation ontology. These rules
will be processed during the query evaluation process only when necessatry.

For all articulation generator functions, we require thdtn,z O1 = O1, that is the
articulation generator function should generate such articulation rules that upholds the above-
mentioned property as a sanity-check. Articulation generator functions that do not satisfy the
above equality areinsoundand for the purposes of our compositions, we do not use any
unsound articualtion generator function.

In Figure 1, we show two ontologi€2l, O2, the articulation rules between them and the
intersection ontology)!. Equ is a short-hand that we use when to indicate classes that are
equivalent in the two ontologies.

Note that since we consider each node as an object instead of the subtree rooted at the
node, we will get only the node in the intersection by virtue of its appearing in an articulation
rule and not automatically include its attributes or subclasses. Again, a minimal linkage serves
our needs better than inclusion of possibly irrelevant concepts. Inclusion of attributes will be
required to define subclass relationships among nodes in the source ontologies precisely.

Each node in the intersection has a label which contains the URI of the source in which it

appears. If the attributes of the object that it represents are required, the application’s query
processor has to get that information from the original source. Defining the intersection with a

minimal outlook reduces the complexity of the composition task, and the maintenance costs,
which all depend upon the size of the articulation.

4.3 Union

The unionOU between two ontologie®1 = (V'1, E1, R1) andO2 = (V2, E2, R2) is ex-
pressed a®U = O1Uyr O2 = (VU, EU, RU) where

VU = Vl U V2 U VII,Z;

EU = E1UE2U EI ,,

andRU = R1UR2 U RU1,2,

and whereD I, , = Ol Nyr O2 = (V1 9, Bl 2, RI ») is the intersection of the two ontolo-

gies.

The union operation combines two source ontologies retaining only one copy of the concepts
in the intersection. Though queries are often posed over the union of several information
sources, we expect this operation to be rarely applied to entire source ontologies. The union
of two source ontologies is seldom materialized, since our objective is not to integrate source
ontologies but to create minimal articulations and interoperate based on them. However, we
do expect that larger applications will often have to combine multiple articulations and here
is where the union operation is handy.

4.4 Difference

The difference between two ontologi@s andO2 , written asO1 — 02, between two ontolo-
giesO1 = (V1,E1,R1) andO2 = (V2, E2, R2) is expressed a®D = (VD,ED, RD),
whereVD = V1 - VI, ED = E1 — El, 5, andRD = RI — RI,», and where)I, », =

O1 Nagutes O2 = (V11 2, E1 2, RI) is the intersection of the two ontologies. That is, the
difference ontology includes portions of the first ontology that are not common to the second
ontology. The nodes, edges and rules that are not in the intersection ontology but are present
in the first ontology comprise the difference.

4.5 Properties of the Operators

We defined the operators in the algebra on the basis of the articulation rules produced by
the articulation generating function. Not surprisingly, most of the properties of the binary
operations are based on the properties of the articulation generating function.

For example, the intersection and union operators are commutative if and only if the ar-
ticulation generation function, on which they are based, is commutative. The commutativity
of intersection and union gives the query optimizer the freedom to swap the order of the
operands for these operations if required to optimize performance of the query. However,
strict commutativity of the articulation generation function might not be achievable or neces-
sary in order to allow the operands to be swapped.

Consider the example where an articulation generator generates articulation rules

AR(01,02) = (0O1.CarNM : SubClassO fO2.Vehicle)

and
AR(02,01) = (02.VehicleNM : SuperClassO f”O1.Car”)

Although the articulation generation function is not commutative, the semantic information
contained in the articulation rules are equivalent as long as the relatiois/lassO f and
SuperClassO f defined in the namespace "NM” are semantically similar after we invert their
parameters. Thus, if the rules obtained by swapping the operands are semantically equivalent,
we can swap the operands without compromising on the correctness of the result.

To capture this, we define the concepsemantic commutativity

Definition 1. An articulation generation functiod iz, is semantically commutativiéf
AR(01,02) & AR(02,01)Y0O1,02, whereO1, andO2 are ontologies.

and the necessary and sufficient condition for intersection to be semantically commutative
is:

Theorem 1. An intersection operator is semantically commutative iff the articulation gener-
ation function that it uses to derive the articulation rules is semantically commutative.

To determine the semantic commutativity of articulation generation functions, we need
to prove that for any pairs of ontologies, the articulation rules produced by the articulation
generation function are in fact semantically equivalent. Automatically proving an articula-
tion generator commutative or semantically commutative might be easy f6ttit€/assO f
and SuperClassO f examples, but is not always feasible. In such cases, ONION requires
the programmer of the articulation generation function and/or the expert to indicate whether
the function is semantically commutative. In the absence of such information, ONION con-
servatively assumes that the operation is not semantically commutative if it cannot prove
otherwise.

For detailed discussions and proofs of the theorems regarding the necessary and sufficient
conditions for the operators to have properties (like commutativity, and associativity), please
refer to [18]. We have identified the desired properties that a "well-behaved” articulation
generation function should have so that query optimization can be enabled.

Using a formal process minimizes the maintenance costs in two ways: first of all we can
recognize when a change in a source does not require a change in the articulation rules, and
if a change is required we can rapidly regenerate the affected articulations, and adapt them to
the new situation.

5 Conclusion

In this paper we present a brief overview of the ONION system used for the interopera-
tion of information sources. ONION uses a simple data format to which different ontology
models are mapped using wrappers. The articulation generator is then applied to ontologies
expressed using the sc ONION data format to generate semantic correspondences leading to
articulation rules among concepts in the source ontologies. A domain expert validates the
generated rules or supplies new rules. These rules form the basis of interoperation among
the autonomously maintained information sources. Finally, we briefly highlighted an ontol-
ogy algebra that provides the formal basis for composition of information and the mainte-
nance of the articulations. The ONION approach supports precise composition of informa-
tion from multiple diverse sources by not relying on simple lexical matches, but requiring

human-validated articulation rules among such sources. This approach allows the reliable
exploitation of information sources that are autonomously maintained without any imposi-
tion on the sources themselves. The algebra based on the articulation rules allows systematic,
composition, which unlike integration is much more scalable. When sources change main-
tenance is rapid since the effect of the changes can be determined using the algebra and the
composition can be regenerated where needed.

References

[1] Cia factbook: http://www.cia.gov/cia/publications/factbook/. 2000.

[2] O. Ritter, P. Kocab, M. Senger, D. Wolf, and S. Suhai. Prototype implementation of the integrated genomic
databaseComputers and Biomedical Resegr2fi:97-115, 1994.

[3] Diane E. Oliver.Change Management and Synchronization of Local and Shared Versions of a Controlled
Vocabulary PhD thesis, Stanford University, 2000.

[4] Information integration using infomaster, http://infomaster.stanford.edu/infomaster-info.html.

[5] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The information manifold. In
C. Knoblock and A. Levy, editorsénformation Gathering from Heterogeneous, Distributed Environments
Stanford University, Stanford, California, 1995.

[6] P. D. Karp. A strategy for database interoperatiddournal of Computational Biology2(4):573-583,
1996.

[71 M. D. Siegel C. H. Goh, S. E. Madnick. = Semantic interoperability through context inter-
change: Representing and reasoning about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[8] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context interchange: new features and formalisms
for the intelligent integration of informatiorACM Transactions on Information Systerhig(3):270-270,
1999.

[9] S. Melnik. Declarative mediation in distributed systemsPhaceedings of the International Conference
on Conceptual Modeling (ER’002000.

[10] Resource description framework(rdf) schema specification 1.0, w3c recommendation
http://www.w3.org/tr/rdf-schema. Technical report, 2000.

[11] Daml+oil http://www.daml.org/2001/03/daml+oil-index. 2001.

[12] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database mBdwst. RODS
pages 417-424,1990.

[13] Resource description framework(rdf) model and syntax specification, w3c recommendation
http://www.w3.org/tr/rec-rdf-syntax. 1999.

[14] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for hetero-
geneous data. To appear in Theoretical Computer Science http://osage.inria.fr/iverso/PUBLI/all-
bykey.php?mytexte=abitebeaD01.

[15] J. Jannink.A Word Nexus for Systematic Interoperation of Semantically Heterogeneous Data Sources
PhD thesis, Stanford University, 2000.

[16] Wordnet - a lexical database for english. http://www.cogsci.princeton.edu/wn/. Technical report, Princeton
University.

[17] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge sourdesclrof
the 2nd Int. Conf. On Information FUSION’92999.

[18] P. Mitra. An algebra for semantic interoperation of information sources, http://www-
db.stanford.edu/ prasen9/alg.txt. Technical report, Infolab, Stanford University, July 2001.

