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Abstract Algorithms for answering queries using views have been used in query planning to answer queries
posed to knowledge bases, databases, and information systems. However, these algorithms do not scale
well when the number of views increases. Three known algorithms, the bucket algorithm, the inverse-rules
algorithm and an algorithm suggested by Leser have been used to reformulate queries before generating their
answers. The bucket algorithm, predominantly used to reformulate queries, generates a candidate rewriting
to a query using views, and checks that the rewriting is contained in the original query. An exponential
conjunctive-query-containment-test needs to be performed to check each candidate rewriting. Using a few
extra buckets (shared-variable-buckets), we show how we can avoid the conjunctive-query-containment-test.
This paper presents a scalable query rewriting algorithm - the shared-variable-bucket(SVB) algorithm. Ex-
perimental results demonstrate its superiority over other known algorithms.
Keywords: database, views, query rewriting, optimization

1 Introduction

With the advent of the world-wide web, a large number of information sources are available to users. A
number of web-sites use forms or other interfaces that provide views of the underlying information. Tra-
ditionally, it was left to the end-user to integrate information from the various sources manually. Today,
information agents can �nd rewritings [1] of user queries using views of each information source. Mediated
systems like Information Manifold [2], Infomaster [3] and Tsimmis [4] spend a nontrivial amount of time in
query rewriting especially if the number of sources is large. We present an algorithm that enables such a
system to rewrite queries eÆciently, reduces the response time to users, improves its scalability and makes
it feasible for a system to handle a large number of information sources.

Views and user queries are expressed as conjunctions of abstract, global predicates [5]. Answering queries
from the data available in the information sources requires rewriting the queries as the conjunction of the
available views. Computing the answer to the query then involves computing a join of the data from the
relevant views. Computing such joins is costly. Therefore the query needs to be rewritten using a locally
minimal set of views, i.e., if any view is removed from the solution, it will no longer satisfy the query [1].

Several algorithms have been developed to solve the problem of answering queries using views. Notable
among them are the bucket algorithm [6] �rst used in the Information Manifold system [2], the inverse-rules
algorithm [7], and an algorithm proposed by Leser [8].

The bucket algorithm attempts to rewrite a query using views instead of the logical schema predicates.
Views that have subgoals that can be uni�ed with query subgoals are put in the buckets corresponding to
the query subgoals. Candidate solutions are constructed by selecting views from each bucket and conjoining
them. The validity of a candidate solution is veri�ed using an conjunctive-query-containment test.

The Leser algorithm constructs partial containment mappings [8] i.e., mappings from the variables in a
query subgoal to the variables in a view subgoal, while unifying the two subgoals. Views are put into buckets
corresponding to the query subgoals upon uni�cation. After a solution is generated by selecting a view from



each bucket, the partial containment mappings are checked to determine whether they are c-compatible [8],
in order to validate the compatibility of constants in the partial mappings. Leser's algorithm, though faster
than the bucket algorithm, cannot guarantee the soundness of all generated solutions, and is thus limited in
its use.

The other known algorithm, the inverse rules algorithm, is too expensive to use in a practical information
integration system because of the complexity of constructing solutions from the inverse rules.

The bucket algorithm has two avoidable sources of complexity. First, even when the number of sound
solutions is small, the bucket algorithm may generate a large number of candidate solutions and then reject
them. The second source of complexity is the exponential conjunctive-query-containment test that is used
to validate each candidate solution. This paper highlights an algorithm that avoids the two drawbacks of
the bucket algorithm. While constructing buckets, it considers the equality constraints introduced by shared
variables, that is, variables that occur across multiple subgoals, and constructs special buckets, shared-
variable-buckets, in order to handle such constraints. By using a few extra buckets, we ensure that all
generated solutions are sound solutions and thus avoid the exponential conjunctive-query-containment test.

The rest of the paper is organized as follows. Section 2 discusses the preliminaries. Section 3 details the
Shared-Variable Bucket Algorithm. Section 4 contains a brief analysis of its performance. Section 5 discusses
variations of the algorithm. Section 6 outlines the related work and we conclude in section 7 by noting the
contributions of this paper.

2 Preliminaries

Views and queries are represented using the logical rule notation described in [9]. A rule has the form

q(X) : �r1(X1); : : : ; rn(Xn) (1)

where q, and r1; : : : ; rn are predicate names and X;X1; : : : ; Xn are either variables or constants. A subgoal
r1(X1) represents a logical global predicate. The head of the rule is q(X). The body of the rule is the
conjunction of subgoals r1(X1); :::; rn(Xn). For the purpose of this work, all rules will be assumed to be
safe, i.e., if any variable occurs in the head of a rule, it must also occur in the rule's body.

Example 1 We use a running example to illustrate our algorithm.

Query: Q(X) :- car(X),dealer(D),located(D,"CA"),sells(D,X)

CarSellers1: V1( Seller ):-car(Car1), sells(Seller,Car1)

CarSellers2: V2( Car2, S2 ) :- car(Car2), sells(S2,Car2)

CACars: V3( Car3 ):- dealer(D3), located(D3, "CA"), sells(D3, Car3)

CarDealers: V4( D4, State ):- dealer(D4), located(D4,State)

CADealerUnion:V5( Union ):- member(D5, Union),dealer(D5),located(D5,"CA")

The logical predicates are car, dealer, located and sells. Queries and views are de�ned as conjuncts of
these predicates. The query asks for all cars sold by dealers in California. We want to rewrite the query using
the available views. There are �ve views of various information sources, e.g., the view V 2, lists tuples of cars
and their sellers. As is the case with information sources on the world-wide web, a view is not exhaustive,
i.e., the view V 2 is not guaranteed to contain information about all cars that were sold.

In the rest of the discussion we use the following terms as de�ned in [1].
A rewriting of a query Q is a conjunctive query that produces the answers that are also produced by Q

for any given database. For example, Q(X) : �V 2(X); V 3(X) is a rewriting of the query Q(X).
A distinguished variable is a variable that occurs in the head of a rule and a non-distinguished variable is

a variable that occurs in the body of a rule but not in the head. A non-distinguished variable is existentially
quanti�ed in the rule. For example, Union is a distinguished variable while D5 is non-distinguished in view
V 5.

A subgoal g1(X) covers another subgoal g2(Y ) if and only if the following conditions hold: (1) if the
argument at position i in g2(Y ) is a distinguished variable or a constant, then g1(X) also has that variable
or the constant at the same position and (2) if the arguments at positions i and j are equal in g2(Y ), then so



car(X) dealer(D) located(D,`CA') sells(D,X)
V1(S1') V3(X) V3(X) V1(S2')
V2(D1',X) V4(D2', `CA') V4(D3', `CA') V2(D4', X)

V5(U1') V5(U2') V3(X)

Table 1: The buckets

are the arguments at positions i and j in g1(X). For example, located(D5; \CA00) covers located(D; \CA00)
while car(Car1) does not does not cover the query subgoal car(X).

2.1 Containment of Conjunctive Queries

Conjunctive queries and their containment was �rst studied in [10]. A variable in argument position i in
one subgoal maps to a variable in the same argument position of another subgoal provided they have the
same predicate. A conjunctive query Q1 is said to be contained in another conjunctive query Q2 if and only
if all the tuples obtained as the output of the query Q1 on a database are also obtained as the output of the
query Q2 on the same database. Alternatively, Q1 is contained in Q2 if and only if there exists a containment
mapping from Q2 to Q1, i.e., a mapping exists from the variables from Q2 to the variables in Q1 such that
each subgoal in the query Q2 has been mapped to one in Q1 and the head of query Q2 maps to the head of
Q1. Determining containment of conjunctive queries is a NP-complete problem.

A rewriting Q0 of a query Q using a set of views V is a maximally contained rewriting, if and only if (1)
Q0(V (D)), the tuples obtained by evaluating Q0 using the set of views V on any database D is the subset
of Q(D), i.e., the tuples obtained by evaluating Q on the same database D, and (2) there exists no other
query Q1 such that Q0(V (D)) is a subset of Q1(V (D)), which in turn is a subset of Q(D), for any database
D, and there exists a database D1 such that Q0(V (D1)) is a strict subset of Q1(V (D1)). In this paper, we
discuss an algorithm to obtain a maximally contained rewriting (as opposed to an equivalent rewriting - one
where the tuples produced by the rewriting using the views on any database are exactly the same as those
produced by the query on the database) of a conjunctive query using views.

2.2 The Bucket Algorithm

The bucket algorithm proceeds in two stages. Initially, a bucket is created for each query subgoal. A view is
put in the bucket corresponding to a query subgoal if that subgoal can be uni�ed with a subgoal in the view
de�nition. In the second stage of the algorithm, candidate solutions are generated by picking one conjunct
(view) from each bucket. The candidate solutions are then veri�ed using containment tests to see that they
are indeed contained in the user query. If the view contains several subgoals that can be uni�ed with a
subgoal from the query, the view occurs several times in the bucket of that subgoal.

Table 1 lists all the buckets generated by the bucket algorithm for the example shown above. The
algorithm includes the views V 1 and V 2 in the bucket for the query subgoal sells(D;X) using the mappings
fD ) Seller;X ) Car1g and fD) S2; X ) Car2g from the query subgoal to the subgoals sells(S2; Car2)
and sells(Seller; Car1) respectively.

In the next stage of the algorithm, candidate solutions are generated by selecting one view from each
bucket and rewriting the query as their conjunction. The number of candidate solutions that the bucket
algorithm generates by performing a cartesian product of the views in the buckets is (2 x 3 x 3 x 3) =54.
Each solution is then checked for containment in the original query. In the next section, we show how we
can prune out views from the buckets such that only sound solutions are generated.

3 The Shared-Variable Bucket Algorithm

Like in the bucket algorithm, the task of query rewriting is accomplished in two steps:

� Bucket Construction

� Solution Generation



Also like the bucket algorithm we create buckets for each query subgoal. However, a view is only put
in the bucket after a more stringent test. We also introduce a small number of shared-variable buckets, if
required, to account for the equality constraints imposed by shared variables (variables occurring in multiple
subgoals).

� The \trick" that allows us to avoid a containment test is that in addition to buckets for individual
subgoals, we create buckets associated with shared variables. Each bucket contains only views that
cover all the subgoals in which the shared variables, representing the bucket, appear.

In the solution generation stage, initially, a set of buckets is chosen such that each subgoal is represented
by one and only one bucket in the set. From each bucket a view is then selected. Consequently, the solution
to the query is expressed as a conjunctive query whose body is the conjunct of the selected views.

3.1 De�nitions

In the description of the algorithm below we use the following terms and symbols. Q is a conjunctive query
and R is a rewriting for the query Q. Qvij is the j

th variable in the ith subgoal gi in the query. V is a view
that can be used to construct a solution and V vij is the ith variable in the jth subgoal vj in the view. We
also use the term Qvi to refer to the i

th variable in a query subgoal g of interest and V vi to refer to the ith

variable in a view subgoal v.
A shared variable is a variable that occurs in more than one subgoal in the body of a conjunctive query,

e.g., in the example shown above, D is a shared variable in the query Q(X).
The expansion E(V (X)) of a view V ((Y )) is the body of the view V with the distinguished variables (Y )

replaced by (X). For example, E(V 2(Mycar;Aseller)) is car(Mycar); sells(Aseller;Mycar).
The expansion E(R) of a rewriting R is a conjunctive query where each view V (X) occurring in R has been

replaced by E(V (X)). For example, the expansion of the rewriting Q(X) is:
E(Q(X)) :: Q(X) : �car(X); sells(S2; X); dealer(D3); located(D3; `CA0); sells(D;X) where
Q(X) : �V 2(X); V 3(X). Note that the expansion is obtained by simply expanding the individual views
in the rewriting.

We use the notation X [V1jV2] to indicate that the variable V1 in the set of variables X has been replaced
by the variable V2.

Apart from views covering subgoals, we also need views to cover shared variables before they can be put
in a shared variable bucket.

De�nition 1 A view V (X) covers a query variable Qv i� there exists a mapping � from the query Q to V

such that 8i; j; k; l, if Qvij = Qvkl = Qv, then �(Qvij) = �(Qvkl) = V v where V v is a variable in E(V (X)).

If a view covers a query variable, then it ensures that a mapping exists from the query variable to a unique
variable in the expansion of any generated solution that uses the view. In our example, the view V 3(X)
covers the shared variable D in the query since the individual occurrences of D in the subgoals dealer(D),
located(D; `CA0) and sells(D;X) all map to the same view variableD3 in E(V 3(X)). In a mapping from the
query to V 4 and V 5 the occurrences of D in dealer(D) and located(D; `CA0) map to D4 and D5 respectively.
Both views do not contain the subgoal sells(D;X) and therefore the third occurrence of D in the query is
not mapped to any variable. Thus views V 4(D4; S) and V 5(U) do not cover D.

De�nition 2 A view V (X), covers a subgoal q(Y ) using a subgoal v(Z) if and only if the subgoal v(Z) is in
the expansion E(V (X)) and v(Z) covers the subgoal q(Y ).

A view covers a query subgoal if it has a subgoal in its body that covers the query subgoal. In our running
example, the view V 3(X) covers the query subgoal sells(D;X) using the subgoal sells(D3; Car3).

3.2 Bucket Construction

We now illustrate how we create buckets. Views export the values of only the distinguished variables. The
shared-variable bucket algorithm, puts a view in a bucket only if no distinguished query variables maps to
an non-distinguished view variable.



All variables in the de�nitions of the query and views are initially renamed so that no two conjunctive
queries share the same variable. Unique naming avoids the imposition of any unintended equality constraints.

We insert views into two types of buckets. A bucket is said to represent a subgoal if all views in the
bucket cover the subgoal. A single subgoal bucket(SSB) represents a single subgoal and a shared variable
bucket(SVB) represents multiple subgoals in which the shared variables occur in.

3.2.1 Renaming of Distinguished View Variables

Before a view is put in a bucket, its head variables are renamed while unifying a view subgoal with a query
subgoal. In our running example, we can unify the last query subgoal sells(D;X) with the view subgoal
sells(S2; Car2) in view V 2 using the mapping fD ) S2; X ) Car2g. We use the inverse mapping to
construct the view head V 2(X;D), before putting it in the bucket for the last query subgoal. Now, consider
the �rst query subgoal car(X). While considering V 2 for the bucket corresponding to this subgoal, we see
that it can be uni�ed with the view subgoal car(Car2) in view V 2 using the mapping fX ) Car2g. Using
the inverse mapping, we �nd that the head variable Car2 in view V 2 can be replaced by the query variable
X , but the inverse mapping does not restrict what we can use to replace the head variable S2 with. In
such cases, we create a unique variable D10 and construct the view head V 2(X;D10) to be put in the bucket
corresponding to the �rst query subgoal. If the "free" variables are not uniquely renamed, there might be
an accidental equality between such variables that imposes unnecessary constraints in the rewriting.

The detailed algorithm that renames the view heads is given below. In the algorithm listed below, we
consider constants to be distinguished.

Algorithm 1 Renaming of Distinguished View Variables
For each distinguished variable V v:
Let Qv1; : : : ; Qvn be query variables that map to a distinguished variable V v in view V and i; j 2 (1; : : : ; n). If
n=0, then rename V v uniquely and continue.
Else

� If 9i : Qvi is distinguished then if:

1. 8k; l : if Qvk; Qvl are constants, then Qvk = Qvl.

2. and if Qvj is not distinguished then V covers Qvj .

Then rename Vv to Qvi, and 8j 6= i: If Qvj is distinguished, addpredicate(Qvj = Qvi).

Else return error;

� Else

If V covers all Qvi, rename Vv to Qvi.

Elseif V covers all Qvi except one (say Qvj), rename Vv to Qvj .

Else return error;

If only one query variable maps to a distinguished view variable, the view variable is replaced by the
query variable in the head of the view. If multiple query variables map to a distinguished view variable, we
have to choose one of those. This choice is made based on a priority - a variable (or constant) having higher
priority is chosen. Usually, the priority order is: constants, distinguished variables, shared non-distinguished
variables and non-shared non-distinguished variables.

If multiple distinguished query variables map to the same view variable we replace the view variable
with any one of them and introduce an equality predicate between the distinguished query variables in the
solution.

If a distinguished query variable and an non-distinguished query variable map to the same view variable, we
replace the view variable with the distinguished query variable only if the view covers the non-distinguished
query variable. If the view does not cover the non-distinguished query variable, we do not insert the view
into the bucket.



If multiple non-distinguished query variables map to a view variable, we check to see if the view covers
at least all but one the non-distinguished query variable. We then replace the view variable with the non-
distinguished query variable that the view does not cover. If the view covers all non-distinguished query
variables that map to the view variable, then the view variable is replaced by any of the query variables that
map to it.

The function addpredicate creates or appends an equality constraint to a list of existing equality con-
straints among query variables. These equality constraints must be added to the solution in which the view
is used.

In the next two subsections we give the necessary conditions a view must satisfy before it is inserted in
any of the buckets. It is important to remember that the �rst condition any view needs to satisfy before it
can be put in any bucket is that there must exist an appropriate renaming of its head variables - i.e., the
algorithm stated above must not throw an error.

3.2.2 Single-Subgoal Buckets

We now present the conditions a view must satisfy before it can be inserted in a single-subgoal bucket.

Property 1 V (X) can be inserted into a bucket representing a single subgoal q(Y ) only if there exists a
subgoal v(Z) in E(V (X)) such that:

1. V (X) covers q(Y ) using v(Z), and

2. If Qv is a non-distinguished shared query variable in Y , it does not map to a non-distinguished view
variable Z in Z.

In our running example, the view V 4 cannot be used to cover the subgoal dealer since the non-distinguished
query variable D, which maps to the non-distinguished view variable D4, is shared. V 4 contains information
about a dealer and the state it is located in but does not contain any information about whether the dealer
sells a car. If there is a solution R, where V 4 covers dealer, some other view, say V 0 must cover the predicate
sells. In the expansion of the solution E(R), D will map to two variables, D4 and at least another variable,
say D0 present in the expansion of the view V 0. D4 is unique to view V 4 and is not equal to D0. Therefore,
such a rewriting R does not assure that D will map to a unique view variable. Thus, R is not contained in
the query Q and is not a sound rewriting.

V 2 and V 3 cover the subgoals sells(D;X) and V 2 covers the subgoal car(X).
The novelty of our algorithm is the introduction of the second condition which a view does not necessarily

need to satisfy before being inserted in a bucket in the bucket algorithm. The stringent check enforced in
our algorithm ensures that we avoid generating unsound candidate solutions and obviate the necessity of the
exponential conjunctive-query-containment-test.

The algorithm needs to ensure that in the mapping from the query to its rewriting, all query variables
map to a unique variable in the expansion of the rewriting. We need to ensure that the non-distinguished
shared query variables that do not appear in the rewriting, map to a unique variable in the expansion of the
rewriting. This is ensured by the use of shared-variable buckets.

3.2.3 Shared-Variable Buckets

The algorithm, initially, tries to put a view in a single-subgoal bucket. However, if one or more non-
distinguished shared query variables map to non-distinguished view variables, the second condition in the
check for single-subgoal buckets is not satis�ed. We, then, check to see if the view can be inserted in a
shared-variable bucket corresponding to the shared query variables. Views that cover all subgoals that the
shared variables occur in are inserted into shared-variable buckets.

Property 2 V (X) is inserted in a shared-variable bucket representing the shared variables Y only if for
each subgoal q(Z) that any shared variable Y 2 Y occurs in

1. There exists a subgoal v(U) in E(V (X)) that covers q(Y ) and



car(X) dealer(D) located(D,`CA') sells(D,X) SVB(D):g2,g3,g4
V2(X,D1') V4(D, `CA') V4(D, `CA') V2(X,D) V3(X)

Table 2: The buckets

2. for each non-distinguished shared query variable Qv, in q(Z) that maps to a non-distinguished variable
X in E(V (X)), V (X) covers Qv.

We check to see if view V 3 covers dealer. The query variable D maps to an non-distinguished view
variable D5. This forces us to check if V 3 covers D5. V 3 indeed does cover D5 and any tuple V 3(X)
guarantees the existence of a dealer in California who sells the car X . The mapping of D to D5 leads us
to create a bucket corresponding to D that represents the set of subgoals (dealer(D); located(D; `CA0), and
sells(D;X)).

V 4 is inserted in the bucket representing the subgoal dealer(D) and located(D; `CA0). The buckets
generated by our algorithm is illustrated in Table 2. The last column lists the shared variable bucket
corresponding to the shared variable D and represents the second, third and fourth subgoals of the query
(the subgoals that D occurs in).

To illustrate the general rule, let us consider the another example

Example 2 Q(X) :- conn(X,Y,Z),city(Y),dirConn(Z,A), city(A)

V1(E):- conn(E,B,C),city(B), dirConn(C,D)

V2(E):- conn(E,B,C),city(B), dirConn(C,D), city(D)

The query wants all X, such that X is connected to Z via a city Y and Z is directly connected to a
city A. Initially, we consider the view V 1 for insertion into the single-subgoal bucket corresponding to the
query subgoal conn(X;Y:Z). Since Y and Z are shared non-distinguished query variables that map to non-
distinguished view variables, B and C, respectively, we need the view to cover Y and Z. So we attempt to
cover the second subgoal, city(Y ), using V 1 and we �nd a mapping to city(B). Similarly, dirConn(Z;A) in
the query maps to dirConn(C;D) in view V 1. However, now again the shared non-distinguished variable A
maps to a non-distinguished view variable, thus we require that V 1 has to cover A. A occurs in the query
subgoal city(D). There exists no mapping from Q to V where A is covered, since if we try to cover the last
query subgoal with the second view subgoal, A maps to two view variables D and B, which is not acceptable.
Therefore, V 1 cannot be used to cover any query subgoal.

It is easy to see that the view V 2 can be inserted into the shared-variable bucket for the subgoals no.
1,2,3,4 of the query corresponding to the shared-variables Y; Z; and A.

A shared-variable bucket covers multiple query subgoals. If two di�erent sets of shared variables occur
in the same set of subgoals, we do not create two shared-variable buckets but use the same shared-variable
bucket. Since for the purposes of the solution generation stage of the algorithm, we only look at what
subgoals the buckets cover, we do not need to create two di�erent buckets for the di�erent sets of shared
variables if they occur in the same set of query subgoals.

The shared-variable bucket algorithm and avoids the exponential conjunctive-query-containment-test by
spending

3.2.4 Minimality of Buckets

While constructing buckets, the algorithm tries to include as small a set of subgoals as it can without
violating the conditions under which a view can be put in a shared-variable bucket. To understand why we
construct such minimal shared-variable buckets let us consider the following example:

Example 3 Q(X,Y) :- red(X), green(Y)

V(X,Y) :- rec(X), green(Y), path(X,Y)



That is, we want all tuples (X,Y) such that X is red and Y is green. Now, we want to generate a
maximally-contained rewriting of Q. We create the buckets:

Bucket red(X) green(Y)

V(X, E1) V(E2, Y)

and the rewriting will be:
R1 : Q(X;Y ) : �V (X;E1); V (E2; Y ): (2)

At �rst sight this might seem wasteful. Why can we not generate a "minimized" rewriting:

R2 : Q(X;Y ) : �V (X;Y ) (3)

Instead of generating buckets for minimal units, we could generate a bucket for the maximal unit, i.e.,
one bucket for both subgoals and since V covers both subgoals, we have V(X,Y) in the bucket and are done
with.

In order to see why R1 is a "better" solution than R2, consider a database red(1), red(2), green(3),
green(4), path(1,3), path(2,4). R1 will generate the tuples (1,3),(1,4),(2,3),(2,4) whereas R2 will only generate
(1,3),(2,4). The query asks for tuples such that the �rst point is red and the second point is green and the
view gives only tuples that not only satisfy the color conditions but also have a path within them. From the
view results, R1 extracts the points and their color information and generates all combinations of points that
satisfy the query, whereas R2 relies only on the restrictive view and does not generate all the combinations.

3.3 Solution Generation

All possible sets of buckets are generated such that each query subgoal has exactly one bucket representing
it in a set. One view is selected from each bucket in the set of buckets and the conjunction of the selected
views is used to generate a solution. All possible combinations of views selected from each bucket are used
to generate all solutions related to one set of buckets. By iterating over all possible sets of buckets, all sound
rewritings of a query are generated.

The equality constraints between two query variables indicated in addpredicate can be added to the
solution if built-in predicates are allowed. To generate a solution without the additional predicates listed in
addpredicate, we rename the variables that are listed to be equal to make them the same.

The candidate solutions generated by the process mentioned above are all sound solutions and there is
no need for performing a conjunctive query containment test. In comparison to the bucket algorithm that
generated 54 candidate solutions, we generate only the two valid solutions (after the minimization step
detailed in the next subsection) Q(X) : �V 2(X;D); V 3(X) and Q(X) : �V 2(X;D); V 4(D; `CA0).

Theorem 1 Given a conjunctive query Q and a set of views without built-in predicates, (V1; : : : ; Vn), any
solution S generated by the Shared Variable Bucket algorithm is a sound rewriting of Q using the views.

Theorem 2 Given a conjunctive query Q and a set of views without built-in predicates, (V1; : : : ; Vn), the
Shared Variable Bucket algorithm generates a complete set of maximally contained rewritings of Q using the
views.

Proofs of the soundness and completeness theorems for the algorithm are included in the appendix.

3.4 Minimization of Solutions

A rewriting of a conjunctive query whose conjuncts are views is obtained after the second step of the
algorithm. A join of the views present in the rewriting is needed to answer the query. For views occuring
multiple times in the rewriting, a self-join needs to be perf ormed. Some of these self-joins may be redundant
and can be eliminated thereby minimizi ng the rewriting. Chandra and Merlin [10] have showed that the
minimization of conjunctive queries is an NP-complete problem and that a given query can be minimized by
query folding, that is, by eliminating redundant subgoals from the query.

Given a rewriting R that we seek to minimize, we can exhaustively construct all possible rewritings R0

that can be obtained by eliminating conjuncts from R. Then, using the conjunctive-query-containment-test



we test whether R0 is equivalent to R, that is, whether R is contained in R0 and R0 is contained in R. Instead
of trying out all possible folded rewritings for equivalence, we can prune the set of folded rewritings using
certain heuristics [?]. For example, subgoals that occur only once in the rewriting are essential subgoals and
any R0 obtained by eliminating the essential subgoals from R are obviously not equivalent to R. However,
since the problem is NP-complete, the worst-case performance remains exponential with respect to the size
of the rewriting R. Finally, in the absence of other sophisticated cost models, we choose the equivalent
rewriting with the smallest number of predicates as the minimal query rewriting.

4 Performance Analysis

The introduction of shared variable buckets implies that our algorithm uses more buckets than the bucket
algorithm. Let the number of subgoals in the query be Ng and the number of non-distinguished shared query
variables be Nv. Since each bucket corresponds to a unique set of query subgoals and non-distinguished
shared query variables, an upper bound on the number of shared variable buckets is given by min(2Ng �
Ng � 1; 2Nv � 1). In practice, however, the number of shared-variable buckets (not all non-distinguished
shared query variables trigger the creation of a new shared-variable bucket), and the cost associated with
creating each is rather small.

Since the problem is NP-complete, the generation of a solution is in the worst case (when each view covers
each and every query subgoal we have an exponential number of rewritings) exponential with respect to the
size of the input. However, preliminary results of our experiments show the superiority of our algorithm
with respect to the bucket or inverse rules algorithm.

Addition of built-in predicates, however, implies that the algorithm, like a modi�cation of the bucket
algorithm, needs to check that the conjunction of the built-in predicates of the views does not violate the
constraints indicated by the built-in query predicates and this might invalidate a few solutions. However,
even in this case, the number of candidate solutions generated by our algorithm is much less than that in
the bucket algorithm.

5 Variations of the Algorithm

A version of the algorithm using only single-subgoal buckets can be designed that will also eliminate the
conjunctive-query-containment-test. Instead of checking that a non-distinguished shared query variable Qv
is covered by a view, we save the partial mapping of Qv to the view variable that it maps to and include the
view in the bucket if the view covers the subgoal. Since we have not checked whether the view covers Qv,
we cannot guarantee that each generated solution is sound. After the generation of a candidate solution, we
check to see if all the partial mappings of Qv obtained from the views that cover the subgoals in which Qv

occurs are v-compatible [8] (i.e., Qv maps to a unique variable). This approach is similar, in principle, to
the algorithm discussed in [8] but the added check eliminates the unsound solutions generated by Leser.

A hybrid approach is to use limited number of shared variable buckets. Initially, we keep creating SVBs
until we hit the limit. Consequently, we switch to the algorithm described above and start saving the
partial containment mappings. If a solution is generated with partial containment mappings we check their
compatibility and reject unsound solutions.

6 Related Work

Algorithms for rewriting queries have been recently used to satisfy the various needs of several information
integration systems [2], [3] and [11]. Query rewriting has also been studied for its use in query opti-
mization [12], [13]. Other approaches to query rewriting is using query folding [14] and the inverse-rules
algorithm [7]. The inverse-rules algorithm works for recursive queries but the second stage of the algorithm
in which it puts together the inverse rules is almost as expensive as the bucket algorithm's exponential
conjunctive-query-containment-test. An algorithm by Pottinger and Levy [15], based on a similary property
as that used for shared-variable buckets has been propoesd and is less expensive than the bucket algorithm.



Rewriting queries utliizing views with speci�ed binding patterns is considered in [16]. Levy et al. [17] illus-
trate how an in�nite set of views can be used to answer queries. The complexity of answering queries using
materialized views is discussed in [18]. Finally, the problem of answering queries in description logics and
its complexities has been addressed in [19], [20].

7 Conclusion

In the current work, the shared-variable bucket algorithm has been presented that introduces the concept
of shared-variable buckets and uses it to generate only sound candidate solutions thereby eliminating the
need for an exponential conjunctive query containment test. Our algorithm considerably speeds up the
query reformulation stage of an information integration system. This enables the construction of scalable
integration systems that can handle large amounts of information. In today's world, with huge amounts of
information obtainable from the World-Wide Web, an eÆcient query rewriting algorithm is necessary - our
algorithm �lls this void.

Acknowledgements

I would like to acknowledge Professor Je�rey D. Ullman for introducing me to this problem and encouraging
me and for his numerous comments while reviewing the draft of this paper.

References

[1] A.Y. Levy, A. Mendelzon, D. Srivastava, and Y. Sagiv. Answering queries using views. In Proc. of
Symposium on Principles of Database Systems, San Jose, CA, pages 163{173, 1995.

[2] The information manifold, http://portal.research.bell-labs.com/orgs/ssr/people/levy/paper-
abstracts.html#iga.

[3] Information integration using infomaster, http://infomaster.stanford.edu/infomaster-info.html.

[4] The stanford-ibm manager of multiple information sources, http://www-db.stanford.edu/tsimmis/.

[5] J.D. Ullman. Information integration using logical views. In Proc. of the International Conference on
Database Theory, Delphi, Greece, 1997.

[6] A.Y. Levy, A. Rajaraman, and J.O. Ordille. Query-answering algorithms for information agents. In
Proc. of the 13th National Conference on Arti�cial Intelligence, AAAI-96, 1996.

[7] O.M. Duschka and M.R. Genesereth. Answering recursive queries using views. In Proc. of the 16th
ACM Symposium on Principles of Database Systems, Tucson, AZ, pages 109{116, 1997.

[8] Ulf Leser. Combining heterogenous data sources through query correspondence assertions. In Proc. of
Workshop on Web Information and Data Management (WIDM98), 1998.

[9] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vols. I and II. Computer Science
Press, New York, 1988.

[10] A.K. Chandra and Merlin P.K. Optimal implementation of conjunctive queries in relational databases.
In Proc. of the 9th Annual ACM Symp on Theory of Computing, pages 77{90, 1977.

[11] F. Naumann, U. Leser, and J.C. Freytag. Quality-driven integration of heterogenous information sources.
In Proceedings of Internation Conference on VLDB '99, pages 447{458, 1999.

[12] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with materialized
views. In Proceedings of the 11th ICDE, March 6-10, pages 190{200, 1995.

[13] Yang H.Z. and Larson P.A. Query transformation for psj-queries. In Proc. of the 13th International
VLDB Conference, pages 254{254, 1987.



[14] X. Qian. Query folding. In Proc. of the Twelveth International Conference on Data Engineering, New
Orleans, LA, pages 48{55, 1996.

[15] R. Pottinger and A. Levy. A scalable algorithm for answering queries using views. In Proceedings of
VLDB 2000, 2000.

[16] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using templates with binding patterns.
In Proc. of 14th Symp. on Principles of Database Systems, pages 105{112, 1995.

[17] A. Y. Levy, A. Rajaraman, and J.D. Ullman. Answering queries using limited external processors. In
Proc. of the 15th Symp. on Principles of Database Systems, pages 227{237, 1996.

[18] S. Abiteboul and O. M. Duschka. Complexity of answering queries using materialized views. In Proc.
of the 17th ACM Symp. on Principles of Database Systems, pages 254{263, 1998.

[19] C. Beeri, A. Y. Levy, and M. Rousset. Rewriting queries using views in description logics. In Proc. of
the 16th ACM Symposium on Principles of Database Systems, pages 99{108, 1997.

[20] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views in description logics.
In Proceedings of the 6th International Workshop on KRDB, 1999.

8 Appendix

Theorem 3 Given a conjunctive query Q and a set of views without built-in predicates, (V1; : : : ; Vn), any
solution S generated by the Shared Variable Bucket algorithm is a sound rewriting of Q using the views.

Outline of Proof: To prove that the solution S is a sound rewriting, I construct a mapping � from Q

to E(S) as follows: For all i, �(Qvi) = Qv0

i where Qvi is a distinguished variable in the query at position
i and Qv0

i is the distinguished variable in the same position in S. The proof proceeds by considering the
distinguished and non-distinguished variables and constructing the containment mapping.

Case (1): Let Qvi be a distinguished variable. If Qvi maps to a view variable V v then V v must be
distinguished, which is ensured when we check that the view V covers the query subgoal in which Qvi
occurs.

We consider the two sub-cases:
(a): Let no other Qvj map to V v. Then we replace V v with Qvi in the head of the view V before inserting

it into the bucket of the query subgoal it covers. Thus for all occurrences of Qvi, �(Qvi) = Qvi.
(b): Let Qvi and Qvj both map to the same distinguished view variable V v. V v is replaced by Qvi or

Qvj and a predicate indicating that they are equal is included before the view is put in a bucket. When a
solution is being generated all occurrences of both Qvi and Qvj are replaced by a unique Qv0.

Thus any distinguished Qvi maps to a unique variable in the solution.
Case (2): Now, let Qvj be a non-distinguished variable. The algorithm ensures that if Qvj is a shared

variable and maps to a non-distinguished shared variable, Qvj must be covered by the same view and all
occurrences of Qvj must map to V v (ensured by the bucket construction). This ensures that Qvj maps to
a unique variable in E(S).

If Qvj does not map to a non-distinguished view variable, let all occurrences of Qj map to distinguished
variables V v1; : : : ; V vn and no other query variable Qi maps to any of V vi, then we simply replace each
distinguished variable V vi by Qj . Thus in the mapping from the query to the solution Qj maps to itself i.e.,
�(Qj) = Qj .

Now consider the case when along with Qj some Qi also maps to a distinguished view variable V vi. Once
again, we choose any of Qi or Qj and include equality predicates that ensure that Qi and Qj are replaced
by a unique variable while generating the solution. Therefore, Qj maps to a unique variable in the solution.

Since all query variables map to a unique view variable in the solution, there exists a containment mapping
from the query to E(S) and E(S) is contained in the query. Thus S is a sound rewriting of Q.

Theorem 4 Given a conjunctive query Q and a set of views without built-in predicates, (V1; : : : ; Vn), the
Shared Variable Bucket algorithm generates a complete set of maximally-contained rewritings of Q using the
views.



Outline of Proof: We need to show that all possible rewritings of Q are generated. Let S0 be a sound
maximally-contained rewriting of Q that the Shared-Variable-Bucket algorithm did not generate and S0

is not contained in any solution generated by our algorithm. Let S be the minimized conjunctive query
equivalent to S0. There are two cases:

(1) Let us consider the case where there is at least one view head V (X) in S that is not in any bucket
the algorithm generates. Clearly, V (X) is not a redundant subgoal, since S is a minimized version of S0.
Each view in a minimized maximally-contained rewriting of a query covers at least one query subgoal. Thus
E(V (X)) contains a subgoal g0 that a query subgoal g maps to in the mapping from Q to E(S).

However, since V (X) does not occur in any bucket generated, it must have been rejected by one of the
tests (single subgoal bucket test or shared-variable-bucket test), we perform before putting a view head into
a bucket. Let the view V X) be rejected by the �rst test i.e., it does not cover g. Thus, there is no possible
mapping from the query subgoal to a subgoal in the view that maps query variables to unique variables in
the solution. However, if there exists no unique mapping betwen the query variables and the view variables,
the view cannot occur in any valid solution - which is a contradiction to our assumption above. Therefore,
a view V X) cannot fail the �rst test and yet appear in a valid solution.

Let the view V (X) be rejected by the second test. Let a shared non-distinguished query variable Qv
occur in g. If Qv maps to an non-distinguished view variable, the view must cover the query variable for it
to be included in a bucket for g. Since it was not inserted into the bucket corresponding to g, the view must
not be covering the query variable, i.e., either Qv maps to two di�erent non-distinguished view variables
or Qv occurs in a subgoal not covered by V (X). In the former case, no mapping can exist from Q to S

with g mapping to a g0 in V (X) since Qv maps to two di�erent view variables. In the latter case, there
must be some view V 0 that covers the occurrence of Qv outside subgoals covered by V . Thus Qv maps to a
non-distinguished view variable in V (X) and another variable in V 0. Since view variables are named uniquely
in di�erent views, Qv does not map to a unique variable in the mapping from Q to E(S). Therefore, S is
not a valid solution.

(2) We now consider the case where a subgoal in the solution S occurs in at least one bucket generated by
our algorithm. In the solution generation step, we generate all possible combinations of buckets and views
from the buckets. The only restriction we impose is that the buckets must represent subgoals that do not
overlap. Therefore, if the algorithm did not generate a solution, it must be because of this restriction - since
otherwise we exhaustively generate all possible combinations of view heads from the buckets.

We now consider the various ways we can relax the restriction and prove by contradiction that the
restriction should not be relaxed.

Let us consider the case where we select two subgoals from the same single-subgoal bucket to construct
S. Since both the subgoals cover the same query subgoal, one of the subgoals could be eliminated and still
S would be a valid solution. This contradicts with the earlier assumption that S is a minimized version of
S0 which is a maximally-contained rewriting of the query.

Now let us construct S by selecting two subgoals from buckets which overlap in the subgoals they represent.
Let one bucket be a single-subgoal bucket and another a shared-variable bucket. Clearly, the single-

subgoal bucket can be eliminated from S and still S is contained in the query because the subgoal that the
view from the single-subgoal bucket covers is already covered by the view from the shared-subgoal bucket.
This contradicts with the fact that S is minimized version of S0 which is maximally contained in the query.

Now let us consider the solution S obtained by selecting two view heads from buckets both of which
represent multiple subgoals and the set of subgoals they represent overlap. If both sets are exactly the same,
once again either view-head can be eliminated and still S should remain a solution, which contradicts our
initial assumption that S0 is maximally-contained.

Now if both the sets of subgoals are not exactly the same, consider a query subgoal g that is common to
both. There must be at least two shared variables, say Qv and Qv0 such that Qv is shared between g and
the �rst set of subgoals and Qv0 is shared between g and the second set of subgoals. If we try to construct a
mapping from the query to the expansion of the solution and map g to the subgoal in the expansion of the
�rst view, Qv0 maps to a variable in the expansion of the �rst view. Furthermore, the other occurrences of
Qv0 in subgoals not covered by the �rst view map to a di�erent view variable since view variables across views
are uniquely named. Thus, g cannot map to the subgoal in the �rst view. Similary, since Qv will map to two
di�erent view variables, g cannot map to the subgoal in the second view either. Furthermore, if g is covered
by a third view, the soundness theorem indicates that since it shares non-distinguished variables with other



subgoals, all of them need to be covered by one view in order for the solution to be sound. Clearly, g can
not map to any subgoal in the �rst or second or any other view expansions and yet guarantee the soundness
of the generated solution. Thus there exists no mapping from the query to the solution. Therefore, S and
in turn S0 is not a maximally-contained rewriting of the query.

Therefore, if there is any rewriting S of Q that is not generated by the SVB algorithm, it is either not
a maximimally-contained rewriting of Q or is contained in at least one of the solutions generated by the
algorithm.


