
 1

Sample, Neal J., MARS: Multidisciplinary Application Runtime System, M.S.,

 Department of Computer Science, July 1998.

Expert knowledge from many disciplines is frequently embodied in stand-alone codes

used to solve particular problems. Codes from various disciplines can be composed into

cooperative ensembles that can answer questions larger than any solitary code can. These

multi-code compositions are called multidisciplinary applications and are a growing area

of research. To support the integration of existing codes into multidisciplinary

applications, we have constructed the Multidisciplinary Application Runtime System

(MARS). MARS supports legacy modules, heterogeneous execution environments,

conditional execution flows, dynamic module invocation and realignment, runtime

binding of output data paths, and a simple specification language to script module

actions.

MARS: A Multidisciplinary Application Runtime System

by
Neal Joseph Sample

A Thesis Submitted to the
 Department of Computer Science and

 The Graduate School of the University of Wyoming
 in Partial Fulfillment of Requirements

 for the Degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Laramie, Wyoming
July, 1998

 ii

© 1998 by Neal Joseph Sample

 iii

This thesis is dedicated to my parents, Kenneth and Sharon Sample. They

instilled in me the strong ethic that has carried me thus far, and continues to carry me into

the future. Thank you both.

 iv

Acknowledgements

There are too many people to thank without a second volume as large as this one.

However, I would like to single out the following individuals who have contributed that

much more during my stay here at the University of Wyoming (A-Z order).

Mark Arnold -- For the long talks (and low rent!). You were always there to

listen and discuss the forks not taken, in CS and life.

Carl Bartlett -- For the help. For the headaches and breakthroughs. For the

distractions. For the laughs. You never were an assistant, as much as a friend and ally.

Matthew Haines -- For your support these past two years, for your excellent

advice, and a boost over the hurdles.

Duncan Harris -- For the many doors you opened for me (though I didn’t

always cross the thresholds). I appreciate your efforts to help me help myself.

Meredith Marine -- For putting up with me for so many years, with so many

laughs, through so many tears. For being Tiny Elvis.

Chris Rothfuss -- For the Deutschermeister and the friction. For being on my

side, on the various fields of conflict, and off.

Robert Torry -- For your direction and sage advice during my early years. A

true master of the dialectic, you lead me to answers I didn’t realize that I already had

inside.

I acknowledge the following people for being particularly groovy (as is my

right!): Tom Bailey, Chang-Yul Cha, Mark Dixon, Neil Harrison, and Peter Shive.

 v

Table of Contents

Acknowledgements .. iv

Table of Contents .. v

List Of Figures ...viii

I. Problem.. 1

II. Related Work.. 8

Language similarities and differences... 9

Fx... 10

Linda.. 11

Orca ... 12

Opus .. 13

CHAIMS ... 14

CHAIMS programming... 14

Differences between CHAIMS and MARS .. 15

Similarities between CHAIMS and MARS .. 17

III. The MARS System.. 20

Preprocessing Components ... 22

Wrapper... 22

Control Loop ... 24

File (I/O) Layer ... 25

Runtime System .. 27

The Native Communications Layer .. 27

Remote Service Layer (RSL) .. 31

 vi

Router Table.. 34

Message Processing Layer (MPL) .. 35

Logging ... 37

Remote Invocation System.. 37

Remote Service Spawn (RSS)... 38

MdoServer... 39

TCP/mux code... 39

Leader Codes... 40

Summary ... 44

IV. Applications/Results ... 46

Simple Matrix Example .. 47

Pipeline Parallelism Example.. 64

Extended Pipeline Parallelism Example ... 71

Biology Model... 76

Description .. 76

Implementation Problems ... 79

Results ... 83

V. Conclusions .. 86

Improved times.. 86

Distribution and realignment... 88

Heterogeneity .. 90

Conditional execution ... 91

Authoring system .. 92

 vii

VI. Future Work .. 94

Dynamic scheduling.. 94

Multi-language support ... 96

Native threading/thread support .. 97

Automatic data conversions .. 99

Strong profiling support .. 100

Better steering mechanisms... 101

Better condition variables.. 102

Drag-and-drop style GUI .. 103

VII. Final words .. 106

References ... 108

 viii

List Of Figures

Figure 1. A sample MDO for aircraft design [Haines95a].. 4

Figure 2. Visualization of CHAIMS composition [Perrochon97] 18

Figure 3. MARS component interactions.. 21

Figure 4. Matrix example.. 55

Figure 5. SGI results from matrix example... 62

Figure 6. Sun results from matrix example ... 62

Figure 7. Pipeline parallelism example... 65

Figure 8. Original image ... 66

Figure 9. Increased Sharpness... 66

Figure 10. Posterized image .. 67

Figure 11. Reduced noise .. 67

Figure 12. Pipeline parallelism results .. 70

Figure 13. Partial 2-way pipeline .. 72

Figure 14. Partial 2-way pipeline results... 74

Figure 15. Partial 3-way pipeline .. 75

Figure 16. Partial 3-way pipeline results... 75

Figure 17. Biology module arrangement... 78

Figure 18. Small data set on the Suns ... 83

Figure 19. Small data set on the SGIs ... 84

Figure 20. Large data set on the SGIs ... 84

Figure 21. Proposed GUI-based MDO programming tool.. 105

 ix

 1

I. Problem

As expert knowledge is more and more frequently embodied in computer models

and simulations, the opportunity to compose useful models from multiple disciplines is

increasing as well. In order to better solve many complex problems, it is useful to draw

together domain expertise from multiple disciplines.

For instance, designing an automobile requires information about structure,

propulsion, guidance, safety, and many other features. Designs are done in teams, with

each team member (or group) having specific tasks, completing one part of the puzzle.

The group responsible for a new engine design is not the same group responsible for the

body design. Further up the scale, the entire design team could be seen as one small

component themselves, coupled with advertising, sales and manufacturing teams to

deliver the product to market. The combination of these different expert groups can

achieve much more than any group by itself.

The automobile production problem is analogous to what is occurring in scientific

research today. Models are taken from different disciplines and combined in innovative

ways to provide answers that the component models could not provide by themselves.

The problem of combining models from more than one discipline is known as the

multidisciplinary optimization problem, and the resulting applications are called

multidisciplinary applications.

Significant recent work has been devoted to the problem of multidisciplinary

applications (MDO applications). Multidisciplinary applications are collections

composed of programs bound together to perform a single task. The individual

 2

component programs come from varied disciplines to solve a problem “larger” than the

problem solved by any of the individual component. “Larger” may mean in terms of

overall complexity, geographic scope, the ability to handle various data types

(applicability), or in terms of other design factors. Multidisciplinary applications are

used for global climate modeling, aircraft and automobile design, biological process

modeling, and countless other tasks.

The interactions between components of an MDO vary for different problem

types, and there are different methods being used to “glue” the components together. In

most cases, the MDO is treated like a sequential pipeline, with information passed from

one stage to the next, repeating the entire process as required. When a homogenous

collection of modules is built from the ground up at a single site, the problem of passing

information from one component to another is relatively easy; designers choose the

interfaces, so the modules can cooperate out-of-the-box. This type of application is could

be multidisciplinary, though not cost effective when reusable codes component codes are

available.

Because available components used to build a single MDO are often

heterogeneous in terms of component source language, data format requirements, and

scope of functionality, they are often forced into a single execution format: sequential

pipelines sharing data through files. The files for sharing data are frequently transformed

between MDO components so that one component’s output is converted to an appropriate

input for another component. This transformation is up to the MDO programmer, of

course. So too are solutions to the problems of process creation and synchronization.

 3

These can be done with script files, UNIX programs, or by using an additional control

language.

To further illustrate the types of MDOs in actual use, we offer an example of a

multidisciplinary code also introduced in several related references [Haines95a,

Chapman94, ICASE95]. The example is of an MDO used for aircraft design. The

aircraft design process draws from several different disciplines, including propulsion,

aerodynamics, and structural analysis. Simpler component models from the various

disciplines can be tied together into a collection that solves the larger problem of “aircraft

design”. While our example is a simplification of the entire aircraft design process, it

demonstrates the essential components of an MDO application. This example has three

component modules, the Optimizer, the FlowSolver and the FeSolver.

The Optimizer invokes the other two tasks (FlowSolver and FeSolver) and

generates an initial geometry. The FeSolver module generates a finite element model (to

represent the aircraft) based on this geometry and uses some initial forces to determine

the structural deflections. At the same time, the FlowSolver generates an aerodynamics

grid based on the initial geometry and performs an analysis of the airflow around the

aircraft, producing a new airflow solution. In subsequent runs, the FeSolver uses forces

based on the current flow solution provided by the FlowSolver to produce new

deformations. The FlowSolver uses the deformed geometry from the FeSolver and the

previous flow solution to create new solutions. This process continues until the

differences between current and previous FeSolver solutions are within some specified

tolerance. After a solution is reached, the results are stored for offline use (Figure 1).

 4

Optimizer

FlowSolverFeSolver Surface
Geometry

SensitivitiesStatus
Record

Figure 1. A sample MDO for aircraft design [Haines95a]

The aircraft design MDO has inherent task parallelism, though the writer of the

Optimizer module must take care to properly synchronize the FeSolver and FlowSolver.

A frequent characteristic of the current MDO application design process is that the MDO

builder1 is responsible for everything beyond the functionality of the particular working

module.

The general MDO construction problem has three main components: managing

concurrency and parallelism, data exchange, and basic control functionality (such as

module invocation and termination). When using heterogeneous codes, little can be done

1 Programmer, designer, composer, and integrator are also terms used to describe the person tying

the different modules together.

 5

to combine them (without rewriting the working modules to be compliant with the flavor

of the month task and data parallel language system); there are very narrow design paths

MDO builders usually follow. The path to managing concurrency problems is often to

serialize the component processes, thus ensuring consistency at a cost of efficiency. The

path for data exchange is commonly through UNIX files. Basic functions, like

invocations, can be done with scripting languages or with system calls, such as the

exec() in UNIX.

An important consideration in the development of MDO codes is that desirable

component modules often exist, but were not written to be used in a cooperative

environment. These legacy codes, while capable of performing a desirable task, are often

limited in use because they are difficult to tie together with other legacy codes. Even

MDOs built with newer modules designed with interfaces that are mindful of specific

legacy codes are ineffective. Interfaces to the resulting new MDO collections are often

as idiosyncratic as the legacy code that is the basis of the MDO; it is therefore difficult to

expand or interchange other modules with the new MDO. For instance, increasing the

variety of Phillips screws in a package does not make that package work better with a

flathead screwdriver. In essence, to use legacy codes, designers must completely build

around them, suffering the costs incurred when coupling heterogeneous modules, or

rewrite them to comply with local modules, duplicating significant effort already

expended on the legacy code’s original design.

It was with these many considerations (data exchange, concurrency and

parallelism, basic functionality of a component system, and support for legacy codes) in

mind that we built the Multidisciplinary Application Runtime System (MARS). MARS

 6

supports abstract data passing2, asynchronous partially-ordered message passing, remote

service requests, dynamic module invocation, and various primitives for module control.

As such, it could serve as the runtime support for another task parallel high-level

language specification, like Opus (which was designed for building MDO codes) [Bal96,

Chapman94, Haines95a].

MARS also includes components beyond the runtime system proper. To fully

support the construction of MDO codes, MARS understands a simple specification

language that defines the working modules (or tasks) within an MDO. A collection of

working modules and a leader (specification) to guide those modules are referred to as a

MARS ensemble. (The specification language is discussed further in Chapter III.)

MARS also has a server component that resides on all execution nodes (CPUs)

that participate in a running ensemble. This server, called an mdo_server, functions to

invoke working modules on specific execution nodes at the request of another module.

In MARS, working modules are generally only invoked by a leader or sub-leader

module. The components of a leader (and how sub-leaders and working modules are

added to an ensemble that follows the leader) are also part of the specification language.

To support legacy modules, MARS includes a source to source compiler called

the wrapper. The wrapper takes source for a working module, wraps all the I/O routines

with MARS calls, and augments the original code to act as persistent server capable of

processing MARS messages. This wrapper is not dependent on user augmentation of

2 “Abstract” in the sense the data is simply written. Applications are not aware that data goes to

disk, to the network, or elsewhere. They simply write the data and the runtime system directs it to an

appropriate receptacle.

 7

original source, as with a full language specification like Opus. Without any annotation

of the source by the MDO builder, the MARS wrapper replaces the legacy code’s original

entry point with MARS module server code, while preserving access to the original entry

point for later use. As such, a module like the FeSolver will be invoked, wait until it

receives an execution directive, run to completion (passing its data out of the module),

and then wait idle until needed or terminated.

A powerful module composition tool is needed to bring tools from various

disciplines together to form multidisciplinary applications. When legacy modules are

developed, their design generally does not consider how the module could be used as part

of a future collections of modules. Legacy codes are frequently designed to achieve a

single task in the best possible way. As such, whatever local tools, methods, and

protocols are available are used to build the best possible stand-alone module. This local

construction process makes it difficult to integrate modules from different disciplines

when they do not use common data formats, common communication protocols, or even

common development languages. MARS is a composition tool designed to bring

modules together from multiple disciplines to form multidisciplinary applications.

 8

II. Related Work

There have been many different approaches to achieving task integration. Most

approaches deal with homogenous tasks rather than integrating codes from multiple

sources. The MDO integration problem has been tackled several different ways: on a

language level by augmenting data parallel languages with task parallelism primitives

and extending task parallel languages to handle multiple interfaces, and using a case-by-

case approach to the problem with unique (one-time) solutions. We have found that

similarities exist between elements of particular systems and certain MARS components,

but that the collected functionality of MARS has not been realized.

We examine a few approaches to the MDO integration problem, with a focus on

message and data transfer. Since MARS is a runtime system, primarily existing to plumb

data and message connections between heterogeneous3 codes, we focus on how these

things are done in other systems. Most conspicuously absent in these previously

developed systems is support for legacy applications.

We have found one system very similar to MARS, in development at Stanford

University, known as CHAIMS (Compiling High-level Access Interfaces for Multi-site

Software). The application of MARS to integrating MDO codes, when viewed as a

simple programming model, is being realized by the CHAIMS project (but at a much

higher level of abstraction than MARS). For the most part, CHAIMS operates above

current parallel language specifications, while MARS operates below language

3 Of course, MARS will work with modules that have similar (homogenous) interfaces as well, but

that problem is not nearly as interesting.

 9

specifications, yet there is still a strong analogue between the two systems. Before

examining this similarity further, an examination of different language-level approaches

is warranted.

Language similarities and differences

A primary difference between MARS and virtually all languages and language

extensions is the support for legacy codes. Opus, for instance, can handle annotated HPF

code and compile the source to the Chant runtime system [Mehrotra94, Haines94] (or

even to the MARS runtime system, with some modification). On the other hand, a source

code in C for a program that performs a Fast Fourier Transformation has no meaning to

Opus. Even converting the C code to HPF would require the user to modify the resulting

HPF to use Opus primitives and objects for communication and synchronization. With

MARS, that same FFT program can be wrapped to become a working module without

source modification, and is easily incorporated into a MARS ensemble. The purpose of

language specifications is generally to build new codes, including new MDOs. They are

designed with support for legacy modules in mind. Limited code reuse (using legacy

modules) can be achieved with these language-level specifications, but only by reusing

other codes originally written using a specific language specification.

It should be further noted that many language specifications could be compiled to

MARS, although MARS currently lacks a native threading system. (The initial focus of

the MARS project was to develop the message passing layer, the I/O routines, and the

basic control and concurrency primitives. The assumption is that MARS will be

augmented with an existing threads package.) Because MARS contains a very simple

 10

specification language, it is generally not as full-featured as more mature systems, but the

runtime primitives can generally implement the missing higher level functions.

Fx

Developed at CMU, Fx is an extension of the Fortran language. In Fx, parallel

sections of code, called tasks, are invoked by a program as subroutines. Tasks

communicate with one another by sharing input and output arguments in their parent

space. A task’s parent is the scope that invoked the task. Data may be passed to or

received from a task only when it is called or returns, respectively. As such, specification

of data flows must be provided at compile time in the form of input and output directives.

The data flows are therefore static and cannot be changed at runtime. This method does

have the advantage of possible compile-time path optimizations. Also, the data flows are

deterministic, and no runtime destination translations are required. The actual cost of

runtime destination lookups are low, however.

While good for the design of new task parallel codes, Fx is not particularly suited

for MDO applications [Bal96]. First, within a single invocation, the Fx language

provides excellent support for communication and parallelism. However, between two

distinct codes, both written in Fx, the MDO builder is once again responsible for handling

communication. In effect, a static (where modules are never added or removed) MDO

could be easily built as a single Fx program, but altering the ensemble would require re-

coding and recompiling the entire Fx code (or else the user has to build a runtime system

to provide the needed support4).

4 Don’t. Use MARS instead.

 11

The Fx input and output directives radically limit the usefulness of tasks in a

parallel environment [Bal96]. If tasks must communicate frequently, routines must be

frequently split at synchronization points so the task can share its data. This of course

makes programming the tasks difficult and greatly increases the overhead of task

invocation.

With the MARS primitives for module invocation and the ability to simulate

synchronous module data output, it would be a suitable runtime system for Fx to compile

to. At the same time, allowing asynchronous data transmission and reception without

having to break modules into component subtasks seems to be a distinct advantage of

MARS. Also, for evolving MDO ensembles, MARS’ weak data flow specification also

seems to be advantage. (Recall that data is simply “written” in MARS modules, it can

always be dynamically routed to various locations or modules, without a priori

knowledge of the modules that will be part of the ensemble.)

Linda

Linda is a unique model for developing parallel programs. It provides

communication through tuples that are placed into a shared virtual tuple-space. Active

tasks may remove tuples from the tuple space at any time. With the tuple communication

in place, message passing is a straightforward process. Linda extensions are available for

many languages, including C, C++, Fortran, and Scheme [Carriero89].

For homogeneous parallel processes, Linda can be very effective. However,

Linda is not particularly well-suited to multidisciplinary applications for several reasons.

Control over resource allocation within the virtual tuple space is limited. Invocation and

 12

distribution of working modules as “live tuples” in the tuple space offers little control as

well [Bal96, Carriero89].

Legacy codes not written in Linda typically use a distinctly different I/O and

execution paradigm, and are thus rather difficult to port to use Linda primitives. In many

ways, it would be easier for MDO builders to use the naïve approach of trapping all

output to a file and then transforming that file into a usable format for another module

than to achieve the same results in tuple space. Perhaps for experienced Linda

programmers, this would not be the case, but with Linda there is the ultimate task of

converting all I/O routines to Linda-friendly (read: tuple space aware) methods.

Orca

Orca is a task parallel language that supports process allocation in a manner

similar to MARS. Like MARS module invocations, Orca tasks can be dynamically

created and mapped to specific execution nodes. However, there is no explicit message

passing in Orca. Instead, communication is handled by applying user defined Abstract

Data Type (ADT) operations on shared objects. Orca collections are good for coarse-

grained parallelism as operations on ADTs are always exclusive and indivisible [Bal96].

Unlike Opus, which is a specification language, Orca is self contained (in that has

its own compiler and runtime system). In this regard, Orca does go significantly further

than MARS. With MARS, it would be possible to provide runtime support to system like

Orca, but more is possible. MARS includes primitives appropriate for simultaneous

divisible access to ADTs. Once again, since Orca is a complete programming language,

users are limited to programming in Orca. This does limit the possibility of using legacy

codes, and it also prevents users from easily extending the Orca specification. Because

 13

MARS concentrates on coordination rather than programming, it has a broader range of

usefulness to legacy codes.

Additionally, because Orca is compiled and has its own runtime system, users

may find it difficult to add to the Orca system. Since MARS is built in clearly defined,

user-accessible layers, inserting functionality at the various levels is much simpler than

with Orca. Finally, extending higher-level MARS constructs with source language (such

a C) primitives is also possible, whereas there is no such distinction with Orca.

Opus

The Opus language specification was designed for multidisciplinary applications

[Bal96]. Opus takes a data-centric approach to the MDO problem, introducing the

ShareD Abtraction (SDA) for coordination and communication. SDAs act as data

repositories, communication channels, and occasionally as compute nodes within Opus

ensembles.

The Opus language extends HPF with its task parallel programming constructs

[Chapman94, Mehrotra94]. There are several strong similarities between MARS ad

Opus. (This is to be expected; runtime support for an Opus-like language was the genesis

for the MARS project.) Multidisciplinary Opus applications begin with a “leader” that

sets up the SDAs, similar to the way MARS ensembles are setup. Opus and MARS both

use similar spawn operations to invoke working modules with specific resources. Opus

provides access to SDA objects without working modules having to explicitly locate the

SDA objects on the network. Similarly, the leader module in a MARS ensemble defines

I/O paths for working modules at runtime.

 14

Clear differences between MARS and Opus make their target domains quite

different. The primary difference is that Opus is a language specification while MARS is

a runtime system. With a few extensions to MARS, it would be an appropriate target for

Opus to compile to (Opus relies on externally provided runtime support). Additionally,

Opus support only extends to SDA-aware codes. There is no legacy code support within

Opus.

Opus is a coordination language, not a distributed programming language like

Orca or Fx, which makes it more closely related to MARS [Chapman94]. The MARS

runtime system is predicated on primitives exclusively designed for coordinating

modules, rather than programming modules.

CHAIMS

The CHAIMS system is similar to MARS, but operates at a significantly higher

level of abstraction than MARS. CHAIMS, unlike many of the other coordination

systems examined, is close to being a pure composition language, functioning at a higher

level of abstraction than task-parallel programming languages and extensions

[Tornabene98b]. We outline the philosophy of the CHAIMS system, the differences

between the levels of operation of CHAIMS and MARS, and finally examine the

fundamental similarities between the two.

CHAIMS programming

The original CHAIMS specification was for a composition language that would

be used to build megaprograms. Megaprogramming is a form of programming in the

large, where “large” can be viewed on several independent levels. There can be

 15

largeness in time (persistence), large variability (diversity), largeness in size (complexity

of the program and/or its range of applicability), and largeness in capital investment

(infrastructure) [Wiederhold92]. Megaprograms compose megamodules into collections

capable of greater functionality than an individual megamodule can achieve. A

megamodule, as originally specified, was a large, persistent, self-contained object with a

consistent interface for querying. Megaprograms are built by composing various

megamodules into a whole to achieve a desired result.

CHAIMS is predicated on breaking up the traditional call statement into three

main parts: supply, invoke, and extract [Wiederhold92, Tornabene98a]. Supply

corresponds to traditional argument passing, but does not force an immediate call

invocation. It merely provides the input arguments required by a traditional call. The

invoke statement causes the asynchronous execution of the megamodule with the

parameters supplied by a corresponding supply. Results are returned to the calling

megaprogram by means of extract. Various other directives to megamodules allow their

status to be examined, inspection of their interface and contents, and execution resource

constraints to be placed on megamodule invocations. Information passed between

megamodules must be transduced: collected, transformed, and forwarded among

megamodules and I/O modules [Perrochon97]. In CHAIMS, transduction is currently up

to the megaprogrammer.

Differences between CHAIMS and MARS

There are significant differences between CHAIMS and MARS, but they are

primarily on the level of abstraction, rather than in philosophy. CHAIMS assumes that

megamodules have their own ontology and maintenance, and are simply available to the

 16

public for access. In this sense, megamodules are much like object resources in CORBA.

MARS is perhaps better characterized as “programming in the small” in this regard.

MARS ensembles are formed by collecting stand-alone modules that are not already

servers and turning them into servers capable of being composed into ensembles

(megaprograms).

CHAIMS assumes that composers (megaprogrammers) generally do not have

control over the megamodules they use [Wiederhold92]. MARS assumes that, in general,

its modules may be invoked on any participating execution node, and is thus steered

toward a different set of problems. At the same time, however, MARS can certainly

communicate with persistent modules; MARS simply extends the CHAIMS specification

to include dynamic module invocation primitives. This is a clear philosophical

difference: CHAIMS is not “polluted” with non-compositional features, while MARS is

not “limited” to dealing with persistent modules.

MARS is a runtime system that provides specific data transport mechanisms to

multidisciplinary programs and a simple specification language for composition of those

programs. CHAIMS is predicated on communication with existing modules through

various methods, including COM, CORBA, Java-RMI, etc. [Tornabene98b]. CHAIMS

does not provide data transport mechanisms to previously naïve programs; rather it has a

rich set of messaging protocols intended for communicating with existing network-aware

servers (megamodules).

The combination of these implementation differences distinguish the MARS

problem set from CHAIMS’. MARS is intended for use primarily with local modules.

These local modules are controlled by ensemble creators. They can be altered locally and

 17

have multiple invocations on arbitrary execution nodes. CHAIMS assumes that

megamodules are available somewhere, and that megaprogrammers have no control over

megamodules and cannot alter them.

Similarities between CHAIMS and MARS

The main difference between CHAIMS and MARS is that they operate at

different levels of abstraction. Despite those differences, there are several fundamental

similarities between the current specifications of the two systems.

The MARS system uses a wrapper program to make modules operate as mini-

servers, existing as long as the user dictates. With the wrapper, previously unsuitable

codes can be brought into a multidisciplinary application. The ability to utilize legacy

codes, those codes not originally developed with MARS, is important to code reuse. The

current CHAIMS specification has a similar notion of a wrapper. The CHAIMS wrapper

wraps non-compliant megamodules so they can be used with CHAIMS. The CHAIMS

wrapper adds an interface to megamodules that cannot communicate with a megaprogram

or that do not correspond to the CHAIMS calling specifications. The wrapper allows

legacy megamodules, those that are not already CHAIMS compliant, to be used by

megaprogrammers. For example, if a megamodule did not support simultaneous access

or the split supply, invoke, extract method of calling, a wrapper would make the

megamodule appear as if it does so to megaprogrammers [Perrochon97].

The CHAIMS megaprogram is very similar to MARS' leader module. The leader

module encompasses the MARS specification language and is purely compositional. The

body of the leader code, while expressed in a traditional language (C/C++), is very

similar to CHAIMS megaprograms. Both focus on the composition of modules and hide

 18

implementation details. Current MARS leaders can direct data from one module to

another in an ensemble, but original leader codes had to collect data and retransmit it to

working modules. The current CHAIMS system marshals data and retransmits it to

megamodules, but the CHAIMS project is working toward direct data flows between

megamodules [Tornabene98b].

Figure 2. Visualization of CHAIMS composition [Perrochon97]

CHAIMS megaprograms certainly have the ability to be multidisciplinary. An

arbitrary set of megamodules from many disciplines can be tied together to solve a

particular problem. The thrust of MARS is to support multidisciplinary optimizations.

Neither system deals with the functioning of component models (megaprograms or

working modules), but with the flows between and the coordination of various models.

The assumption made by MARS and CHAIMS is that working modules are oracular;

neither affects or alters module-local computations.

 19

As seen in recent project descriptions, visualizations of CHAIMS compositions

closely resemble visualizations of MARS ensembles (Figure 2). We outline the primary

MARS/CHAIMS parallels in Table 1:

Table 1. MARS/CHAIMS similarities

MARS CHAIMS

Leader coordinates working modules Megaprogram coordinates megamodules

Legacy codes are wrapped to participate Legacy codes are wrapped to participate

Ensembles can be multidisciplinary Megaprograms can be multidisciplinary

Leader codes are compositional Megaprograms are compositional

Working modules are considered oracular Megaprograms are considered oracular

We have found the closest analogue to MARS to be the CHAIMS system. Even

though they operate at different levels, they are very similar in approach and philosophy.

 20

III. The MARS System

The MARS system consists of six main interacting components, the wrapper

code, the native communications layer, the Remote Service Layer (RSL), the Remote

Service Spawn (RSS), the message processing layer, and the MdoModule layer. There

are four main divisions of these components: preprocessing components, runtime library

code, support for remote invocation, and high-level objects needed to construct the leader

code. The components combine to form a complete framework capable of supporting the

multidisciplinary problems outlined in Chapters I and VII. In general, the MARS system

works as follows:

1. Component modules necessary to solve a problem are assembled.
2. The modules are wrapped, turning them into specialized MARS servers.
3. A leader is written5.
4. The leader is executed, causing execution of the component modules in

accordance with the specification.

When assembled, the leader and the working modules form a multidisciplinary

application. This chapter reviews the components of the MARS system.

The wrapper is the first part of the MARS system. Its job is to turn legacy

modules into special MARS servers, capable of communicating with other MARS

working modules and leaders. The wrapper installs communication mechanisms in

legacy codes and also substitutes MARS I/O routines for those in the original code. Once

this is done, a MARS leader code (which is really just a specification for a set of

modules) can control the working module by invoking it with the remote invocation

 21

tools. Once a module is running, it communicates with its leader through several layers

designed to ensure consistent communication between modules. These components

relate in the manner shown in Figure 3.

Wrapper

Message Passing Layer

Native Communications Layer

Router Table

Remote Service Layer

Original (Legacy) Code

LeaderMdoServer
(Spawner)

Working Module

I/O

Figure 3. MARS component interactions

5 The leader is effectively a “map” of the execution and data path to be taken by the assembled

modules.

 22

Preprocessing Components

Wrapper

When an ensemble programmer is presented with existing codes to be integrated

into a new multidisciplinary application, the first step is to make the codes compatible

with the MARS system by transforming them into MARS servers. This is achieved by

wrapping the existing executables with the runtime routines provided by MARS.

The wrapper begins with the source code for a module and adds essential routines

to make the module interact with other MARS modules and leaders. First, the wrapper

renames the existing source code’s “main” routine (original entry point) to

“wrapped__main”, or another unique identifier if a “wrapped__main” already exists. The

wrapper inserts a new main routine into the program that usurps the original code’s entry

point and substitutes an initialization code, exit (clean-up) code, and a simple message

processing loop to handle incoming messages.

When a wrapped module is invoked, its initialization routines cause the module to

immediately check-in with the MARS module (leader or otherwise) that invoked it.

During the check-in phase, the module tells its invoker its vital identification information,

such as its execution host’s id, its unique communication id (port number, assuming

TCP/IP communications), its nickname (if one is given), and any other identifiers

embedded at wrap time. This check-in communication is done via the Remote Service

Layer (RSL).

 23

After check-in, a wrapped module simply waits for incoming connections and/or

messages. When a message is received, it is processed by the runtime system which is

linked in after the wrapped source code is compiled.

The wrapper has functionality built in to allow users more control over wrapped

modules than is available in the original (unwrapped) module. For instance, with specific

command line options passed to the wrapper, programmers can add module entry points

for subroutines that were previously externally inaccessible. For instance, if the

programmer knows that operations are safe, s/he could invoke those subroutines within a

module and receive output from those subroutines. For example, a stand-alone module

would have previously restricted the module’s execution flow to cover only the code

invoked by the main routine. A wrapped code can invoke any arbitrary subroutine from

the original source code, at any desired point. This ability might violate the black box

principle of the original code, and users of this functionality must be aware of the

potential side-effects caused by arbitrary routine invocations.

Wrapped programs can also run in stand alone mode. Stand alone mode is simply

the invocation of a wrapped module as it would have been previously invoked (before

wrapping), without the Remote Service Spawn (RSS) layer. For example, a wrapped

program that was previously invoked by typing “./foo –o bar” on the command line

would still give the same output in the same form as the original non-wrapped code.

Stand alone mode facilitates component testing, and allows a single copy of a module to

perform within the MARS framework or without. This “single source” capability is

extremely important in simplifying code maintenance. Programmers can tweak a single

 24

source that runs in stand-alone and MARS modes, without having to post changes to

multiple sources.

Control Loop

Virtually all communication primitives in the MARS system are asynchronous.

Users can easily construct synchronous calls by blocking on return values from calls that

have returns (e.g., RSL->TERMINATE_AND_REPLY()). The control loop added to a

wrapped module consists of a simple message receive/process loop, augmented with the

ability to accept new incoming connections. The typical control loop is similar to the

following (in pseudo-code):

initialization_code();
status = RUN;
while (status != EXIT) {
RSMessage = poll_for_message();
status = process_message(RSMessage);

}
exit_code();

The initialization code takes care of the check-in procedure. To some extent, the

check-in procedure will be protocol dependent (e.g., an Intel Paragon’s native messages

or Linda’s tuples would require different informational fields from a Linux machine

using TCP/IP). Currently, only TCP/IP support is implemented, though we have used

TCP over several different mediums, including 10/100baseT Ethernet and fiber-optic

ATM, and it is available on most systems, including those without native TCP/IP support.

The control loop runs until the module is explicitly directed to exit, at which point

its exit status is returned to the module that ordered its termination. Note that module

termination is not necessarily called exclusively by the leader that invoked the module.

 25

In many cases, especially with complex conditional execution paths, it is desirable to

allow arbitrary modules to force their peers to exit.

File (I/O) Layer

The critical issue with the wrapper is I/O. Many potential candidates to become

modules in an MDO use arbitrary output schemes that use multiple files, in multiple

(often proprietary) formats that are without obvious meaning to an outside observer.

Such programs can be extremely difficult for a developer to understand and integrate into

a multidisciplinary optimization.

The wrapper must be able to convert simple I/O calls automatically to some other

form that can be utilized in a collection of different modules6. Disk-based I/O routines

are by far the most common, especially in scientific codes. Simulation data is generally

pushed to disk and later analyzed or used by other programs.

The problems with integrating disk-based I/O routines into a MARS module

cluster are many. Frequently, execution nodes will not share the same file system,

making it extremely difficult to share files conveniently. Also, if wrapped modules have

hard-coded absolute paths to input and output files, it can be very difficult to distribute

modules to arbitrary execution nodes. Finally, to take advantage of task parallelism,

disk-based I/O times should not dominate processing time. If it does, the time to read,

6 We are currently investigating the SmartFile approach to understanding data [Haines95b]. More

information about SmartFiles is provided in Chapter VI.

 26

write, and export files from a given node will dominate the process time, negating one

potential benefit of the MARS system.

To combat these problems, we use a special I/O layer written to abstract files

from physical devices (disks) and substitute existing network communication channels

instead. For example, a pre-wrapped I/O call might write an integer to a file called

“out.dat”. Each write involves a call to an operating system defined primitive (such as

write() or printf()) that accesses a mechanical device (disk) and has an associated

latency cost that is generally high compared to a memory or network write.

Instead of necessarily committing data to disk, our I/O layer transmits the data

somewhere. When a module is invoked, its data streams do not yet go anywhere! Some

time after the check-in procedure has finished, a module is instructed to send its data to

an arbitrary location, be it memory, the network, or to disk. If no explicit information is

provided, the module’s original I/O destination is used. This means that the module,

when invoked in stand alone mode, still understands its original data paths, and still

functions properly.

The file I/O layer is implemented as a C++ class. There are five basics primitives

for binary type I/O:

int c_open(char * name, io_type type);
int c_close();
int c_flush();
int c_write(const void * buff, int size);
int c_read(void * buff, int size)

The I/O layer will write to disk or to a connected socket, depending on the

module’s invocation method (“stand alone” or part of an ensemble). The I/O layer’s

 27

function is similar to an operating system’s disk-based I/O, with a “flush” mandating that

data be pushed to disk or to the network and allowing data to be committed at arbitrary

intervals otherwise.

Runtime System

The runtime system has four main parts: the native communications layer, the

Remote Service Layer (RSL), the Router Table, and the Message Processing Layer

(MPL). To remain consistent across platforms, the RSL can be built upon whatever

native communications layer is available; for this implementation of MARS, we chose

TCP/IP as it is the most widely-available transport protocol today.

The Native Communications Layer

The native communications layer is the foundation of all message passing in the

MARS system. In this implementation, we rely on TCP/IP sockets for low-level

communications, but the messages can be easily ported to other protocols because the

low-level protocol simply passes RSL-encoded messages. An RSL-encoded message is

simply a standardized data packet with a header block that describes how the data is

packed.

The native communications layer must provide simple primitives to the RSL

layer, while the RSL layer is responsible for all data encoding and transmission decisions.

The assumptions made about the data channel required to support the RSL layer are that

the low-level system is reliable and that the messages are ordered along a given channel.

 28

TCP/IP is both reliable and ordered for a connected socket. Given these requirements,

UDP/IP would not be suitable for our RSL because it is unreliable and unordered.

In environments with connectionless protocols, such as the Intel Paragon or the

Linda system, simple integer counters local to a given execution node would suffice for

message ordering (with identification of the transmission and target modules, of course).

A total global ordering of messages is not required; simple ordering of messages between

nodes (on a given real or virtual channel) is all that is necessary.

Our system implements the following essential, basic public primitives to access

the native communications layer:

// connect (as client) to a server
int connect (char *toHost, int toPort);

// check for possible requests to connect (non-blocking)
bool pendingConnect (int secs = 0, int usecs = 0);

// accept (as server) a connection from a client socket
// (blocking)
int accept ();

// close connection(s)
void close (int connectId); // one connection
void close (); // all connections

// check connection status
bool isConnected (int connectId);

// write data over a connection
int write (int connectId, void *buf, int bytes);

// check for possible messages (non-blocking)
bool pendingMessage (int connectId);
bool pendingMessage (int *connectId, int secs = 0,

int usecs = 0);

// read data from a specific connection
int read (int connectId, void *buf);
void *readAlloc (int connectId, int *size);

 29

These primitives are essential to the RSL layer functionality. They provide a

means to establish a “connection” (be it a virtual or connected message medium, such as

TCP/IP) and to pass messages over such connections. In the TCP/IP implementation, the

connections are managed in a connection table that is a component of the socket class.

The connection table manages the virtual circuits formed by connecting two TCP/IP

sockets. If MARS were ported to run in another environment, such as Linda, the

connection table could simply track IDs associated with tuples that would designate

which virtual circuit a message belongs to.

In our system, the low-level communications package includes header

information used to form message packets and to control transmission characteristics. In

many instances, such as when streaming data leaves one module directly bound for the

input stream of another module, such overhead is unnecessary. Such a circuit, used

without header information, is referred to as a raw circuit. The following advanced

public primitives were implemented to leverage the ability of the native communications

protocol to quickly transmit data, without the need for extra header information:

//return connection mode (“raw” or “packet”)
bool pktmode (int table_id);

//changes connection mode to TS_RAW_MODE
void make_raw (int table_id);

//changes connection mode to TS_PKT_MODE
void make_pkt (int table_id);

//reads from a raw connection into ptr
//will read up to “size” bytes, returns status
int raw_read (int table_id, char * ptr, int size);

//blocks until size bytes are read, or error occurs,
//returns status
int raw_blk_read (int table_id, char * ptr, int size);

//determines bytes available for reading

 30

int raw_blk_peek (int table_id, char * ptr, int size);

//writes to raw connection without any header information
int raw_write (int table_id, char * ptr, int size);

These advanced primitives may not be appropriate for some native transmission

protocols (other than TCP/IP) and are not necessary for the RSL to function properly.

True RSL messages always have header information, indicating message type, message

source, etc. These primitives are appropriate where applicable, but not necessary for

complete system functionality.

The native communications layer in this case (TCP/IP) had one main deficiency.

When a certain amount of data was sent from module “A” to module “B”, if module “B”

did not consume the information by reading it from the network, module “A” was forced

to block on a send until module “B” read the waiting data. On many systems, the amount

of data that could be buffered was unusually low, i.e. 16k bytes. To remedy the situation,

we added a line buffer between the modules that required it. The buffer is a multi-

threaded application that queues incoming data until it can be safely sent to the

consuming module.

The buffer program is an implementation of the classic producer/consumer

problem. There is a reader thread and a writer thread corresponding to each direction of

data flow (so there are four threads, in total). The reader thread constantly places data

into a buffer, while the writer thread constantly passes data down the network. In this

way, if a writer thread blocks because a particular module is not consuming data, the

corresponding reader thread can still place data into the buffer, thus permitting both

modules (producer and consumer) to continue without blocking.

 31

There is a tradeoff to this buffering system: messages must be copied an extra

time. Alternate approaches include increasing OS buffer sizes and various forms of flow

control. Increasing OS buffer sizes simply delays the eventual time until buffer overflow,

while increasing OS overhead. Various forms of flow control have yet to be examined,

and are an ongoing research issue.

Remote Service Layer (RSL)

The Remote Service Layer (RSL) is the primary method of communication

between modules. RSL communication is ordered between modules along virtual

connections because the native communications layer is similarly ordered. RSL

messages are asynchronously transmitted and received, without explicit return values in

the general case. Special fields in an RSL message header facilitate synchronicity (if

desired), but this synchronicity comes from how the message is processed in the Message

Processing Layer. RSL messages consist of two parts: a well defined header and a

corresponding binary data-blob sent immediately after the header. An RSL message

header is an object of the following form7:

typedef struct RSmessage
{
char from_name[100]; //not required, used by MPL
int from_port; //not required, used by MPL

char type[100]; //request type
char subtype[100]; //request sub-type, if necessary

//packed arguments are word-aligned and can be accessed

7 RSMessage are only sent and received by the RSL layer (no message processing is performed by

the RSL layer).

 32

//directly
int num_args; //number of packed args
int args [RS_MAXNUMARGS]; //offsets of packed args
int arg_size[RS_MAXNUMARGS]; //sizes of packed args

} RSmess;

The RSMessage type has fields type and subtype that indicate the purpose of

the message. RSMessage types are any string recognized by the Message Processing

Layer, and are simple null-terminated strings. num_args indicates the number of

arguments in the RSMessage, while args[] and arg_size[] indicate how those

arguments are to be accessed. The type and meanings of the arguments are determined

by the context provided by the type and subtype fields.

An RSMessage is routed in a manner similar to the native communications

messages. A corresponding RSMessage connection table is built on top of the native

communications layer’s connection table. The RSL adds several features not available in

the native connection table, however. For instance, the RSL allows connection naming,

so that channels may be accessed by their “name” rather than a connection ID. Also,

circuits have the ability to name themselves, further advancing the notion of asynchrony.

For example, a naïve unnamed comminations protocol would require that clients connect

to a server in a specific order, forcing that high level of synchronization upon the entire

multidisciplinary optimization. It might look something like the following:

int a = accept(“connection from module a”);
int b = accept(“connection from module b”);
int c = accept(“connection from module c”);
run(a); run(b); run(c);
collect_data(a, dataA);
collect_data(b, dataB);
collect_data(c, dataC);

 33

In such an example, nothing could begin until modules a, b, and c connected to

the server, and the connections would necessarily have to occur in that order. With

naming installed, the following code could be used, without the synchronization forced

by the mandatory connection ordering:

accept(“any”);
accept(“any”);
accept(“any”);
run(“a”); run(“b”); run(“c”);
collect_data(“a”, dataA);
collect_data(“b”, dataB);
collect_data(“c”, dataC);

At first glance, the syntactical differences between the two examples do not fully

illustrate the semantic differences. Notice, though, that the first example requires that

“module a” connects first and is thus assigned the unique identifier “a”. Furthermore, all

later operations depend on the identifier “a” pointing to a specific structure. With the

naming scheme, a program can receive an arbitrary set of incoming connections and

process them in an arbitrary order, depending only on the runtime instructions of the

program. This dynamism facilitated by connection naming will be explained further in

Chapter IV. Applications/Results, where will look at how dynamic scheduling can be

accomplished by using names instead of static connection identifiers.

RSL messages are sent using the rsr method which can be routed via connection

id or by name:

//rsr by connection id, returns status
int rsr (int destination, char * method, int nArgs, ...)

//rsr by connection name, returns status
int rsr (char * dest_name, char * method, int nArgs, ...)

 34

The variable argument list (denoted “...”) is a very important component of an

RSL message. We pack the data as efficiently as possible, but align each argument of the

argument list, regardless of its size, on a word boundary (the base of the alignment

corresponds to the RSMessage header information). We discovered that several

important architectures, including the MIPS, would not properly handle certain native

data types (int, double, etc.) that are a word size or larger, on the receivers’ end, unless

they were pre-aligned on word boundaries. For example, the following code fragment

would fail8 on the second cast on many machines:

char buff[20];
int i = *((int*)(&(buff[0]))); //succeeds
int j = *((int*)(&(buff[1]))); //fails

To combat the problem of receiving arbitrary data types in an RSL message, each

argument is independently aligned to the largest word size among participating machines

(at a maximum cost of sizeof(word)-1 bytes per argument).

Router Table

The Router Table is an advanced data structure for installing arbitrary names in a

module’s I/O routines. The Router Table provides a bridge between the Remote Service

Layer and File I/O Layer. An unaltered, non-wrapped module may expect to receive

incoming data from a file, say “foo”. Instead of demanding that the wrapped module

constantly write to a fixed channel “foo” (which could go to disk or network), the Router

Table allows the destination “foo” to be changed dynamically, unbeknownst to the

8 The code will compile, but fails at runtime.

 35

module using “foo”. This ability is extremely powerful. Unlike the languages using

compiled communication paths, like Fx, MARS modules never need to know where their

inputs come from until after they are invoked. Likewise, their outputs can be similarly

assigned at runtime and can be changed multiple times during their execution lifetime.

For example, during its first run, a module might write its output to “foo”, and

“foo” could go to a disk file named “out.dat”. During its second run, the program

again writes its output to “foo”, but “foo” now points to the input stream of another

module elsewhere on the network and a disk file called “run2.dat”. During a third run,

“foo” may be superfluous, and the data written to it may be discarded. All of these

changes occur without altering the running module, except for a simple message that

replaces the location in the Router Table pointed to by “foo”. The power of this

dynamism is shown further in Chapter V. The Router Table is managed exclusively by

the Message Processing Layer.

Message Processing Layer (MPL)

The Message Processing Layer is the most critical component of the MARS

system. It is the layer that translates and implements all requests in all RSL messages. It

modifies connection tables, invokes native procedures within wrapped modules, and

establishes data connections. There is only one public method (other than the constructor

and destructor) that the MPL understands:

int process(rsl * transport, char * message);

 36

The “rsl * transport” is a pointer to the actual RSL object and is only

essential if a module has multiple transport systems. We do not foresee any legacy

applications (those that would wrapped) requiring multiple network transports, but

understand that it may be useful to original application designers. The “char *

message” is actually a pointer to an RSMessage type, but we have found that some

compilers prefer an external cast to char and a re-cast inside the method to the

RSMessage type. Also, and more importantly, we can receive a RSMessage type into a

(char *) buffer and process it without the module requiring knowledge of the

RSMessage type at compile time. As such, it is very easy to alter the RSMessage

specification without recompiling the source for the main module.

The process() routine understands many requests, and has private methods for

each type. There are currently fifteen known message types and a handler for unknown

messages. The unknown message handler simply relays the original message back to the

sender, with an error status indicated. The messages processed by the MPL compose the

specification language.

The messages that can be processed instruct a module to perform the various

actions required to run smoothly. If module “A” determines that module “B” should

establish a new output connection to module “C”, module “A” sends a message to “B”

indicating that request. The Message Processing Layer understands that to fulfill the

request, it should call the appropriate routines from “B’s” RSL and force the connection

to module “C”. When it is time for a module to execute its wrapped__main routine, the

MPL understands where the entry point is and invokes the routine.

 37

Most mundane functions are also performed by the Message Processing Layer.

Log files are opened and written to by the MPL. The level of logging to be performed by

the lower layers (such as File I/O Layer logging) are altered with calls to the MPL. It is

the layer that understands how to control all the other layers and the only level at which

modules can communicate directly.

Logging

Logs are important part of any large scale programming endeavor. In order to

troubleshoot and tune runtime systems, especially with dynamically changing schedules

and data paths, it is important to understand the state of particular modules and how the

effects of their states affect the global state of a collection of modules.

We have implemented logging primarily in the MPL and the File I/O Layer. The

logging can be done at several levels, depending on the log event granularity desired by

the programmer. Log levels can be changed at runtime, rather than just at compile time.

This flexibility allows the user to turn off all logging in stable codes, ensuring optimal

performance, and (at a different time) the user could turn on high log levels to

troubleshoot the same codes if problems arise.

Remote Invocation System

The remote invocation system for MARS was built from scratch. We chose to

use a simple TCP/IP based method, rather than require users of MARS to have access to

an emerging standard, like commercial implementations of CORBA. (Also, at the time

 38

this project was started, different CORBA vendors’ implementations were often not

compatible.)

Remote Service Spawn (RSS)

To invoke a module on a remote execution node, a call is made to the Remote

Service Spawn. The RSS call for TCP/IP looks like this:

int spawn(char * checkin_server, int checkin_port,
char * spawn_server, char * spawn_prog,
char * args = “”);

This call can be abstracted to the form:

spawn(hostType * execution_host_id,
hostType * spawn_host_id, char * module_to_spawn,
char * arguments);

This form can be used with invocation methods other than TCP/IP. At a

minimum, a call to spawn() requires the name of a module to execute, the node to

execute the module on, and the arguments to the module (if any). After careful

consideration, the spawn() command has been kept separate from the RSL and native

communications layer to allow heterogeneous invocation methods to exist without

altering the communication methods. Invocation and communication are radically

different tasks.

The spawn command invokes the module on the specified node and passes to that

module the extra information required for the check-in procedure that is embedded in a

wrapped code. The RSS always logs invocations and the return status from a spawn()

(invocation) call.

 39

MdoServer

The MdoServer is the code that actually performs the invocation of a module; it

handles the spawn call from the RSS. In this implementation of MARS, the MdoServer

is invoked by the UNIX inetd process when a call is made to the TCP/mux port (port

1), and “mdo_server” is the service requested. (The RSS knows to connect to the

TCP/mux port and to request the “mdo_server” service.)

The MdoServer accepts the arguments provided by the RSS, and forms a

command string with the module to be invoked, the check-in arguments, and any further

arguments to the module. The command string is passed to an exec() call, and the

MdoServer’s executable image is replaced with the requested module’s.

The MdoServer is a simple C code that only depends on the exec() call. It is a

simple program that could be replaced with another invocation method, such as one

dependent upon CORBA.

TCP/mux code

The TCP/mux service is available on many, but not all, UNIX operating systems.

For instance, SGI’s Irix 6.3 operating system has TCP/mux as an internal service, but the

same service is lacking in Sun’s Solaris 2.5.1 (both OSes were used during testing). As

such, we include a simple TCP/mux handler with the MARS distribution. For each

execution node requiring it, it can be compiled locally and installed by adding a single

line to the /etc/inetd.conf file. Documentation for doing so is included in the

MARS distribution.

 40

The code we include is based strictly on RFC 1078 [Lottor88]. It does not affect

system security or provide any advanced features, but it does provide a mechanism by

which modules can be easily spawned. Also, using the TCP/mux option for spawning

modules means that there does not need to be an MdoServer running constantly, and no

“well-known” TCP/IP port is required.

This generic approach is very different from having to “register” all participating

computers and running a special daemon which handles spawns (as is done in PVM).

Like PVM, in CHAIMS, all available megamodules are registered with a central

clearinghouse. We avoid this problem by having the leader specify which modules it

wants, and making the leader responsible for invoking existing modules. With the types

of applications built for MARS, this makes sense. Modules can be freely relocated

without having to alter or update the MdoServers, which is not true for other common

spawning mechanisms.

Leader Codes

The leader code is the module that coordinates all other modules in a

multidisciplinary program built by combining the functionality of modules from different

disciplines. In a program built from multiple modules, the leader is analogous to a

creature’s brain, while the other modules perform the other required bodily functions, at

the instruction of the brain. Leader codes can range from the simple to complex, and

consist of two main parts: the setup stage, and the execution stage. There could be other

stage designations, such as termination, but the setup and execution are of primary

 41

interest. The specification language portion of MARS consists of leader and sub-module

connection setup and execution.

The setup stage is where the modules that compose the “body” of an ensemble are

designated. They are added to a MdoModule object, the primary object manipulated by

the leader. Modules are added by specifying their location on the network and any

necessary I/O paths that they are initialized with. The following fragment illustrates both

the actual creation of an MdoModule called “leader” and the addition of two working

modules to the leader:

//setup leader module
MdoModule * leader = new MdoModule(transport, “Leader”);

//setup “smooth” sub_module
int smooth = leader->add_module(“smooth”);
leader->set_host(smooth, “ghengis.cs.uwyo.edu”);
leader->set_path(smooth,
“/export/home/mdo/matrix-loop/smooth”);

leader->set_args(smooth, “”, 0);
leader->set_file(smooth,(char*)”data.set”, OUT);

//setup “test_for_termination” sub_module
int test = leader->add_module(“test”);
leader->set_host(test, “conan.cs.uwyo.edu”);
leader->set_path(test,
“/export/home/mdo/matrix-loop/test_for_termination”);

leader->set_args(test, “”, 0);
leader->set_file(test,(char*)”data.set”, IN);
leader->set_file(test,(char*)”data.set”, OUT);

This example sets up a leader module, aptly named “leader”, and adds two sub-

modules, “smooth” and “test_for_termination”, to the set of modules controlled by

“leader”. The first call to leader->add_module() creates a new MdoModule object

pointed to by leader. This object will be used to reference a working module. After

that, calls to set_host(), set_path(), set_args(), and set_file() determine

 42

on which execution node9 the module should be executed, where the executable image for

the module is located on that execution node, what arguments the module should receive,

and what I/O paths to use by default. Notice that the two sub-modules are added to

“leader”.

To connect the module’s I/O streams and invoke the modules, the following code

is used:

leader->link(“data.set”, “data.set”);
leader->setup(spawn);

The link call may seem confusing with the name data.set appearing twice, but

the leader->link() call is smart enough to understand that the same name can be used

in multiple instances and matches the (“data.set”, IN) to a corresponding

(“data.set”, OUT) in another sub-module automatically. Programmers can

explicitly designate connections, and it is recommended they do so, but this example

shows the minimally requisite information. The leader->setup() call makes calls to

an RSS routine appropriate for spawning the modules and creates appropriate RSL

messages for naming I/O connections. The leader->setup() call also requests that

sub-modules form connections among themselves10.

9 An execution node consists of the resources required to run a program, generally thought of as a

CPU or machine.

10 The programmer is not responsible for recalling the underlying RSL routines. They are invoked

automatically by the SubModule object.

 43

Because of the design of the SubModule object, only this minimal set of

information was required to set up an actual leader with two sub-modules and all the

necessary connections. There are many connections hidden from the leader programmer,

including RSL connections from the leader to each sub-module for sending further

control messages to the sub-modules. The programmer does not have to worry about

these, either, as they are created and named automatically.

The following sample shows how easy it is to make something useful happen

(assuming of course the sub-modules do something useful):

//make smooth start procedure called “read_in_data”
leader->start(smooth, “read_in_data”);
while (done == 0) {

//make smooth run procedure originally called “main”
leader->start(smooth);

//make test run procedure originally called “main”
leader->start(test);

//get result of test_for_termination here
c_fscanf(file, “%d”, &done);

}

//make smooth run procedure called “write_out_data”
leader->start(smooth, “write_out_data”);

The first line of code causes the module called “smooth” to execute an internal

procedure called read_in_data11. After that, the wrapped__main routine of smooth

is invoked, by calling to leader->start(transport, smooth), without an

addition field. Afterwards, the sub-module “test” has its wrapped__main invoked. A

11 Remember that the wrapper has the ability to wrap any original internal procedure to allow

execution at any time. The original entry point (“main”) is not the only routines that can be invoked.

 44

status variable, done, is refreshed to determine if the loop should continue. Notice the

c_fscanf() used to read in the variable d. The variable can come from a disk-based

file, or from another source, such as (“data.set”, OUT).

When the loop is complete, there is a final call to leader->start

(transport, smooth, “write_out_data”), another method inside the module

“smooth”. Cleanup and termination of the sub-modules is very simple:

leader->end(); //that’s it

Viola! All loose ends are cleaned up with this one call. The leader understands

where its sub-modules reside and generates the calls necessary to effect graceful exits.

Wrapped modules also track which connections they initiate and close them as well.

This sample leader code is a demonstration of all that is required to invoke and

control two wrapped sub-modules. Leaders can be less complex or much more complex.

With the proper use of condition variables, and with steering code added to leaders, any

amount of execution control and dynamism is possible.

Summary

The primary goal of the MARS project is to build a runtime system to support

multidisciplinary applications. These applications are formed from collections of

modules that often include legacy codes, not just newly created modules. While MARS

supports legacy codes, it is still an excellent authoring system for distributed codes. The

working modules that form an ensemble cooperate in a heterogeneous execution

environment, frequently composed of clusters of workstations.

 45

MARS modules can be invoked as part of an ensemble or alone. As such, MARS

supports supports single-source coding, making code maintenance easier for ensemble

creators.

The runtime system supports dynamic invocation, termination, and realignment of

modules. Module distribution is a simple task; it does not require a registration step like

CORBA and other invocation strategies. While dynamic module realignment is a simple

task, dynamic redirection of the user data passed between modules is possible as well.

Primitives for conditional execution also exist in MARS.

Even with all these control considerations, performance is still central to MARS’

implementation. MARS does not add significant overhead for its control or data

communications to multidisciplinary applications. MARS can be used to distribute and

parallelize collections of otherwise stand-alone modules into cooperative ensembles.

MARS is designed to take expert knowledge embodied in multiple computer

programs and glue those programs together. The program ensembles formed by this

process are used to solve problems larger than any component module can solve.

 46

IV. Applications/Results

The chapter demonstrates four test ensembles constructed with MARS. The first

code, similar to the sample leader code in Chapter III, demonstrates a simple module that

does matrix smoothing coupled with a second module that tests the matrix for a

predefined level of smoothness. The code introduces the reader to the basic MARS

process and presents performance benefits gained by moving I/O from disk to direct

message passing between cooperating modules.

The second code presents MARS used to implement a pipeline parallelism

example. Three graphics filters are applied, in succession, to a series of images. The

three filters, which increase sharpness (is) in an image, posterize (po) an image, and

reduce noise (rn) in an image, are wrapped to become modules and then fed multiple files

from a leader code. The example shows the ease of constructing what could otherwise be

a complex pipeline and how that pipeline can dramatically improve performance.

The third example uses the identical wrapped modules from the second example

in an advanced arrangement to greatly enhance the performance of the graphics filters.

This extended pipeline parallelism test demonstrates how MARS can be extended to

include dynamically module invocation to overcome performance bottlenecks. This

example shows how ensembles can be easily rearranged without re-coding them.

The fourth and final example uses an actual scientific research code taken from

the biological sciences. In this example, we outline some of the limitations of the current

MARS version, but also demonstrate dramatic performance increases using our system.

This test ensemble, used in actual research, is a litmus test for the applicability and

 47

performance of MARS on legacy modules. This code is multidisciplinary, and all of the

modules were designed before the conception of MARS.

Simple Matrix Example

The first sample program constructed using MARS shows the basic steps required

to get an ensemble up and running. Also, we show how the MARS system can use one

module’s outputs to form a test condition that determines whether we execute another

module.

The basic program that will be wrapped here is a routine that smoothes an NxN

matrix. The initial program (before wrapping) looked like this:

//data structure to store matrix
int * data1[MATRIX_SIZE];

//routine to smooth matrix
int smooth(int x, int y, int i, int j, int * * data1,

int *total, int *count)
{
if (((x+i >= 0) && (x+i < MATRIX_SIZE)) &&

((y+j >= 0) && (y+j < MATRIX_SIZE))) {
*total += (data1[x+i][y+j]);
*count += 1;
return 1;

}
return 0;

}

//routine to read in matrix
int read_in_data (void) {
int x ,y;
FILE * file;

for (x = 0; x < MATRIX_SIZE; x++)
data1[x] = new int[MATRIX_SIZE];

file = fopen(“/export/home/mdo/loop/MDO/data.set”, “r”);
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {
fscanf(file, “%d “,&(data1[x][y]));

}

 48

fclose (file);
return 1;

}

//routine to write out matrix
int write_out_data (void) {
int x, y;
FILE * file;

file =
fopen(“/export/home/mdo/loop/MDO/result.data.set”, “w”);
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {
fprintf(file, “%d “,data1[x][y]);

}
fclose (file);
return 1;

}

//original code entry point
int main (void)
{
File * file;
int x, y;

int * data2[MATRIX_SIZE];
for (x = 0; x < MATRIX_SIZE; x++)
data2[x] = new int[MATRIX_SIZE];

read_in_data();
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {

int total = 0;
int count = 0;

for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth(x, y, i, j, &data1[0], &total, &count);

data2[x][y] = total/count;
}

for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++)
data1[x][y] = data2[x][y];

file = open(“data.set”, “w”);
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {
fprintf(file, “%d “,data2[x][y]);

}
close (file);
return 1;

 49

}

The code is very simple. A matrix is read from disk, smoothed, and then written

out to disk. The routine read_in_data() is simple enough that it could have been

written inline, but we did not do so to make a further point about local routines.

Likewise, write_out_data() is not used in the original program, but it will be used to

demonstrate how wrapped routines can be called arbitrarily and used to make MARS

leader programs simpler.

For now, it is not important to follow every detail of the matrix smoothing

program. Simply understand that there are four routines, smooth(), read_in_data(),

write_out_data(), and main(). The first step to converting the original code to a

MARS module is the wrapping process. We will wrap the original main()12 and the

write_out_data() routines with the following command:

wrap smooth.cc write_out_data –o smooth.wrap.cc

The wrapper is currently rather unsophisticated. The first argument to wrap must

be the name of the source file to be wrapped. Subsequent arguments are the names of

internal functions that require external references (i.e., write_out_data will have a

new entry point). Finally, if a “-o” is given, the argument following it is the name of the

output file (otherwise a default naming scheme is applied). After wrapping, code is

added to the original program, primarily consisting of calls to the initialization routines

12 Which is always done by default and automatically.

 50

and additional entry points specific to the module (those that could not be pre-compiled

into the runtime library).

After wrapping, the original code has changed very little. Critical sections of the

wrapped code would appear similar to the following:

//message transportation mechanism
rsl * trans;

//this was the original main, almost identical
int wrapped_main (void)
{
File * file;
int x, y;

int * data2[MATRIX_SIZE];
for (x = 0; x < MATRIX_SIZE; x++)
data2[x] = new int[MATRIX_SIZE];

for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {

int total = 0;
int count = 0;

for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth(x, y, i, j, &data1[0], &total, &count);

data2[x][y] = total/count;
}

for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++)
data1[x][y] = data2[x][y];

//notice the c_open() rather than open()
file = c_open(“data.set”, “w”);
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++) {
//notice the c_fprintf() rather than printf()
c_fprintf(file, “%d “,data2[x][y]);

}
//notice the c_close() rather than close()
c_close (file);

return 1;
}

 51

/***
BEGIN ADDED BY WRAPPER
***/
#include “message.h”
#include “rsl.h”
#include “rt.h”

//Process invalid requests
int invalid_request(rsl * sock, char * buffer)
{
int table_id;
table_id = sock->find_id_by_address(((RSmessage *)

buffer)->from_name, RSmessage *) buffer)->from_port);

sock->rsr(table_id, “invalid_request”, 1, buffer,
sizeof(buffer));

return 1;
}

//INVOKE OTHER (USER-DEFINED) ROUTINE
char * invoke_other(rsl * sock, char * buffer, int* size)
{
RSmessage * tempm = (RSmessage *)buffer;
char * info = NULL;

*size = 0;

//DYNAMIC CODE
if (strcmp((char*)&buffer[tempm->args[0]], “main”) == 0){
wrapped_main();

}
else if (strcmp((char*)&buffer[tempm->args[0]],

“read_in_data”) == 0) {
read_in_data();

}
else if (strcmp((char*)&buffer[tempm->args[0]],

“write_out_data”) == 0) {
write_out_data();

}
//END DYNAMIC CODE
else {
invalid_request(sock, buffer);

}

return info;
}

/***
* “NEW” MAIN ROUTINE
***/

 52

int
main(int argc, char ** argv)
{
int i, j;
RT * rt;
msg_cli * msg;
char buffer[20000];
char server[50];

int port;

trans = new rsl;
rt = new RT();
msg = new msg_cli(rt, rt->get_id());

change_mode(); //running in stand-alone or server mode

/**
* Initialization and Check-in procedure
**/
//connect to leader
i = trans->rsc((char*)argv[1], (int)atoi(argv[2]));
strcpy(server, trans->host_name());
port = trans->port_num();

/**
* Msg loop
**/
int quit = (_FINISH + 1);
while (quit != _FINISH) {
j = trans->poll_accept();
j = trans->poll_message(&i, buffer, 1);
if (j > 0) {
quit = msg->process(trans, buffer);
if (quit == _RUN)
invoke_other(trans, buffer, &j);

}
}

return (1);
}

There are few changes made to the original code by the wrapper. For the most

part, the wrapper adds code. The first addition made to the original code is the RSL

communications object, trans. The original main() routine is virtually untouched,

except that the calls to open(), fprintf(), and close() have been replaced with

 53

their respective counterparts from the file I/O layer, c_open(), c_fprintf(), and

c_close().

After these minor changes comes the code added by the wrapper. Most of it is

generic wrapper code, the same for all wrapped modules, but some of it is generated

dynamically, according to which routines that the user has specified require new entry

points. The first added procedure is the invalid_request() procedure. While this

could have been a static method in the Message Processing Layer object, we have found

that in many cases a user-defined error handler for invalid requests can greatly enhance

the ability to debug code and log errors at runtime. Since the invalid_request()

handler is not a black-box in the runtime system, the ensemble programmer can change it

to suit his or her needs. After a program has been wrapped, the ensemble programmer is

free to customize it.

The second added routine is the procedure invoke_other(). The function of

this procedure is to handle all message types not defined in the MPL specification. In

this example, invoke_other() is responsible for the invocation of

wrapped__main(), read_in_data(), and write_out_data(). By moving all

external invocations (including wrapped_main()) to this procedure, the wrapper can

wrap codes that do not include an original main() and still call routines from those

codes. These particular entry points are very simple, as there are no arguments to the

original procedures, but the wrapper takes care of casting portions of an RSMessage to

procedure arguments. Because the wrapper casts portions of RSMessage directly to

procedure arguments, the arguments must always be pre-aligned on word boundaries.

Recall that, as discussed in Chapter II, word alignment is a built-in function of the

 54

Remote Service Layer. By using pre-aligned RSMessage and direct argument casts from

those messages, we save the creation of local memory space for the arguments and the

corresponding memcpy()s required to fill those arguments.

The final addition made by the wrapper is the new main() routine. This new

main() is the same for all wrapped MARS modules. Initially, three objects are declared

and/or initialized, trans, rt, and msg. These objects correspond to the RSL, Router

Table, and Message Processing Layer, respectively.

After these objects are initialized, a call to change_mode() is made. If the

program is running as part of a MARS ensemble, change_mode() does nothing and

allows the program to continue. Command line arguments indicate in which mode a

program is running. If the program is not being run as part of a MARS ensemble, a call

to wrapped__main() is made, using the appropriate command-line arguments, and then

the program exits. This behavior should be identical to how the original (non-wrapped)

code would act.

If the module is not running in stand-alone mode (meaning it made it past the

change_mode() call), then it immediately attempts a connection to the module that

spawned it. This call (i = trans->rsc()) is non-blocking; the module may

immediately enter its control loop and wait for other messages or incoming connections.

This message loop is no more complex than the loop shown previously (Chapter

II), and accomplishes the same tasks. It polls for incoming messages and connections

(always as if they are distinct event types, which they may not always be) and, if there is

such a message, processes the message. This particular instantiation of the control loop

 55

has no special exit code, but when the loop exits upon receiving a directive from another

module, there are cleanup routines in the Message Processing Layer that are always

called. Currently, the wrapper does not accept arbitrary code blocks for exit routines at

wrap time, but such support would be easy to add. We have not yet seen a case that

requires such unique exit routine support, but it can be added directly by an ensemble

programmer.

Once the module has been wrapped, it is ready to be used by itself (as it would

have been previously, in stand-alone mode), or it can be used in conjunction with a leader

code. For this example, we are going to wrap a second module and build a simple leader.

The combined set of modules will allow us to use the output of the second module as a

conditional variable and demonstrate simple conditional execution within MARS.

Leader Module

Test For Termination
Module

Smooth Module

Input
File

Output
File

RSmessage line

Data Line

Figure 4. Matrix example

 56

Figure 4 shows what the final module arrangement will be. The leader module

will guide the execution flow of the “smooth” and “test for termination” modules.

RSMessages are passed along the solid, bi-directional arrows. While these connections

are bi-directional, implementers can treat them as unidirectional paths without the need to

poll for messages received on the incoming “end” of a connection13. Data lines are

drawn as unidirectional, though they can be used as bi-directional paths in hand-written

modules. However, since these data paths are going to be automatically connected by the

MdoModule within the leader code, they will be unidirectional. The leader code will

always generate two unidirectional paths to simulate a bi-directional data connection.

The reason is that if only one side of a bi-directional connection is redirected, it would

require significantly more changes to renegotiate connection tables, without the

inefficiency of removing and then reconnecting the original connection.

Also, data paths are much more likely to be unidirectional in nature. Even when a

program writes to a file and then reads from the same file, there is generally a close()

and re-open() event to reset file pointers.

The leader will spawn the two working modules. As such, there is no need to

explicitly create either of the RSMessage lines shown in Figure 4. They are the minimal

paths which will always be created during the spawn process. When a spawned module

is created, it always “checks-in” with its creator, thus automatically establishing a line of

communication with its creator.

13 A unidirectional connection is a actually a bi-directional connection where one end of the

connection is simply ignored.

 57

The data lines seen in Figure 4 are explicitly created by the leader. There are two

routines in the smooth module to read and write data to and from disk. Those I/O

locations will not be redirected by the leader, but the smooth routine also produces

interim output which went to disk in the pre-wrapped code. The leader will set up a data

path to direct this output to the “test for termination” module. The test for termination

module originally read its input from disk and wrote its output to a file on disk as well.

The leader will instruct the test for termination module to receive its input from the

smooth module and send its output directly to the leader. Finally, the leader will use the

information received from the test for termination module to determine whether to

continue execution.

Here is the critical code for test for termination module:

int test_for_smoothness(int x, int y, int i, int j,

int * * data1)
{
if (((x+i >= 0) && (x+i < MATRIX_SIZE)) &&

((y+j >= 0) && (y+j < MATRIX_SIZE))) {
if (abs((data1[x][y]) - (data1[x+i][y+j])) <=

SMOOTHNESS)
return 1;

return 0;
}
return 1;

}

int wrapped_main (void) {
File * file1, *file2;
int x, y;
int * data1[MATRIX_SIZE];
for (x = 0; x < MATRIX_SIZE; x++)
data1[x] = new int[MATRIX_SIZE];

file1 = copen(“data.set”, “r”);
for (x = 0; x < MATRIX_SIZE; x++)
for (y = 0; y < MATRIX_SIZE; y++)
cfscanf(file1,”%d”,&(data1[x][y]));

cclose (file1);
int smooth = 1;
for (x = 0; (x < MATRIX_SIZE) && (smooth == 1); x++)
for (y = 0; (y < MATRIX_SIZE) && (smooth == 1); y++) {

 58

for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth = test_for_smoothness(x, y, i, j,

&data1[0]);
}

file2 = copen(“result.of.termination.test”, “w”);
if (smooth == 1)
cfprintf(file2,”%d “,1); cflush(file2);

else
cfprintf(file2,”%d “,0); cflush(file2);

cclose (file2);
return 1;

}

This code originally read the data representing a matrix from disk, tested to see

whether it was “smooth enough”, and then wrote its output to another file on disk. The

leader can redirect this output because the file I/O routines have been replaced with

MARS system primitives.

In summary, this is what is going to happen with these modules:

1. The leader will invoke the smooth and test for termination modules
2. The smooth module will read a matrix from disk
3. The smooth module will smooth the matrix and send the matrix to the test

for termination module
4. The test for termination module will check to see if the matrix is “smooth

enough”, and send the result to the leader
5. The leader will repeat from step 3 or proceed to step 6, depending on the

result of step 4
6. The smooth module will write the final smoothed matrix to disk
7. The leader will terminate all modules including itself

To achieve these steps, a leader code is written with the above seven steps in

mind. The following code is the actual leader, with the seven steps noted in the

comments:

rsl * trans;
int

 59

main (int argc, char ** argv) {
//setup transport layer. RSL in this case
rsl * transport = new rsl();
rss * spawn = new rss();
trans = transport;

//setup leader module
MdoModule * leader;
leader = new MdoModule(transport, “Leader”);

//setup “smooth” sub_module
int smooth = leader->add_module(“smooth”);
leader->set_host(smooth, “ghengis.cs.uwyo.edu”);
leader->set_path(smooth,
“/export/home/mdo/loop/MDO/smooth”);

leader->set_args(smooth, “”, 0);
leader->set_file(smooth,(char*)”data.set”, OUT);

//setup “test_for_termination” sub_module
int test = leader->add_module(“test”);
leader->set_host(test, “ghengis.cs.uwyo.edu”);
leader->set_path(test,
“/export/home/mdo/loop/MDO/test_for_termination”);

leader->set_args(test, “”, 0);
leader->set_file(test,(char*)”data.set”, IN);
leader->set_file(test,(char*)”data.set”, OUT);

//connect data paths and start modules ((STEP 1))
leader->local_cli_conn(transport->host_name(),

transport->port_num(), 1,(char*)”data.set”,
(char*)”data.set”);

leader->link(“data.set”, “data.set”);
int status = leader->setup(transport, spawn);
File * file = copen(“data.set”, r”);
int done = 0;
change_mode();

//read-in data ((STEP 2))
leader->start(transport, smooth, “read_in_data”);
while (done == 0) {

//make smooth execute ((STEP 3))
leader->start(transport, smooth);

//make test_for_termination execute ((STEP 4))
leader->start(transport, test);

//get result of term test here ((STEP 5))
cfscanf(file, “%d”, &done);

}
cclose(file);

 60

//make smooth write out matrix to disk ((STEP 6))
leader->start(transport, smooth, “write_out_data”);

//end all modules ((STEP 7))
status = leader->end(transport);
return 1;

}

Notice that the seven steps of the process are highlighted in the commented leader

code. Once step one is completed, where the modules are setup and data paths are linked,

the other six steps in the process are done in 8 total statements (not including the requisite

return statement). With proper setup, each stage of a process, regardless of complexity,

can generally be achieved in about one line14. Of course with added dynamism, the

leader’s complexity grows, but the leader can be very simple or very complex, at the

user’s discretion. In this leader, we use static connection names, because there will only

ever be two working modules, and they are always dependent upon each other. We did

not take full advantage of MARS’ capability to call by modules by name.

Performance is an important consideration with any runtime system. In this

simple example, we achieved a considerable decrease in overall execution time, primarily

attributable to using network I/O rather than file I/O.

Figure 5 shows the first set of results from the simple matrix example. The

platform used for testing consisted of two Silicon Graphics O2 workstations, with R5000

CPUs, running the Irix 6.3 operating system. The machines are connected with 155M/bit

14 This claim is anecdotal, based on the examples presented here. Of course, ensemble

programmers could have more complex routines, requiring many more lines per step.

 61

ATM cards, emulating TCP/IP. Each workstation has sufficient RAM to hold all

modules in memory.

Each matrix consisted of 10,000 integer elements, and was generated using the

naive rand() function, available in most UNIX system libraries. The matrix was

smoothed in such away that no two adjacent matrix element values differed by more than

100. Coincidentally, for the initial random seed chosen, the initial matrix required 100

iterations of the smoothing routine before it was “smooth enough”.

Timings were done using the /bin/time program available in Irix 6.3. Also, on

the other platforms used, including Solaris 2.5.1, the /bin/time program was always

available, and always the basis of timing. Each program in our test suite had a significant

runtime (>10 sec. total time), so the resolution of /bin/time was adequate. On the SGI

and Linux implementations, /bin/time gives two significant digits of accuracy after the

decimal, the Solaris implementation gives only one.

For the original version of the code, a simple leader was written to coordinate the

execution, and calls to system() were repeatedly used to invoke the smooth and test for

termination modules. This is similar to the methods we encountered with several

scientific ensembles tied together by hand. In particular, this was the method used in

practice in the scientific code wrapped in the biology model. For the MARS version, one

single-CPU machine was dedicated to both the leader and the test for termination module,

and a second machine was dedicated to the smooth module.

 62

Run 1 Run 2 Run 3 Average
MARS real 22.01 21.66 21.55 21.74

user 0.14 0.14 0.13 0.14
sys 0.25 0.25 0.25 0.25

ORIGINAL real 36.35 34.17 32.52 34.35
user 16.31 16.31 16.31 16.31
sys 5.41 5.44 5.46 5.44

Figure 5. SGI results from matrix example

Figure 5 shows that our system provided a reasonable increase in performance on

two levels (all times are in seconds). First, the total execution time of the original setup

was 58% greater than the MARS modules. Second, the overhead of the leader code was

drastically reduced as can be seen by the dramatic reductions in user and system time15.

The method of controlling the program should not be a significant consumer of system

resources, which it is in the original example. As can be seen from these results, the

relative overhead of our leader code is very low.

Run 1 Run 2 Run 3 Average
MARS real 28.4 28.4 28.4 28.40

user 0.1 0.0 0.0 0.03
sys 0.0 0.1 0.0 0.03

ORIGINAL real 55.2 55.3 56.8 55.77
user 27.5 27.6 27.6 27.57
sys 4.9 5.1 5.0 5.00

Figure 6. Sun results from matrix example

Figure 6 shows the results when the experiments were performed on a set of Sun

Ultra 2 workstations. They were also networked with TCP/IP over ATM, similar to the

15 This table shows the timings of the respective leader codes, in which total time of the leader is

the same as the total time of all associated modules.

 63

SGIs. The Suns were running Solaris 2.5.1. Each workstation had sufficient RAM to

hold all modules in memory.

In this experiment, the original program setup takes 96% longer than the MARS

modules. This overall speed-up is primarily attributable to removing disk reads and

writes, only pushing the data to secondary storage at the end of the execution. The

decreased CPU usage by the leader code is even better than seen on the SGI platform.

It is important to note that no further optimizations were performed on the Sun

platform (beyond those done on the SGIs). On all platforms used for testing, identical

code libraries and modules were used, with no compiler optimizations turned on. The

standard MIPS and Sun compilers (“CC”) were used throughout, to compile the runtime

modules and all test cases.

This example shows how the MARS system is used, starting with source code for

a simple module, through the construction of the leader module. Significant performance

gains are evident, even without altering the algorithms of the working modules or their

parallelism. Also, this setup shows how effective conditional execution can be achieved

when tying multiple modules together.

When the user takes advantage of inherent parallelism and leverages that

parallelism with the MARS system, even greater gains are possible. We demonstrate this

potential in the next two sections. Also, in the third example, the extended pipeline

parallelism example, we show the true interoperability of modules in a heterogeneous

execution environment.

 64

Pipeline Parallelism Example

This example will show how the MARS system was used to wrap three similar

codes into an efficient parallel image processing system. We will use three graphics

filters and turn them into MARS modules. As noted earlier in this chapter, the three

filters increase sharpness (is), posterize (po), and remove noise (rn) from 8-bit bitmap

images.

This experiment uses 40 8-bit black and white images, each 256x256 pixels in

size. The images are fed in succession to the three filters. The three filter modules are

combined to achieve image compression by bit reduction. The first module, is, is applied

to refine an images’ edges. The second module, po, reduces the images’ bit depth, using

an un-weighted naive heuristic. The third module, rn, reduces excessive noise by looking

at disparity in neighboring byte values, produced by the bit reduction step.

These three modules are composed with a leader code to produce the ensemble

shown in Figure 7.

 65

Increase
Sharpness
Module

Data Line

Input
Files

Output
Files

Leader
Module

Write
Data
Module

Posterize
Module

Reduce
Noise
Module

Figure 7. Pipeline parallelism example

The only message lines in this collection are those automatically created by the

leader when the modules check in and are omitted from Figure 7. Since these modules

do not send control messages to each other, no additional communication lines are

necessary.

In this example, we add a fourth module, one written to handle the disk I/O at the

end of the execution path. It would be simple enough to allow the reduce noise module

to write the images to disk, but this additional helper module’s function will become

apparent in the next example in this chapter.

The following figures show each stage of the transformation of one of the original

images passed through this MARS module collection, as the three filters are applied to it.

 66

Figure 8. Original image

Figure 9. Increased Sharpness

 67

Figure 10. Posterized image

Figure 11. Reduced noise

Figure 8 shows the original image. Changes to the image are often subtle and

non-obvious. To best see the changes from Figure 8 to Figure 9, look at the feather in the

subject’s hat. There is new delineation among the individual strands of the boa. To see

the posterization effect, where the bit-depth of the image is reduced, look at the subject’s

left cheek. There are several distinct bands of color, where there was a previously

smooth color gradient. The final changes are also difficult to see, though the feathers

 68

again provide clues. From Figure 10 to Figure 11, the feathers are once again less

distinct, as they were in the original image. The image differences may be difficult to

spot, but the purpose of the collected filters is to reduce the bit-depth and resulting size of

the image without a noticeable degradation in image quality.

The following code is the leader written to control these four modules:

int main (int argc, char ** argv) {
//setup leader module
MdoModule * leader = new MdoModule(transport, “Leader”);
//setup “is” sub_module
is = leader->add_module(“is”);
leader->set_host(is, “rodmanf”);
leader->set_path(is,

“/export/home/mdo/mdo/tests/II/mdo/sunis”);
leader->set_args(is, “”, 0);
isi = leader->set_file(is,(char*)”graphic.dat”, IN);
iso = leader->set_file(is,(char*)”graphico.dat”, OUT);
//setup “po” sub_module
po = leader->add_module(“po”);
leader->set_host(po, “kublaf”);
leader->set_path(po,

“/export/home/mdo/mdo/tests/II/mdo/sunpo”);
leader->set_args(po, “”, 0);
poi = leader->set_file(po,(char*)”graphic.dat”, IN);
poo = leader->set_file(po,(char*)”graphico.dat”, OUT);
//setup “rn” sub_module
rn = leader->add_module(“rn”);
leader->set_host(rn, “attilaf”);
leader->set_path(rn,

“/export/home/mdo/mdo/tests/II/mdo/sunrn”);
leader->set_args(rn, “”, 0);
rni = leader->set_file(rn,(char*)”graphic.dat”, IN);
rno = leader->set_file(rn,(char*)”graphico.dat”, OUT);
//setup “wr” sub_module
wr = leader->add_module(“wr”);
leader->set_host(wr, “kublaf”);
leader->set_path(wr,

“/export/home/mdo/mdo/tests/II/mdo/sunwr”);
leader->set_args(wr, “”, 0);
wri = leader->set_file(wr,(char*)”graphic.dat”, IN);
//start clients
leader->local_ser_conn(transport->host_name(),
transport->port_num(),1,(char*)”graphic.dat”, isi);
leader->link(iso, poi);
leader->link(poo, rni);
leader->link(rno, wri);

 69

status = leader->setup(transport, spawn);

FILE * f;
FileType * l = new FileType(trans);
unsigned char input;

char * file = new char[50];
strcpy(file, “graphics/g00.dat”);

for (int done = 1; done <= 40; done ++) {
f = fopen(file, “r”);
l->c_fopen(“graphic.dat”, C_WRITE);
//execute all modules
leader->start(transport, is);
leader->start(transport, po);
leader->start(transport, rn);
leader->start(transport, wr);

//read-in data and send to clients
for (int x = 0; x < GR_SIZE; x++)
for (int y = 0; y < GR_SIZE; y++) {
fread(&input, 1, 1,f);
l->c_fwrite(&input, 1);

}
fclose(f);
if (done % 10 == 0) {
file[10]++;
file[11] = ‘0’;

}
else
file[11]++;

l->c_fclose();
}

//synchronous end
int status = leader->end_reply(transport);
return 1;

}

Most of this leader code, once again, is devoted to locating the working modules

on the network. A significant portion of code is also used to read data into the leader. As

such, the leader has become an active participant in this collection of modules. Better

performance could be achieved if the increase sharpness module read in the data, as it

would not have to be passed from the leader to that module. We chose not do this, as the

 70

leader would have had to send forty16 messages to rename I/O connections to the increase

sharpness module, significantly increasing the complexity of the collection, and

diminishing potential performance gains. Since the data files are only 65536 bytes (64k),

the overhead of having the leader pass the data an extra time is not too significant.

Also notice the last call the leader makes, leader->end_reply(). This is a

synchronous routine. This is different from the call in the matrix smoothing example. In

the matrix smoothing leader, the sub-modules were terminated with an asynchronous

leader->end() call. In the matrix smoothing example, the leader terminates as soon

as its job is done, not waiting for the client modules to terminate (though they will do so).

The leader->end_reply() waits for all client modules to terminate before the leader

exits. As such, we could increase performance by using an asynchronous leader-

>end() call, allowing the client modules to terminate on their own time. To make the

comparisons to the original filters fair, we wait until the final module has committed its

data to disk, ensuring that all files are stable.

Run 1 Run 2 Run 3 Average
MARS real 35.6 35.5 35.9 35.67

user 5.1 4.9 5.1 5.03
sys 1.2 1.3 1.2 1.23

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37

Figure 12. Pipeline parallelism results

16 One for each image processed.

 71

This experiment was run on the Sun testbed. Figure 12 shows the execution times

of the original setup and the MARS modules. Results are similar to the matrix smoothing

setup. Once again, the original setup takes about 94% longer than the MARS setup. The

system and user times are proportionately longer than in the matrix example, but that is

expected since this leader is an active participant in this setup, reading the data files from

disk.

With a three stage pipeline, a two-thirds reduction in time would be expected. In

this case there was only a one-half reduction in time. With a bit of module profiling, the

reason became clear. The increase sharpness module and the reduce noise module take

significantly more computation time than the posterizing module. Since those two stages

dominate the overall process time, a simple pipeline could only hope to double

performance.

With the groundwork for this set of modules in place, we will now demonstrate

additional features of MARS that facilitate extending existing setups.

Extended Pipeline Parallelism Example

After improving the performance of the original graphics modules by pipelining

and then profiling the resulting collection, it became obvious that a different setup was

required for optimal performance. Since the first and third stages (is and rn) of the

overall process dominated the execution times, we multiplied the number of execution

nodes at those stages. Figure 13 shows the new module configuration.

 72

Increase
Sharpness
Module

Data Line

Input
Files

Output
Files

Leader
Module

Write
Data
Module

Posterize
Module

Reduce
Noise
Module

Increase
Sharpness
Module

Reduce
Noise
Module

Figure 13. Partial 2-way pipeline

With MARS, moving from the arrangement in Figure 7 to the arrangement in

Figure 13 is simple. The leader code remains virtually unchanged, except for the actual

control loop. Two new module (one each, is and rn) specifications are added to the

leader, and the leader also adds the required data paths. The control loop in the leader is

almost identical, with the data read-in passed alternately to the two increase sharpness

modules. The posterize module alternates data to the two noise reductions modules in the

same way:

for (int done = 1; done <= 40; done ++) {
f = fopen(file, “r”);
l->c_fopen(fn, C_WRITE);
leader->start(transport, isid[is]); //index added here
leader->start(transport, po);
leader->start(transport, rnid[rn]); //index added here
leader->start(transport, wr);
for (int x = 0; x < GR_SIZE; x++)

 73

for (int y = 0; y < GR_SIZE; y++) {
fread(&input, 1, 1, f);
l->c_fwrite(&input, 1);

}
fclose(f);
//use the indexes to rename outputs here
if (done % 2 == 0) {
fn[7] = ‘1’;
is = rn = 0;

}
else {
fn[7]++;
is++;
rn++;

}

if (done % 10 == 0) {
file[10]++;
file[11] = ‘0’;

}
else
file[11]++;

l->c_fclose();
}

The comments in the above code show the only changes to the control loop. Two

simple indexes are added to determine which parallel modules to execute. The other

code fragment (indicated with a comment) toggles both the output path and which

modules to execute. Those are the only changes made.

To execute the new MARS module collection efficiently, more CPUs were

required. To handle the extra load, the leader and write-out modules were placed on the

SGIs used in the matrix smoothing example, while the working modules were placed on

the Sun execution nodes. This experiment also demonstrates execution using

heterogeneous platforms. The results are summarized in Figure 14.

 74

Run 1 Run 2 Run 3 Average
MARS real 23.65 24.06 23.12 23.61

user 4.39 4.39 4.41 4.40
sys 2.39 2.23 2.26 2.29

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37

Figure 14. Partial 2-way pipeline results

Figure 14 shows the results of adding two more modules to the collection. The

original setup now takes 194% longer than the MARS module collection, or about three

times as long. The new setup is faster than the simple pipeline, 23.61s versus 35.67s, a

savings of about 12.06s, or faster by just more than one-third of the simple pipeline’s

total time. Finally, the two-stage pipeline performance about is three times better than

the original setup.

This stage-depth parallelism can be arbitrarily extended at any point. We extend

the example by adding another is and another rn module. The leader code requires new

information to locate the new modules on the network, but really nothing more. The

control loop in the leader is changed by only one character. In the loop, the fragment if

(done % 2 == 0) is changed to if (done % 3 == 0) to indicate that there are

three copies of the parallel modules, rather than two. That is the only change. The

resulting configuration is shown in Figure 15.

 75

Increase
Sharpness
Module

Data Line

Input
Files

Output
Files

Leader
Module

Write
Data
Module

Posterize
Module

Reduce
Noise
Module

Increase
Sharpness
Module

Reduce
Noise
Module

Increase
Sharpness
Module

Reduce
Noise
Module

Figure 15. Partial 3-way pipeline

As expected, the execution time is again decreased. The results from the partial

three-way pipeline are shown in Figure 16.

Run 1 Run 2 Run 3 Average
MARS real 19.02 18.85 19.03 18.97

user 4.39 4.42 4.44 4.42
sys 2.63 2.51 2.53 2.56

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37

Figure 16. Partial 3-way pipeline results

As before, the runtime is reduced. The amount of time reduction by adding this

extra set of modules is not as large as the reduction from the first extra set added. (The

original code still takes 265% longer than the MARS code) A single leader reading

 76

inputs cannot keep the pipeline completely filled, nor can a single data writing module

commit the data to disk fast enough to scale further, without adding copies of po and the

write-out module. Three is and rn stages are all this pipeline can support. Of course, if

there were more data readers and writers, and if enough execution nodes were available,

the problem could be easily scaled to any arbitrary level, with minimal changes to the

leader code. This flexibility allows various scalable problems to be mapped onto

numerous configurations of processors with minimal changes to module codes.

This example has demonstrated several more elements of the MARS design.

First, MARS has been built to make scaling problems simple. Once a problem has been

broken into its parallel components, arbitrary scaling at each stage of the pipeline is a

relatively easy process. Also, the partial two- and three-stage pipelines show the support

for heterogeneity in the MARS system. The modules in those examples were executed

on different platforms, while data and control messages required no alteration. Since the

data in the examples was binary, no conversion between platforms was required17 either.

Biology Model

Description

The MARS system test would not be complete without applying it to an actual

scientific MDO code. Each of the codes tied together by hand is unique, and handwritten

codes using similar modules vary widely in implementation method and performance.

17 In the matrix smoothing example, the matrix values were integers. The SGIs and Suns have like

byte-ordering (endian-ness) for type int, so no data conversion was necessary.

 77

The system we chose to test MARS has three primary modules, including a handwritten

leader-like code [Hunt96].

A complete description of the code we applied the MARS system to can be found

in “Global net carbon exchange and intra-annual atmospheric CO2 concentrations

predicted by an ecosystem process model and three-dimensional atmospheric transport

model” [Hunt96]. This is the abstract from that document:

A generalized terrestrial ecosystem process model, BIOME-BGC (for BIOME
BioGeoChemical Cycles), was used to simulate the global fluxes of CO2 resulting
from photosynthesis, autotrophic respiration, and heterotrophic respiration. Daily
meteorological data for the year 1987, gridded to 1° by 1°, were used to drive the
model simulations. From the maximum value of the normalized difference
vegetation index (NDVI) for 1987, the leaf area index for each grid cell was
computed. Global NPP was estimated to be 52 Pg C, and global Rh was estimated
to be 66 Pg C. Model predictions of the stable carbon isotropic ratio 13C/12C for
C3 and C4 vegetation were in accord with values published in the literature,
suggesting that our computations of total net photosynthesis, and thus NPP, are
more reliable than Rh. For each grid cell, daily Rh was adjusted so that the annual
total was equal to annual NPP, and the resulting net carbon fluxes were used as
inputs to a three-dimensional atmospheric transport model (TM2) using wind data
from 1987. We compared the spatial and seasonal patterns of NPP with a
diagnostic NDVI model, where NPP was derived from biweekly NDVI data and
Rh was tuned to fit atmospheric CO2 concentrations for 20° to 55° N, the zone in
which the most complete data on ecosystem processes and meteorological input
data are available. However, in the tropics and high northern latitudes,
disagreements between simulated and measured CO2 concentrations indicated
areas where the model could be improved. We present here a methodology by
which terrestrial ecosystem models can be tested globally, not by comparisons to
homogeneous-plot data, but by seasonal and spatial consistency with a diagnostic
NDVI model and atmospheric CO2 observations.

In the original system, the leader was known as “gessys”. The gessys module

served the same role as a leader module in a MARS ensemble. The other two working

modules were labeled climnew and globebgc. Some of the data transfers and module

invocations performed by the gessys code were achieved with the following fragment:

system(“./climnew”);

 78

system(“./globebgc”);
system(“cat grid.day >> newout.day”);
system(“cat grid.grw >> newout.grw”);
system(“rm -f grid.mtc”);
system(“rm -f grid.clm”);

The three modules were wrapped and tied together into a MARS ensemble. The

ensemble is shown in Figure 17. The disk-based output was left in the globebgc

module. The data files generated for a single run were very large (over seventy

megabytes) and took a significant amount of the total runtime to write out. The output

was left on secondary (disk) storage in the MARS implementation because it was also

available after the original system ran.

Leader Module
(formerly “gessys”)

Climnew ModuleGlobebgc Module

Input
File

Output
File

RSmessage line

Data Line

Figure 17. Biology module arrangement

 79

Implementation Problems

The was a series of problems discovered when wrapping the biology code. In

overcoming them, we extended the functionality of MARS and learned ways to overcome

similar problems with other legacy MDO codes.

The first problem was that one of the modules was written in Pascal. The MARS

system does not understand Pascal source code18. As such, a freely available conversion

utility, p2c, was used to convert the module into C source code. The conversion to C

source code was not entirely successful after the automatic conversion process, but was

close. As such, little additional work was required to get the output from the C-based

version to agree with the output from the Pascal version. After conversion to C, the

compiled module code was already faster than the original Pascal version. To correct for

this compiler advantage, the timings presented for the “original” MDO code are actually

the timings from the code compiled after conversion to C. This corrects for any

differences due to language or compiler. The same compiler was used for the disk-based

and MARS-based test cases.

The second problem we encountered involved files that were read multiple times.

This was especially problematic if an output file, previously sent to disk, needed to be

read in more than once by a second module (e.g., one file had to be read twice after being

committed to disk). There are two obvious solutions to the problem: buffer the file

locally and send it a second time, or send its data twice, over two different data lines.

The reason the data would have to be sent over two different virtual data connections is

18 See the chapter on future work for further discussion of the language problem.

 80

that the data needs to be both ordered and complete. Given the ease with which

connections can be dynamically renamed, sending data out over two lines does not

present a problem to the module reading in the data. Rather than developing a new

method to buffer a potentially large file locally and then re-sending it, we chose to use

two connections and to write the data two times, without local buffering. The biology

module read a very small file twice, so this was an appropriate solution. In the original

code, the file grid.dat was read in twice and output twice as well.

Of course, there is no reason for a stable file must be read twice by the same

program. The data can always be stored in local variables, or the file can be stored in

memory and accessed a second time without looking to disk. There are times when

writing a second copy of a large file to the network can be a problem, especially when the

second output stream is not accessed until the first is completely consumed. This can

cause blocking to occur in the data writer when system buffers on the receiver’s end are

full. As a work-around to that problem, the data buffer mentioned in Chapter III was

developed. It allows files of arbitrary size to be buffered online, preventing modules

writing to the network from blocking while waiting for their data to be consumed.

A third problem also involved the grid.dat file. In addition to being read twice

by the globebgc program, it was read a third time by the climnew module. The

solution to this problem was simple; a third copy of the file was output to the network,

with a new destination. The real problem this presents is that the way these virtual files

are treated by the network are different from how they are treated on disk. Once a file

goes to disk, it can be used as if it were stable; it does not have to be recreated whenever

it is needed. It may be accessed one time, perhaps a multiple times, or perhaps never. At

 81

wrap time, the wrapper cannot “know” that an output file will be accessed multiple times

or by multiple modules. The programmer is responsible for this consideration. We

cannot foresee any automated solution to this problem without simply implementing a

true file system over the network, which would require stable storage (in the form of

disks) to store all the potential information (thus defeating the purpose of the network

abstraction). Since each MARS ensemble does not require a complete file system, some

analysis by the programmer is warranted to work around this multiple-file-open problem,

thus preserving the system performance.

The fourth problem we encountered was flushing output at the proper time. If

data was flushed too often, the amount packet and header information dominated amount

of actual data, and the network was unnecessarily inundated with excess information. If

the data was flushed too rarely, modules depending on particular data could stall, slowing

(or deadlocking) the entire MARS collection. Data written to the network using the file

I/O layer is actually buffered locally first, and eventually written to the network.

Currently, since there is no threading in the I/O handlers, it is not possible to flush data

except when an explicit call to a file I/O routine is made. Data is flushed at three points:

when the local data buffer is full, when an explicit call to c_flush() is made, and when

a virtual file is closed. The problem we encountered is that receiving modules can be left

waiting for essential data, especially when two modules pass small amounts of data back

and forth, and the modules are mutually dependent on each other’s data. To solve this

problem, we manually added c_flush() calls to the biology code after large blocks and

loops which contained output statements. It was found that, in almost every case, these

loops and blocks represented strongly correlated data elements and that flushes solved

 82

dependency problems. In most codes, flushing should not be a significant problem, as it

is unlikely that independently developed modules would have mutual dependencies.

The mutual data dependencies were created because these modules were intended

to operate as an integrated system, and dependencies were created when they were

originally tied together by hand.

The fifth problem we had was with the I/O done as printf() and scanf()

calls. Virtual printf()s are available by default, and virtual scanf()s can be easily

constructed by using the stdargs or varargs library routines. On the other hand, some

things are still very difficult to do. For instance, performing a scanf() to read an entire

line, when only half the line has been received over the network, causes catastrophic

problems. Since network transmissions occur in packets with size determined by TCP/IP,

perhaps only half of a single printf() string would be transmitted in one packet. If that

packet is read in by the native transport layer, and the program then tries to scan an entire

line out of that string, what occurs? Blocking with no chance of return.

To work around this problem, we sent output elements as their binary equivalent,

with the size of the argument known at runtime. This required some additional work to

guarantee that data would be sent and received properly, but it is a rather simple process

to convert an integer written as a string to one written in binary. Of course, for

interoperability and consistency, any final output files committed to disk by the original

code are still written in the same form by MARS. It is just the data written between

modules that has been converted to binary (when it is not already binary).

 83

This conversion of the output to an interim binary form lead to the sixth problem:

precision. Since some data was originally written to disk and then re-read from disk,

binary sends could lead to differences in output precision. For example, if a type double

element whose true value was “6.125” was written to disk with only one place of

precision, it would be stored as “6.1”. If it was later read from disk into another element

of type double, its value would certainly not still be “6.125”. On the other hand, if the

data were sent between the modules in binary form, the values would be identical on both

ends, and no precision would be lost. Rather than waste precious cycles losing precision

to guarantee that all outputs agreed exactly, we chose to treat the increased accuracy as

an acceptable side-effect.

Results

The three modules were executed on the SGI and Sun test-beds. They were first

run on both test-beds using a limited data set. They were also executed on the SGI test-

bed with the full data set (70+ megabytes of data) used in the literature that originally

presented the biology model. The results are shown in Figure 18, Figure 19, and Figure

20.

Run 1 Run 2 Run 3 Average
MARS real 23.3 23.6 23.9 23.60

user 2.0 2.4 2.5 2.30
sys 0.5 0.7 7.0 2.73

ORIGINAL real 49.0 49.2 48.8 49.00
user 23.1 23.3 22.8 23.07
sys 4.2 3.6 4.0 3.93

Figure 18. Small data set on the Suns

 84

Run 1 Run 2 Run 3 Average
MARS real 17.49 17.49 17.67 17.55

user 2.26 2.41 2.39 2.35
sys 2.65 2.84 2.82 2.77

ORIGINAL real 39.38 39.07 39.22 39.22
user 15.46 15.44 15.47 15.46
sys 5.13 5.04 5.10 5.09

Figure 19. Small data set on the SGIs

Run 1 Run 2 Run 3 Average
MARS real 5833.55 5578.12 5783.15 5731.61

user 80.68 80.91 81.10 80.90
sys 18.34 18.73 18.36 18.48

ORIGINAL real 8376.64 8407.94 8392.29
user 3476.26 3459.28 3467.77
sys 989.06 984.31 986.69

Figure 20. Large data set on the SGIs

The first set of results, shown in Figure 18, summarizes the performance on the

Suns with the small data set. The original setup takes 108% longer to run on the Suns

than the MARS version of the biology code. This is an excellent time improvement;

while only one extra CPU is being used, there is a speedup of over 100%. The original

problem scales perfectly (1:1) and still goes a bit further. The original code could not be

readily scaled across two CPUs (even with identical file systems) because there are no

synchronization guarantees with UNIX files. One module had to run to completion

before the second was executed. That problem was solved with our binary I/O

implementation.

Figure 19 shows the same small data set when run on the SGI test-bed. The

speedup was greater than the speedup on the Sun test-bed. The original code took 123%

longer than the MARS implementation on the SGI machines. The user and system times

 85

for the MARS implementation on the SGIs were approximately equal to those on the

Suns, but the overall time was considerably less on the SGIs. Of note, the original code

ran faster on the SGIs than on the Suns, and the proportional overall speed-up was greater

as well.

Figure 20 shows the results from the large data set run on the SGIs. The original

code took 46% longer to run than the MARS ensemble. The user and system time

speedups were significant when using the large data sets. The user time of the original

code was approximately forty-three times MARS’ time. The system time was about

fifty-three times greater using the original system. The extreme speedup in those areas

was expected. The relatively poor showing in total time difference was attributable to the

massive stable output files generated by the modules. Generating the large output files

actually takes more time in this simulation than the computations.

 86

V. Conclusions

MARS proved to be a successful solution to the problem of integrating

multidisciplinary codes. There were many features of MARS that contributed to its

overall success. Those primary achievements are outlined in this chapter.

Improved times

On each the test cases in Chapter IV, there were significant speedups. Overall

runtimes were improved in each of the four main examples (matrix multiplication,

pipelined graphics filtering, extended pipelined graphics filtering, and the biology code).

In the worst case, the matrix multiplication example, only a single data set was

read from disk, minimally processed, and written to disk again. In that instance, the

original code took about 60% longer to execute than the MARS code. The explanation

for this lackluster performance is simple: the initial disk reads and writes dominate the

process time. Where this is the case, little can be done to improve the performance of the

code. Many scientific codes, however, will have multiple data runs and/or many more

intermediate states that will contribute to better performance with MARS. The worst

case program to apply MARS to would be a single module that reads a data file and

immediately writes it to disk again. We would expect no performance gain. At the same

time, such a program is certainly not multidisciplinary in any sense and not the target of

MARS. This matrix multiplication program is the absolute minimal case that could be

multidisciplinary (two modules), and it still shows reasonable performance gains.

 87

In all other cases, performance of the MARS ensembles was very good. The

extreme performance gain was shown in Figure 16, the partial three-way graphics

pipeline results. The original code took 265% longer than the MARS modules or about

3.65 times the total MARS time. Were we to discount setup overhead and assume

already running modules, that time would also be further improved. Also, we timed the

ensemble with synchronous module terminations, which can be significant with the nine

modules involved (Figure 15). Using an asynchronous termination call could have

yielded better results as well.

Overall system load is reduced by using MARS data paths (where possible)

instead of file based I/O. By diminishing system and user times, overall throughput of

particular execution nodes can be increased. This is an important consideration. If one

machine can be used more efficiently, it frees up valuable cycle time for other processes

and/or additional MARS modules. For instance, in our three-way pipeline parallelism

example, we placed several modules on a single-CPU SGI and saw excellent

performance because significantly less time was spent reading, writing, and verifying

data previously written to disk. This time can be used for additional MARS modules or

for any other processes the user chooses.

One of the main reasons to consider MARS for multidisciplinary codes is

performance. A large part of the performance gains come in overall execution time.

While overall time can be significantly decreased, user and system time can be reduced

as well.

 88

Distribution and realignment

Distribution of modules is very simple with the MARS system. Distribution

comes in several forms, including setup methods of parallel codes and various types of

dynamic realignments.

The presence of the leader code makes setup of distributed codes very easy. As

long as a working module exists on an execution node that supports MARS, the leader

can simply indicate that that node will be responsible to run that module. A node that

supports MARS calls does not need to be aware of any working modules located on that

node. As such, adding working modules to a MARS node is as simple as making an

appropriate binary available to that node. While there is no current mechanism to install

working modules on a MARS execution node remotely, such an enhancement is not

difficult to envision.

On a second level, altering parallel codes is easy. As shown by the two-way and

three-way pipeline parallelism examples, changing a single constant value can be enough

to expand a parallel stage. With proper implementation, such expansions (or

contractions) occur with little or no change to any module, save the leader.

Third, realignment of codes is an easy process. Switching from one set of

execution nodes to another is not difficult. Changes are only required in the leader

module. Such changes can be little more than single line changes, indicating the DNS

name of the node to host a particular working module (the use of DNS assumes TCP/IP

communications). This realignment can occur dynamically as well. Properly constructed

leaders can arbitrarily add or remove modules from a collection during execution. It is

not difficult to imagine when this type of dynamism could be important. Given a defined

 89

set of MARS nodes, the leader code could expand a collection to consume the maximum

allowable amount of resources. The leader could similarly contract a collection of

modules when critical resources are required by other users/processes.

A final advantage of the MARS system is the late binding time for working

module descriptions. In reality, a completely generic leader code does not require any

information about the modules that it is going to execute at compilation time. The

complete specification for a collection of working modules could be input from a file at

runtime, or even from command line user prompts. In most implementations, the leader

has module locations hard-coded into it because execution nodes (especially in a

laboratory environment) are often static. Runtime assignment is very possible, and

experiments show that it works well with each of the examples shown in Chapter IV19.

There are four distribution and realignment advantages of the MARS system. The

first is that leader modules can be changed slightly and effect significant changes in the

overall setup of working modules. The second advantage is that altering parallel codes is

a simple process. The depth of particular stages of the ensemble can be changed from the

leader code without altering the working modules. The third advantage leverages off the

first two: at runtime, sophisticated leaders can add and remove modules from running

ensembles. The fourth advantage is that the late binding time for module identifications

19 Times for such experiments were not included. The reason is that total runtime performance

suffered drastically when the time required for a user to type module specifications was significant

compared to total runtime. It does not seem fair to compare a static hard-coded system to a MARS module

crippled by a user who types slowly.

 90

means that leaders can be ignorant of even their working modules until runtime, and the

working modules can even be specified from the command line by users.

Heterogeneity

Because data and control messages are passed using an abstract type, MARS

implementations can run on multiple platforms without requiring platform-specific

messaging code. Of course, platform specific optimizations are possible, but do not

affect compatibility. The RSMessage type is composed of byte (char) fields that are

dynamically allocated and word-aligned based on the data types they represent. As such,

network transmission and message translation are simple processes.

Since most other MARS functions are based on standard protocols, there has been

no problem porting the MARS runtime system to many different platforms. The current

runtime system compiles on Sparc, Intel, and MIPS CPUs running Solaris, Irix, and

Linux without any conditional compilation statements. The current implementation of

the runtime system has been written so that there are absolutely no #ifdef #endif

pairs that are dependent upon platform or OS specifics. In addition, the only #ifdef

required is a compiler dependent type definition, specifically that the newest versions of

gcc/g++ recognize type bool as a primitive type but the MIPS CC compiler does not.

Perhaps the term “porting” implies too much. MARS compiles without changes on all

mentioned UNIX implementations.

Finally, since the protocols used are standard, even machines that lacked

particular services to support MARS were easily augmented to support the system. For

instance, ATM can easily (and freely) emulate TCP/IP. Of course, it is not as fast as

 91

native ATM, but the performance gains using emulated TCP/IP were still significant.

Perhaps future MARS implementations will include ATM support at the native transport

layer level. On another front, SGI’s Irix OS has internal support for the TCP/mux

protocol but Solaris 2.5.1 does not. (Recall, the TCP/mux protocol was used to spawn

programs on a MARS node.) It was an easy process to implement RFC 1078 for the

TCP/mux, and the implementation has been included in the MARS distribution

[Lottor88].

MARS has been compiled and run and many different flavors of UNIX and

several popular platforms. MARS modules concurrently running on different

combinations of OSes and platforms readily cooperate and exchange data and control

messages without difficulty.

Conditional execution

With the addition of modules designed to return control variables, conditional

execution can be achieved with MARS. Simple conditional execution was demonstrated

with the matrix smoothing example.

By augmenting an ensemble of working modules with testing modules, the

ensemble can be terminated early or runtime can be extended as needed. In addition,

certain modules can be executed (or not executed) as needed, based on the outputs of

testing modules. For instance, imagine an iterative approximation process (like Newton’s

method) designed to calculate a numerical result. With poor starting values, such

processes can quickly diverge. It is of great benefit to be able to detect such divergence

quickly and restart the process with different initial values. By the same token, a

 92

converging process that has not yet achieved a certain level of precision should be

extended rather than terminated and subsequently restarted with an increased number of

iterations.

Such conditional executions are possible with MARS. By adding modules to

inspect process data at arbitrary checkpoints or by having the leader inspect the data,

arbitrary executions may be branched to achieve maximum performance.

Authoring system

As an added benefit, we have found the MARS system to be an excellent

authoring support system for parallel and distributed codes. The initial impetus for

MARS design was to wrap existing multidisciplinary codes into MARS modules that

could cooperate on large problems. After early success with the initial MARS problem

area, there were indications that the MARS system was appropriate for the design of new

codes, not just wrapping existing codes.

Data transmission between modules is quick with MARS, as is the transmission

of arbitrary messages. Wrapped modules can be spawned on any node that understands

the TCP/mux request for a module. Modules can be easily inserted or removed from

ensembles. Anywhere that dynamism is important or where an easy to use, richly

featured communication and control system is desired, MARS can be applied. Currently,

two other M.S. in Computer Science theses at the University of Wyoming (both in

progress) depend on early implementations of the MARS system. Those projects are not

related to the development of MARS, but use MARS in novel systems created from the

ground up. One system uses MARS to effect a distributed and network aware version of

 93

the Revision Control System (RCS); the other uses MARS communication and spawning

to implement a Geographical Information System (GIS) search tool composed of multiple

modules and database interfaces.

New parallel and distributed codes are easily built with MARS primitives. While

this was not the initial design impetus of MARS, the potential is there and will be

explored in the coming years.

 94

VI. Future Work

While designing and working with the MARS system, several additional

components were suggested. Some of these modifications have clear implementation

paths, while others are still open ended problems. With these proposed features in place,

MARS would be one of the most fully functional distributed runtime support system

available. With the support for integrating existing multidisciplinary codes, these

enhancements effectively remove any limits to designing new applications or modifying

existing ones.

Dynamic scheduling

As observed in Chapter V, the message layers and dynamic invocation schemes

allow for dynamic scheduling with properly constructed modules and leaders. Actually

constructing such leaders and modules took significant experimentation to develop

generic extensions to a module that would facilitate dynamic scheduling. The code to

effect the dynamism is still somewhat limited.

The dynamic scheduler we propose would integrate all the necessary information

in special structures contained in a leader code and would include standard stubs in

working modules. The scheduler would have two main components, the load balancer

and execution sets.

There would be an execution set for each working module in a MARS collection.

For instance, assume an ensemble with three modules, named “A”, “B”, and “C”, with a

data flow path from “A” to “B” to “C”. Also, assume the depth of each stage of the

 95

ensemble (“A”, “B”, or “C”) is extensible to an arbitrary limit. At the same time, there

are exactly ten available execution nodes, “0” .. “9”, each capable of running only certain

modules. An execution set definition might appear as the following:

A.execution_set(0,1,2,3,4,5);
B.execution_set(0,5,6,7,8,9);
C.execution_set(1,2,3,5,7,9);

These definitions would appear in the leader module and would not need to be

made available at compile time or runtime to particular working modules. (According to

this specification, module “A” could be executed on nodes “0” .. “5”.) The leader would

start the modules and establish the necessary data connections. The leader may or may

not be given a specific initial configuration (e.g., module “A” should be started on nodes

“1” and “2”, etc.). If not given an initial configuration for working module, the leader

would simply place modules on whatever nodes are appropriate to approximately balance

the depth of each module layer (e.g., module “A” could have three instantiations, module

“B” could have four, and module “C” could have 3). After running, a module would be

responsible for reporting the local runtime for its wrapped__main, and the load balancer

would re-distribute modules as necessary to balance stage throughput.

The load balancer would redistribute nodes to balance each overall stage runtime.

For example, given two instantiations of module “A”, one running to completion in

twenty seconds, the other running to completion in thirty seconds, the overall “A” stage

runtime would be twelve seconds. Effectively, one complete run of “A” could be

achieved every twelve seconds. It is a simple linear equation to calculate overall stage

runtime (e.g., for module “A”, 1/30s + 1/20s = 1/x, x = 12s). If one stage takes

significantly longer than another, and if making changes to the module configuration

 96

would be likely to yield overall throughput benefits, the load balancer would make such

changes.

The stubs located in the working modules would only be responsible for reporting

local runtimes, and would only communicate results to the leader modules. Priorities

could also be assigned to members of a module’s execution set, if prior performance

knowledge was available. Also, particular nodes within the execution sets can have

limits placed upon them, such as that only one module at a time may reside on a

particular node.

While this functionality is possible with the current set of MARS primitives, it

currently involves writing the scheduling code (load balancer) by hand in each leader.

Rather than writing and rewriting this code every time, it should be added to the

functionality of the base leader code. Also, timing data must be reported by working

modules for this system to be fully functional. We envision a complete system with

support for MARS acting in a way similar to the process planner described in [Adler95].

Multi-language support

Currently, the wrapper only works on codes written in C. Some other languages,

such as Java, are similar in both syntax and available primitives. For instance, socket

objects for TCP/IP communications in Java are virtually identical to those in C. Java is

also uniquely suited to realize the control loop that exists in all working modules.

Adding support for Java should not be excessively difficult, but has not yet been done.

Some languages, like High Performance Fortran, are syntactically different from

C, but otherwise support the primitives necessary to support this implementation of

 97

MARS. TCP/IP routines, for instance, are currently available to Fortran. A MARS

wrapper for Fortran codes is not currently available, though is likely to be developed

soon. Many legacy codes are written in Fortran, and the ability to deal with a large

available code-base is certainly desirable.

Other languages, like Lisp and Prolog, are very different from C, and would

require significant extensions of MARS to support them. For instance, for interpreted

Lisp, a whole new spawning system would have to be developed. With Prolog, message

passing, even with TCP/IP, is not an easy task. These other languages are generally not

employed by multi-module authors, except in heterogeneous implementations and often

exist without network support. A cursory examination reveals that the brunt of scientific

multidisciplinary codes are written in languages like C/C++ and Fortran (with various

extensions), with a growing number of implementations using Java. It is not clear at this

time how the wrapper would function with a source written in an interpreted language,

such as Lisp.

To support existing codes fully, MARS should be able to wrap source written in

multiple languages. In our own examples, we converted Pascal and Fortran routines to C

before adding them to ensembles of MARS modules.

Native threading/thread support

Currently, there is no support for threads in this implementation of MARS. Given

“friendly” modules with their own threads, MARS treats them like any other non-

threaded code and can wrap them without issue. For the most part, any code that has

threads spawned by its original main routine and such threads exit gracefully (with the

 98

exit from the original main routine) can be turned into a MARS module without a

problem.

There are two main reasons to add some thread support to the MARS system.

First, for those who would use the MARS system to author new module collections,

native thread support would be convenient. It would be better to have a threads package

known to be compatible with MARS rather than requiring users to use an alternate

implementation, like Pthreads or OpenThreads.

The second reason is that I/O can be significantly improved with threading.

Recall that there can be deadlocks in an ensemble if two modules depend on each other’s

output and that output is not explicitly flushed at certain stages. If the I/O routines were

threaded, after reaching a certain time-out, if data was still present in a module’s buffer,

that data could be automatically flushed to the network or disk. Currently, users are

responsible for preventing this type of deadlock by using explicit flushes or closes20. It

would be easier if the ensemble creators did not have to worry about this type of problem,

as they generally do not have to with more traditional codes. For instance, data written to

disk will eventually get put to disk, without an explicit flush or close by the user.

Currently, data written to a MARS data path may not, without a flush or close.

Threading allows the user to “forget about” flushing data to the network, and the

corresponding headaches such worries can cause. With “native” thread support (even if it

simply consists of Pthreads or another implementation), newly created MARS modules

20 MARS does data flushes automatically when an I/O buffer is full, but implementers may have

dependencies on data that do not fall on this buffer boundary or are simply smaller than a single buffer size.

 99

can be assuredly safe, without worrying about misbehaving third-party threads running

amok.

Another advantage of threading I/O is that when too much data “piles up” on a

TCP/IP connection without being consumed, the data’s emitter must block until some

portion of the data is consumed. Currently, we have been able to work around such

problems with relative ease, by using the (threaded!) data buffer module, but not having

to work around the problem would be a much better state.

A final advantage to threading is that the message processing could continue

unabated, even when a wrapped__main (or some other routine) was executing. Such

message processing could be used to update Router Tables while a routine was being

executed and before another output routine started. Of course, enhanced steering

mechanisms can be envisioned with threaded message processing. If at mid-execution

the output from a thread was no longer required, that thread could be terminated, at a

savings to the entire ensemble [Kleiman96].

Automatic data conversions

Currently, there are no automatic data conversions in the MARS system. All data

conversion, where necessary, is done by specially designed proxy modules. For example,

if 32-bit integer data is sent between machines with unlike endian-ness, one using big

endian and the other using little endian representation, each integer must be reversed in a

bit-wise manner by a proxy module.

There are several different standards for dealing with heterogeneous data typing,

including Abstract Syntax Notation One (ASN.1), X.409, and the Basic Encoding Rules

 100

(BER). No support for any of these protocols is currently available in MARS. We have

chosen to examine a unique system, Smartfiles, to address the data exchange problem

[Haines95b]. The Smartfiles subsystem takes care of mundane issues such as endian-

ness and array ordering and access, but allows further functionality by encoding

information in description fields about the data being transmitted. By mapping these

fields onto configurations different from an original Smartfile, unique data access

patterns can be achieved with relative ease [Haines95b]. Such functionality would be a

boon to multidisciplinary codes that pass data to other modules that do not require all the

output fields or only require a simple data reordering.

At this point, given the added functionality of Smartfiles, it seems to be a logical

choice for automatic data conversion. Not only does it provide a black-box standard for

data conversions, it can make binding different modules into MARS ensembles much

easier. Even sharing data through a consistent standard like ASN.1, legacy modules are

unlikely to have the same data format requirements. The integration of Smartfiles would

be an important tool to overcome differences in legacy module data requirements.

Strong profiling support

Basic, coarse-grained profiling is available in MARS. By setting log levels high,

every message sent and received or processed can be tracked and stored for later

examination. By examining message log time differences, runtimes of blocks of code

can be calculated.

The logs do not provide much profiling support, however. It does not approach

the information provided by a program like prof or pixie. At the same time, there

 101

have been some problems using standard profilers with particularly complex MARS

codes, especially those that wrap MARS routines around threaded codes. The same

problems exist for stand-alone threaded codes as well, but native support for profiling

would be extremely helpful in troubleshooting and tweaking performance in MARS

modules.

With native profiling support, users could get breakdowns such as “how much

time is spent on data transmissions,” “how much time is spent processing messages,” and

“how much time is spent in various module routines.” Currently, the only profiling is

very coarse and therefore not very informative. Better profiling could lead to better

modules and better performance.

Better steering mechanisms

There is not much a user can do to steer a MARS collection, other than writing an

effective leader that “knows” what effective steering is. Of course, compiling all such

knowledge into a single leader code is impossible and probably not worth the effort

required.

How does a user terminate an entire collection of MARS modules? Currently,

there is no easy way to do so. Terminate the leader, and subsequently terminate all

working modules: that is the process. There is an experimental terminator for leader

codes that installs a signal handler to receive a SIGUSR1 (or other programmer-specified

signals) and then send termination messages to all working modules before the leader

terminates. This brute force approach is not at all elegant and does not support anything

other than terminating a complete setup.

 102

We envision a signal handler that allows much greater user control over the entire

process. For instance, working modules should be able to report their pending messages

and their current threads of execution. Execution sets for modules should be capable of

dynamic expansion and contraction at the user’s discretion. Leaders should be able to

invoke extra modules on command. Users should be able to examine an ensemble’s

progress by querying leaders or working modules.

There are many different reasons to steer running collections, far beyond simply

indicating that an entire collection should terminate. Status information and changes to

the entire setup should be possible with a running MARS ensemble. Better steering

mechanisms are a priority in the future expansion of MARS.

Better condition variables

Condition variables are not really present within the MARS system. We

demonstrated conditional execution by building a module to test a data stream, but this

extra module was constructed by hand and did not really leverage any existing MARS

structures or primitives.

To achieve better conditional execution, there should be a way to check execution

status of working modules while they are running. (To do this first requires thread

support in MARS.) Once such support is available, basic methods could be added to

MARS to make many types of condition variables automatically available to a user. For

instance, the following code would be easy to build with enhanced status information

available:

leader->start(ModuleA);

 103

while(! ModuleA.done()) {
leader->start(ModuleB);

}

This code fragment could guide an approximation system, where ModuleB

constantly refines an answer until ModuleA is done, or anything else the reader imagines.

Basic condition variables, such as module.done(), can be used in many ways, and are

not limited to simply checking for execution completion. Real-time systems could also

use similar state variables to terminate processes whose answers have expired:

leader->start(ModuleA);
for (int x = 0; x < 30; x++, wait(1)); //30 sec runtime
if (ModuleA.running())
leader->end(ModuleA);

else
//collect ModuleA’s data here

Currently, a user could send a message to ModuleA that simply asks for a reply

and hope that the message is answered in a timely manner. But what is a timely manner?

One extra second? Two? Such a method would be messy and unpredictable, at best.

The addition of condition variables could greatly enhance the functionality of MARS.

User defined variables would also be possible. While there is no concrete

specification for such variables yet, they could be very broad in functionality. They

could test for total CPU time used by a working module or even query the amount of data

sent across a particular data connection. The only limitation is currently the

implementer’s need (which we have found to be unlimited at times).

Drag-and-drop style GUI

The approach to coordinating ensembles in MARS suggests a clear path for

program generation with an object-oriented graphical tool. The ensembles shown in

 104

various figures throughout this document are accurate visualizations of multidisciplinary

applications. When implementing the first ensembles, before the specification language

defining leaders and sub-modules was complete, the module connections had to be

defined by hand. If one module was to connect to another module, an explicit message

had to be sent from the leader to one of the two modules indicating that a connection to

the other was required. For the leader to effect the modules’ connection, it had first to

identify the actual address of both modules. Then the leader would send the address of

one module to the other, followed by a “connect” message for each connection between

the two modules in question. To help with this process, sketches of ensemble

interconnections were made. As the connections indicated by the sketches were coded

into the leader, it was indicated on the ensemble sketch.

In the current setup, the process is much simpler. To connect two modules, the

leader executes a leader->link(“moduleA.out”, “moduleB.in”). That is it.

Once inputs and outputs are defined, connecting them is a snap. The leader->link()

call generates all the essential lookups, messages, and calls to the runtime layer to

connect the two modules.

The initial sketch-and-connect process suggests that a GUI-based tool would be

appropriate for designing and implementing MARS ensembles. Simply dragging and

dropping modules and their connections into an ensemble would be enough for many

types of module collections, including multistage pipelines and cyclical feedback

applications. More complex applications, such as those with conditional execution paths,

would likely still require significant execution path programming within the leader, but

 105

the entire ensemble connection scheme could still be done in the GUI in any case. We

envision that such a design tool might look similar to Figure 21.

CompileSave QuitObject PropertiesLoad

Leader Module

Working Module

Arbitrary Depth
Module

Virtual File

Explicit Control Line

Data Line

LII

A

B

C OO

L.out

L.in

A.in

A.out2

A.out1

C.in2

C.out
C.in1

B.out

B.in

OO.in

II.out

Figure 21. Proposed GUI-based MDO programming tool

 106

VII. Final words

The multidisciplinary optimization problem is not a problem of heterogeneous

operating systems, development languages, programming paradigms, or platforms. It is

more accurately a problem of drawing together components from heterogeneous

disciplines to determine answers beyond the scope of any single discipline’s contribution.

The potential realizable, real-world solutions that can come from multidisciplinary

optimizations are truly limitless.

With the advent of teraflop architectures, computational ability has reached

beyond the imaginations of programmers even a few decades ago. Computational brute

force, however, is not enough. There is an ever growing crisis of depth in expert

knowledge. Experts are knowledgeable within their domains, but as the accumulation of

human knowledge (including raw data) accelerates, experts must further limit their

knowledge domains. Perhaps the greatest potential for novel solution discovery lies in

composing expert knowledge from multiple disciplines into aggregates capable of solving

problems much larger than those encountered by a single expert in the course of his or

her career.

Expert knowledge is more and more frequently embodied within computational

models. The ability to combine these models is extremely important to solving ever

larger problems and to provide innovative answers where we could not even begin to ask

appropriate questions before. Take the U.S. Accelerated Strategic Computing Initiative

(ASCI). By exploiting knowledge and models from multiple domains, we move closer to

complete and accurate simulations for predicting weapons systems performance, safety,

 107

and reliability. Better weapons are not the answer, but the ability to substitute

simulations and models for nuclear testing is important to everyone.

There is a common lament that “the weatherman is always wrong”. This would

not be as accurate if there were better ways to predict. When climate and weather

predictions are wrong, the costs can be very high in terms of lives and property and

general discord. How can better predictions be made? By simply integrating more data

from more sources? Of course, but the predictive power of temporally removed

information extends only so far, and increased precision in weather data (state

information) can only yield so much benefit21. By including multiple diverse models,

new perspectives can be gained. The lingering gaps in current practices are more likely

to be filled by broadening perspectives, rather than simply adding more information to

existing models.

Perspectives are broadened when we leverage useful models from diverse

disciplines to solve existing problems. Experts in their fields know what they know best--

a glaring truism, but important nonetheless. By composing expertise we develop

multidisciplinary optimizations. Optimal may be in terms of computational resource

efficiency, temporal efficiency, accuracy, and solution applicability.

We need experts. Now that experts can compartmentalize much of their

expertise, there is an increasing need for composers and composition tools. Hopefully

MARS and its discussion will enhance the expanding composition dialogue.

21 And somewhere in China, a butterfly flaps its wings.

 108

References

Adler95 R. Ader, “Distributed Coordination Models for Client/Server Computing,”

Computer, April 1995.

Bal96 H. Bal and M. Haines, “Approaches for Integrating Task and Data

Parallelism,” Technical Report IR-415, Vrije Universiteit, Amsterdam,

December 1996.

Carriero89 N. Carriero and D. Gelernter, “Linda in Context,” Communications of the

ACM, April 1989.

Chapman94 B. Chapman, M. Haines, P. Mehrotra, H. Zima and J. Van Rosendale,

“Opus: A Coordination Language for Multidisciplinary Applications,”

ICASE Technical Report 97-30, June 1997.

Haines94 M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale and H. Zima,

“Runtime Support For Data Parallel Tasks,” Proceedings of The Fifth

Symposium on the Frontiers of Massively Parallel Computation, McLean,

VA, February 1995.

Haines95a M. Haines and P. Mehrotra, “Exploiting Parallelism in Multidisciplinary

Applications Using Opus,” Proceedings of the Seventh SIAM Conference

 109

on Parallel Processing for Scientific Computing, San Francisco, CA,

February 1995.

Haines95b M. Haines, P. Mehrotra and J Van Rosendale, “SmartFiles: An OO

Approach to Data File Interoperability,” ICASE Technical Report 95-56,

July 1995.

Hunt96 E. Hunt, S. Piper, R. Nemani, C. Keeling, R. Otto and S. Running, “Global

Net Carbon Exchange and Intra-Annual Atmospheric CO2 Concentrations

Predicted by an Ecosystem Process Model and Three-Dimensional

Atmospheric Transport Model,” Global Biogeochemical Cycles,

September 1996.

ICASE95 ICASE Research Quarterly, Vol. 4, No. 1, March 1995.

Kleiman96 S. Kleiman, D. Shah and B. Smaalders, Programming with Threads,

SunSoft Press, Mountain View, CA, 1996.

Lottor88 M. Lottor, “TCP Port Service Multiplexer (TCPMUX),” Request For

Comments 1078 (RFC1078), November 1988. Available at:

http://www.faqs.org/rfcs/rfc1078.html

 110

Mehrotra94 P. Mehorotra and M. Haines, “An Overview Of The Opus Language And

Runtime System,” ICASE Technical Report 94-39, May 1994. (Also

appears in Languages and Compilers for Parallel Computers, Springer-

Verlag Lecture Notes in Computer Science, vol 892, Pages 346-360.)

Perrochon97 L. Perrochon, G. Wiederhold and Burback, “A Compiler for Composition:

CHAIMS,” Fifth International Symposium on Assessment of Software

Tools and Technologies (SAST'97), Pittsburgh, PA, June 3-5 1997.

Tornabene98a C. Tornabene, P. Jain and G. Wiederhold, “Software for Composition:

CHAIMS,” Workshop on Compositional Software Architectures of OMG,

DARPA and MCC, Monterey, CA, January 6-8 1998.

Tornabene98b C. Tornabene, D. Beringer, P. Jain and G. Wiederhold, “Composition on a

Higher Level: CHAIMS,” unpublished, Dept. of Computer Science,

Stanford University.

Wiederhold92 G. Wiederhold, P. Wegner and S. Ceri, “Towards Megaprogramming,”

Communications of the ACM, November 1992.

	M
	Acknowledgements
	Table of Contents
	List Of Figures
	I. Problem
	II. Related Work
	Language similarities and differences
	Fx
	Linda
	Orca
	Opus

	CHAIMS
	CHAIMS programming
	Differences between CHAIMS and MARS
	Similarities between CHAIMS and MARS

	III. The MARS System
	Preprocessing Components
	Wrapper
	Control Loop
	File (I/O) Layer

	Runtime System
	The Native Communications Layer
	Remote Service Layer (RSL)
	Router Table
	Message Processing Layer (MPL)
	Logging

	Remote Invocation System
	Remote Service Spawn (RSS)
	MdoServer
	TCP/mux code

	Leader Codes
	Summary

	IV. Applications/Results
	Simple Matrix Example
	Pipeline Parallelism Example
	Extended Pipeline Parallelism Example
	Biology Model
	Description
	Implementation Problems
	Results

	V. Conclusions
	Improved times
	Distribution and realignment
	Heterogeneity
	Conditional execution
	Authoring system

	VI. Future Work
	Dynamic scheduling
	Multi-language support
	Native threading/thread support
	Automatic data conversions
	Strong profiling support
	Better steering mechanisms
	Better condition variables
	Drag-and-drop style GUI

	VII. Final words
	References

