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Expert knowledge from many disciplines is frequently embodied in stand-alone codes 

used to solve particular problems.  Codes from various disciplines can be composed into 

cooperative ensembles that can answer questions larger than any solitary code can.  These 

multi-code compositions are called multidisciplinary applications and are a growing area 

of research.  To support the integration of existing codes into multidisciplinary 

applications, we have constructed the Multidisciplinary Application Runtime System 

(MARS).  MARS supports legacy modules, heterogeneous execution environments, 

conditional execution flows, dynamic module invocation and realignment, runtime 

binding of output data paths, and a simple specification language to script module 

actions. 
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I. Problem 

As expert knowledge is more and more frequently embodied in computer models 

and simulations, the opportunity to compose useful models from multiple disciplines is 

increasing as well.  In order to better solve many complex problems, it is useful to draw 

together domain expertise from multiple disciplines. 

For instance, designing an automobile requires information about structure, 

propulsion, guidance, safety, and many other features.  Designs are done in teams, with 

each team member (or group) having specific tasks, completing one part of the puzzle.  

The group responsible for a new engine design is not the same group responsible for the 

body design.  Further up the scale, the entire design team could be seen as one small 

component themselves, coupled with advertising, sales and manufacturing teams to 

deliver the product to market.  The combination of these different expert groups can 

achieve much more than any group by itself. 

The automobile production problem is analogous to what is occurring in scientific 

research today.  Models are taken from different disciplines and combined in innovative 

ways to provide answers that the component models could not provide by themselves.  

The problem of combining models from more than one discipline is known as the 

multidisciplinary optimization problem, and the resulting applications are called 

multidisciplinary applications. 

Significant recent work has been devoted to the problem of multidisciplinary 

applications (MDO applications).  Multidisciplinary applications are collections 

composed of programs bound together to perform a single task.  The individual 
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component programs come from varied disciplines to solve a problem “larger” than the 

problem solved by any of the individual component.  “Larger” may mean in terms of 

overall complexity, geographic scope, the ability to handle various data types 

(applicability), or in terms of other design factors.  Multidisciplinary applications are 

used for global climate modeling, aircraft and automobile design, biological process 

modeling, and countless other tasks. 

The interactions between components of an MDO vary for different problem 

types, and there are different methods being used to “glue” the components together.  In 

most cases, the MDO is treated like a sequential pipeline, with information passed from 

one stage to the next, repeating the entire process as required.  When a homogenous 

collection of modules is built from the ground up at a single site, the problem of passing 

information from one component to another is relatively easy; designers choose the 

interfaces, so the modules can cooperate out-of-the-box.  This type of application is could 

be multidisciplinary, though not cost effective when reusable codes component codes are 

available. 

Because available components used to build a single MDO are often 

heterogeneous in terms of component source language, data format requirements, and 

scope of functionality, they are often forced into a single execution format: sequential 

pipelines sharing data through files.  The files for sharing data are frequently transformed 

between MDO components so that one component’s output is converted to an appropriate 

input for another component.  This transformation is up to the MDO programmer, of 

course.  So too are solutions to the problems of process creation and synchronization.  
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These can be done with script files, UNIX programs, or by using an additional control 

language. 

To further illustrate the types of MDOs in actual use, we offer an example of a 

multidisciplinary code also introduced in several related references [Haines95a, 

Chapman94, ICASE95].  The example is of an MDO used for aircraft design.  The 

aircraft design process draws from several different disciplines, including propulsion, 

aerodynamics, and structural analysis.  Simpler component models from the various 

disciplines can be tied together into a collection that solves the larger problem of “aircraft 

design”.  While our example is a simplification of the entire aircraft design process, it 

demonstrates the essential components of an MDO application.  This example has three 

component modules, the Optimizer, the FlowSolver and the FeSolver.  

The Optimizer invokes the other two tasks (FlowSolver and FeSolver) and 

generates an initial geometry.  The FeSolver module generates a finite element model (to 

represent the aircraft) based on this geometry and uses some initial forces to determine 

the structural deflections.  At the same time, the FlowSolver generates an aerodynamics 

grid based on the initial geometry and performs an analysis of the airflow around the 

aircraft, producing a new airflow solution.  In subsequent runs, the FeSolver uses forces 

based on the current flow solution provided by the FlowSolver to produce new 

deformations.  The FlowSolver uses the deformed geometry from the FeSolver and the 

previous flow solution to create new solutions.  This process continues until the 

differences between current and previous FeSolver solutions are within some specified 

tolerance.  After a solution is reached, the results are stored for offline use (Figure 1). 
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Figure 1. A sample MDO for aircraft design [Haines95a] 

The aircraft design MDO has inherent task parallelism, though the writer of the 

Optimizer module must take care to properly synchronize the FeSolver and FlowSolver.  

A frequent characteristic of the current MDO application design process is that the MDO 

builder1 is responsible for everything beyond the functionality of the particular working 

module. 

The general MDO construction problem has three main components: managing 

concurrency and parallelism, data exchange, and basic control functionality (such as 

module invocation and termination).  When using heterogeneous codes, little can be done 

                                                 

1 Programmer, designer, composer, and integrator are also terms used to describe the person tying 

the different modules together. 
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to combine them (without rewriting the working modules to be compliant with the flavor 

of the month task and data parallel language system); there are very narrow design paths 

MDO builders usually follow.  The path to managing concurrency problems is often to 

serialize the component processes, thus ensuring consistency at a cost of efficiency.  The 

path for data exchange is commonly through UNIX files.  Basic functions, like 

invocations, can be done with scripting languages or with system calls, such as the 

exec() in UNIX. 

An important consideration in the development of MDO codes is that desirable 

component modules often exist, but were not written to be used in a cooperative 

environment.  These legacy codes, while capable of performing a desirable task, are often 

limited in use because they are difficult to tie together with other legacy codes.  Even 

MDOs built with newer modules designed with interfaces that are mindful of specific 

legacy codes are ineffective.  Interfaces to the resulting new MDO collections are often 

as idiosyncratic as the legacy code that is the basis of the MDO; it is therefore difficult to 

expand or interchange other modules with the new MDO.  For instance, increasing the 

variety of Phillips screws in a package does not make that package work better with a 

flathead screwdriver.  In essence, to use legacy codes, designers must completely build 

around them, suffering the costs incurred when coupling heterogeneous modules, or 

rewrite them to comply with local modules, duplicating significant effort already 

expended on the legacy code’s original design. 

It was with these many considerations (data exchange, concurrency and 

parallelism, basic functionality of a component system, and support for legacy codes) in 

mind that we built the Multidisciplinary Application Runtime System (MARS).  MARS 



 6

supports abstract data passing2, asynchronous partially-ordered message passing, remote 

service requests, dynamic module invocation, and various primitives for module control.  

As such, it could serve as the runtime support for another task parallel high-level 

language specification, like Opus (which was designed for building MDO codes) [Bal96, 

Chapman94, Haines95a]. 

MARS also includes components beyond the runtime system proper.  To fully 

support the construction of MDO codes, MARS understands a simple specification 

language that defines the working modules (or tasks) within an MDO.  A collection of 

working modules and a leader (specification) to guide those modules are referred to as a 

MARS ensemble.  (The specification language is discussed further in Chapter III.) 

MARS also has a server component that resides on all execution nodes (CPUs) 

that participate in a running ensemble.  This server, called an mdo_server, functions to 

invoke working modules on specific execution nodes at the request of another module.  

In MARS, working modules are generally only invoked by a leader or sub-leader 

module.  The components of a leader (and how sub-leaders and working modules are 

added to an ensemble that follows the leader) are also part of the specification language. 

To support legacy modules, MARS includes a source to source compiler called 

the wrapper.  The wrapper takes source for a working module, wraps all the I/O routines 

with MARS calls, and augments the original code to act as persistent server capable of 

processing MARS messages.  This wrapper is not dependent on user augmentation of 

                                                 

2 “Abstract” in the sense the data is simply written.   Applications are not aware that data goes to 

disk, to the network, or elsewhere.  They simply write the data and the runtime system directs it to an 

appropriate receptacle. 
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original source, as with a full language specification like Opus.  Without any annotation 

of the source by the MDO builder, the MARS wrapper replaces the legacy code’s original 

entry point with MARS module server code, while preserving access to the original entry 

point for later use.  As such, a module like the FeSolver will be invoked, wait until it 

receives an execution directive, run to completion (passing its data out of the module), 

and then wait idle until needed or terminated. 

A powerful module composition tool is needed to bring tools from various 

disciplines together to form multidisciplinary applications.  When legacy modules are 

developed, their design generally does not consider how the module could be used as part 

of a future collections of modules.  Legacy codes are frequently designed to achieve a 

single task in the best possible way.  As such, whatever local tools, methods, and 

protocols are available are used to build the best possible stand-alone module.  This local 

construction process makes it difficult to integrate modules from different disciplines 

when they do not use common data formats, common communication protocols, or even 

common development languages.  MARS is a composition tool designed to bring 

modules together from multiple disciplines to form multidisciplinary applications. 
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II. Related Work 

There have been many different approaches to achieving task integration.  Most 

approaches deal with homogenous tasks rather than integrating codes from multiple 

sources.  The MDO integration problem has been tackled several different ways: on a 

language level by augmenting data parallel languages with task parallelism primitives 

and extending task parallel languages to handle multiple interfaces, and using a case-by-

case approach to the problem with unique (one-time) solutions.  We have found that 

similarities exist between elements of particular systems and certain MARS components, 

but that the collected functionality of MARS has not been realized. 

We examine a few approaches to the MDO integration problem, with a focus on 

message and data transfer.  Since MARS is a runtime system, primarily existing to plumb 

data and message connections between heterogeneous3 codes, we focus on how these 

things are done in other systems.  Most conspicuously absent in these previously 

developed systems is support for legacy applications. 

We have found one system very similar to MARS, in development at Stanford 

University, known as CHAIMS (Compiling High-level Access Interfaces for Multi-site 

Software).  The application of MARS to integrating MDO codes, when viewed as a 

simple programming model, is being realized by the CHAIMS project (but at a much 

higher level of abstraction than MARS).  For the most part, CHAIMS operates above 

current parallel language specifications, while MARS operates below language 

                                                 

3 Of course, MARS will work with modules that have similar (homogenous) interfaces as well, but 

that problem is not nearly as interesting. 
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specifications, yet there is still a strong analogue between the two systems.  Before 

examining this similarity further, an examination of different language-level approaches 

is warranted. 

Language similarities and differences 

A primary difference between MARS and virtually all languages and language 

extensions is the support for legacy codes.  Opus, for instance, can handle annotated HPF 

code and compile the source to the Chant runtime system [Mehrotra94, Haines94] (or 

even to the MARS runtime system, with some modification).  On the other hand, a source 

code in C for a program that performs a Fast Fourier Transformation has no meaning to 

Opus.  Even converting the C code to HPF would require the user to modify the resulting 

HPF to use Opus primitives and objects for communication and synchronization.  With 

MARS, that same FFT program can be wrapped to become a working module without 

source modification, and is easily incorporated into a MARS ensemble.  The purpose of 

language specifications is generally to build new codes, including new MDOs.  They are 

designed with support for legacy modules in mind.  Limited code reuse (using legacy 

modules) can be achieved with these language-level specifications, but only by reusing 

other codes originally written using a specific language specification. 

It should be further noted that many language specifications could be compiled to 

MARS, although MARS currently lacks a native threading system.  (The initial focus of 

the MARS project was to develop the message passing layer, the I/O routines, and the 

basic control and concurrency primitives.  The assumption is that MARS will be 

augmented with an existing threads package.)  Because MARS contains a very simple 
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specification language, it is generally not as full-featured as more mature systems, but the 

runtime primitives can generally implement the missing higher level functions. 

Fx 

Developed at CMU, Fx is an extension of the Fortran language.  In Fx, parallel 

sections of code, called tasks, are invoked by a program as subroutines.  Tasks 

communicate with one another by sharing input and output arguments in their parent 

space.  A task’s parent is the scope that invoked the task.  Data may be passed to or 

received from a task only when it is called or returns, respectively.  As such, specification 

of data flows must be provided at compile time in the form of input and output directives.  

The data flows are therefore static and cannot be changed at runtime.  This method does 

have the advantage of possible compile-time path optimizations.  Also, the data flows are 

deterministic, and no runtime destination translations are required.  The actual cost of 

runtime destination lookups are low, however. 

While good for the design of new task parallel codes, Fx is not particularly suited 

for MDO applications [Bal96].  First, within a single invocation, the Fx language 

provides excellent support for communication and parallelism.  However, between two 

distinct codes, both written in Fx, the MDO builder is once again responsible for handling 

communication.  In effect, a static (where modules are never added or removed) MDO 

could be easily built as a single Fx program, but altering the ensemble would require re-

coding and recompiling the entire Fx code (or else the user has to build a runtime system 

to provide the needed support4). 

                                                 

4 Don’t.  Use MARS instead. 
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The Fx input and output directives radically limit the usefulness of tasks in a 

parallel environment [Bal96].  If tasks must communicate frequently, routines must be 

frequently split at synchronization points so the task can share its data.  This of course 

makes programming the tasks difficult and greatly increases the overhead of task 

invocation.   

With the MARS primitives for module invocation and the ability to simulate 

synchronous module data output, it would be a suitable runtime system for Fx to compile 

to.  At the same time, allowing asynchronous data transmission and reception without 

having to break modules into component subtasks seems to be a distinct advantage of 

MARS.  Also, for evolving MDO ensembles, MARS’ weak data flow specification also 

seems to be advantage.  (Recall that data is simply “written” in MARS modules, it can 

always be dynamically routed to various locations or modules, without a priori 

knowledge of the modules that will be part of the ensemble.) 

Linda 

Linda is a unique model for developing parallel programs.  It provides 

communication through tuples that are placed into a shared virtual tuple-space.  Active 

tasks may remove tuples from the tuple space at any time.  With the tuple communication 

in place, message passing is a straightforward process.  Linda extensions are available for 

many languages, including C, C++, Fortran, and Scheme [Carriero89]. 

For homogeneous parallel processes, Linda can be very effective.  However, 

Linda is not particularly well-suited to multidisciplinary applications for several reasons.  

Control over resource allocation within the virtual tuple space is limited.  Invocation and 
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distribution of working modules as “live tuples” in the tuple space offers little control as 

well [Bal96, Carriero89]. 

Legacy codes not written in Linda typically use a distinctly different I/O and 

execution paradigm, and are thus rather difficult to port to use Linda primitives.  In many 

ways, it would be easier for MDO builders to use the naïve approach of trapping all 

output to a file and then transforming that file into a usable format for another module 

than to achieve the same results in tuple space.  Perhaps for experienced Linda 

programmers, this would not be the case, but with Linda there is the ultimate task of 

converting all I/O routines to Linda-friendly (read: tuple space aware) methods. 

Orca 

Orca is a task parallel language that supports process allocation in a manner 

similar to MARS.  Like MARS module invocations, Orca tasks can be dynamically 

created and mapped to specific execution nodes.  However, there is no explicit message 

passing in Orca.  Instead, communication is handled by applying user defined Abstract 

Data Type (ADT) operations on shared objects.  Orca collections are good for coarse-

grained parallelism as operations on ADTs are always exclusive and indivisible [Bal96]. 

Unlike Opus, which is a specification language, Orca is self contained (in that has 

its own compiler and runtime system).  In this regard, Orca does go significantly further 

than MARS.  With MARS, it would be possible to provide runtime support to system like 

Orca, but more is possible.  MARS includes primitives appropriate for simultaneous 

divisible access to ADTs.  Once again, since Orca is a complete programming language, 

users are limited to programming in Orca.  This does limit the possibility of using legacy 

codes, and it also prevents users from easily extending the Orca specification.  Because 
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MARS concentrates on coordination rather than programming, it has a broader range of 

usefulness to legacy codes.  

Additionally, because Orca is compiled and has its own runtime system, users 

may find it difficult to add to the Orca system.  Since MARS is built in clearly defined, 

user-accessible layers, inserting functionality at the various levels is much simpler than 

with Orca.  Finally, extending higher-level MARS constructs with source language (such 

a C) primitives is also possible, whereas there is no such distinction with Orca. 

Opus 

The Opus language specification was designed for multidisciplinary applications 

[Bal96].  Opus takes a data-centric approach to the MDO problem, introducing the 

ShareD Abtraction (SDA) for coordination and communication.  SDAs act as data 

repositories, communication channels, and occasionally as compute nodes within Opus 

ensembles. 

The Opus language extends HPF with its task parallel programming constructs 

[Chapman94, Mehrotra94].  There are several strong similarities between MARS ad 

Opus.  (This is to be expected; runtime support for an Opus-like language was the genesis 

for the MARS project.)  Multidisciplinary Opus applications begin with a “leader” that 

sets up the SDAs, similar to the way MARS ensembles are setup.  Opus and MARS both 

use similar spawn operations to invoke working modules with specific resources.  Opus 

provides access to SDA objects without working modules having to explicitly locate the 

SDA objects on the network.  Similarly, the leader module in a MARS ensemble defines 

I/O paths for working modules at runtime.  
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Clear differences between MARS and Opus make their target domains quite 

different.  The primary difference is that Opus is a language specification while MARS is 

a runtime system.  With a few extensions to MARS, it would be an appropriate target for 

Opus to compile to (Opus relies on externally provided runtime support).  Additionally, 

Opus support only extends to SDA-aware codes.  There is no legacy code support within 

Opus.   

Opus is a coordination language, not a distributed programming language like 

Orca or Fx, which makes it more closely related to MARS [Chapman94].  The MARS 

runtime system is predicated on primitives exclusively designed for coordinating 

modules, rather than programming modules. 

CHAIMS 

The CHAIMS system is similar to MARS, but operates at a significantly higher 

level of abstraction than MARS.  CHAIMS, unlike many of the other coordination 

systems examined, is close to being a pure composition language, functioning at a higher 

level of abstraction than task-parallel programming languages and extensions 

[Tornabene98b].  We outline the philosophy of the CHAIMS system, the differences 

between the levels of operation of CHAIMS and MARS, and finally examine the 

fundamental similarities between the two. 

CHAIMS programming 

The original CHAIMS specification was for a composition language that would 

be used to build megaprograms.  Megaprogramming is a form of programming in the 

large, where “large” can be viewed on several independent levels.  There can be 
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largeness in time (persistence), large variability (diversity), largeness in size (complexity 

of the program and/or its range of applicability), and largeness in capital investment 

(infrastructure) [Wiederhold92].  Megaprograms compose megamodules into collections 

capable of greater functionality than an individual megamodule can achieve.  A 

megamodule, as originally specified, was a large, persistent, self-contained object with a 

consistent interface for querying.  Megaprograms are built by composing various 

megamodules into a whole to achieve a desired result. 

CHAIMS is predicated on breaking up the traditional call statement into three 

main parts: supply, invoke, and extract [Wiederhold92, Tornabene98a].  Supply 

corresponds to traditional argument passing, but does not force an immediate call 

invocation.  It merely provides the input arguments required by a traditional call.  The 

invoke statement causes the asynchronous execution of the megamodule with the 

parameters supplied by a corresponding supply.  Results are returned to the calling 

megaprogram by means of extract.  Various other directives to megamodules allow their 

status to be examined, inspection of their interface and contents, and execution resource 

constraints to be placed on megamodule invocations.  Information passed between 

megamodules must be transduced: collected, transformed, and forwarded among 

megamodules and I/O modules [Perrochon97].  In CHAIMS, transduction is currently up 

to the megaprogrammer. 

Differences between CHAIMS and MARS 

There are significant differences between CHAIMS and MARS, but they are 

primarily on the level of abstraction, rather than in philosophy.  CHAIMS assumes that 

megamodules have their own ontology and maintenance, and are simply available to the 
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public for access.  In this sense, megamodules are much like object resources in CORBA.  

MARS is perhaps better characterized as “programming in the small” in this regard.  

MARS ensembles are formed by collecting stand-alone modules that are not already 

servers and turning them into servers capable of being composed into ensembles 

(megaprograms). 

CHAIMS assumes that composers (megaprogrammers) generally do not have 

control over the megamodules they use [Wiederhold92].  MARS assumes that, in general, 

its modules may be invoked on any participating execution node, and is thus steered 

toward a different set of problems.  At the same time, however, MARS can certainly 

communicate with persistent modules; MARS simply extends the CHAIMS specification 

to include dynamic module invocation primitives.  This is a clear philosophical 

difference: CHAIMS is not “polluted” with non-compositional features, while MARS is 

not “limited” to dealing with persistent modules. 

MARS is a runtime system that provides specific data transport mechanisms to 

multidisciplinary programs and a simple specification language for composition of those 

programs.  CHAIMS is predicated on communication with existing modules through 

various methods, including COM, CORBA, Java-RMI, etc.  [Tornabene98b].  CHAIMS 

does not provide data transport mechanisms to previously naïve programs; rather it has a 

rich set of messaging protocols intended for communicating with existing network-aware 

servers (megamodules). 

The combination of these implementation differences distinguish the MARS 

problem set from CHAIMS’.  MARS is intended for use primarily with local modules.  

These local modules are controlled by ensemble creators.  They can be altered locally and 



 17

have multiple invocations on arbitrary execution nodes.  CHAIMS assumes that 

megamodules are available somewhere, and that megaprogrammers have no control over 

megamodules and cannot alter them. 

Similarities between CHAIMS and MARS 

The main difference between CHAIMS and MARS is that they operate at 

different levels of abstraction.  Despite those differences, there are several fundamental 

similarities between the current specifications of the two systems.   

The MARS system uses a wrapper program to make modules operate as mini-

servers, existing as long as the user dictates.  With the wrapper, previously unsuitable 

codes can be brought into a multidisciplinary application.  The ability to utilize legacy 

codes, those codes not originally developed with MARS, is important to code reuse.  The 

current CHAIMS specification has a similar notion of a wrapper.  The CHAIMS wrapper 

wraps non-compliant megamodules so they can be used with CHAIMS.  The CHAIMS 

wrapper adds an interface to megamodules that cannot communicate with a megaprogram 

or that do not correspond to the CHAIMS calling specifications.  The wrapper allows 

legacy megamodules, those that are not already CHAIMS compliant, to be used by 

megaprogrammers.  For example, if a megamodule did not support simultaneous access 

or the split supply, invoke, extract method of calling, a wrapper would make the 

megamodule appear as if it does so to megaprogrammers [Perrochon97]. 

The CHAIMS megaprogram is very similar to MARS' leader module.  The leader 

module encompasses the MARS specification language and is purely compositional.  The 

body of the leader code, while expressed in a traditional language (C/C++), is very 

similar to CHAIMS megaprograms.  Both focus on the composition of modules and hide 
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implementation details.  Current MARS leaders can direct data from one module to 

another in an ensemble, but original leader codes had to collect data and retransmit it to 

working modules.  The current CHAIMS system marshals data and retransmits it to 

megamodules, but the CHAIMS project is working toward direct data flows between 

megamodules [Tornabene98b]. 

 

Figure 2. Visualization of CHAIMS composition [Perrochon97] 

CHAIMS megaprograms certainly have the ability to be multidisciplinary.  An 

arbitrary set of megamodules from many disciplines can be tied together to solve a 

particular problem.  The thrust of MARS is to support multidisciplinary optimizations.  

Neither system deals with the functioning of component models (megaprograms or 

working modules), but with the flows between and the coordination of various models.  

The assumption made by MARS and CHAIMS is that working modules are oracular; 

neither affects or alters module-local computations. 
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As seen in recent project descriptions, visualizations of CHAIMS compositions 

closely resemble visualizations of MARS ensembles (Figure 2).  We outline the primary 

MARS/CHAIMS parallels in Table 1: 

Table 1. MARS/CHAIMS similarities 

MARS CHAIMS 

Leader coordinates working modules Megaprogram coordinates megamodules 

Legacy codes are wrapped to participate Legacy codes are wrapped to participate 

Ensembles can be multidisciplinary Megaprograms can be multidisciplinary 

Leader codes are compositional Megaprograms are compositional 

Working modules are considered oracular Megaprograms are considered oracular 

 

We have found the closest analogue to MARS to be the CHAIMS system.  Even 

though they operate at different levels, they are very similar in approach and philosophy. 
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III. The MARS System 

The MARS system consists of six main interacting components, the wrapper 

code, the native communications layer, the Remote Service Layer (RSL), the Remote 

Service Spawn (RSS), the message processing layer, and the MdoModule layer.  There 

are four main divisions of these components: preprocessing components, runtime library 

code, support for remote invocation, and high-level objects needed to construct the leader 

code.  The components combine to form a complete framework capable of supporting the 

multidisciplinary problems outlined in Chapters I and VII.  In general, the MARS system 

works as follows: 

1. Component modules necessary to solve a problem are assembled. 
2. The modules are wrapped, turning them into specialized MARS servers. 
3. A leader is written5. 
4. The leader is executed, causing execution of the component modules in 

accordance with the specification. 
 
When assembled, the leader and the working modules form a multidisciplinary 

application.  This chapter reviews the components of the MARS system. 

The wrapper is the first part of the MARS system.  Its job is to turn legacy 

modules into special MARS servers, capable of communicating with other MARS 

working modules and leaders.  The wrapper installs communication mechanisms in 

legacy codes and also substitutes MARS I/O routines for those in the original code.  Once 

this is done, a MARS leader code (which is really just a specification for a set of 

modules) can control the working module by invoking it with the remote invocation 
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tools.  Once a module is running, it communicates with its leader through several layers 

designed to ensure consistent communication between modules.  These components 

relate in the manner shown in Figure 3. 

Wrapper

Message Passing Layer

Native Communications Layer

Router Table

Remote Service Layer

Original (Legacy) Code

LeaderMdoServer
(Spawner)

Working Module

I/O

 

Figure 3. MARS component interactions 

  

                                                                                                                                                 

5 The leader is effectively a “map” of the execution and data path to be taken by the assembled 

modules. 
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Preprocessing Components 

Wrapper 

When an ensemble programmer is presented with existing codes to be integrated 

into a new multidisciplinary application, the first step is to make the codes compatible 

with the MARS system by transforming them into MARS servers.  This is achieved by 

wrapping the existing executables with the runtime routines provided by MARS. 

The wrapper begins with the source code for a module and adds essential routines 

to make the module interact with other MARS modules and leaders.  First, the wrapper 

renames the existing source code’s “main” routine (original entry point) to 

“wrapped__main”, or another unique identifier if a “wrapped__main” already exists.  The 

wrapper inserts a new main routine into the program that usurps the original code’s entry 

point and substitutes an initialization code, exit (clean-up) code, and a simple message 

processing loop to handle incoming messages. 

When a wrapped module is invoked, its initialization routines cause the module to 

immediately check-in with the MARS module (leader or otherwise) that invoked it.  

During the check-in phase, the module tells its invoker its vital identification information, 

such as its execution host’s id, its unique communication id (port number, assuming 

TCP/IP communications), its nickname (if one is given), and any other identifiers 

embedded at wrap time.  This check-in communication is done via the Remote Service 

Layer (RSL). 
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After check-in, a wrapped module simply waits for incoming connections and/or 

messages.  When a message is received, it is processed by the runtime system which is 

linked in after the wrapped source code is compiled. 

The wrapper has functionality built in to allow users more control over wrapped 

modules than is available in the original (unwrapped) module.  For instance, with specific 

command line options passed to the wrapper, programmers can add module entry points 

for subroutines that were previously externally inaccessible.  For instance, if the 

programmer knows that operations are safe, s/he could invoke those subroutines within a 

module and receive output from those subroutines.  For example, a stand-alone module 

would have previously restricted the module’s execution flow to cover only the code 

invoked by the main routine.  A wrapped code can invoke any arbitrary subroutine from 

the original source code, at any desired point.  This ability might violate the black box 

principle of the original code, and users of this functionality must be aware of the 

potential side-effects caused by arbitrary routine invocations.  

Wrapped programs can also run in stand alone mode.  Stand alone mode is simply 

the invocation of a wrapped module as it would have been previously invoked (before 

wrapping), without the Remote Service Spawn (RSS) layer.  For example, a wrapped 

program that was previously invoked by typing  “./foo –o bar” on the command line 

would still give the same output in the same form as the original non-wrapped code.  

Stand alone mode facilitates component testing, and allows a single copy of a module to 

perform within the MARS framework or without.  This “single source” capability is 

extremely important in simplifying code maintenance.  Programmers can tweak a single 
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source that runs in stand-alone and MARS modes, without having to post changes to 

multiple sources. 

Control Loop 

Virtually all communication primitives in the MARS system are asynchronous.  

Users can easily construct synchronous calls by blocking on return values from calls that 

have returns (e.g., RSL->TERMINATE_AND_REPLY()).  The control loop added to a 

wrapped module consists of a simple message receive/process loop, augmented with the 

ability to accept new incoming connections.  The typical control loop is similar to the 

following (in pseudo-code): 

initialization_code();
status = RUN;
while (status != EXIT) {
RSMessage = poll_for_message();
status = process_message(RSMessage);

}
exit_code();
 

The initialization code takes care of the check-in procedure.  To some extent, the 

check-in procedure will be protocol dependent (e.g., an Intel Paragon’s native messages 

or Linda’s tuples would require different informational fields from a Linux machine 

using TCP/IP).  Currently, only TCP/IP support is implemented, though we have used 

TCP over several different mediums, including 10/100baseT Ethernet and fiber-optic 

ATM, and it is available on most systems, including those without native TCP/IP support. 

The control loop runs until the module is explicitly directed to exit, at which point 

its exit status is returned to the module that ordered its termination.  Note that module 

termination is not necessarily called exclusively by the leader that invoked the module.  
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In many cases, especially with complex conditional execution paths, it is desirable to 

allow arbitrary modules to force their peers to exit. 

File (I/O) Layer 

The critical issue with the wrapper is I/O.  Many potential candidates to become 

modules in an MDO use arbitrary output schemes that use multiple files, in multiple 

(often proprietary) formats that are without obvious meaning to an outside observer.  

Such programs can be extremely difficult for a developer to understand and integrate into 

a multidisciplinary optimization. 

The wrapper must be able to convert simple I/O calls automatically to some other 

form that can be utilized in a collection of different modules6.  Disk-based I/O routines 

are by far the most common, especially in scientific codes.  Simulation data is generally 

pushed to disk and later analyzed or used by other programs. 

The problems with integrating disk-based I/O routines into a MARS module 

cluster are many.  Frequently, execution nodes will not share the same file system, 

making it extremely difficult to share files conveniently.  Also, if wrapped modules have 

hard-coded absolute paths to input and output files, it can be very difficult to distribute 

modules to arbitrary execution nodes.  Finally, to take advantage of task parallelism, 

disk-based I/O times should not dominate processing time.  If it does, the time to read, 

                                                 

6 We are currently investigating the SmartFile approach to understanding data [Haines95b].  More 

information about SmartFiles is provided in Chapter VI. 
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write, and export files from a given node will dominate the process time, negating one 

potential benefit of the MARS system. 

To combat these problems, we use a special I/O layer written to abstract files 

from physical devices (disks) and substitute existing network communication channels 

instead.  For example, a pre-wrapped I/O call might write an integer to a file called 

“out.dat”.  Each write involves a call to an operating system defined primitive (such as 

write() or printf()) that accesses a mechanical device (disk) and has an associated 

latency cost that is generally high compared to a memory or network write. 

Instead of necessarily committing data to disk, our I/O layer transmits the data 

somewhere.  When a module is invoked, its data streams do not yet go anywhere!  Some 

time after the check-in procedure has finished, a module is instructed to send its data to 

an arbitrary location, be it memory, the network, or to disk.  If no explicit information is 

provided, the module’s original I/O destination is used.  This means that the module, 

when invoked in stand alone mode, still understands its original data paths, and still 

functions properly. 

The file I/O layer is implemented as a C++ class.  There are five basics primitives 

for binary type I/O: 

int c_open(char * name, io_type type);
int c_close();
int c_flush();
int c_write(const void * buff, int size);
int c_read(void * buff, int size)
 

The I/O layer will write to disk or to a connected socket, depending on the 

module’s invocation method (“stand alone” or part of an ensemble).   The I/O layer’s 
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function is similar to an operating system’s disk-based I/O, with a “flush” mandating that 

data be pushed to disk or to the network and allowing data to be committed at arbitrary 

intervals otherwise. 

Runtime System 

The runtime system has four main parts: the native communications layer, the 

Remote Service Layer (RSL), the Router Table, and the Message Processing Layer 

(MPL).  To remain consistent across platforms, the RSL can be built upon whatever 

native communications layer is available; for this implementation of MARS, we chose 

TCP/IP as it is the most widely-available transport protocol today. 

The Native Communications Layer 

The native communications layer is the foundation of all message passing in the 

MARS system.  In this implementation, we rely on TCP/IP sockets for low-level 

communications, but the messages can be easily ported to other protocols because the 

low-level protocol simply passes RSL-encoded messages.  An RSL-encoded message is 

simply a standardized data packet with a header block that describes how the data is 

packed. 

The native communications layer must provide simple primitives to the RSL 

layer, while the RSL layer is responsible for all data encoding and transmission decisions.  

The assumptions made about the data channel required to support the RSL layer are that 

the low-level system is reliable and that the messages are ordered along a given channel.  
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TCP/IP is both reliable and ordered for a connected socket.  Given these requirements, 

UDP/IP would not be suitable for our RSL because it is unreliable and unordered. 

In environments with connectionless protocols, such as the Intel Paragon or the 

Linda system, simple integer counters local to a given execution node would suffice for 

message ordering (with identification of the transmission and target modules, of course).  

A total global ordering of messages is not required; simple ordering of messages between 

nodes (on a given real or virtual channel) is all that is necessary. 

Our system implements the following essential, basic public primitives to access 

the native communications layer: 

 
// connect (as client) to a server
int connect (char *toHost, int toPort);

// check for possible requests to connect (non-blocking)
bool pendingConnect (int secs = 0, int usecs = 0);

// accept (as server) a connection from a client socket
// (blocking)
int accept ();

// close connection(s)
void close (int connectId); // one connection
void close (); // all connections

// check connection status
bool isConnected (int connectId);

// write data over a connection
int write (int connectId, void *buf, int bytes);

// check for possible messages (non-blocking)
bool pendingMessage (int connectId);
bool pendingMessage (int *connectId, int secs = 0,

int usecs = 0);

// read data from a specific connection
int read (int connectId, void *buf);
void *readAlloc (int connectId, int *size);
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These primitives are essential to the RSL layer functionality.  They provide a 

means to establish a “connection” (be it a virtual or connected message medium, such as 

TCP/IP) and to pass messages over such connections.  In the TCP/IP implementation, the 

connections are managed in a connection table that is a component of the socket class.  

The connection table manages the virtual circuits formed by connecting two TCP/IP 

sockets.  If MARS were ported to run in another environment, such as Linda, the 

connection table could simply track IDs associated with tuples that would designate 

which virtual circuit a message belongs to. 

In our system, the low-level communications package includes header 

information used to form message packets and to control transmission characteristics.  In 

many instances, such as when streaming data leaves one module directly bound for the 

input stream of another module, such overhead is unnecessary.  Such a circuit, used 

without header information, is referred to as a raw circuit.  The following advanced 

public primitives were implemented to leverage the ability of the native communications 

protocol to quickly transmit data, without the need for extra header information: 

//return connection mode (“raw” or “packet”)
bool pktmode (int table_id);

//changes connection mode to TS_RAW_MODE
void make_raw (int table_id);

//changes connection mode to TS_PKT_MODE
void make_pkt (int table_id);

//reads from a raw connection into ptr
//will read up to “size” bytes, returns status
int raw_read (int table_id, char * ptr, int size);

//blocks until size bytes are read, or error occurs,
//returns status
int raw_blk_read (int table_id, char * ptr, int size);

//determines bytes available for reading
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int raw_blk_peek (int table_id, char * ptr, int size);

//writes to raw connection without any header information
int raw_write (int table_id, char * ptr, int size);
 

These advanced primitives may not be appropriate for some native transmission 

protocols (other than TCP/IP) and are not necessary for the RSL to function properly.  

True RSL messages always have header information, indicating message type, message 

source, etc.  These primitives are appropriate where applicable, but not necessary for 

complete system functionality. 

The native communications layer in this case (TCP/IP) had one main deficiency.  

When a certain amount of data was sent from module “A” to module “B”, if module “B” 

did not consume the information by reading it from the network, module “A” was forced 

to block on a send until module “B” read the waiting data.  On many systems, the amount 

of data that could be buffered was unusually low, i.e. 16k bytes.  To remedy the situation, 

we added a line buffer between the modules that required it.  The buffer is a multi-

threaded application that queues incoming data until it can be safely sent to the 

consuming module. 

The buffer program is an implementation of the classic producer/consumer 

problem.  There is a reader thread and a writer thread corresponding to each direction of 

data flow (so there are four threads, in total).  The reader thread constantly places data 

into a buffer, while the writer thread constantly passes data down the network.  In this 

way, if a writer thread blocks because a particular module is not consuming data, the 

corresponding reader thread can still place data into the buffer, thus permitting both 

modules (producer and consumer) to continue without blocking. 



 31

There is a tradeoff to this buffering system: messages must be copied an extra 

time.  Alternate approaches include increasing OS buffer sizes and various forms of flow 

control.  Increasing OS buffer sizes simply delays the eventual time until buffer overflow, 

while increasing OS overhead.  Various forms of flow control have yet to be examined, 

and are an ongoing research issue. 

Remote Service Layer (RSL) 

The Remote Service Layer (RSL) is the primary method of communication 

between modules.  RSL communication is ordered between modules along virtual 

connections because the native communications layer is similarly ordered.  RSL 

messages are asynchronously transmitted and received, without explicit return values in 

the general case.  Special fields in an RSL message header facilitate synchronicity (if 

desired), but this synchronicity comes from how the message is processed in the Message 

Processing Layer.  RSL messages consist of two parts: a well defined header and a 

corresponding binary data-blob sent immediately after the header.  An RSL message 

header is an object of the following form7: 

typedef struct RSmessage
{
char from_name[100]; //not required, used by MPL
int from_port; //not required, used by MPL

char type[100]; //request type
char subtype[100]; //request sub-type, if necessary

//packed arguments are word-aligned and can be accessed

                                                 

7 RSMessage are only sent and received by the RSL layer (no message processing is performed by 

the RSL layer). 
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//directly
int num_args; //number of packed args
int args [RS_MAXNUMARGS]; //offsets of packed args
int arg_size[RS_MAXNUMARGS]; //sizes of packed args

} RSmess;
 

The RSMessage type has fields type and subtype that indicate the purpose of 

the message.  RSMessage types are any string recognized by the Message Processing 

Layer, and are simple null-terminated strings.  num_args indicates the number of 

arguments in the RSMessage, while args[] and arg_size[] indicate how those 

arguments are to be accessed.  The type and meanings of the arguments are determined 

by the context provided by the type and subtype fields. 

An RSMessage is routed in a manner similar to the native communications 

messages.  A corresponding RSMessage connection table is built on top of the native 

communications layer’s connection table.  The RSL adds several features not available in 

the native connection table, however.  For instance, the RSL allows connection naming, 

so that channels may be accessed by their “name” rather than a connection ID.  Also, 

circuits have the ability to name themselves, further advancing the notion of asynchrony.  

For example, a naïve unnamed comminations protocol would require that clients connect 

to a server in a specific order, forcing that high level of synchronization upon the entire 

multidisciplinary optimization.  It might look something like the following: 

int a = accept(“connection from module a”);
int b = accept(“connection from module b”);
int c = accept(“connection from module c”);
run(a); run(b); run(c);
collect_data(a, dataA);
collect_data(b, dataB);
collect_data(c, dataC);
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In such an example, nothing could begin until modules a, b, and c connected to 

the server, and the connections would necessarily have to occur in that order.  With 

naming installed, the following code could be used, without the synchronization forced 

by the mandatory connection ordering: 

accept(“any”);
accept(“any”);
accept(“any”);
run(“a”); run(“b”); run(“c”);
collect_data(“a”, dataA);
collect_data(“b”, dataB);
collect_data(“c”, dataC);
 

At first glance, the syntactical differences between the two examples do not fully 

illustrate the semantic differences.  Notice, though, that the first example requires that 

“module a” connects first and is thus assigned the unique identifier “a”.  Furthermore, all 

later operations depend on the identifier “a” pointing to a specific structure.  With the 

naming scheme, a program can receive an arbitrary set of incoming connections and 

process them in an arbitrary order, depending only on the runtime instructions of the 

program.  This dynamism facilitated by connection naming will be explained further in 

Chapter IV. Applications/Results, where will look at how dynamic scheduling can be 

accomplished by using names instead of static connection identifiers. 

RSL messages are sent using the rsr method which can be routed via connection 

id or by name: 

//rsr by connection id, returns status
int rsr (int destination, char * method, int nArgs, ...)

//rsr by connection name, returns status
int rsr (char * dest_name, char * method, int nArgs, ...)
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The variable argument list (denoted “...”) is a very important component of an 

RSL message.  We pack the data as efficiently as possible, but align each argument of the 

argument list, regardless of its size, on a word boundary (the base of the alignment 

corresponds to the RSMessage header information).  We discovered that several 

important architectures, including the MIPS, would not properly handle certain native 

data types (int, double, etc.) that are a word size or larger, on the receivers’ end, unless 

they were pre-aligned on word boundaries.  For example, the following code fragment 

would fail8 on the second cast on many machines: 

char buff[20];
int i = *((int*)(&(buff[0]))); //succeeds
int j = *((int*)(&(buff[1]))); //fails
 

To combat the problem of receiving arbitrary data types in an RSL message, each 

argument is independently aligned to the largest word size among participating machines 

(at a maximum cost of sizeof(word)-1 bytes per argument). 

Router Table 

The Router Table is an advanced data structure for installing arbitrary names in a 

module’s I/O routines.  The Router Table provides a bridge between the Remote Service 

Layer and File I/O Layer.  An unaltered, non-wrapped module may expect to receive 

incoming data from a file, say “foo”.  Instead of demanding that the wrapped module 

constantly write to a fixed channel “foo” (which could go to disk or network), the Router 

Table allows the destination “foo” to be changed dynamically, unbeknownst to the 

                                                 

8 The code will compile, but fails at runtime. 
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module using “foo”.  This ability is extremely powerful.  Unlike the languages using 

compiled communication paths, like Fx, MARS modules never need to know where their 

inputs come from until after they are invoked.  Likewise, their outputs can be similarly 

assigned at runtime and can be changed multiple times during their execution lifetime. 

For example, during its first run, a module might write its output to “foo”, and 

“foo” could go to a disk file named “out.dat”.  During its second run, the program 

again writes its output to “foo”, but “foo” now points to the input stream of another 

module elsewhere on the network and a disk file called “run2.dat”.  During a third run, 

“foo” may be superfluous, and the data written to it may be discarded.  All of these 

changes occur without altering the running module, except for a simple message that 

replaces the location in the Router Table pointed to by “foo”.  The power of this 

dynamism is shown further in Chapter V.  The Router Table is managed exclusively by 

the Message Processing Layer. 

Message Processing Layer (MPL) 

The Message Processing Layer is the most critical component of the MARS 

system.  It is the layer that translates and implements all requests in all RSL messages.  It 

modifies connection tables, invokes native procedures within wrapped modules, and 

establishes data connections.  There is only one public method (other than the constructor 

and destructor) that the MPL understands: 

int process(rsl * transport, char * message);
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The “rsl * transport” is a pointer to the actual RSL object and is only 

essential if a module has multiple transport systems.  We do not foresee any legacy 

applications (those that would wrapped) requiring multiple network transports, but 

understand that it may be useful to original application designers.  The “char *

message” is actually a pointer to an RSMessage type, but we have found that some 

compilers prefer an external cast to char and a re-cast inside the method to the 

RSMessage type.  Also, and more importantly, we can receive a RSMessage type into a 

(char *) buffer and process it without the module requiring knowledge of the 

RSMessage type at compile time.  As such, it is very easy to alter the RSMessage 

specification without recompiling the source for the main module. 

The process() routine understands many requests, and has private methods for 

each type.  There are currently fifteen known message types and a handler for unknown 

messages.  The unknown message handler simply relays the original message back to the 

sender, with an error status indicated.  The messages processed by the MPL compose the 

specification language. 

The messages that can be processed instruct a module to perform the various 

actions required to run smoothly.  If module “A” determines that module “B” should 

establish a new output connection to module “C”, module “A” sends a message to “B” 

indicating that request.  The Message Processing Layer understands that to fulfill the 

request, it should call the appropriate routines from “B’s” RSL and force the connection 

to module “C”.  When it is time for a module to execute its wrapped__main routine, the 

MPL understands where the entry point is and invokes the routine. 
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Most mundane functions are also performed by the Message Processing Layer.  

Log files are opened and written to by the MPL.  The level of logging to be performed by 

the lower layers (such as File I/O Layer logging) are altered with calls to the MPL.  It is 

the layer that understands how to control all the other layers and the only level at which 

modules can communicate directly. 

Logging 

Logs are important part of any large scale programming endeavor.  In order to 

troubleshoot and tune runtime systems, especially with dynamically changing schedules 

and data paths, it is important to understand the state of particular modules and how the 

effects of their states affect the global state of a collection of modules. 

We have implemented logging primarily in the MPL and the File I/O Layer.  The 

logging can be done at several levels, depending on the log event granularity desired by 

the programmer.  Log levels can be changed at runtime, rather than just at compile time.  

This flexibility allows the user to turn off all logging in stable codes, ensuring optimal 

performance, and (at a different time) the user could turn on high log levels to 

troubleshoot the same codes if problems arise. 

Remote Invocation System 

The remote invocation system for MARS was built from scratch.  We chose to 

use a simple TCP/IP based method, rather than require users of MARS to have access to 

an emerging standard, like commercial implementations of CORBA. (Also, at the time 
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this project was started, different CORBA vendors’ implementations were often not 

compatible.) 

Remote Service Spawn (RSS) 

To invoke a module on a remote execution node, a call is made to the Remote 

Service Spawn.  The RSS call for TCP/IP looks like this: 

int spawn(char * checkin_server, int checkin_port,
char * spawn_server, char * spawn_prog,
char * args = “”);

 

This call can be abstracted to the form: 

spawn(hostType * execution_host_id,
hostType * spawn_host_id, char * module_to_spawn,
char * arguments);

 

This form can be used with invocation methods other than TCP/IP.  At a 

minimum, a call to spawn() requires the name of a module to execute, the node to 

execute the module on, and the arguments to the module (if any).  After careful 

consideration, the spawn() command has been kept separate from the RSL and native 

communications layer to allow heterogeneous invocation methods to exist without 

altering the communication methods.  Invocation and communication are radically 

different tasks. 

The spawn command invokes the module on the specified node and passes to that 

module the extra information required for the check-in procedure that is embedded in a 

wrapped code.  The RSS always logs invocations and the return status from a spawn()

(invocation) call. 
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MdoServer 

The MdoServer is the code that actually performs the invocation of a module; it 

handles the spawn call from the RSS.  In this implementation of MARS, the MdoServer 

is invoked by the UNIX inetd process when a call is made to the TCP/mux port (port 

1), and “mdo_server” is the service requested. (The RSS knows to connect to the 

TCP/mux port and to request the “mdo_server” service.) 

The MdoServer accepts the arguments provided by the RSS, and forms a 

command string with the module to be invoked, the check-in arguments, and any further 

arguments to the module.  The command string is passed to an exec() call, and the 

MdoServer’s executable image is replaced with the requested module’s. 

The MdoServer is a simple C code that only depends on the exec() call.  It is a 

simple program that could be replaced with another invocation method, such as one 

dependent upon CORBA. 

TCP/mux code 

The TCP/mux service is available on many, but not all, UNIX operating systems.  

For instance, SGI’s Irix 6.3 operating system has TCP/mux as an internal service, but the 

same service is lacking in Sun’s Solaris 2.5.1 (both OSes  were used during testing).  As 

such, we include a simple TCP/mux handler with the MARS distribution.  For each 

execution node requiring it, it can be compiled locally and installed by adding a single 

line to the /etc/inetd.conf file.  Documentation for doing so is included in the 

MARS distribution. 
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The code we include is based strictly on RFC 1078 [Lottor88].  It does not affect 

system security or provide any advanced features, but it does provide a mechanism by 

which modules can be easily spawned.  Also, using the TCP/mux option for spawning 

modules means that there does not need to be an MdoServer running constantly, and no 

“well-known” TCP/IP port is required. 

This generic approach is very different from having to “register” all participating 

computers and running a special daemon which handles spawns (as is done in PVM).  

Like PVM, in CHAIMS, all available megamodules are registered with a central 

clearinghouse.  We avoid this problem by having the leader specify which modules it 

wants, and making the leader responsible for invoking existing modules.  With the types 

of applications built for MARS, this makes sense.  Modules can be freely relocated 

without having to alter or update the MdoServers, which is not true for other common 

spawning mechanisms.  

Leader Codes 

The leader code is the module that coordinates all other modules in a 

multidisciplinary program built by combining the functionality of modules from different 

disciplines.  In a program built from multiple modules, the leader is analogous to a 

creature’s brain, while the other modules perform the other required bodily functions, at 

the instruction of the brain.  Leader codes can range from the simple to complex, and 

consist of two main parts: the setup stage, and the execution stage.  There could be other 

stage designations, such as termination, but the setup and execution are of primary 
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interest.  The specification language portion of MARS consists of leader and sub-module 

connection setup and execution.  

The setup stage is where the modules that compose the “body” of an ensemble are 

designated.  They are added to a MdoModule object, the primary object manipulated by 

the leader.  Modules are added by specifying their location on the network and any 

necessary I/O paths that they are initialized with.  The following fragment illustrates both 

the actual creation of an MdoModule called “leader” and the addition of two working 

modules to the leader: 

//setup leader module
MdoModule * leader = new MdoModule(transport, “Leader”);

//setup “smooth” sub_module
int smooth = leader->add_module(“smooth”);
leader->set_host(smooth, “ghengis.cs.uwyo.edu”);
leader->set_path(smooth,
“/export/home/mdo/matrix-loop/smooth”);

leader->set_args(smooth, “”, 0);
leader->set_file(smooth,(char*)”data.set”, OUT);

//setup “test_for_termination” sub_module
int test = leader->add_module(“test”);
leader->set_host(test, “conan.cs.uwyo.edu”);
leader->set_path(test,
“/export/home/mdo/matrix-loop/test_for_termination”);

leader->set_args(test, “”, 0);
leader->set_file(test,(char*)”data.set”, IN);
leader->set_file(test,(char*)”data.set”, OUT);
 

This example sets up a leader module, aptly named “leader”, and adds two sub-

modules, “smooth” and “test_for_termination”, to the set of modules controlled by 

“leader”.  The first call to leader->add_module() creates a new MdoModule object 

pointed to by leader.  This object will be used to reference a working module.  After 

that, calls to set_host(), set_path(), set_args(), and set_file() determine 
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on which execution node9 the module should be executed, where the executable image for 

the module is located on that execution node, what arguments the module should receive, 

and what I/O paths to use by default.  Notice that the two sub-modules are added to 

“leader”. 

To connect the module’s I/O streams and invoke the modules, the following code 

is used: 

leader->link(“data.set”, “data.set”);
leader->setup(spawn);
 

The link call may seem confusing with the name data.set appearing twice, but 

the leader->link() call is smart enough to understand that the same name can be used 

in multiple instances and matches the (“data.set”, IN) to a corresponding 

(“data.set”, OUT) in another sub-module automatically.  Programmers can 

explicitly designate connections, and it is recommended they do so, but this example 

shows the minimally requisite information.  The leader->setup() call makes calls to 

an RSS routine appropriate for spawning the modules and creates appropriate RSL 

messages for naming I/O connections.  The leader->setup() call also requests that 

sub-modules form connections among themselves10. 

                                                 

9 An execution node consists of the resources required to run a program, generally thought of as a 

CPU or machine. 

10 The programmer is not responsible for recalling the underlying RSL routines.  They are invoked 

automatically by the SubModule object. 
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Because of the design of the SubModule object, only this minimal set of 

information was required to set up an actual leader with two sub-modules and all the 

necessary connections.  There are many connections hidden from the leader programmer, 

including RSL connections from the leader to each sub-module for sending further 

control messages to the sub-modules.  The programmer does not have to worry about 

these, either, as they are created and named automatically. 

The following sample shows how easy it is to make something useful happen 

(assuming of course the sub-modules do something useful): 

//make smooth start procedure called “read_in_data”
leader->start(smooth, “read_in_data”);
while (done == 0) {

//make smooth run procedure originally called “main”
leader->start(smooth);

//make test run procedure originally called “main”
leader->start(test);

//get result of test_for_termination here
c_fscanf(file, “%d”, &done);

}

//make smooth run procedure called “write_out_data”
leader->start(smooth, “write_out_data”);
 

The first line of code causes the module called “smooth” to execute an internal 

procedure called read_in_data11.  After that, the wrapped__main routine of smooth 

is invoked, by calling  to leader->start(transport, smooth), without an 

addition field.  Afterwards, the sub-module “test” has its wrapped__main invoked.  A 

                                                 

11 Remember that the wrapper has the ability to wrap any original internal procedure to allow 

execution at any time.  The original entry point (“main”) is not the only routines that can be invoked. 
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status variable, done, is refreshed to determine if the loop should continue.  Notice the 

c_fscanf() used to read in the variable d.  The variable can come from a disk-based 

file, or from another source, such as (“data.set”, OUT). 

When the loop is complete, there is a final call to leader->start

(transport, smooth, “write_out_data”), another method inside the module 

“smooth”.  Cleanup and termination of the sub-modules is very simple: 

leader->end(); //that’s it
 

Viola!  All loose ends are cleaned up with this one call.  The leader understands 

where its sub-modules reside and generates the calls necessary to effect graceful exits.  

Wrapped modules also track which connections they initiate and close them as well. 

This sample leader code is a demonstration of all that is required to invoke and 

control two wrapped sub-modules.  Leaders can be less complex or much more complex.  

With the proper use of condition variables, and with steering code added to leaders, any 

amount of execution control and dynamism is possible. 

Summary 

The primary goal of the MARS project is to build a runtime system to support 

multidisciplinary applications.  These applications are formed from collections of 

modules that often include legacy codes, not just newly created modules.  While MARS 

supports legacy codes, it is still an excellent authoring system for distributed codes.  The 

working modules that form an ensemble cooperate in a heterogeneous execution 

environment, frequently composed of clusters of workstations. 
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MARS modules can be invoked as part of an ensemble or alone.  As such, MARS 

supports supports single-source coding, making code maintenance easier for ensemble 

creators. 

The runtime system supports dynamic invocation, termination, and realignment of 

modules.  Module distribution is a simple task; it does not require a registration step like 

CORBA and other invocation strategies.  While dynamic module realignment is a simple 

task, dynamic redirection of the user data passed between modules is possible as well.  

Primitives for conditional execution also exist in MARS. 

Even with all these control considerations, performance is still central to MARS’ 

implementation.  MARS does not add significant overhead for its control or data 

communications to multidisciplinary applications.  MARS can be used to distribute and 

parallelize collections of otherwise stand-alone modules into cooperative ensembles. 

MARS is designed to take expert knowledge embodied in multiple computer 

programs and glue those programs together.  The program ensembles formed by this 

process are used to solve problems larger than any component module can solve. 
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IV. Applications/Results 

The chapter demonstrates four test ensembles constructed with MARS.  The first 

code, similar to the sample leader code in Chapter III, demonstrates a simple module that 

does matrix smoothing coupled with a second module that tests the matrix for a 

predefined level of smoothness.  The code introduces the reader to the basic MARS 

process and presents performance benefits gained by moving I/O from disk to direct 

message passing between cooperating modules. 

The second code presents MARS used to implement a pipeline parallelism 

example.  Three graphics filters are applied, in succession, to a series of images.  The 

three filters, which increase sharpness (is) in an image, posterize (po) an image, and 

reduce noise (rn) in an image, are wrapped to become modules and then fed multiple files 

from a leader code.  The example shows the ease of constructing what could otherwise be 

a complex pipeline and how that pipeline can dramatically improve performance. 

The third example uses the identical wrapped modules from the second example 

in an advanced arrangement to greatly enhance the performance of the graphics filters.  

This extended pipeline parallelism test demonstrates how MARS can be extended to 

include dynamically module invocation to overcome performance bottlenecks.  This 

example shows how ensembles can be easily rearranged without re-coding them. 

The fourth and final example uses an actual scientific research code taken from 

the biological sciences.  In this example, we outline some of the limitations of the current 

MARS version, but also demonstrate dramatic performance increases using our system.  

This test ensemble, used in actual research, is a litmus test for the applicability and 
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performance of MARS on legacy modules.  This code is multidisciplinary, and all of the 

modules were designed before the conception of MARS.  

Simple Matrix Example 

The first sample program constructed using MARS shows the basic steps required 

to get an ensemble up and running.  Also, we show how the MARS system can use one 

module’s outputs to form a test condition that determines whether we execute another 

module. 

The basic program that will be wrapped here is a routine that smoothes an NxN 

matrix.  The initial program (before wrapping) looked like this: 

//data structure to store matrix
int * data1[MATRIX_SIZE];

//routine to smooth matrix
int smooth(int x, int y, int i, int j, int * * data1,

int *total, int *count)
{
if (((x+i >= 0) && (x+i < MATRIX_SIZE)) &&

((y+j >= 0) && (y+j < MATRIX_SIZE))) {
*total += (data1[x+i][y+j]);
*count += 1;
return 1;

}
return 0;

}

//routine to read in matrix
int read_in_data (void) {
int x ,y;
FILE * file;

for (x = 0; x < MATRIX_SIZE; x++)
data1[x] = new int[MATRIX_SIZE];

file = fopen(“/export/home/mdo/loop/MDO/data.set”, “r”);
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {
fscanf(file, “%d “,&(data1[x][y]));

}
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fclose (file);
return 1;

}

//routine to write out matrix
int write_out_data (void) {
int x, y;
FILE * file;

file =
fopen(“/export/home/mdo/loop/MDO/result.data.set”, “w”);
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {
fprintf(file, “%d “,data1[x][y]);

}
fclose (file);
return 1;

}

//original code entry point
int main (void)
{
File * file;
int x, y;

int * data2[MATRIX_SIZE];
for ( x = 0; x < MATRIX_SIZE; x++)
data2[x] = new int[MATRIX_SIZE];

read_in_data();
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {

int total = 0;
int count = 0;

for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth(x, y, i, j, &data1[0], &total, &count);

data2[x][y] = total/count;
}

for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++)
data1[x][y] = data2[x][y];

file = open(“data.set”, “w”);
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {
fprintf(file, “%d “,data2[x][y]);

}
close (file);
return 1;
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}
 

The code is very simple.  A matrix is read from disk, smoothed, and then written 

out to disk.  The routine read_in_data() is simple enough that it could have been 

written inline, but we did not do so to make a further point about local routines.  

Likewise, write_out_data() is not used in the original program, but it will be used to 

demonstrate how wrapped routines can be called arbitrarily and used to make MARS 

leader programs simpler. 

For now, it is not important to follow every detail of the matrix smoothing 

program.  Simply understand that there are four routines, smooth(), read_in_data(), 

write_out_data(), and main().  The first step to converting the original code to a 

MARS module is the wrapping process.  We will wrap the original main()12 and the 

write_out_data() routines with the following command: 

wrap smooth.cc write_out_data –o smooth.wrap.cc
 

The wrapper is currently rather unsophisticated.  The first argument to wrap must 

be the name of the source file to be wrapped.  Subsequent arguments are the names of 

internal functions that require external references (i.e., write_out_data will have a 

new entry point).  Finally, if a “-o” is given, the argument following it is the name of the 

output file (otherwise a default naming scheme is applied).  After wrapping, code is 

added to the original program, primarily consisting of calls to the initialization routines 

                                                 

12 Which is always done by default and automatically. 
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and additional entry points specific to the module (those that could not be pre-compiled 

into the runtime library). 

After wrapping, the original code has changed very little.  Critical sections of the 

wrapped code would appear similar to the following: 

//message transportation mechanism
rsl * trans;

//this was the original main, almost identical
int wrapped_main (void)
{
File * file;
int x, y;

int * data2[MATRIX_SIZE];
for ( x = 0; x < MATRIX_SIZE; x++)
data2[x] = new int[MATRIX_SIZE];

for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {

int total = 0;
int count = 0;

for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth(x, y, i, j, &data1[0], &total, &count);

data2[x][y] = total/count;
}

for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++)
data1[x][y] = data2[x][y];

//notice the c_open() rather than open()
file = c_open(“data.set”, “w”);
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++) {
//notice the c_fprintf() rather than printf()
c_fprintf(file, “%d “,data2[x][y]);

}
//notice the c_close() rather than close()
c_close (file);

return 1;
}
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/*****************************************************
BEGIN ADDED BY WRAPPER
*****************************************************/
#include “message.h”
#include “rsl.h”
#include “rt.h”

//Process invalid requests
int invalid_request(rsl * sock, char * buffer)
{
int table_id;
table_id = sock->find_id_by_address(((RSmessage *)

buffer)->from_name, RSmessage *) buffer)->from_port);

sock->rsr(table_id, “invalid_request”, 1, buffer,
sizeof(buffer));

return 1;
}

//INVOKE OTHER (USER-DEFINED) ROUTINE
char * invoke_other(rsl * sock, char * buffer, int* size)
{
RSmessage * tempm = (RSmessage *)buffer;
char * info = NULL;

*size = 0;

//DYNAMIC CODE
if (strcmp((char*)&buffer[tempm->args[0]], “main”) == 0){
wrapped_main();

}
else if (strcmp((char*)&buffer[tempm->args[0]],

“read_in_data”) == 0) {
read_in_data();

}
else if (strcmp((char*)&buffer[tempm->args[0]],

“write_out_data”) == 0) {
write_out_data();

}
//END DYNAMIC CODE
else {
invalid_request(sock, buffer);

}

return info;
}

/*****************************************************
* “NEW” MAIN ROUTINE
*****************************************************/
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int
main(int argc, char ** argv)
{
int i, j;
RT * rt;
msg_cli * msg;
char buffer[20000];
char server[50];

int port;

trans = new rsl;
rt = new RT();
msg = new msg_cli(rt, rt->get_id());

change_mode(); //running in stand-alone or server mode

/****************************************************
* Initialization and Check-in procedure
****************************************************/
//connect to leader
i = trans->rsc((char*)argv[1], (int)atoi(argv[2]));
strcpy(server, trans->host_name());
port = trans->port_num();

/****************************************************
* Msg loop
****************************************************/
int quit = (_FINISH + 1);
while ( quit != _FINISH ) {
j = trans->poll_accept();
j = trans->poll_message(&i, buffer, 1);
if (j > 0) {
quit = msg->process(trans, buffer);
if (quit == _RUN)
invoke_other(trans, buffer, &j);

}
}

return (1);
}
 

There are few changes made to the original code by the wrapper.  For the most 

part, the wrapper adds code.  The first addition made to the original code is the RSL 

communications object, trans.  The original main() routine is virtually untouched, 

except that the calls to open(), fprintf(), and close() have been replaced with 
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their respective counterparts from the file I/O layer, c_open(), c_fprintf(), and 

c_close(). 

After these minor changes comes the code added by the wrapper.  Most of it is 

generic wrapper code, the same for all wrapped modules, but some of it is generated 

dynamically, according to which routines that the user has specified require new entry 

points.  The first added procedure is the invalid_request() procedure.  While this 

could have been a static method in the Message Processing Layer object, we have found 

that in many cases a user-defined error handler for invalid requests can greatly enhance 

the ability to debug code and log errors at runtime.  Since the invalid_request() 

handler is not a black-box in the runtime system, the ensemble programmer can change it 

to suit his or her needs.  After a program has been wrapped, the ensemble programmer is 

free to customize it. 

The second added routine is the procedure invoke_other().  The function of 

this procedure is to handle all message types not defined in the MPL specification.  In 

this example, invoke_other() is responsible for the invocation of 

wrapped__main(), read_in_data(), and write_out_data().  By moving all 

external invocations (including wrapped_main()) to this procedure, the wrapper can 

wrap codes that do not include an original main() and still call routines from those 

codes.  These particular entry points are very simple, as there are no arguments to the 

original procedures, but the wrapper takes care of casting portions of an RSMessage to 

procedure arguments.  Because the wrapper casts portions of RSMessage directly to 

procedure arguments, the arguments must always be pre-aligned on word boundaries.  

Recall that, as discussed in Chapter II, word alignment is a built-in function of the 
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Remote Service Layer.  By using pre-aligned RSMessage and direct argument casts from 

those messages, we save the creation of local memory space for the arguments and the 

corresponding memcpy()s required to fill those arguments. 

The final addition made by the wrapper is the new main() routine.  This new 

main() is the same for all wrapped MARS modules.  Initially, three objects are declared 

and/or initialized, trans, rt, and msg.  These objects correspond to the RSL, Router 

Table, and Message Processing Layer, respectively.   

After these objects are initialized, a call to change_mode() is made.  If the 

program is running as part of a MARS ensemble, change_mode() does nothing and 

allows the program to continue.  Command line arguments indicate in which mode a 

program is running.  If the program is not being run as part of a MARS ensemble, a call 

to wrapped__main() is made, using the appropriate command-line arguments, and then 

the program exits.  This behavior should be identical to how the original (non-wrapped) 

code would act. 

If the module is not running in stand-alone mode (meaning it made it past the 

change_mode() call), then it immediately attempts a connection to the module that 

spawned it.  This call (i = trans->rsc()) is non-blocking; the module may 

immediately enter its control loop and wait for other messages or incoming connections. 

This message loop is no more complex than the loop shown previously (Chapter 

II), and accomplishes the same tasks.  It polls for incoming messages and connections 

(always as if they are distinct event types, which they may not always be) and, if there is 

such a message, processes the message.  This particular instantiation of the control loop 
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has no special exit code, but when the loop exits upon receiving a directive from another 

module, there are cleanup routines in the Message Processing Layer that are always 

called.  Currently, the wrapper does not accept arbitrary code blocks for exit routines at 

wrap time, but such support would be easy to add.  We have not yet seen a case that 

requires such unique exit routine support, but it can be added directly by an ensemble 

programmer. 

Once the module has been wrapped, it is ready to be used by itself (as it would 

have been previously, in stand-alone mode), or it can be used in conjunction with a leader 

code.  For this example, we are going to wrap a second module and build a simple leader.  

The combined set of modules will allow us to use the output of the second module as a 

conditional variable and demonstrate simple conditional execution within MARS. 

Leader Module

Test For Termination
Module

Smooth Module

Input
File

Output
File

RSmessage line

Data Line

 

Figure 4. Matrix example 
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Figure 4 shows what the final module arrangement will be.  The leader module 

will guide the execution flow of the “smooth” and “test for termination” modules.  

RSMessages are passed along the solid, bi-directional arrows.  While these connections 

are bi-directional, implementers can treat them as unidirectional paths without the need to 

poll for messages received on the incoming “end” of a connection13.  Data lines are 

drawn as unidirectional, though they can be used as bi-directional paths in hand-written 

modules.  However, since these data paths are going to be automatically connected by the 

MdoModule within the leader code, they will be unidirectional.  The leader code will 

always generate two unidirectional paths to simulate a bi-directional data connection.  

The reason is that if only one side of a bi-directional connection is redirected, it would 

require significantly more changes to renegotiate connection tables, without the 

inefficiency of removing and then reconnecting the original connection. 

Also, data paths are much more likely to be unidirectional in nature.  Even when a 

program writes to a file and then reads from the same file, there is generally a close() 

and re-open() event to reset file pointers. 

The leader will spawn the two working modules.  As such, there is no need to 

explicitly create either of the RSMessage lines shown in Figure 4.  They are the minimal 

paths which will always be created during the spawn process.  When a spawned module 

is created, it always “checks-in” with its creator, thus automatically establishing a line of 

communication with its creator. 

                                                 

13 A unidirectional connection is a actually a bi-directional connection where one end of the 

connection is simply ignored. 
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The data lines seen in Figure 4 are explicitly created by the leader.  There are two 

routines in the smooth module to read and write data to and from disk.  Those I/O 

locations will not be redirected by the leader, but the smooth routine also produces 

interim output which went to disk in the pre-wrapped code.  The leader will set up a data 

path to direct this output to the “test for termination” module.  The test for termination 

module originally read its input from disk and wrote its output to a file on disk as well.  

The leader will instruct the test for termination module to receive its input from the 

smooth module and send its output directly to the leader.  Finally, the leader will use the 

information received from the test for termination module to determine whether to 

continue execution. 

Here is the critical code for test for termination module: 
 
int test_for_smoothness(int x, int y, int i, int j,

int * * data1)
{
if (((x+i >= 0) && (x+i < MATRIX_SIZE)) &&

((y+j >= 0) && (y+j < MATRIX_SIZE))) {
if (abs((data1[x][y]) - (data1[x+i][y+j])) <=

SMOOTHNESS)
return 1;

return 0;
}
return 1;

}

int wrapped_main (void) {
File * file1, *file2;
int x, y;
int * data1[MATRIX_SIZE];
for ( x = 0; x < MATRIX_SIZE; x++)
data1[x] = new int[MATRIX_SIZE];

file1 = copen(“data.set”, “r”);
for ( x = 0; x < MATRIX_SIZE; x++)
for ( y = 0; y < MATRIX_SIZE; y++)
cfscanf(file1,”%d”,&(data1[x][y]));

cclose (file1);
int smooth = 1;
for ( x = 0; (x < MATRIX_SIZE) && (smooth == 1); x++)
for ( y = 0; (y < MATRIX_SIZE) && (smooth == 1); y++) {
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for (int i = -1; i <= 1; i++)
for (int j = -1; j <= 1; j++)
smooth = test_for_smoothness(x, y, i, j,

&data1[0]);
}

file2 = copen(“result.of.termination.test”, “w”);
if (smooth == 1)
cfprintf(file2,”%d “,1); cflush(file2);

else
cfprintf(file2,”%d “,0); cflush(file2);

cclose (file2);
return 1;

}
 

This code originally read the data representing a matrix from disk, tested to see 

whether it was “smooth enough”, and then wrote its output to another file on disk.  The 

leader can redirect this output because the file I/O routines have been replaced with 

MARS system primitives. 

In summary, this is what is going to happen with these modules: 
 
1. The leader will invoke the smooth and test for termination modules 
2. The smooth module will read a matrix from disk  
3. The smooth module will smooth the matrix and send the matrix to the test 

for termination module 
4. The test for termination module will check to see if the matrix is “smooth 

enough”, and send the result to the leader 
5. The leader will repeat from step 3 or proceed to step 6, depending on the 

result of step 4 
6. The smooth module will write the final smoothed matrix to disk 
7. The leader will terminate all modules including itself 
 

To achieve these steps, a leader code is written with the above seven steps in 

mind.  The following code is the actual leader, with the seven steps noted in the 

comments: 

rsl * trans;
int
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main (int argc, char ** argv) {
//setup transport layer. RSL in this case
rsl * transport = new rsl();
rss * spawn = new rss();
trans = transport;

//setup leader module
MdoModule * leader;
leader = new MdoModule(transport, “Leader”);

//setup “smooth” sub_module
int smooth = leader->add_module(“smooth”);
leader->set_host(smooth, “ghengis.cs.uwyo.edu”);
leader->set_path(smooth,
“/export/home/mdo/loop/MDO/smooth”);

leader->set_args(smooth, “”, 0);
leader->set_file(smooth,(char*)”data.set”, OUT);

//setup “test_for_termination” sub_module
int test = leader->add_module(“test”);
leader->set_host(test, “ghengis.cs.uwyo.edu”);
leader->set_path(test,
“/export/home/mdo/loop/MDO/test_for_termination”);

leader->set_args(test, “”, 0);
leader->set_file(test,(char*)”data.set”, IN);
leader->set_file(test,(char*)”data.set”, OUT);

//connect data paths and start modules ((STEP 1))
leader->local_cli_conn(transport->host_name(),

transport->port_num(), 1,(char*)”data.set”,
(char*)”data.set”);

leader->link(“data.set”, “data.set”);
int status = leader->setup(transport, spawn);
File * file = copen(“data.set”, r”);
int done = 0;
change_mode();

//read-in data ((STEP 2))
leader->start(transport, smooth, “read_in_data”);
while (done == 0) {

//make smooth execute ((STEP 3))
leader->start(transport, smooth);

//make test_for_termination execute ((STEP 4))
leader->start(transport, test);

//get result of term test here ((STEP 5))
cfscanf(file, “%d”, &done);

}
cclose(file);
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//make smooth write out matrix to disk ((STEP 6))
leader->start(transport, smooth, “write_out_data”);

//end all modules ((STEP 7))
status = leader->end(transport);
return 1;

}
 

Notice that the seven steps of the process are highlighted in the commented leader 

code.  Once step one is completed, where the modules are setup and data paths are linked, 

the other six steps in the process are done in 8 total statements (not including the requisite 

return statement).  With proper setup, each stage of a process, regardless of complexity, 

can generally be achieved in about one line14.  Of course with added dynamism, the 

leader’s complexity grows, but the leader can be very simple or very complex, at the 

user’s discretion.  In this leader, we use static connection names, because there will only 

ever be two working modules, and they are always dependent upon each other.  We did 

not take full advantage of MARS’ capability to call by modules by name. 

Performance is an important consideration with any runtime system.  In this 

simple example, we achieved a considerable decrease in overall execution time, primarily 

attributable to using network I/O rather than file I/O. 

Figure 5 shows the first set of results from the simple matrix example.  The 

platform used for testing consisted of two Silicon Graphics O2 workstations, with R5000 

CPUs, running the Irix 6.3 operating system.  The machines are connected with 155M/bit 

                                                 

14 This claim is anecdotal, based on the examples presented here.  Of course, ensemble 

programmers could have more complex routines, requiring many more lines per step. 
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ATM cards, emulating TCP/IP.  Each workstation has sufficient RAM to hold all 

modules in memory. 

Each matrix consisted of 10,000 integer elements, and was generated using the 

naive rand() function, available in most UNIX system libraries.  The matrix was 

smoothed in such away that no two adjacent matrix element values differed by more than 

100.  Coincidentally, for the initial random seed chosen, the initial matrix required 100 

iterations of the smoothing routine before it was “smooth enough”. 

Timings were done using the /bin/time program available in Irix 6.3.  Also, on 

the other platforms used, including Solaris 2.5.1, the /bin/time program was always 

available, and always the basis of timing.  Each program in our test suite had a significant 

runtime (>10 sec. total time), so the resolution of /bin/time was adequate.  On the SGI 

and Linux implementations, /bin/time gives two significant digits of accuracy after the 

decimal, the Solaris implementation gives only one. 

For the original version of the code, a simple leader was written to coordinate the 

execution, and calls to system() were repeatedly used to invoke the smooth and test for 

termination modules.  This is similar to the methods we encountered with several 

scientific ensembles tied together by hand.  In particular, this was the method used in 

practice in the scientific code wrapped in the biology model.  For the MARS version, one 

single-CPU machine was dedicated to both the leader and the test for termination module, 

and a second machine was dedicated to the smooth module. 
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Run 1 Run 2 Run 3 Average
MARS real 22.01 21.66 21.55 21.74

user 0.14 0.14 0.13 0.14
sys 0.25 0.25 0.25 0.25

ORIGINAL real 36.35 34.17 32.52 34.35
user 16.31 16.31 16.31 16.31
sys 5.41 5.44 5.46 5.44  

Figure 5. SGI results from matrix example 

Figure 5 shows that our system provided a reasonable increase in performance on 

two levels (all times are in seconds).  First, the total execution time of the original setup 

was 58% greater than the MARS modules.  Second, the overhead of the leader code was 

drastically reduced as can be seen by the dramatic reductions in user and system time15.  

The method of controlling the program should not be a significant consumer of system 

resources, which it is in the original example.  As can be seen from these results, the 

relative overhead of our leader code is very low. 

Run 1 Run 2 Run 3 Average
MARS real 28.4 28.4 28.4 28.40

user 0.1 0.0 0.0 0.03
sys 0.0 0.1 0.0 0.03

ORIGINAL real 55.2 55.3 56.8 55.77
user 27.5 27.6 27.6 27.57
sys 4.9 5.1 5.0 5.00  

Figure 6. Sun results from matrix example 

Figure 6 shows the results when the experiments were performed on a set of Sun 

Ultra 2 workstations.  They were also networked with TCP/IP over ATM, similar to the 

                                                 

15 This table shows the timings of the respective leader codes, in which total time of the leader is 

the same as the total time of all associated modules. 
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SGIs.  The Suns were running Solaris 2.5.1.  Each workstation had sufficient RAM to 

hold all modules in memory. 

In this experiment, the original program setup takes 96% longer than the MARS 

modules.  This overall speed-up is primarily attributable to removing disk reads and 

writes, only pushing the data to secondary storage at the end of the execution.  The 

decreased CPU usage by the leader code is even better than seen on the SGI platform. 

It is important to note that no further optimizations were performed on the Sun 

platform (beyond those done on the SGIs).  On all platforms used for testing, identical 

code libraries and modules were used, with no compiler optimizations turned on.  The 

standard MIPS and Sun compilers (“CC”) were used throughout, to compile the runtime 

modules and all test cases. 

This example shows how the MARS system is used, starting with source code for 

a simple module, through the construction of the leader module.  Significant performance 

gains are evident, even without altering the algorithms of the working modules or their 

parallelism.  Also, this setup shows how effective conditional execution can be achieved 

when tying multiple modules together. 

When the user takes advantage of inherent parallelism and leverages that 

parallelism with the MARS system, even greater gains are possible.  We demonstrate this 

potential in the next two sections.  Also, in the third example, the extended pipeline 

parallelism example, we show the true interoperability of modules in a heterogeneous 

execution environment. 
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Pipeline Parallelism Example 

This example will show how the MARS system was used to wrap three similar 

codes into an efficient parallel image processing system.  We will use three graphics 

filters and turn them into MARS modules.  As noted earlier in this chapter, the three 

filters increase sharpness (is), posterize (po), and remove noise (rn) from 8-bit bitmap 

images. 

This experiment uses 40 8-bit black and white images, each 256x256 pixels in 

size.  The images are fed in succession to the three filters.  The three filter modules are 

combined to achieve image compression by bit reduction.  The first module, is, is applied 

to refine an images’ edges.  The second module, po, reduces the images’ bit depth, using 

an un-weighted naive heuristic.  The third module, rn, reduces excessive noise by looking 

at disparity in neighboring byte values, produced by the bit reduction step. 

These three modules are composed with a leader code to produce the ensemble 

shown in Figure 7. 
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Figure 7. Pipeline parallelism example 

The only message lines in this collection are those automatically created by the 

leader when the modules check in and are omitted from Figure 7.  Since these modules 

do not send control messages to each other, no additional communication lines are 

necessary. 

In this example, we add a fourth module, one written to handle the disk I/O at the 

end of the execution path.  It would be simple enough to allow the reduce noise module 

to write the images to disk, but this additional helper module’s function will become 

apparent in the next example in this chapter. 

The following figures show each stage of the transformation of one of the original 

images passed through this MARS module collection, as the three filters are applied to it. 
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Figure 8. Original image 

 

Figure 9. Increased Sharpness 
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Figure 10. Posterized image 

 

Figure 11. Reduced noise 

Figure 8 shows the original image.  Changes to the image are often subtle and 

non-obvious.  To best see the changes from Figure 8 to Figure 9, look at the feather in the 

subject’s hat.  There is new delineation among the individual strands of the boa.  To see 

the posterization effect, where the bit-depth of the image is reduced, look at the subject’s 

left cheek.  There are several distinct bands of color, where there was a previously 

smooth color gradient.  The final changes are also difficult to see, though the feathers 
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again provide clues.  From Figure 10 to Figure 11, the feathers are once again less 

distinct, as they were in the original image.  The image differences may be difficult to 

spot, but the purpose of the collected filters is to reduce the bit-depth and resulting size of 

the image without a noticeable degradation in image quality. 

The following code is the leader written to control these four modules: 
 
int main (int argc, char ** argv) {
//setup leader module
MdoModule * leader = new MdoModule(transport, “Leader”);
//setup “is” sub_module
is = leader->add_module(“is”);
leader->set_host(is, “rodmanf”);
leader->set_path(is,

“/export/home/mdo/mdo/tests/II/mdo/sunis”);
leader->set_args(is, “”, 0);
isi = leader->set_file(is,(char*)”graphic.dat”, IN);
iso = leader->set_file(is,(char*)”graphico.dat”, OUT);
//setup “po” sub_module
po = leader->add_module(“po”);
leader->set_host(po, “kublaf”);
leader->set_path(po,

“/export/home/mdo/mdo/tests/II/mdo/sunpo”);
leader->set_args(po, “”, 0);
poi = leader->set_file(po,(char*)”graphic.dat”, IN);
poo = leader->set_file(po,(char*)”graphico.dat”, OUT);
//setup “rn” sub_module
rn = leader->add_module(“rn”);
leader->set_host(rn, “attilaf”);
leader->set_path(rn,

“/export/home/mdo/mdo/tests/II/mdo/sunrn”);
leader->set_args(rn, “”, 0);
rni = leader->set_file(rn,(char*)”graphic.dat”, IN);
rno = leader->set_file(rn,(char*)”graphico.dat”, OUT);
//setup “wr” sub_module
wr = leader->add_module(“wr”);
leader->set_host(wr, “kublaf”);
leader->set_path(wr,

“/export/home/mdo/mdo/tests/II/mdo/sunwr”);
leader->set_args(wr, “”, 0);
wri = leader->set_file(wr,(char*)”graphic.dat”, IN);
//start clients
leader->local_ser_conn(transport->host_name(),
transport->port_num(),1,(char*)”graphic.dat”, isi);
leader->link(iso, poi);
leader->link(poo, rni);
leader->link(rno, wri);
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status = leader->setup(transport, spawn);

FILE * f;
FileType * l = new FileType(trans);
unsigned char input;

char * file = new char[50];
strcpy(file, “graphics/g00.dat”);

for (int done = 1; done <= 40; done ++) {
f = fopen(file, “r”);
l->c_fopen(“graphic.dat”, C_WRITE);
//execute all modules
leader->start(transport, is);
leader->start(transport, po);
leader->start(transport, rn);
leader->start(transport, wr);

//read-in data and send to clients
for (int x = 0; x < GR_SIZE; x++)
for (int y = 0; y < GR_SIZE; y++) {
fread(&input, 1, 1,f);
l->c_fwrite(&input, 1);

}
fclose(f);
if (done % 10 == 0) {
file[10]++;
file[11] = ‘0’;

}
else
file[11]++;

l->c_fclose();
}

//synchronous end
int status = leader->end_reply(transport);
return 1;

}
 

Most of this leader code, once again, is devoted to locating the working modules 

on the network.  A significant portion of code is also used to read data into the leader.  As 

such, the leader has become an active participant in this collection of modules.  Better 

performance could be achieved if the increase sharpness module read in the data, as it 

would not have to be passed from the leader to that module.  We chose not do this, as the 
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leader would have had to send forty16 messages to rename I/O connections to the increase 

sharpness module, significantly increasing the complexity of the collection, and 

diminishing potential performance gains.  Since the data files are only 65536 bytes (64k), 

the overhead of having the leader pass the data an extra time is not too significant. 

Also notice the last call the leader makes, leader->end_reply().  This is a 

synchronous routine.  This is different from the call in the matrix smoothing example.  In 

the matrix smoothing leader, the sub-modules were terminated with an asynchronous 

leader->end() call.  In the matrix smoothing example, the leader terminates as soon 

as its job is done, not waiting for the client modules to terminate (though they will do so).  

The leader->end_reply() waits for all client modules to terminate before the leader 

exits.  As such, we could increase performance by using an asynchronous leader-

>end() call, allowing the client modules to terminate on their own time.  To make the 

comparisons to the original filters fair, we wait until the final module has committed its 

data to disk, ensuring that all files are stable. 

Run 1 Run 2 Run 3 Average
MARS real 35.6 35.5 35.9 35.67

user 5.1 4.9 5.1 5.03
sys 1.2 1.3 1.2 1.23

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37  

Figure 12. Pipeline parallelism results 

                                                 

16 One for each image processed. 
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This experiment was run on the Sun testbed.  Figure 12 shows the execution times 

of the original setup and the MARS modules.  Results are similar to the matrix smoothing 

setup.  Once again, the original setup takes about 94% longer than the MARS setup.  The 

system and user times are proportionately longer than in the matrix example, but that is 

expected since this leader is an active participant in this setup, reading the data files from 

disk. 

With a three stage pipeline, a two-thirds reduction in time would be expected.  In 

this case there was only a one-half reduction in time.  With a bit of module profiling, the 

reason became clear.  The increase sharpness module and the reduce noise module take 

significantly more computation time than the posterizing module.  Since those two stages 

dominate the overall process time, a simple pipeline could only hope to double 

performance. 

With the groundwork for this set of modules in place, we will now demonstrate 

additional features of MARS that facilitate extending existing setups. 

Extended Pipeline Parallelism Example 

After improving the performance of the original graphics modules by pipelining 

and then profiling the resulting collection, it became obvious that a different setup was 

required for optimal performance.  Since the first and third stages (is and rn) of the 

overall process dominated the execution times, we multiplied the number of execution 

nodes at those stages.  Figure 13 shows the new module configuration. 
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Figure 13. Partial 2-way pipeline 

With MARS, moving from the arrangement in Figure 7 to the arrangement in 

Figure 13 is simple.  The leader code remains virtually unchanged, except for the actual 

control loop.  Two new module (one each, is and rn) specifications are added to the 

leader, and the leader also adds the required data paths.  The control loop in the leader is 

almost identical, with the data read-in passed alternately to the two increase sharpness 

modules.  The posterize module alternates data to the two noise reductions modules in the 

same way: 

for (int done = 1; done <= 40; done ++) {
f = fopen(file, “r”);
l->c_fopen(fn, C_WRITE);
leader->start(transport, isid[is]); //index added here
leader->start(transport, po);
leader->start(transport, rnid[rn]); //index added here
leader->start(transport, wr);
for (int x = 0; x < GR_SIZE; x++)
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for (int y = 0; y < GR_SIZE; y++) {
fread(&input, 1, 1, f);
l->c_fwrite(&input, 1);

}
fclose(f);
//use the indexes to rename outputs here
if (done % 2 == 0) {
fn[7] = ‘1’;
is = rn = 0;

}
else {
fn[7]++;
is++;
rn++;

}

if (done % 10 == 0) {
file[10]++;
file[11] = ‘0’;

}
else
file[11]++;

l->c_fclose();
}
 

The comments in the above code show the only changes to the control loop.  Two 

simple indexes are added to determine which parallel modules to execute.  The other 

code fragment (indicated with a comment) toggles both the output path and which 

modules to execute.  Those are the only changes made. 

To execute the new MARS module collection efficiently, more CPUs were 

required.  To handle the extra load, the leader and write-out modules were placed on the 

SGIs used in the matrix smoothing example, while the working modules were placed on 

the Sun execution nodes.  This experiment also demonstrates execution using 

heterogeneous platforms.  The results are summarized in Figure 14. 
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Run 1 Run 2 Run 3 Average
MARS real 23.65 24.06 23.12 23.61

user 4.39 4.39 4.41 4.40
sys 2.39 2.23 2.26 2.29

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37  

Figure 14. Partial 2-way pipeline results 

Figure 14 shows the results of adding two more modules to the collection.  The 

original setup now takes 194% longer than the MARS module collection, or about three 

times as long.  The new setup is faster than the simple pipeline, 23.61s versus 35.67s, a 

savings of about 12.06s, or faster by just more than one-third of the simple pipeline’s 

total time.  Finally, the two-stage pipeline performance about is three times better than 

the original setup. 

This stage-depth parallelism can be arbitrarily extended at any point.  We extend 

the example by adding another is and another rn module.  The leader code requires new 

information to locate the new modules on the network, but really nothing more.  The 

control loop in the leader is changed by only one character.  In the loop, the fragment if

(done % 2 == 0) is changed to if (done % 3 == 0) to indicate that there are 

three copies of the parallel modules, rather than two.  That is the only change.  The 

resulting configuration is shown in Figure 15. 
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Figure 15. Partial 3-way pipeline 

As expected, the execution time is again decreased.  The results from the partial 

three-way pipeline are shown in Figure 16. 

Run 1 Run 2 Run 3 Average
MARS real 19.02 18.85 19.03 18.97

user 4.39 4.42 4.44 4.42
sys 2.63 2.51 2.53 2.56

ORIGINAL real 69.4 69.0 69.5 69.30
user 50.9 50.3 50.3 50.50
sys 3.2 3.5 3.4 3.37  

Figure 16. Partial 3-way pipeline results 

As before, the runtime is reduced.  The amount of time reduction by adding this 

extra set of modules is not as large as the reduction from the first extra set added.  (The 

original code still takes 265% longer than the MARS code)  A single leader reading 
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inputs cannot keep the pipeline completely filled, nor can a single data writing module 

commit the data to disk fast enough to scale further, without adding copies of po and the 

write-out module.  Three is and rn stages are all this pipeline can support.  Of course, if 

there were more data readers and writers, and if enough execution nodes were available, 

the problem could be easily scaled to any arbitrary level, with minimal changes to the 

leader code.  This flexibility allows various scalable problems to be mapped onto 

numerous configurations of processors with minimal changes to module codes. 

This example has demonstrated several more elements of the MARS design.  

First, MARS has been built to make scaling problems simple.  Once a problem has been 

broken into its parallel components, arbitrary scaling at each stage of the pipeline is a 

relatively easy process.  Also, the partial two- and three-stage pipelines show the support 

for heterogeneity in the MARS system.  The modules in those examples were executed 

on different platforms, while data and control messages required no alteration.  Since the 

data in the examples was binary, no conversion between platforms was required17 either. 

Biology Model 

Description 

The MARS system test would not be complete without applying it to an actual 

scientific MDO code.  Each of the codes tied together by hand is unique, and handwritten 

codes using similar modules vary widely in implementation method and performance.  

                                                 

17 In the matrix smoothing example, the matrix values were integers.  The SGIs and Suns have like 

byte-ordering (endian-ness) for type int, so no data conversion was necessary. 
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The system we chose to test MARS has three primary modules, including a handwritten 

leader-like code [Hunt96]. 

A complete description of the code we applied the MARS system to can be found 

in “Global net carbon exchange and intra-annual atmospheric CO2 concentrations 

predicted by an ecosystem process model and three-dimensional atmospheric transport 

model” [Hunt96].  This is the abstract from that document: 

A generalized terrestrial ecosystem process model, BIOME-BGC (for BIOME 
BioGeoChemical Cycles), was used to simulate the global fluxes of CO2 resulting 
from photosynthesis, autotrophic respiration, and heterotrophic respiration. Daily 
meteorological data for the year 1987, gridded to 1° by 1°, were used to drive the 
model simulations.  From the maximum value of the normalized difference 
vegetation index (NDVI) for 1987, the leaf area index for each grid cell was 
computed.  Global NPP was estimated to be 52 Pg C, and global Rh was estimated 
to be 66 Pg C.  Model predictions of the stable carbon isotropic ratio 13C/12C for 
C3 and C4 vegetation were in accord with values published in the literature, 
suggesting that our computations of total net photosynthesis, and thus NPP, are 
more reliable than Rh.  For each grid cell, daily Rh was adjusted so that the annual 
total was equal to annual NPP, and the resulting net carbon fluxes were used as 
inputs to a three-dimensional atmospheric transport model (TM2) using wind data 
from 1987.  We compared the spatial and seasonal patterns of NPP with a 
diagnostic NDVI model, where NPP was derived from biweekly NDVI data and 
Rh was tuned to fit atmospheric CO2 concentrations for 20° to 55° N, the zone in 
which the most complete data on ecosystem processes and meteorological input 
data are available.  However, in the tropics and high northern latitudes, 
disagreements between simulated and measured CO2 concentrations indicated 
areas where the model could be improved.  We present here a methodology by 
which terrestrial ecosystem models can be tested globally, not by comparisons to 
homogeneous-plot data, but by seasonal and spatial consistency with a diagnostic 
NDVI model and atmospheric CO2 observations. 
 
In the original system, the leader was known as “gessys”.  The gessys module 

served the same role as a leader module in a MARS ensemble.  The other two working 

modules were labeled climnew and globebgc.  Some of the data transfers and module 

invocations performed by the gessys code were achieved with the following fragment: 

system(“./climnew”);
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system(“./globebgc”);
system(“cat grid.day >> newout.day”);
system(“cat grid.grw >> newout.grw”);
system(“rm -f grid.mtc”);
system(“rm -f grid.clm”);
 

The three modules were wrapped and tied together into a MARS ensemble.  The 

ensemble is shown in Figure 17.  The disk-based output was left in the globebgc 

module.  The data files generated for a single run were very large (over seventy 

megabytes) and took a significant amount of the total runtime to write out.  The output 

was left on secondary (disk) storage in the MARS implementation because it was also 

available after the original system ran. 

Leader Module
(formerly “gessys”)

Climnew ModuleGlobebgc Module

Input
File

Output
File

RSmessage line

Data Line

 

Figure 17. Biology module arrangement 
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Implementation Problems 

The was a series of problems discovered when wrapping the biology code.  In 

overcoming them, we extended the functionality of MARS and learned ways to overcome 

similar problems with other legacy MDO codes. 

The first problem was that one of the modules was written in Pascal.  The MARS 

system does not understand Pascal source code18.  As such, a freely available conversion 

utility, p2c, was used to convert the module into C source code.  The conversion to C 

source code was not entirely successful after the automatic conversion process, but was 

close.  As such, little additional work was required to get the output from the C-based 

version to agree with the output from the Pascal version.  After conversion to C, the 

compiled module code was already faster than the original Pascal version.  To correct for 

this compiler advantage, the timings presented for the “original” MDO code are actually 

the timings from the code compiled after conversion to C.  This corrects for any 

differences due to language or compiler.  The same compiler was used for the disk-based 

and MARS-based test cases. 

The second problem we encountered involved files that were read multiple times.  

This was especially problematic if an output file, previously sent to disk, needed to be 

read in more than once by a second module (e.g., one file had to be read twice after being 

committed to disk).  There are two obvious solutions to the problem:  buffer the file 

locally and send it a second time, or send its data twice, over two different data lines.  

The reason the data would have to be sent over two different virtual data connections is 

                                                 

18 See the chapter on future work for further discussion of the language problem. 
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that the data needs to be both ordered and complete.  Given the ease with which 

connections can be dynamically renamed, sending data out over two lines does not 

present a problem to the module reading in the data.  Rather than developing a new 

method to buffer a potentially large file locally and then re-sending it, we chose to use 

two connections and to write the data two times, without local buffering.  The biology 

module read a very small file twice, so this was an appropriate solution.  In the original 

code, the file grid.dat was read in twice and output twice as well. 

Of course, there is no reason for a stable file must be read twice by the same 

program.  The data can always be stored in local variables, or the file can be stored in 

memory and accessed a second time without looking to disk.  There are times when 

writing a second copy of a large file to the network can be a problem, especially when the 

second output stream is not accessed until the first is completely consumed.  This can 

cause blocking to occur in the data writer when system buffers on the receiver’s end are 

full.  As a work-around to that problem, the data buffer mentioned in Chapter III was 

developed.  It allows files of arbitrary size to be buffered online, preventing modules 

writing to the network from blocking while waiting for their data to be consumed. 

A third problem also involved the grid.dat file.  In addition to being read twice 

by the globebgc program, it was read a third time by the climnew module.  The 

solution to this problem was simple; a third copy of the file was output to the network, 

with a new destination.  The real problem this presents is that the way these virtual files 

are treated by the network are different from how they are treated on disk.  Once a file 

goes to disk, it can be used as if it were stable; it does not have to be recreated whenever 

it is needed.  It may be accessed one time, perhaps a multiple times, or perhaps never.  At 
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wrap time, the wrapper cannot “know” that an output file will be accessed multiple times 

or by multiple modules.  The programmer is responsible for this consideration.  We 

cannot foresee any automated solution to this problem without simply implementing a 

true file system over the network, which would require stable storage (in the form of 

disks) to store all the potential information (thus defeating the purpose of the network 

abstraction).  Since each MARS ensemble does not require a complete file system, some 

analysis by the programmer is warranted to work around this multiple-file-open problem, 

thus preserving the system performance. 

The fourth problem we encountered was flushing output at the proper time.  If 

data was flushed too often, the amount packet and header information dominated amount 

of actual data, and the network was unnecessarily inundated with excess information.  If 

the data was flushed too rarely, modules depending on particular data could stall, slowing 

(or deadlocking) the entire MARS collection.  Data written to the network using the file 

I/O layer is actually buffered locally first, and eventually written to the network.  

Currently, since there is no threading in the I/O handlers, it is not possible to flush data 

except when an explicit call to a file I/O routine is made.  Data is flushed at three points: 

when the local data buffer is full, when an explicit call to c_flush() is made, and when 

a virtual file is closed.  The problem we encountered is that receiving modules can be left 

waiting for essential data, especially when two modules pass small amounts of data back 

and forth, and the modules are mutually dependent on each other’s data.  To solve this 

problem, we manually added c_flush() calls to the biology code after large blocks and 

loops which contained output statements.  It was found that, in almost every case, these 

loops and blocks represented strongly correlated data elements and that flushes solved 
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dependency problems.  In most codes, flushing should not be a significant problem, as it 

is unlikely that independently developed modules would have mutual dependencies. 

The mutual data dependencies were created because these modules were intended 

to operate as an integrated system, and dependencies were created when they were 

originally tied together by hand. 

The fifth problem we had was with the I/O done as printf() and scanf() 

calls.  Virtual printf()s are available by default, and virtual scanf()s can be easily 

constructed by using the stdargs or varargs library routines.  On the other hand, some 

things are still very difficult to do.  For instance, performing a scanf() to read an entire 

line, when only half the line has been received over the network, causes catastrophic 

problems.  Since network transmissions occur in packets with size determined by TCP/IP, 

perhaps only half of a single printf() string would be transmitted in one packet.  If that 

packet is read in by the native transport layer, and the program then tries to scan an entire 

line out of that string, what occurs?  Blocking with no chance of return. 

To work around this problem, we sent output elements as their binary equivalent, 

with the size of the argument known at runtime.  This required some additional work to 

guarantee that data would be sent and received properly, but it is a rather simple process 

to convert an integer written as a string to one written in binary.  Of course, for 

interoperability and consistency, any final output files committed to disk by the original 

code are still written in the same form by MARS.  It is just the data written between 

modules that has been converted to binary (when it is not already binary). 
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This conversion of the output to an interim binary form lead to the sixth problem: 

precision.  Since some data was originally written to disk and then re-read from disk, 

binary sends could lead to differences in output precision.  For example, if a type double 

element whose true value was “6.125” was written to disk with only one place of 

precision, it would be stored as “6.1”.  If it was later read from disk into another element 

of type double, its value would certainly not still be “6.125”.  On the other hand, if the 

data were sent between the modules in binary form, the values would be identical on both 

ends, and no precision would be lost.  Rather than waste precious cycles losing precision 

to guarantee that all outputs agreed exactly, we chose to treat the increased accuracy as 

an acceptable side-effect. 

Results 

The three modules were executed on the SGI and Sun test-beds.  They were first 

run on both test-beds using a limited data set.  They were also executed on the SGI test-

bed with the full data set (70+ megabytes of data) used in the literature that originally 

presented the biology model.  The results are shown in Figure 18, Figure 19, and Figure 

20. 

Run 1 Run 2 Run 3 Average
MARS real 23.3 23.6 23.9 23.60

user 2.0 2.4 2.5 2.30
sys 0.5 0.7 7.0 2.73

ORIGINAL real 49.0 49.2 48.8 49.00
user 23.1 23.3 22.8 23.07
sys 4.2 3.6 4.0 3.93  

Figure 18. Small data set on the Suns 
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Run 1 Run 2 Run 3 Average
MARS real 17.49 17.49 17.67 17.55

user 2.26 2.41 2.39 2.35
sys 2.65 2.84 2.82 2.77

ORIGINAL real 39.38 39.07 39.22 39.22
user 15.46 15.44 15.47 15.46
sys 5.13 5.04 5.10 5.09  

Figure 19. Small data set on the SGIs 

Run 1 Run 2 Run 3 Average
MARS real 5833.55 5578.12 5783.15 5731.61

user 80.68 80.91 81.10 80.90
sys 18.34 18.73 18.36 18.48

ORIGINAL real 8376.64 8407.94 8392.29
user 3476.26 3459.28 3467.77
sys 989.06 984.31 986.69  

Figure 20. Large data set on the SGIs 

The first set of results, shown in Figure 18, summarizes the performance on the 

Suns with the small data set.  The original setup takes 108% longer to run on the Suns 

than the MARS version of the biology code.  This is an excellent time improvement; 

while only one extra CPU is being used, there is a speedup of over 100%.  The original 

problem scales perfectly (1:1) and still goes a bit further.  The original code could not be 

readily scaled across two CPUs (even with identical file systems) because there are no 

synchronization guarantees with UNIX files.  One module had to run to completion 

before the second was executed.  That problem was solved with our binary I/O 

implementation. 

Figure 19 shows the same small data set when run on the SGI test-bed.  The 

speedup was greater than the speedup on the Sun test-bed.  The original code took 123% 

longer than the MARS implementation on the SGI machines.  The user and system times 
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for the MARS implementation on the SGIs were approximately equal to those on the 

Suns, but the overall time was considerably less on the SGIs.  Of note, the original code 

ran faster on the SGIs than on the Suns, and the proportional overall speed-up was greater 

as well. 

Figure 20 shows the results from the large data set run on the SGIs.  The original 

code took 46% longer to run than the MARS ensemble.  The user and system time 

speedups were significant when using the large data sets.  The user time of the original 

code was approximately forty-three times MARS’ time.  The system time was about 

fifty-three times greater using the original system.  The extreme speedup in those areas 

was expected.  The relatively poor showing in total time difference was attributable to the 

massive stable output files generated by the modules.  Generating the large output files 

actually takes more time in this simulation than the computations. 
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V. Conclusions 

MARS proved to be a successful solution to the problem of integrating 

multidisciplinary codes.  There were many features of MARS that contributed to its 

overall success.  Those primary achievements are outlined in this chapter.  

Improved times 

On each the test cases in Chapter IV, there were significant speedups.  Overall 

runtimes were improved in each of the four main examples (matrix multiplication, 

pipelined graphics filtering, extended pipelined graphics filtering, and the biology code). 

In the worst case, the matrix multiplication example, only a single data set was 

read from disk, minimally processed, and written to disk again.  In that instance, the 

original code took about 60% longer to execute than the MARS code.  The explanation 

for this lackluster performance is simple: the initial disk reads and writes dominate the 

process time.  Where this is the case, little can be done to improve the performance of the 

code.  Many scientific codes, however, will have multiple data runs and/or many more 

intermediate states that will contribute to better performance with MARS.  The worst 

case program to apply MARS to would be a single module that reads a data file and 

immediately writes it to disk again.  We would expect no performance gain.  At the same 

time, such a program is certainly not multidisciplinary in any sense and not the target of 

MARS.  This matrix multiplication program is the absolute minimal case that could be 

multidisciplinary (two modules), and it still shows reasonable performance gains. 
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In all other cases, performance of the MARS ensembles was very good.  The 

extreme performance gain was shown in Figure 16, the partial three-way graphics 

pipeline results.  The original code took 265% longer than the MARS modules or about 

3.65 times the total MARS time.  Were we to discount setup overhead and assume 

already running modules, that time would also be further improved.  Also, we timed the 

ensemble with synchronous module terminations, which can be significant with the nine 

modules involved (Figure 15).  Using an asynchronous termination call could have 

yielded better results as well. 

Overall system load is reduced by using MARS data paths (where possible) 

instead of file based I/O.  By diminishing system and user times, overall throughput of 

particular execution nodes can be increased.  This is an important consideration.  If one 

machine can be used more efficiently, it frees up valuable cycle time for other processes 

and/or additional MARS modules.  For instance, in our three-way pipeline parallelism 

example, we placed several modules on a single-CPU SGI and saw excellent 

performance because significantly less time was spent reading, writing, and verifying 

data previously written to disk.  This time can be used for additional MARS modules or 

for any other processes the user chooses. 

One of the main reasons to consider MARS for multidisciplinary codes is 

performance.  A large part of the performance gains come in overall execution time.  

While overall time can be significantly decreased, user and system time can be reduced 

as well. 
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Distribution and realignment 

Distribution of modules is very simple with the MARS system.  Distribution 

comes in several forms, including setup methods of parallel codes and various types of 

dynamic realignments. 

The presence of the leader code makes setup of distributed codes very easy.  As  

long as a working module exists on an execution node that supports MARS, the leader 

can simply indicate that that node will be responsible to run that module.  A node that 

supports MARS calls does not need to be aware of any working modules located on that 

node.  As such, adding working modules to a MARS node is as simple as making an 

appropriate binary available to that node.  While there is no current mechanism to install 

working modules on a MARS execution node remotely, such an enhancement is not 

difficult to envision. 

On a second level, altering parallel codes is easy.  As shown by the two-way and 

three-way pipeline parallelism examples, changing a single constant value can be enough 

to expand a parallel stage.  With proper implementation, such expansions (or 

contractions) occur with little or no change to any module, save the leader. 

Third, realignment of codes is an easy process.  Switching from one set of 

execution nodes to another is not difficult.  Changes are only required in the leader 

module.  Such changes can be little more than single line changes, indicating the DNS 

name of the node to host a particular working module (the use of DNS assumes TCP/IP 

communications).  This realignment can occur dynamically as well.  Properly constructed 

leaders can arbitrarily add or remove modules from a collection during execution.  It is 

not difficult to imagine when this type of dynamism could be important.  Given a defined 
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set of MARS nodes, the leader code could expand a collection to consume the maximum 

allowable amount of resources.  The leader could similarly contract a collection of 

modules when critical resources are required by other users/processes. 

A final advantage of the MARS system is the late binding time for working 

module descriptions.  In reality, a completely generic leader code does not require any 

information about the modules that it is going to execute at compilation time.  The 

complete specification for a collection of working modules could be input from a file at 

runtime, or even from command line user prompts.  In most implementations, the leader 

has module locations hard-coded into it because execution nodes (especially in a 

laboratory environment) are often static.  Runtime assignment is very possible, and 

experiments show that it works well with each of the examples shown in Chapter IV19. 

There are four distribution and realignment advantages of the MARS system.  The 

first is that leader modules can be changed slightly and effect significant changes in the 

overall setup of working modules.  The second advantage is that altering parallel codes is 

a simple process.  The depth of particular stages of the ensemble can be changed from the 

leader code without altering the working modules.  The third advantage leverages off the 

first two: at runtime, sophisticated leaders can add and remove modules from running 

ensembles.  The fourth advantage is that the late binding time for module identifications 

                                                 

19 Times for such experiments were not included.  The reason is that total runtime performance 

suffered drastically when the time required for a user to type module specifications  was significant 

compared to total runtime.  It does not seem fair to compare a static hard-coded system to a MARS module 

crippled by a user who types slowly. 
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means that leaders can be ignorant of even their working modules until runtime, and the 

working modules can even be specified from the command line by users. 

Heterogeneity 

Because data and control messages are passed using an abstract type, MARS 

implementations can run on multiple platforms without requiring platform-specific 

messaging code.  Of course, platform specific optimizations are possible, but do not 

affect compatibility.  The RSMessage type is composed of byte (char) fields that are 

dynamically allocated and word-aligned based on the data types they represent.  As such, 

network transmission and message translation are simple processes. 

Since most other MARS functions are based on standard protocols, there has been 

no problem porting the MARS runtime system to many different platforms.  The current 

runtime system compiles on Sparc, Intel, and MIPS CPUs running Solaris, Irix, and 

Linux without any conditional compilation statements.  The current implementation of 

the runtime system has been written so that there are absolutely no #ifdef #endif 

pairs that are dependent upon platform or OS specifics.  In addition, the only #ifdef 

required is a compiler dependent type definition, specifically that the newest versions of 

gcc/g++ recognize type bool as a primitive type but the MIPS CC compiler does not.  

Perhaps the term “porting” implies too much.  MARS compiles without changes on all 

mentioned UNIX implementations. 

Finally, since the protocols used are standard, even machines that lacked 

particular services to support MARS were easily augmented to support the system.  For 

instance, ATM can easily (and freely) emulate TCP/IP.  Of course, it is not as fast as 
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native ATM, but the performance gains using emulated TCP/IP were still significant.  

Perhaps future MARS implementations will include ATM support at the native transport 

layer level.  On another front, SGI’s Irix OS has internal support for the TCP/mux 

protocol but Solaris 2.5.1 does not.  (Recall, the TCP/mux protocol was used to spawn 

programs on a MARS node.)  It was an easy process to implement RFC 1078 for the 

TCP/mux, and the implementation has been included in the MARS distribution 

[Lottor88]. 

MARS has been compiled and run and many different flavors of UNIX and 

several popular platforms.  MARS modules concurrently running on different 

combinations of OSes and platforms readily cooperate and exchange data and control 

messages without difficulty. 

Conditional execution 

With the addition of modules designed to return control variables, conditional 

execution can be achieved with MARS.  Simple conditional execution was demonstrated 

with the matrix smoothing example.   

By augmenting an ensemble of working modules with testing modules, the 

ensemble can be terminated early or runtime can be extended as needed.  In addition, 

certain modules can be executed (or not executed) as needed, based on the outputs of 

testing modules.  For instance, imagine an iterative approximation process (like Newton’s 

method) designed to calculate a numerical result.  With poor starting values, such 

processes can quickly diverge.  It is of great benefit to be able to detect such divergence 

quickly and restart the process with different initial values.  By the same token, a 
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converging process that has not yet achieved a certain level of precision should be 

extended rather than terminated and subsequently restarted with an increased number of 

iterations. 

Such conditional executions are possible with MARS.  By adding modules to 

inspect process data at arbitrary checkpoints or by having the leader inspect the data, 

arbitrary executions may be branched to achieve maximum performance. 

Authoring system 

As an added benefit, we have found the MARS system to be an excellent 

authoring support system for parallel and distributed codes.  The initial impetus for 

MARS design was to wrap existing multidisciplinary codes into MARS modules that 

could cooperate on large problems.  After early success with the initial MARS problem 

area, there were indications that the MARS system was appropriate for the design of new 

codes, not just wrapping existing codes. 

Data transmission between modules is quick with MARS, as is the transmission 

of arbitrary messages.  Wrapped modules can be spawned on any node that understands 

the TCP/mux request for a module.  Modules can be easily inserted or removed from 

ensembles.  Anywhere that dynamism is important or where an easy to use, richly 

featured communication and control system is desired, MARS can be applied.  Currently, 

two other M.S. in Computer Science theses at the University of Wyoming (both in 

progress) depend on early implementations of the MARS system.  Those projects are not 

related to the development of MARS, but use MARS in novel systems created from the 

ground up.  One system uses MARS to effect a distributed and network aware version of 
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the Revision Control System (RCS); the other uses MARS communication and spawning 

to implement a Geographical Information System (GIS) search tool composed of multiple 

modules and database interfaces. 

New parallel and distributed codes are easily built with MARS primitives.  While 

this was not the initial design impetus of MARS, the potential is there and will be 

explored in the coming years. 
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VI. Future Work 

While designing and working with the MARS system, several additional 

components were suggested.  Some of these modifications have clear implementation 

paths, while others are still open ended problems.  With these proposed features in place, 

MARS would be one of the most fully functional distributed runtime support system 

available.  With the support for integrating existing multidisciplinary codes, these 

enhancements effectively remove any limits to designing new applications or modifying 

existing ones. 

Dynamic scheduling 

As observed in Chapter V, the message layers and dynamic invocation schemes 

allow for dynamic scheduling with properly constructed modules and leaders.  Actually 

constructing such leaders and modules took significant experimentation to develop 

generic extensions to a module that would facilitate dynamic scheduling.  The code to 

effect the dynamism is still somewhat limited. 

The dynamic scheduler we propose would integrate all the necessary information 

in special structures contained in a leader code and would include standard stubs in 

working modules.  The scheduler would have two main components, the load balancer 

and execution sets. 

There would be an execution set for each working module in a MARS collection.  

For instance, assume an ensemble with three modules, named “A”, “B”, and “C”, with a 

data flow path from “A” to “B” to “C”.  Also, assume the depth of each stage of the 
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ensemble (“A”, “B”, or “C”) is extensible to an arbitrary limit.  At the same time, there 

are exactly ten available execution nodes, “0” .. “9”, each capable of running only certain 

modules.  An execution set definition might appear as the following: 

A.execution_set(0,1,2,3,4,5);
B.execution_set(0,5,6,7,8,9);
C.execution_set(1,2,3,5,7,9);
 

These definitions would appear in the leader module and would not need to be 

made available at compile time or runtime to particular working modules.  (According to 

this specification, module “A” could be executed on nodes “0” .. “5”.)  The leader would 

start the modules and establish the necessary data connections.  The leader may or may 

not be given a specific initial configuration (e.g., module “A” should be started on nodes 

“1” and “2”, etc.).  If not given an initial configuration for working module, the leader 

would simply place modules on whatever nodes are appropriate to approximately balance 

the depth of each module layer (e.g., module “A” could have three instantiations, module 

“B” could have four, and module “C” could have 3).  After running, a module would be 

responsible for reporting the local runtime for its wrapped__main, and the load balancer 

would re-distribute modules as necessary to balance stage throughput. 

The load balancer would redistribute nodes to balance each overall stage runtime.  

For example, given two instantiations of module “A”, one running to completion in 

twenty seconds, the other running to completion in thirty seconds, the overall “A” stage 

runtime would be twelve seconds.  Effectively, one complete run of “A” could be 

achieved every twelve seconds.  It is a simple linear equation to calculate overall stage 

runtime (e.g., for module “A”, 1/30s + 1/20s = 1/x, x = 12s).  If one stage takes 

significantly longer than another, and if making changes to the module configuration 
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would be likely to yield overall throughput benefits, the load balancer would make such 

changes. 

The stubs located in the working modules would only be responsible for reporting 

local runtimes, and would only communicate results to the leader modules.  Priorities 

could also be assigned to members of a module’s execution set, if prior performance 

knowledge was available.  Also, particular nodes within the execution sets can have 

limits placed upon them, such as that only one module at a time may reside on a 

particular node. 

While this functionality is possible with the current set of MARS primitives, it 

currently involves writing the scheduling code (load balancer) by hand in each leader.  

Rather than writing and rewriting this code every time, it should be added to the 

functionality of the base leader code.  Also, timing data must be reported by working 

modules for this system to be fully functional.  We envision a complete system with 

support for MARS acting in a way similar to the process planner described in [Adler95]. 

Multi-language support 

Currently, the wrapper only works on codes written in C.  Some other languages, 

such as Java, are similar in both syntax and available primitives.  For instance, socket 

objects for TCP/IP communications in Java are virtually identical to those in C.  Java is 

also uniquely suited to realize the control loop that exists in all working modules.  

Adding support for Java should not be excessively difficult, but has not yet been done. 

Some languages, like High Performance Fortran, are syntactically different from 

C, but otherwise support the primitives necessary to support this implementation of 
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MARS.  TCP/IP routines, for instance, are currently available to Fortran.  A MARS 

wrapper for Fortran codes is not currently available, though is likely to be developed 

soon.  Many legacy codes are written in Fortran, and the ability to deal with a large 

available code-base is certainly desirable. 

Other languages, like Lisp and Prolog, are very different from C, and would 

require significant extensions of MARS to support them.  For instance, for interpreted 

Lisp, a whole new spawning system would have to be developed.  With Prolog, message 

passing, even with TCP/IP, is not an easy task.  These other languages are generally not 

employed by multi-module authors, except in heterogeneous implementations and often 

exist without network support.  A cursory examination reveals that the brunt of scientific 

multidisciplinary codes are written in languages like C/C++ and Fortran (with various 

extensions), with a growing number of implementations using Java.  It is not clear at this 

time how the wrapper would function with a source written in an interpreted language, 

such as Lisp. 

To support existing codes fully, MARS should be able to wrap source written in 

multiple languages.  In our own examples, we converted Pascal and Fortran routines to C 

before adding them to ensembles of MARS modules. 

Native threading/thread support 

Currently, there is no support for threads in this implementation of MARS.  Given 

“friendly” modules with their own threads, MARS treats them like any other non-

threaded code and can wrap them without issue.  For the most part, any code that has 

threads spawned by its original main routine and such threads exit gracefully (with the 
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exit from the original main routine) can be turned into a MARS module without a 

problem. 

There are two main reasons to add some thread support to the MARS system.  

First, for those who would use the MARS system to author new module collections, 

native thread support would be convenient.  It would be better to have a threads package 

known to be compatible with MARS rather than requiring users to use an alternate 

implementation, like Pthreads or OpenThreads. 

The second reason is that I/O can be significantly improved with threading.  

Recall that there can be deadlocks in an ensemble if two modules depend on each other’s 

output and that output is not explicitly flushed at certain stages.  If the I/O routines were 

threaded, after reaching a certain time-out, if data was still present in a module’s buffer, 

that data could be automatically flushed to the network or disk.  Currently, users are 

responsible for preventing this type of deadlock by using explicit flushes or closes20.  It 

would be easier if the ensemble creators did not have to worry about this type of problem, 

as they generally do not have to with more traditional codes.  For instance, data written to 

disk will eventually get put to disk, without an explicit flush or close by the user.  

Currently, data written to a MARS data path may not, without a flush or close. 

Threading allows the user to “forget about” flushing data to the network, and the 

corresponding headaches such worries can cause.  With “native” thread support (even if it 

simply consists of Pthreads or another implementation), newly created MARS modules 

                                                 

20 MARS does data flushes automatically when an I/O buffer is full, but implementers may have 

dependencies on data that do not fall on this buffer boundary or are simply smaller than a single buffer size. 
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can be assuredly safe, without worrying about misbehaving third-party threads running 

amok. 

Another advantage of threading I/O is that when too much data “piles up” on a 

TCP/IP connection without being consumed, the data’s emitter must block until some 

portion of the data is consumed.  Currently, we have been able to work around such 

problems with relative ease, by using the (threaded!) data buffer module, but not having 

to work around the problem would be a much better state. 

A final advantage to threading is that the message processing could continue 

unabated, even when a wrapped__main (or some other routine) was executing.  Such 

message processing could be used to update Router Tables while a routine was being 

executed and before another output routine started.  Of course, enhanced steering 

mechanisms can be envisioned with threaded message processing.  If at mid-execution 

the output from a thread was no longer required, that thread could be terminated, at a 

savings to the entire ensemble [Kleiman96]. 

Automatic data conversions 

Currently, there are no automatic data conversions in the MARS system.  All data 

conversion, where necessary, is done by specially designed proxy modules.  For example, 

if 32-bit integer data is sent between machines with unlike endian-ness, one using big 

endian and the other using little endian representation, each integer must be reversed in a 

bit-wise manner by a proxy module. 

There are several different standards for dealing with heterogeneous data typing, 

including Abstract Syntax Notation One (ASN.1), X.409, and the Basic Encoding Rules 
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(BER).  No support for any of these protocols is currently available in MARS.  We have 

chosen to examine a unique system, Smartfiles, to address the data exchange problem 

[Haines95b].  The Smartfiles subsystem takes care of mundane issues such as endian-

ness and array ordering and access, but allows further functionality by encoding 

information in description fields about the data being transmitted.  By mapping these 

fields onto configurations different from an original Smartfile, unique data access 

patterns can be achieved with relative ease [Haines95b].  Such functionality would be a 

boon to multidisciplinary codes that pass data to other modules that do not require all the 

output fields or only require a simple data reordering. 

At this point, given the added functionality of Smartfiles, it seems to be a logical 

choice for automatic data conversion.  Not only does it provide a black-box standard for 

data conversions, it can make binding different modules into MARS ensembles much 

easier.  Even sharing data through a consistent standard like ASN.1, legacy modules are 

unlikely to have the same data format requirements.  The integration of Smartfiles would 

be an important tool to overcome differences in legacy module data requirements. 

Strong profiling support 

Basic, coarse-grained profiling is available in MARS.  By setting log levels high, 

every message sent and received or processed can be tracked and stored for later 

examination.  By examining message log time differences, runtimes of blocks of code 

can be calculated. 

The logs do not provide much profiling support, however.  It does not approach 

the information provided by a program like prof or pixie.  At the same time, there 



 101

have been some problems using standard profilers with particularly complex MARS 

codes, especially those that wrap MARS routines around threaded codes.  The same 

problems exist for stand-alone threaded codes as well, but native support for profiling 

would be extremely helpful in troubleshooting and tweaking performance in MARS 

modules. 

With native profiling support, users could get breakdowns such as “how much 

time is spent on data transmissions,” “how much time is spent processing messages,” and 

“how much time is spent in various module routines.”  Currently, the only profiling is 

very coarse and therefore not very informative.  Better profiling could lead to better 

modules and better performance. 

Better steering mechanisms 

There is not much a user can do to steer a MARS collection, other than writing an 

effective leader that “knows” what effective steering is.  Of course, compiling all such 

knowledge into a single leader code is impossible and probably not worth the effort 

required. 

How does a user terminate an entire collection of MARS modules?  Currently, 

there is no easy way to do so.  Terminate the leader, and subsequently terminate all 

working modules: that is the process.  There is an experimental terminator for leader 

codes that installs a signal handler to receive a SIGUSR1 (or other programmer-specified 

signals) and then send termination messages to all working modules before the leader 

terminates.  This brute force approach is not at all elegant and does not support anything 

other than terminating a complete setup. 
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We envision a signal handler that allows much greater user control over the entire 

process.  For instance, working modules should be able to report their pending messages 

and their current threads of execution.  Execution sets for modules should be capable of 

dynamic expansion and contraction at the user’s discretion.  Leaders should be able to 

invoke extra modules on command.  Users should be able to examine an ensemble’s 

progress by querying leaders or working modules. 

There are many different reasons to steer running collections, far beyond simply 

indicating that an entire collection should terminate.  Status information and changes to 

the entire setup should be possible with a running MARS ensemble.  Better steering 

mechanisms are a priority in the future expansion of MARS. 

Better condition variables 

Condition variables are not really present within the MARS system.  We 

demonstrated conditional execution by building a module to test a data stream, but this 

extra module was constructed by hand and did not really leverage any existing MARS 

structures or primitives. 

To achieve better conditional execution, there should be a way to check execution 

status of working modules while they are running.  (To do this first requires thread 

support in MARS.)  Once such support is available, basic methods could be added to 

MARS to make many types of condition variables automatically available to a user.  For 

instance, the following code would be easy to build with enhanced status information 

available: 

leader->start(ModuleA);
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while(! ModuleA.done()) {
leader->start(ModuleB);

}
 

This code fragment could guide an approximation system, where ModuleB 

constantly refines an answer until ModuleA is done, or anything else the reader imagines.  

Basic condition variables, such as module.done(), can be used in many ways, and are 

not limited to simply checking for execution completion.  Real-time systems could also 

use similar state variables to terminate processes whose answers have expired: 

leader->start(ModuleA);
for (int x = 0; x < 30; x++, wait(1)); //30 sec runtime
if (ModuleA.running())
leader->end(ModuleA);

else
//collect ModuleA’s data here

Currently, a user could send a message to ModuleA that simply asks for a reply 

and hope that the message is answered in a timely manner.  But what is a timely manner?  

One extra second?  Two?  Such a method would be messy and unpredictable, at best.  

The addition of condition variables could greatly enhance the functionality of MARS. 

User defined variables would also be possible.  While there is no concrete 

specification for such variables yet, they could be very broad in functionality.  They 

could test for total CPU time used by a working module or even query the amount of data 

sent across a particular data connection.  The only limitation is currently the 

implementer’s need (which we have found to be unlimited at times). 

Drag-and-drop style GUI 

The approach to coordinating ensembles in MARS suggests a clear path for 

program generation with an object-oriented graphical tool.  The ensembles shown in 
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various figures throughout this document are accurate visualizations of multidisciplinary 

applications.  When implementing the first ensembles, before the specification language 

defining leaders and sub-modules was complete, the module connections had to be 

defined by hand.  If one module was to connect to another module, an explicit message 

had to be sent from the leader to one of the two modules indicating that a connection to 

the other was required.  For the leader to effect the modules’ connection, it had first to 

identify the actual address of both modules.  Then the leader would send the address of 

one module to the other, followed by a “connect” message for  each connection between 

the two modules in question.  To help with this process, sketches of ensemble 

interconnections were made.  As the connections indicated by the sketches were coded 

into the leader, it was indicated on the ensemble sketch. 

In the current setup, the process is much simpler.  To connect two modules, the 

leader executes a leader->link(“moduleA.out”, “moduleB.in”).  That is it.  

Once inputs and outputs are defined, connecting them is a snap.  The leader->link() 

call generates all the essential lookups, messages, and calls to the runtime layer to 

connect the two modules. 

The initial sketch-and-connect process suggests that a GUI-based tool would be 

appropriate for designing and implementing MARS ensembles.  Simply dragging and 

dropping modules and their connections into an ensemble would be enough for many 

types of module collections, including multistage pipelines and cyclical feedback 

applications.  More complex applications, such as those with conditional execution paths, 

would likely still require significant execution path programming within the leader, but 
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the entire ensemble connection scheme could still be done in the GUI in any case.  We 

envision that such a design tool might look similar to Figure 21. 
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Figure 21. Proposed GUI-based MDO programming tool 
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VII. Final words 

The multidisciplinary optimization problem is not a problem of heterogeneous 

operating systems, development languages, programming paradigms, or platforms.  It is 

more accurately a problem of drawing together components from heterogeneous 

disciplines to determine answers beyond the scope of any single discipline’s contribution.  

The potential realizable, real-world solutions that can come from multidisciplinary 

optimizations are truly limitless. 

With the advent of teraflop architectures, computational ability has reached 

beyond the imaginations of programmers even a few decades ago.  Computational brute 

force, however, is not enough.  There is an ever growing crisis of depth in expert 

knowledge.  Experts are knowledgeable within their domains, but as the accumulation of 

human knowledge (including raw data) accelerates, experts must further limit their 

knowledge domains.  Perhaps the greatest potential for novel solution discovery lies in 

composing expert knowledge from multiple disciplines into aggregates capable of solving 

problems much larger than those encountered by a single expert in the course of his or 

her career. 

Expert knowledge is more and more frequently embodied within computational 

models.  The ability to combine these models is extremely important to solving ever 

larger problems and to provide innovative answers where we could not even begin to ask 

appropriate questions before.  Take the U.S. Accelerated Strategic Computing Initiative 

(ASCI).  By exploiting knowledge and models from multiple domains, we move closer to 

complete and accurate simulations for predicting weapons systems performance, safety, 
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and reliability.  Better weapons are not the answer, but the ability to substitute 

simulations and models for nuclear testing is important to everyone. 

There is a common lament that “the weatherman is always wrong”.  This would 

not be as accurate if there were better ways to predict.  When climate and weather 

predictions are wrong, the costs can be very high in terms of lives and property and 

general discord.  How can better predictions be made?  By simply integrating more data 

from more sources?  Of course, but the predictive power of temporally removed 

information extends only so far, and increased precision in weather data (state 

information) can only yield so much benefit21.  By including multiple diverse models, 

new perspectives can be gained.  The lingering gaps in current practices are more likely 

to be filled by broadening perspectives, rather than simply adding more information to 

existing models. 

Perspectives are broadened when we leverage useful models from diverse 

disciplines to solve existing problems.  Experts in their fields know what they know best-- 

a glaring truism, but important nonetheless.  By composing expertise we develop 

multidisciplinary optimizations.  Optimal may be in terms of computational resource 

efficiency, temporal efficiency, accuracy, and solution applicability. 

We need experts.  Now that experts can compartmentalize much of their 

expertise, there is an increasing need for composers and composition tools.  Hopefully 

MARS and its discussion will enhance the expanding composition dialogue. 

                                                 

21 And somewhere in China, a butterfly flaps its wings. 
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