MARS: RUNTIME SUPPORT FOR COORDINATED APPLICATIONS

Neal Sample

Carl Bartlett Matthew Haines

Department of Computer Science
University of Wyoming
Laramie, WY 82070
USA

{nsample, bartlett, haines}@cs.uwyo.edu

Keywords: multidisciplinary application; runtime system;
legacy code; MARS.

ABSTRACT

Expat knowledge from many disciplines is frequently
embodied in stand-alone codes used to solve particular
problems. Codes from various disciplines can be composed
into cooperative ensembles that can answer questions larger
than any solitary code can. These multi-code compositions
are called multidisciplinary applications and are a growing
area of research. To support the integration of existing codes
into multidisciplinary applications, we have constructed the
Multidisciplinary Application Runtime System (MARS).
MARS supports legacy modules, heterogeneous execution
environments, conditional execution flows, dynamic module
invocation and realignment, runtime binding of output data
paths, and a simple specification language to script module
actions.

PROBLEM

As expert knowledge is more and more frequently embodied
in computer models and simulations, the opportunity to
compose useful models from multiple disciplines is
increasing as well. In order to better solve many complex
problems, it is useful to draw together domain expertise from
multiple disciplines.

For instance, designing an automobile requires information
about structure, propulsion, guidance, safety, and many other
features. Designs are done in teams, with each team member
{or group) having specific tasks, completing one part of the
puzzle. The group responsible for a new engine design is not

Permission to make digitat or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copics bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

SAC '99, San Antonio, Texas

©1998 ACM 1-58113-086-4/99/0001 $5.00

166

the same group responsible for the body design. Further up
the scale, the entire design team could be seen as one small
component themselves, coupled with advertising, sales and
manufacturing teams to deliver the product to market. The
combination of these different expert groups can achieve
much more than any group by itself.

The automobile production problem is analogous to what is
occurring in scientific research today. Models are taken from
different disciplines and combined in innovative ways to
provide answers that the component models could not
provide by themselves. The problem of combining models
from more than one discipline is known as the
multidisciplinary optimization problem, and the resulting
applications are called multidisciplinary applications.

The general MDO construction problem has three main
components: managing concurrency and paralielism, data
exchange, and basic control functionality (such as module
invocation and termination). When using heterogeneous
codes, little can be done to combine them (without rewriting
the working modules to be compliant with the flavor of the
month task and data paralle! language system); there are very
narrow design paths MDO builders usually follow. The path
to managing concurrency problems is often to serialize the
component processes, thus ensuring consistency at a cost of
efficiency. The path for data exchange is commonly through
UNIX files. Basic functions, like invocations, can be done
with scripting languages or with system calls, such as the
exec() in UNIX.

An important consideration in the development of MDO
codes is that desirable component modules often exist, but
were not written to be used in a cooperative environment.
These legacy codes, while capable of pexrforming a desirable
task, are often limited in use because they are difficult to tie
together with other legacy codes. Even MDOs built with
newer modules designed with interfaces that are mindful of
specific legacy codes are ineffective. Interfaces to the
resulting new MDO collections are often as idiosyncratic as
the iegacy code that is the basis of the MDO; it is therefore

difficult to expand or interchange other modules with the
new MDO. For instance, increasing the variety of Phillips
screws in a package does not make that package work better
with a flathead screwdriver. In essence, to use legacy codes,
designers must completely build around them, suffering the
costs incurred when coupling heterogeneous modules, or
rewrite them to comply with local modules, duplicating
significant effort already expended on the legacy code’s
original design.

It was with these many considerations (data exchange,
concurrency and parallelism, basic functionality of a
component system, and support for legacy codes) in mind
that we built the Multidisciplinary Application Runtime
System (MARS). MARS supports abstract data passing,
asynchronous partially-ordered message passing, remote
service requests, dynamic module invocation, and various
primitives for module control. As such, it could serve as the
runtime support for another task parallel high-level language
specification, like Opus (which was designed for building
MDO codes) [2, 3, 5].

MARS also includes components beyond the runtime system
proper. To fully support the construction of MDO codes,
MARS understands a simple specification language that
defines the working modules (or tasks) within an MDO. A
collection of working modules and a leader (specification) to
guide those modules are referred to as a MARS ensemble.

MARS also has a server component that resides on all
execution nodes (CPUs) that participate in a running
ensemble. This server, called an mdo_server, functions to
invoke working modules on specific execution nodes at the
request of another module. The components of a leader (and
how sub-leaders and working modules are added to an
ensemble that follows the leader) are also part of the
specification language.

To support legacy modules, MARS includes a source to
source compiler called the wrapper. The wrapper takes
source for a working module, wraps all the 1/O routines with
MARS calls, and augments the original code to act as
persistent server capable of processing MARS messages.
This wrapper is not dependent on user augmentation of
original source, as with a full language specification like
Opus. Without any annotation of the source by the MDO
builder, the MARS wrapper replaces the legacy code’s
original entry point with MARS moduie server code, while
preserving access to the original entry point for later use.

A powerful module composition tool is needed to bring tools
from various disciplines together to form multidisciplinary
applications. When legacy modules are developed, their
design generally does not consider how the moduie could be
used as part of a future collections of modules. Legacy codes
are frequently designed to achieve a single task in the best
possible way. As such, whatever local tools, methods, and
protocols are available are used to build the best possible
stand-alone module. This local construction process makes
it difficult to integrate modules from different disciplines
when they do not use common data formats, common
communication protocols, or even common development
languages. MARS is a composition tool designed to bring

167

modules together from multiple disciplines to form
multidisciplinary applications.

RELATED WORK

There have been many different approaches to achieving task
integration. Most approaches deal with homogenous tasks
rather than integrating codes from multiple sources. We
have found that similarities exist between elements of
particular systems and certain MARS components, but that
the collected functionality of MARS has not been realized.

A primary difference between MARS and virtually all
languages and language extensions is the support for legacy
codes. The purpose of language specifications is generally to
build new codes, including new MDOs. They are designed
with little support for legacy modules in mind. Limited code
reuse (using legacy modules) can be achieved with these
language-level specifications, but only by reusing other
codes originally written using a specific language
specification.

It should be further noted that many language specifications
could be compiled to MARS, although MARS currently
lacks a native threading system. (The initial focus of the
MARS project was to develop the message passing layer, the
[/O routines, and the basic control and concurrency
primitives. The assumption is that MARS will be augmented
with an existing threads package.)

Fx

Developed at CMU, Fx is an extension of the Fortran
language. In Fx, parallet sections of code, called tasks, are
invoked by a program as subroutines. Tasks communicate
with one another by sharing input and output arguments in
their parent space. The data flows are static and cannot be
changed at runtime. This method does have the advantage of

possible compiie-time path optimizations.

While good for the design of new task parallel codes, Fx is
not particularly suited for MDO applications {2]. First,
within a single invocation, the Fx language provides
excellent support for communication and parallelism.
However, between two distinct codes, both written in Fx, the
MDO builder is once again responsible for handiing
communication. In effect, a static (where modules are never
added or removed) MDO could be easily built as a single Fx
program, but altering the ensemble would require re-coding
and recompiling the entire Fx code (or else the user has to
build a runtime system to provide the needed support).

The Fx input and output directives radically limit the
usefulness of tasks in a parallel environment [2]. If tasks
must communicate frequently, routines must be frequently
split at synchronization points so the task can share its data.
This of course makes programming the tasks difficuit and
greatly increases the overhead of task invocation.

Orca

Orca is a task parallel language that supports process
allocation in a manner similar to MARS. Like MARS
module invocations, Orca tasks can be dynamically created
and mapped to specific execution nodes. However, there is
no explicit message passing in Orca. Instead,
communication is handled by applying user defined Abstract
Data Type (ADT) operations on shared objects. Orca
collections are good for coarse-grained parallelism as
operations on ADTs are aiways exclusive and indivisible [2].

Once again, since Orca is a complete programming language,
users are limited to programming in Orca. This does limit
the possibility of using legacy codes, and it also prevents
users from easily extending the Orca specification. Because
MARS concentrates on coordination rather than
programming, it has a broader range of usefulness to legacy
codes.

Additionally, because Orca is compiled and has its own
runtime system, users may find it difficult to add to the Orca
system. Since MARS is built in clearly defined, user-
accessible layers, inserting functionality at the various levels
is much simpler than with Orca. Finally, extending higher-
level MARS constructs with source language (such a C)
primitives is also possible, whereas there is no such
distinction with Orca.

Opus

The Opus language specification was designed for
multidisciplinary applications [2]. Opus takes a data-centric
approach to the MDQ problem, introducing the ShareD
Abstraction (SDA) for coordination and communication.
SDAs act as data repositories, communication channels, and
occasionally as compute nodes within Opus ensembles.

The Opus language extends HPF with its task parallel
programming constructs [3, 7. There are several strong
similarities between MARS and Opus. (This is to be
expected; runtime support for an Opus-like language was the
genesis for the MARS project.) Multidisciplinary Opus
applications begin with a “leader” that sets up the SDAs,
similar to the way MARS ensembles are setup. Opus and
MARS both use similar spawn operations to invoke working
modules with specific resources. Opus provides access to
SDA objects without working modules having to explicitly
locate the SDA objects on the network. Similarly, the Jeader
module in a MARS ensemble defines 1/0 paths for working
modules at runtime.

Opus is a coordination language, not a distributed
programming language like Orca or Fx, which makes it more
closely related to MARS [3,4]. The MARS runtime system
is predicated on primitives exclusively designed for
coordinating modules, rather than programming modules.

CHAIMS

The CHAIMS system is similar to MARS, but operates at a
significantly higher level of abstraction than MARS.

168

CHAIMS, unlike many of the other coordination systems
examined, is close to being a pure composition language,
functioning at a higher level of abstraction than task-parallel
programming languages and extensions [8,10].

The original CHAIMS specification was for a composition
language that would be used to build megaprograms.
Megaprogramming is a form of programming in the large,
where “large™ can be viewed on several independent levels
(largeness in time (persistence), large variability (diversity),
largeness in size (complexity of the program and/or its range
of applicability), and largeness in capital investment
(infrastructure)) (1 1]. Megaprograms compose megamodules
into collections capable of greater functionality than an
individual megamodule can achieve. A megamodule, as
originally specified, was a large, persistent, self-contained
object with a consistent interface for querying.

CHAIMS assumes that megamodules have their own
ontology and maintenance, and are simply available to the
public for access. In this sense, megamodules are much like
object resources in CORBA. MARS is perhaps better
characterized as “programming in the small” in this regard.
MARS ensembles are formed by coilecting stand-alone
modules that are not aiready servers and turning them into
servers capable of being composed into ensembles
(megaprograms).

CHAIMS assumes that composers (megaprogrammers)
generally do not have control over the megamodules they use
[11]. MARS assumes that, in general, its modules may be
invoked on any participating execution node, and is thus
steered toward a different set of problems. At the same time,
however, MARS can certainly communicate with persistent
modules; MARS simply extends the CHAIMS specification
to include dynamic module invocation primitives. This is a
clear philosophical difference: CHAIMS is not “polluted”
with non-compositional features, while MARS is not
“fimited” to dealing with persistent moduies.

MARS is a runtime system that provides specific data
transport mechanisms to multidisciplinary programs and a
simple specification language for composition of those
programs. CHAIMS is predicated on communication with
existing modules through various methods, including COM,
CORBA, Java-RM], etc. [9,10]. CHAIMS does not provide
data transport mechanisms to previously naive programs;
rather it has a rich set of messaging protocols intended for
communicating with existing network-aware servers
(megamodules).

The combination of these implementation differences
distinguish the MARS problem set from CHAIMS’. MARS
is intended for use primarily with local modules. These local
modules are controlled by ensemble creators. They can be
altered locally and have multiple invocations on arbitrary
execution nodes. CHAIMS assumes that megamodules are
available somewhere, and that megaprogrammers have no
control over megamodules and cannot alter them.

THE MARS SYSTEM

The MARS systemn consists of six main interacting

components, the wrapper code, the native communications
layer, the Remote Service Layer (RSL), the Remote Service
Spawn (RSS), the message processing layer, and the
MdoModule layer. There are four main divisions of these
components: preprocessing components, runtime library
code, support for remote invocation, and high-level objects
needed to consiruct the ieader code. The componenis
combine to form a complete framework capable of
supporting the multidisciplinary problems outlined in this
paper. In general, the MARS system works as follows:

1. Component modules necessary to solve a problem are
assembied.

2. The modules are wrapped, tuming them into
specialized MARS servers.

3. A leader is written (the leader is an “executable map™
of the execution and data paths to be taken by the
modules.)

4. The leader is executed, causing execution of the
component modules in accordance with the
specification.

When assembled, the leader and the working modules form a
multidisciplinary application. This section reviews the
components of the MARS system.

The wrapper is the first part of the MARS system. Its job is
to turn legacy modules into special MARS servers, capable
of communicating with other MARS working moduies and
leaders. The wrapper installs communication mechanisms in
legacy codes and also substitutes MARS 1/O routines for
those in the original code. Once this is done, a MARS leader
code (which is really just a specification for a set of modules)
can control the working module by invoking it with the
remote invocation tools. Once a module is running, it
communicates with its leader through several layers designed
to ensure consistent communication between modules.
These components relate in the manner shown in Figure 1.

Working Module

Onginal (Legacy) Code

Router Table

Remote Service Layer

Figure 1. MARS component interactions

File (1/Q) Laver

The critical issue with the wrapper is /0. Many potential
candidates to become modules in an MDOQ use arbitrary

169

output schemes that use multiple files, in multiple (often
proprietary) formats that are without obvious meaning to an
outside observer. Such programs can be extremely difficult
for a developer to understand and integrate into a
muitidisciplinary optimization. The wrapper must be aple to
convert simple /O calls automatically to some other form
that can be utilized in a collection of different modules.
Disk-based /O routines are by far the most common,
especially in scientific codes. Simulation data is generally
pushed to disk and later analyzed or used by other programs.

Remote Service Laver (RSL)

The Remote Service Layer (RSL) is the primary method of
communication between modules. RSL communication is
ordered between modules along virtual connections because
the native communications layer is similarly ordered. RSL
messages are asynchronously transmitted and received,
without explicit return values in the general case. Special
fields in an RSL message header facilitate synchronicity (if
desired), but this synchronicity comes from how the message
is processed in the Message Processing Layer. RSL
messages consist of two parts: a well defined header and a
corresponding binary data-blob sent immediately after the
header.

1

Router Table

The Router Table is an advanced data structure for installing
arbitrary names in a module’s I/O routines. The Router
Table provides a bridge between the Remote Service Layer
and File VO Layer. An unaltered, non-wrapped module may
expect to receive incoming data from a file, say “foo”.
Instead of demanding that the wrapped module constantly
write to a fixed channel “fo0™ (which could go to disk or
network), the Router Table allows the destination “£00” to
be changed dynamically, unbeknownst to the module using
“foo”. This ability is extremely powerful. Unlike the
languages using compiled communication paths, like Fx,
MARS modules never need to know where their inputs come
from until after they are invoked. Likewise, their outputs can
be similarly assigned at runtime and can be changed multipie
times during their execution lifetime.

M i 4

The Message Processing Layer is the most critical
component of the MARS system. It is the layer that
translates and implements all requests in all RSL messages.
it modifies connection tables, invokes native procedures
within wrapped modules, and establishes data connections.

Most mundane functions are also performed by the Message
Processing Layer. Log files are opened and written to by the
MPL. The level of logging to be performed by the lower
layers (such as File 1/O Layer logging) are altered with calls
to the MPL. It is the layer that understands how to control all
the other layers and the only level at which modules can
communicate directly.

APPLICATIONS/RESULTS

The section demonstrates three test ensembles constructed
with MARS. The first code presents MARS used to
implement a pipeline parallelism example. Three graphics
filters are applied, in succession, to a series of images. The
three filters, which increase sharpness (is) in an image,
posterize (po) an image, and reduce noise (rn) in an image,
are wrapped to become modules and then fed multiple files
from a leader code. The example shows the ease of
constructing what could otherwise be a complex pipeline and
how that pipeline can dramatically improve performance.

The second example uses the identical wrapped modules
from the first example in an advanced arrangement to greatly
enhance the performance of the graphics filters. This
extended pipeline parallelism test demonstrates how MARS
can be extended to include dynamically module invocation to
overcome performance bottlenecks. This example shows
how ensembles can be easily rearranged without re-coding
them.

The final example uses an actual scientific research code
taken from the biological sciences. In this example, we
demonstrate dramatic performance increases using our
system. This test ensemble, used in actual research, is a
‘litmus test for the applicability and performance of MARS
on legacy modules. The code is multidisciplinary, and all of
the modules were designed before the conception of MARS.

Pipeline Parallelism Example

This example will show how the MARS system was used to
wrap three similar codes into an efficient paraliel image
processing system. We will use three graphics filters and
turn them into MARS modules. As noted earlier, the three
filters increase sharpness (is), posterize (po), and remove
noise (rn) from 8-bit bitmap images.

This experiment uses 40 8-bit black and white images, each
256x256 pixels in size. The images are fed in succession to
the three filters. The three filter modules are combined to
achieve image compression by bit reduction. The first
module, is, is applied to refine an images’ edges. The second
module, po, reduces the images’ bit depth, using an un-
weighted naive heuristic. The third module, rn, reduces
excessive noise by looking at disparity in neighboring byte
values, produced by the bit reduction step.

These three modules are composed with a leader code to
produce the ensemble shown in Figure 2.

170

—~————> Dataline

Leader Increase Write ‘
Module Sharpaess Data Output
Moduie Module Files
P —— -
Input Posterize Reduce
Files Modui Noise
Module

Figure 2. Pipeline parallelism example

We also add a fourth module, one written to handle the disk
/O at the end of the execution path. It would be simple
enough to allow the reduce noise module to write the images
to disk, but this additional helper module’s function will
become apparent in the next example.

Most of the leader code is devoted to locating the working
modules on the network. A significant portion of code is
also used to read data into the leader. As such, the leader
will become an active participant in this collection of
moduies. Better performance could be achieved if the
increase sharpness module read in the data, as it would not
have to be passed from the leader to that module. Since the
data files are only 65536 bytes (64k), the overhead of having
the leader pass the data an extra time is not too significant.

The last call the leader makes is leader->end_reply ().
This is a synchronous routine The leader-
>end_reply () waits for all client modules to terminate
before the leader exits. As such, we could increase
performance by using an asynchronous leader->end()
cali, allowing the client modules to terminate on their own
time. To make the comparisons to the original filters fair, we
wait until the final module has committed its data to disk,
ensuring that all files are stable.

ORiGINALreal | 604] o090l 605l 60.30

Figure 3. Pipeline parallelism results

This experiment was run on the Sun testbed. Figure 3 shows
the execution times of the original setup and the MARS
modules. The original sctup takes about 94% longer than the
MARS setup.

With a three stage pipeline, a two-thirds reduction in time
would be expected. In this case there was only a one-half
reduction in time. With a bit of module profiling, the reason
became clear. The increase sharpness module and the reduce
noise module take significantly more computation time than
the posterizing module. Since those two stages dominate the

overall process time, a simple pipeline could only hope to
double performance.

With the groundwork for this set of modules in place, we will
now demonstrate additional features of MARS that facilitate
extending existing setups.

Extended Pipeline Parallelism Example

After improving the performance of the original graphics
modules by pipelining and then profiling the resulting
collection, it became obvious that a different setup was
required for optimal performance. Since the first and third
stages (is and rn) of the overall process dominated the
execution times, we multiplied the number of execution
nodes at those stages. Figure 4 shows the new module
configuration.

than the MARS module collection, or about three times as
long. The new setup is faster than the simple pipeline,
23.61s versus 35.67s, a savings of about 12.06s, or faster by
just more than one-third of the simple pipeline’s total time.
Finally, the two-stage pipeline performance about is three
times better than the original setup.

This stage-depth parallelism can be arbitrarily extended at
any point. We extend the example by adding another is and
another m module. The leader code requires new
information to /ocate the new modules on the network, but
really nothing more. The control loop in the leader is
changed by only one character. In the loop, the fragment i f
{done % 2 == 0) ischangedto if (done % 3 ==
0) to indicate that there are three copies of the parallel
modules, rather than two. That is the only change. The
resulting configuration is shown in Figure 6.

————3» DataLine ———> Daaline
Increase Reduce
Sharpness Noise
Increase Reduce p Module y Module
Sharpriess Noise / \ / \
Leader Module Posterize Module [5f write Leader] Posteri Rech Write
Module Module Data Moduie | Shapness |54 Modue 1 Noise Deta
" > e 3| Module Module |] Module Module
Sharpness Noise T
Module Module \ / \ /
— = | ol
[=g Oups i ﬂ
Files Files Files H Flles

Figure 4. Partial 2-way pipeline

With MARS, moving from the arrangement in Figure 2 to
the arrangement in Figure 4 is simple. The leader code
remains virtually unchanged, except for the actual control
loop. Two new module (one each, is and rn) specifications
are added to the leader, and the leader also adds the required
data paths. The control loop in the leader is almost identical,
with the data read-in passed alternately to the two increase
sharpness modules.

To execute the new MARS module coliection efficiently,
more CPUs were required. To handle the extra load, the
leader and write-out modules were placed on SGls
workstations, while the working modules were placed on the
Sun execution nodes. This experiment also demonstrates
execution using heterogeneous platforms. The results arc
summarized in Figure 5.

MARS

ORIGINALreal | 694 o900l easl
Figure 5. Partial 2-way pipeline results

2365] 24 21 26l

69.30

Figure 5 shows the results of adding two more modules to
the collection. The original setup now takes 194% longer

171

Figure 6, Partial 3-way pipeline

As expected, the execution time is again decreased. The
results from the partial three-way pipeline are shown in

Figure 7.
MARS |real fm‘:g.gl g;a 1E 18.97
ORGINALIrel | 694l 600f 95l a0

Figure 7. Partial 3-way pipeline resuits

As before, the runtime is reduced. The amount of time
reduction by adding this extra set of modules is not as large
as the reduction from the first extra set added. (The original
code still takes 265% longer than the MARS code) A single
leader reading inputs cannot keep the pipeline completely
filled, nor can a single data writing module commit the data
to disk fast enough to scale further, without adding copies of
po and the write-out module. Three is and rn stages are all
this pipeline can support. Of course, if there were more data
readers and writers, and if enough execution nodes were
available, the problem could be easily scaled to any arbitrary
level, with minimal changes to the leader code. This
flexibility allows various scalable problems to be mapped
onto numerous configurations of processors with minimal
changes to module codes.

This example has demonstrated several more elements of the
MARS design. First, MARS has been built to make scaling
problems simple. Once a problem has been broken into its
parallel components, arbitrary scaling at each stage of the

1ol to o walativaly aneu mesanscn Alon tha narial fn.

pipeinc is a TCialively €asy process. Aiss, in€ pamias wo-
and three-stage pipelines show the support for heterogeneity
in the MARS system. The modules in those examples were
executed on different platforms, while data and control
messages required no alteration. Since the data in the
examples was binary, no conversion between piatforms was
required either.

Biology Model
Description

The MARS system test would not be compiete without
applying it to an actual scientific MDO code. Each of the

codes tied together by hand is unique, and handwritten codes

using similar modula vary wxdely in mplemcntatlon method
and performance. The system we chose to test MARS has
three primary modules, including a handwritten leader-like
code [6].

A complete description of the code we applied the MARS
system to can be found in “Global net carbon exchange and
intra-annual atmospheric CO, concentrations predicted by an
ecosystem process model and three-dimensional atmospheric
transport model” [6].

L] Ll
In the Qngu-ml system, the leader was known as gessys”.

The gessys module served the same role as a leader
module in a MARS ensemble. The other two working
modules were labeled climnew and globebgc. Some of
the data transfers and module invocations performed by the
gessys code were achieved with the following fragment:

system(*./climnew”);
system(*./globebgc”);

system(*cat grid.day >> newout.day”’}:
system(“cat grid.grw >> newout.grw’);
system(*rm ~f grid.mtc”);

system(*rm ~f grid.clm®);

The three modules were wrapped and tied together into a
MARS ensemble. The ensemble is shown in Figure 8. The
disk-based output was left in the globebgc module. The
data files generated for a single run were very large (over

o al o) nnd o]
seventy lucsauytca) and took a S|g"uiu\"4‘u'ﬁ amount of the total

runtime to write out. The output was left on secondary (disk)
storage in the MARS implementation because it was aiso
available after the original system ran.

172

Leader Module
Input (formerly “gessys”™)
l File |
S
Globebge Module Climnew Module
Output
File
— —
Figure 8. Biology module arrangement
Results

The results shown in Figure 9 shows the performance on the
SGls with a small data set. The original setup takes 123%
longer to run on the SGIs than the MARS version of the
biology code. This is an excellent time improvement; while
onlyv one extra CPUJ ig haing usad there is a Mln of over

Ulliy Viiv SAUG Wi U 19 UV UTWi, HINE W 10

100%. The original problem scales perfectly (1:1) and still
goes a bit further. The original code could not be readily
scaled across two CPUs (even with identical file systems)
because there are no synchronization guarantees with UNIX
filess. One module had to run to completion before the
second was executed. That problem was solved with our

h;nnr\l /0 |mnlmmtght\p

Spemwp VI UYSA

| _Buni _Bun2 Fund _Aversge |
MARS |resl | 1749l 1740) 17671 u.q
IOFQGi‘ sard . R an aal P | s anl an anl

Figure 9. Small data set on the SGls
CONCLUSIONS

MARS proved to be a successful solution to the problem of
integrating multidisciplinary codes. There were many
features of MARS that contributed to its overall success.
Those primary achievements are outlined here.

Improved times

On each the test cases, there were significant speedups.
Ovenll runtimes were improved in each of the three main

examples (pipelined gmphnes filtering, extended pipelined
graphics filtering, and the biology code).

In each case, performance of the MARS ensembles was very

good. The extreme performance gain was shown in Figure 7,

the partial three-way graphics pipeline results. The original
code took 265% longer than the MARS modules or about
3.65 times the total MARS time. Were we to discount setup
overhead and assume already running modules, that time
would also be further improved. Aiso, we timed the

ensemble with synchronous module terminations, which can
be significant with the nine modules involved (Figure 6).
Using an asynchronous termination call could have yielded
better results as well.

Overall system load is reduced by using MARS data paths
(where possible) instead of file based /0. This is an
important consideration. If one machine can be used more
efficiently, it frees up valuable cycle time for other processes
and/or additional MARS modules. For instance, in our three-
way pipeline paralielism example, we placed several
modules on a single-CPU SGI and saw excellent
performance because significantly less time was spent
reading, writing, and verifying data previously written to
disk. This time can be used for additional MARS modules or
for any other processes the user chooses.

Distribution and realignment

There are four distribution and realignment advantages of the
MARS system. The first is that leader modules can be
changed slightly and effect significant changes in the overall
setup of working modules. The second advantage is that
altering parallel codes is a simple process. The depth of
particular stages of the ensemble can be changed from the
leader code without altering the working modules. The third
advantage leverages off the first two: at runtime,
sophisticated leaders can add and remove modules from
running ensembles. The fourth advantage is that the late
binding time for module identifications means that leaders
can be ignorant of even their working modules until runtime,
and the working modules can even be specified from the
command line by users.

Heterogeneity

Because data and control messages are passed using an
abstract type, MARS implementations can run on multiple
platforms without requiring platform-specific messaging
code. Of course, platform specific optimizations are
possible, but do not affect compatibility. The RSMessage
type is composed of byte (char) fields that are dynamically
allocated and word-aligned based on the data types they
represent. As such, network transmission and message
translation are simple processes.

Since most other MARS functions are based on standard
protocols, there has been no problem porting the MARS
runtime system to many different platforms. The current
runtime system compiles on Sparc, Intel, and MIPS CPUs
running Solaris, Irix, and Linux without any conditionai
compilation statements. MARS modules concurrently
running on different combinations of OSes and platforms
readily cooperate and exchange data and control messages
without difficulty.

Conditional execution

By augmenting an ensemble of working modules with testing
modules, the ensemble can be terminated early or runtime
can be extended as needed. In addition, certain modules can
be executed (or not executed) as needed, based on the

173

outputs of testing modules. For instance, imagine an
iterative approximation process (like Newton’s method)
designed to calculate a numerical result. With poor starting
values, such processes can quickly diverge. It is of great
benefit to be able to detect such divergence quickly and
restart the process with different initial values. By the same
token, a converging process that has not yet achieved a
certain level of precision should be extended rather than
terminated and subsequently restarted with an increased
number of iterations.

SUMMARY

The primary goal of the MARS project is to build a runtime
system to support multidisciplinary applications. These
applications are formed from collections of moduies that
often include legacy codes, not just newly created modules.
While MARS supports legacy codes, it is still an excellent
authoring system for distributed codes. The working
modules that form an ensemble cooperate in a heterogeneous
execution environment, frequently composed of clusters of
workstations,

MARS modules can be invoked as part of an ensemble or
alone. As such, MARS supports single-source coding,
making code maintenance easier for ensemble creators.

The runtime system supports dynamic invocation,
termination, and realignment of modules. Module
distribution is a simple task; it does not require a registration
step like CORBA and other invocation strategies. While
dynamic module realignment is a simple task, dynamic
redirection of the user data passed between modules is
possible as well. Primitives for conditional execution also
exist in MARS.

Even with all these control considerations, performance is
still central to MARS”® implementation. MARS does not add
significant overhead for its control or data communications
to multidisciplinary applications. MARS can be used to
distribute and parallelize collections of otherwise stand-alone
modules into cooperative ensembles.

MARS is designed to take expert knowledge embodied in
multiple computer programs and glue those programs
together. The program ensembles formed by this process are
used to solve problems larger than any component module
can solve.

FUTURE WORK

While designing and working with the MARS system,
several additional components were suggested. Some of
these modifications have clear implementation paths, while
others are still open ended problems. With these proposed
features in place, MARS would be one of the most fully
functional distributed runtime support system available.
With the support for integrating existing multidisciplinary
codes, these enhancements effectively remove any limits to
designing new applications or modifying existing ones.

Enhanced dynamic scheduling, multi-language support,

native threading, and automatic data conversion are projects
currently being examined.

REFERENCES

m R. Adler, “Distributed Coordination Models for
Client/Server Computing,” Computer, April 1995.

2) H. Bal and M. Haines, “Approaches for Integrating
Task and Data Parallelism,” Technical Report IR-
415, Vrije Universiteit, Amsterdam, December 1996.

{31 B. Chapman, M. Haines, P. Mehrotra, H. Zima and J.
Van Rosendale, “Opus: A Coordination Language for
Multidisciplinary Applications,” ICASE Technical
Report 97-30, June 1997.

[4] M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale
and H. Zima, “Runtime Support For Data Parallel
Tasks,” Proceedings of The Fifth Symposium on the
Frontiers of Massively Parallel Computation,
McLean, VA, February 1995.

(51 M. Haines and P. Mehrotra, “Exploiting Parallelism
in Multidisciplinary Applications Using Opus,”
Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, San
Francisco, CA, February 1995.

[6] E. Hunt, S. Piper, R. Nemani, C. Keeling, R. Otto and
S. Running, “Global Net Carbon Exchange and Intra-
Annual Atmospheric CO, Concentrations Predicted
by an Ecosystem Process Model and Three-
Dimensional Atmospheric Transport Model,” Global
Biogeochemical Cycles, September 1996.

N P. Mehorotra and M. Haines, “An Overview Of The
Opus Language And Runtime System,” ICASE
Technical Report 94-39, May 1994. (Also appears in
Languages and Compilers for Parallel Computers,
Springer-Verlag Lecture Notes in Computer Science,
vol 892, Pages 346-360.)

(8] L. Perochon, G. Wiedethold and Burback, “A
Compiler for Composition: CHAIMS,” Fifth
International Symposium on Assessment of Software
Tools and Technologies (SAST'97), Pittsburgh, PA,
June 3-5 1997.

9] C. Tomabene, P. Jain and G. Wiederhold, *“Software
for Composition: CHAIMS,” Workshop on
Compositional Software Architectures of OMG,
DARPA and MCC, Monterey, CA, January 6-8 1998,

[10] C. Tornabene, D. Beringer, P. Jain and G.
Wiederhold, “Composition on a Higher Level:
CHAIMS,” unpublished, Dept. of Computer Science,
Stanford University.

{111 G. Wiederhold, P. Wegner and S. Ceri, “Towards

Megaprogramming,” Communications of the ACM,
November 1992.

174

