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ABSTRACT 

Expert knowledge from many disciplines is frequently 
embodied in stand-alone codes used to solve particular 
problems. Codes from various disciplines can be composed 
into cooperative ensembles that can answer questions larger 
than any solitary code can. These multi-code compositions 
LIZ called multidisciplinary applications and are a growing 
areaof nsearch. To support the integration of existing codes 
into multidisciplinary applications, we have constructed the 
Multidisciplinary Application Runtime System (MARS). 
MARS supports legacy modules, heterogareous execution 
environments, conditional execution flows, dynamic module 
invocation and realignment, runtime binding of output data 
paths, and a simple specification language to script module 
actions. 

PROBLEM 

As expett knowledge is more and more frequently embodied 
in compum models and simulationa, the opportunity to 
compose us&l models from multiple disciplines is 
increasing as well. In order to better solve many complex 
problems, it is use!U to draw together domain expertise From 
multiple disciplines. 

For instance, designing an automobile requires information 
about structure, propulsion, guidance, safety, and many other 
features. Designs are done in teams, with each team member 
(or group) having specific tasks, completing one part of the 
puzzle. The group responsible for a new engine design is not 
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the same group responsible for the body design. Funha up 
the scale, the entire design team could be sdcn as one small 
component themselves, coupled with advertising, sales and 
manufacturing teams to deliver the product to marks. The 
combination of these diffii expert groups can achieve 
much more than any group by itself. 

Tl~e automobile production problem is analogous to what is 
occurring in scientific zsearch today. Mod& an taka~ hm 
different discipline-s and combiied in innovative waya to 
provide answers that the component models could not 
provide by themselves. The problem of combining models 
from more than one discipline is known as the 
multidisciplinaty optimization problem, and the -king 
applications are called multidisciplinary applications. 

Tbe genaal MD0 cotauuion probkm has three main 
components: managing con- and parallelism, data 
exchange, and basic contn4 fimctionality (such as module 
invocation and tamination). When using hv 
codes, little can be done to combine than (without rewriting 
the working module3 to be arnrpliant with the flavor of the 
month task and data parallel language system); tke are very 
narrow design paths MD0 buildas usually follow. The path 
to managing concunency problana is often to serialize the 
component processes, thus ensuring consistency at a cost of 
efficiency. The path for data exchange is commonly through 
UNIX files. Basic tknctions, like invocations, can be done 
withscriptinglanguagesorwithsystemcalls,suchasthe 
exa$) in UNIX. 

An important c4msidaation in the development of MD0 
codes is that desimble componti moduks oftar exist, but 
were not wrinen to be used in a Mve en&-t. 
These legacy codu, while capable of paf&ning a desirable 
task are often limited in use because they are difficult to tie 
together with other legacy codes. Even MDOs built with 
newer modules designed with intafacea that 8e mindful of 
spec1$c legacy co&s are in~ve. Interkes to the 
resulting new MD0 eollectiaW are Oftat as idi~ncratic as 
thelegacycodethatisthebaaisoftheMDQ,itistherefore 
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difficult to expand or interchange other modules with the 
new MDO. For instance, increasing the variety of Phillips 
screws in a package does not make that package work better 
with aflathead screwdriver. In essence, to use legacy codes, 
designers must completely build around them, suffering the 
costs incurred when coupling heterogeneous modules, or 
rewrite them to comply with local modules, duplicating 
significant effort already expended on the legacy code’s 
original design. 

It was with these many considerations (data exchange, 
concurrency and parallelism, basic functionality of a 
component system, and support for legacy codes) in mind 
that we built the Multidisciplinary Application Runtime 
System (MARS). MARS supports abstract data passing, 
asynchronous partially-ordered message passing, remote 
service requests, dynamic module invocation, and various 
primitives for module control. As such, it could serve as the 
runtime support for another task parallel high-level language 
specification, like Opus (which was designed for building 
MD0 codes) [2,3,5]. 

MARS also includes components beyond the runtime system 
proper. To fi~lly support the construction of MD0 codes, 
MARS understands a simple specification language that 
defines the working modules (or tasks) within an MDO. A 
collection of working modules and a leader (specification) to 
guide those modules are referred to as a MARS ensemble. 

MARS also has a server component that resides on all 
execution nodes (CPUs) that participate in a running 
ensemble. This server, called an &o-server, functions to 
invoke working modules on specific execution nodes at the 
request of another module. The components of a leader (and 
how sub-leaders and working modules are added to an 
ensemble that follows the leader) are also part of the 
specification language. 

To support legacy modules, MARS includes a source to 
source compiler called the wrapper. The wrapper takes 
source for a working module, wraps all the I/O routines with 
MARS calls, and augments the original code to act as 
persistent setver capable of processing MARS messages. 
This wrapper is not dependent on user augmentation of 
original source, as with a full language specification like 
Opus. Without any annotation of the source by the MD0 
builder, the MARS wrapper replaces the legacy code’s 
original entry point with MARS module setver code, while 
preserving access to the original entry point for later use. 

A powerful module composition tool is needed to bring tools 
from various disciplines togetber to form multidisciplinary 
applications. When legacy modules are developed, their 
design generally does not consider how the module could be 
used as part of a future collections of mod&s. Legacy codes 
are frequently designed to achieve a single task in the best 
possible way. As such, whatever local tools, methods, and 
prorocols are available are used to build the best possible 
stand-alone module. This local construction process makes 
it difficult to integrate modules from different disciplines 
when they do not use common data formats, common 
communication protocols, or even common development 
languages. MARS is a composition tool designed to bring 

modules together from multiple disciplines to form 
multidisciplinary applications. 

RELATED WORK 

There have been many different approaches to achieving task 
integration. Most approaches deal with homogenous tasks 
rather than integrating codes from multiple sources. We 
have found that similarities exist between elements of 
particular systems and certain MARS components, but that 
the collected functionality of MARS has not been realized. 

A primary difference between MARS and virtually all 
languages and language extensions is the support for legacy 
codes. The purpose of language specifications is generally to 
build new codes, including new MDOs. They are designed 
with little support for legacy modules in mind Limited code 
reuse (using legacy modules) can be achieved with these 
language-level specifications, but only by reusing other 
codes originally written using a specific language 
specification. 

It should be further noted that many language specifications 
could be compiled to MARS, although MARS currently 
lacks a native threading system. (The initial focus of the 
MARS project was to develop the message passing layer, the 
I/O routines, and the basic control and concurrency 
primitives. The assumption is that MARS will be augmented 
with an existing threads package.) 

Fx 

Developed at CMU, Fx is an extension of the Fortran 
language. In Fx, parallel sections of code, called tasks, are 
invoked by a program as subroutines. Tasks communicate 
with one another by sharing input and output arguments in 
their parenr space. The data flows are static and cannot be 
changed at runtime. This method does have the advantage of 
possible compile-time path optimization% 

While good for the design of new task parallel codes, Fx is 
not paticularly suited for MD0 applications [2]. First, 
within a single invocation, the Fx language provides 
excellent support for communication and parallelism. 
However, between two distinct codes, both written in Fx, the 
MD0 builder is once again responsible for handling 
communication. In ef%ct, a sfafic (where modules are never 
add& or removed) MD0 could be easily built as a single Fx 
program, but altering the ensemble would require re-coding 
and recompiling the entire Fx code (or else the user has to 
build a runtime system to provide the needed sum). 

The Fx input and ourpur directives radically limit the 
usefulness of tasks in a parallel avhnment [2]. If tasks 
must communicate frequently, routine3 must be fizqucntly 
split at synchronization points so the task can share its data. 
This of course makes programming the tasks difficult and 
greatly increases the overhead of task invocation. 
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Orca is a task parallel language that supports process 
allocation in a manner similar to MARS. Like MARS 
module invocations, Orca tasks can be dynamically created 
and mapped to specific execution nodes. However, there is 
no explicit message passing in Orca. Instead, 
communication is handled by applying user defined Abstract 
Data Type (ADT) operations on shored obiecfs. Orca 
collections are good for coarse-grained parallelism as 
operations on ADTs are always exclusive and indivisible [2]. 

Once again, since Orca is a complete programming language, 
users are limited to programming in Orca. This does limit 
the possibility of using legacy codes, and it also prevents 
users Tom easily extending the Orca specification. &cause 
MARS concentrates on coordination rather than 
programming, it has a broader range of usefulness to legacy 
COdeS. 

Additionally, because Orca is compiled and has its own 
runtime system, users may find it difcult to add to the Orca 
system. Since MARS is built in clearly defined, user- 
accessible layers, inserting functionality at the various levels 
is much simpler than with Orca. Finally, extending higher- 
level MARS constructs with source language (such a C) 
primitives is also possible, whereas there is no such 
distinction with Orca 

QPL!s 

The Opus language specification was designed for 
multidisciplinary applications [2]. Opus takes a data-centric 
approach to the MD0 problem, introducing the ShareD 
Abstraction (SDA) for coordination and communication. 
SDAs act as data repositories, communication channels, and 
occasionally as compute nodes within Opus ensembles. 

The Opus language extends HPF with its task parallel 
programming constructs [3, 71. There are several strong 
similarities between MARS and Opus. (This is to be 
expected, runtime support for an Opus-like language was the 
genesis for the MARS project.) Multidisciplinary Opus 
applications begin with a “leader” that sets up the SDAs, 
similar to the way MARS ensembles are setup. Opus and 
MARS both use similar spawn operations to invoke working 
modules with specific resources. Opus provides access to 
SDA objects without working modules having to explicitly 
locate the SDA objects on the network. Similarly, the leader 
module in a MARS ensemble defines l/O paths for working 
modules at nmtime. 

Opus is a coordination language, not a distributed 
programming language like Orca or Fx, which makes it more 
closely related to MARS [3,4]. The MARS runtime system 
is predicated on primitives exclusively designed for 
coordinating modules, rather than programming modules. 

CHAIMS 

The CHAIMS system is similar to MARS, but operates at a 
significantly higher level of abstraction than MARS. 

CHAWS, unlike many of the other coordination systems 
examined is close to being a pure composition language, 
functioning at a higher level of abstraction than task-parallel 
programming languages and extensions [ 8, lo]. 

The original CHAIMS specification was for a composition 
language that would be used to build megaprograms. 
Megaptvgramming is a form of programming in the large, 
where “large” can be viewed on several independent levels 
(largeness in time (persistence), large variability (diversity), 
largeness in size (complexity of the program and/or its range 
of applicability), and largeness in capital investment 
(infrastructure)) [ 1 I]. Megapmgmms compose megamadules 
into collections capable of greater functionality than an 
individual megamodule can achieve. A megamodule, as 
originally specified, was a large, persistent, self-contained 
object with a consistent interface for querying. 

CHAIMS assumes that megamodules have their own 
ontology and maintenance, and are simply available to the 
public for access. In this sense, megamodules are much like 
object resources in CORBA. MARS is pahaps better 
characterized as ‘programming in the small” in this regard. 
MARS ensembles are formed by collecting stand-alone 
modules that are not already servers and tuming them into 
servers capable of being composed into ensembles 

Owww=M. 

CHAIMS assumes that composers (megaprogrammers) 
generally do not have control over the megamodules they use 
[I I]. MARS assumes that, in general, its modules may be 
invoked on any participating execution node, and is thus 
steered toward a diffaet set of problems At the same time, 
however, MARS can certainly communicate with persistent 
modules; MARS simply extends the CHAIMS specification 
to include dynamic module invocation primitives. This is a 
clear philosophical difi;aarce: CHAWS is not “polluted” 
with non-compositional m while MARS is not 
“limited” to dealing with persistent modules. 

MARS is a runtime system that provides specific data 
transport mechanisms to multidisciplinary programs and a 
simple specification language for composition Of those 

programs. CHAIMS is predicated on communication with 
existing modules through various methods, including COM, 
CORBA, Java-RMI, etc. [9,10]. CHAIMS does not provide 
data transport meohanisms to previously na;ive programs; 
rather it has a rich set of mesaaglng protocols intended for 
communicating with existing network-aware servers 
(megamodules). 

The combination of these implanentation differences 
distinguish the MARS p&Ian set fiotn CHAWS’. MARS 
is intended for use primarily with local modules. These local 
modules are controllad by ensemble creators. They can be 
altered locally and have multiple invocations on arbitrary 
execution nodes. CHAIMS assumes that megamodules are 
available somewhae, and that megaprogmmrners have no 
control over megamodules and cannot alter them. 

THE MARS SYSTEM 

The MARS system consists of six main interacting 
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APPLICATIONS/RESULTS 

The section demonstrates three test ensembles constructed 
with MARS. The first code presents MARS used to 
implement a pipeline parallelism example. Three graphics 
filters are applied, in succession, to a series of images. The 
three filters, which increase sharpness (is) in an image, 
poster& (PO) an image, and reduce noise (m) in an image, 
are wrapped to become modules and then fed multiple tiles 
from a leader code. The example shows the ease of 
constructing what could otherwise be a complex pipeline and 
how that pipeline can dramatically improve paformance. 

The second example uses the identical wrapped modules 
from the first example in an advanced arrangement to greatly 
enhance the performance of the graphics filters. This 
extended pipeline parallelism test demonstrates how MARS 
can be extended to include dynamically module invocation to 
overcome performance bottlenecks. This example shows 
how ensembles can be easily rearranged without re-coding 
them. 

The final example uses an actual scientific research code 
taken from the biological sciences. In this example, we 
demonstrate dramatic performance increases using our 
system. This test ensemble, used in actual research, is a 

‘litmus test for the applicability and performance of MARS 
on legacy modules. The code is multidisciplinary, and all of 
the modules were designed before the conception of MARS. 

Pineline f%vahetism Examnte 

T&his example will show how the MARS system was used to 
wrap three similar codes into an efficient parallel image 
processing system. We will use three graphics filters and 
turn them into MARS modules. As noted earlier, the three 
filters increase sharpness (is), posterize (PO), and remove 
noise (m) from &bit bitmap images. 

This experiment uses 40 S-bit black and white images, each 
256x256 pixels in size. The images are fed in succession to 
the three filters. The three filter modules are combined to 
achieve image compression by bit reduction. The first 
module, is, is applied to refine an images’ edges. The second 
module, po, reduces the images’ bit depth, using an un- 
weighted naive heuristic. The third module, m, reduces 
excessive noise by looking at disparity in neighboring byte 
values, produced by the bit reduction step. 

These three modules are composed with a leader code to 
produce the ensemble shown in Figure 2. 

Fiire 2. Pipeline parallelism example 

We also add a fourth module, one written to handle the disk 
I/O at the end of the execution path. it would be simple 
enough to allow the reduce noise module to write the images 
to disk, but this additional helper module’s function will 
become apparent in the next example. 

Most of the leader code is devoted to locuting the working 
modules on the network. A significant portion of code is 
also used to read data into the leader. As such, the leader 
will become an active participant in this collection of 
modules. Better performance could be achieved if the 
increase sharpness module read in the data, as it would not 
have to be passed from the leader to that module. Since the 
data fiks are only 65536 bytes (64k). the overhead of having 
the leader pass the data an extra time is not too significant. 

Ihe last cdl the leader make3 is leader->er&reply ( ) . 
This is a synchronous mutine. The leader- 
>end-reply ( ) waits fa all client modulea to ten&ate 
before the kada exita As such, we could inczwse 
performance by using an asynchmnoua leader->end ( ) 
call, allowing the client modules to terminate on their own 
time. To make the comparisons to the original filters fair, we 
wait until the final module has committed its data to disk, 
ensuring that all files are stable 

loRKj(Mmd I 6ml 6e.d 60.!d eedpl 
Flgurt3. PIpdIne p8raIItmm mdts 

This experiment was run on the Sun testbed Figure 3 shows 
the execution times of the original setup and the MARS 
modules. The original setup takea about 94% longer than the 
MARS seqr. 

With a three stage pipeline, a two-thirds reduction in time 
would be expected. In this case there was only a onehalf 
reduction in time With a bit of module profiling, the reason 
became clear. The increase sharpness moduk and the reduce 
noise module take significantly morn computation time than 
the poster&g module Since those two stages dominate the 
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overall process time, a simple pipeline could only hope to 
double performance. 

With the groundwork for this set of modules in place, we will 
now demonstrate additional features of MARS that facilitate 
extending existing setups. 

Extended Pineline Parallelism Examnle 

AtIer improving the performance of the original graphics 
modules by pipelining and then profiling the resulting 
collection, it became obvious that a different setup was 
required for optimal performance. Since the first and third 
stages (is and m) of the overall process dominated the 
execution times, we multiplied the number of execution 
nodes at those stages. Figure 4 shows the new module 
configuration. 

than the MARS module cmkct.i0n, or about three times as 
long. The new setup is faster than the simple pipeline, 
23.61s versus 35.67s, a savings of about 12.06s, or faster by 
just more titan one-third of the simple pipeline’s total time. 
Finally, the two-stage pipeline performance about is three 
times better than the original setup. 

This stage-depth parallelism can be arbitrarily extended at 
any point. We extend the example by adding another is and 
another m module. ‘Ihe leader code requires new 
information to locafe the new modules on the network, but 
really nothing more. The control loop in the leader is 
changed by only one chomcter. In the loop, the fragment if 

(done % 2 == 0 1 is changed to if (done % 3 == 
0) to indicate that there are three copies of the parallel 
modules, rather than two. That is the only change The 
resulting configtua&n is shown in Figure 6. 

Figure 4. Partial Zway pipeline 

With MARS, moving from the arrangement in Figure 2 to 
the arrangement in Figure 4 is simple The leada code 
remains virtually unchanged, except for the actual control 
loop. Two new module (one each, is and m) specifications 
are added to the leader, and the leada also adda the required 
data paths. The control loop in the lea& is almost identical, 
with the data read-in passed alternately to the two increase 
sharpness modules. 

To execute the new MARS module colkction efficiently, 
more CPUs were required. To handle the extra load, the 
leader and write-out modules were placed on SGls 
workstations, while the working modules were placed on the 
Sun execution nodes. This experiment also demonstrates 
execution using heterogeneous platforms. The results are 
summarized in Figure 5. 

Figure 5. Partial I-way pipeline results 

Figure 5 shows the results of adding two more modules to 
the collection. The original setup now takes 194% longer 

FigUrC6.PUUal3-W~p@dtw 

Asexpee@tl-leamltimtimeisagain- Ihe 
results from the pertid tluee-way pipeline are shtnvn in 
Figure 7. 

Figure 7. Partial 3-way pipe&e resulta 

As before, the runtime is reduced. The amount of time 
reductionbyaddiagthisatrasCrofmoduksis~~large 
astheteductionfiomthefirstextraaetadded. (Theoriginal 
code still takes 265% /o~ge.r than the MARS code) A single 
leada reading inputa CannDt keep the pipeline annpletdy 
filled, nor can 8 single data writing module commit the data 
to disk fast enough to scale further, without adding copies of 
poandthewriteoutmodule. Threebandmstageaareall 
this pipeline can support. Of coup if tbae were more data 
readers and writem, and if enough execution nodea were 
available, the pm&n could be easily scakd to any arbitrary 
level, with minimal changes to the kader code. This 
flexibility allows various scakbk problems to be mapped 
onto numaoua configuration.9 of pnxxsson with minimal 
changes to moduk codea 
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This example has demonstrated several more elements of the 
MARS design. First, MARS has been built to make scaling 
problems simple. Once a problem has been broken into its 
parallel components, arbitrary scaling at each stage of the 
pipeline is a relatively easy process. Also, the partial two- 
and three-stage pipelines show the support for heterogeneity 
in the MARS system. The modules in those examples were 
executed on different platforms, while data and control 
messages required no alteration. Since the data in the 
examples was binary, no conversion between platforms was 
required either. 

Bioloav Model 

Description 

The MARS system test would not be complete without 
applying it to an actual scientific MD0 code. Each of the 
codes tied together by hand is unique, and handwritten codes 
using similar modules vary widely in implementation method 
and performance. The system we chose to test MARS has 
three primary modules, including a handwritten lead&-like 
code [6]. 

A complete description of the code we applied the MARS 
system to can be found in “Global net carbon exchange and 
intra-annual atmospheric CO2 concentrations predicted by an 
ecosystem process model and three-dimensional atmospheric 
transport model” [6]. 

In the original system, the leader was known as “gessys’. 
The gessys module served the same role as a leader 
module in a MARS ensemble. The other two working 
moduleswerelabeled climnewandglobebgc. Someof 
the data transfers and module invocations performed by the 
gessys code were achieved with the following fragment: 

system ( * . /climnew’); 
system( l . /globebgc’); 

system(‘cat grid.day a> newout.day~); 
aystem(‘cat grid.grw >> newout.grw’); 
system(‘xm -f grid.mtc’); 
system(‘rm -f grid.clm’); 

The three modules were wrapped and tied tog* into a 
MARS ensemble. ‘Ihe ensemble is shown in Figure 8. ‘The 
disk-based output was left in the globebgc module. The 
data files genesated for a single run were very large (over 
seventy megabytes) and took a significant amount of the total 
runtime to write out. The output was I& on secondary (disk) 
storage in the MARS implunartation because it was also 
available after the original system ran. 

<-> Rsmcrpglinc 

--> 5uune 

Figure 8. Biology awduk amagemeat 

Resuh 

The results shown in Figure 9 shows the paformance on the 
SGIs with a small data set The original setup takes 123% 
longer to run on the SGIs than the MARS version ofthe 
biology code. This is an excellent time improvanent; while 
only one extra CPU is being usad, thae is a speedup of Over 

100%. The original problem scales pafcctly (1: 1) and still 
goes a bit further. The original code could not be readily 
scaled across two CPUs (even with identical file systans) 
because there are no synchnmization gunmn- with UNIX 
files. One module had to run to conqlktioll b&xe the 
second was executed. That problan was solved with our 

binary I/O implementation. 

CONCLUSIONS 

MARSprovcdtobcsswssfulsol~tothcpmbkmof 
integrating multidisciplinary codg Thae were many 
features of MARS that conhibuted to its overall success. 
Those primary achievements arc outlined here. 

Immoved timeg 

On each the test cases, thm wue signifkarit speedups. 
Ovednmtimcswa-cimpnwaiincachofthcthzecmain 
examples (pipelined graphic3 filterin& exta&l pipelined 
graphics filtering, and the biology code). 

Ineachcase,paformana of the MARS ensembles was very 
good. The extrane pafotmfme gainwaashowninFigure7, 
the partial threbway graphics pipeline resulta. I~K original 
code took 265% longer than the MARS modules or about 
3.65 times the total MAR!3 time. Wae we to discount setup 
overhead and assume already running modules, that time 
would also be further improved. Also, we timed the 
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ensemble with synchronous module tezrninations, which can 
be significant with the nine modules involved (Figure 6). 
Using an asynchronous termination call could have yielded 
better results as well. 

Overall system load is reduced by using MARS data paths 
(where possible) instead of file based I/O. This is an 
important consideration. If one machine can be used more 
efficiently, it frees up valuable cycle time for other processes 
and/or additional MARS modules. For instance, in our three- 
way pipeline parallelism example, we placed several 
modules on a single-CPU SGI and saw excellent 
performance because significantly less time was spent 
reading, writing, and verifying data previously written to 
disk. This time can be used for additional MARS modules or 
for any other processes the user chooses. 

Distribution and realignment 

There are four distribution and realignment advantages of the 
MARS system. The first is that leader modules can be 
changed slightly and effect significant changes in the overall 
setup of working modules. The second advantage is that 
altering parallel codes is a simple process. The depth of 
particular stages of the ensemble can be changed from the 
leader code without altering the working modules. The third 
advantage leverages off the first two: at runtime, 
sophisticated leaders can add and remove modules from 
running ensembles. The fourth advantage is that the late 
binding time for module identifications means that leaders 
can be ignorant of even their working modules until runtime, 
and the working modules can even be specified from the 
command line by users. 

Heterogeneity 

Because data and control messages are passed using an 
abstract type, MARS implementations can run on multiple 
platfons without requiring platform-specific messaging 
code. Of coutse, platform specific opfimizutions are 
possible, but do not affect compatibility. The RSMessage 
type is composed of byte (char) fields that are dynamically 
allocated and word-aligned based on the data types they 
represent. As such, network transmission and message 
translation are simple processes. 

Since most other MARS functions are based on standard 
protocols, there has been no problem porting the MARS 
runtime system to many different platforms. The current 
runtime system compiles on Spare, Intel, and MIPS CPUs 
running Solaris, Irix, and Linux without any conditional 
compilation statemenb. MARS modules concurrently 
running on different combinations of 0% and platforms 
readily cooperate and exchange data and control messages 
without difftculty. 

Conditional execution 

By augmenting an ensemble of working modules with testing 
modules, the ensemble can be terminated early or runtime 
can be extended as needed. In addition, certain modules can 
be executed (or not executed) as needed, based on the 

outputs of testing modules. For instance, imagine an 
iterative approximation process (like Newton’s method) 
designed to calculate a numerical result. With poor starting 
values, such processes can quickly diverge. It is of great 
benefit to be able to detect such divergence quickly and 
restart the process with different initial values. By the same 
token, a converging process that has not yet achieved a 
certain level of precision should be extended rather than 
terminated and subsequently restarted with an increased 
number of iterations. 

SUMMARY 

The primary goal of the MARS project is to build a runtime 
system to support multidisciplinary applications. These 
applications are formed from collections of modules that 
often include legacy codes, not just newly created modules. 
While MARS supports legacy codes, it is still an excellent 
authoring system for distributed codes. The working 
modules that form an ensemble cooperate in a heterogeneous 
execution environment, frequently composed of clusters of 
workstations. 

MARS modules can be invoked as part of an ensemble or 
alone. As such, MARS supports single-source coding, 
making code maintenance easier for ensemble creators. 

The runtime system supports dynamic invocation, 
termination, and realignment of modules. Module 
distribution is a simple task it does not require a registration 
step like CORBA and other invocation strategies. While 
dynamic module realignment is a simple task, dynamic 
redirection of the user data passed between modules is 
possible as well. Primitives for conditional execution also 
exist in MARS. 

Even with all these control considerations, performonce is 
still central to MARS’ implementation. MARS does not add 
significant overhead for its control or data communications 
to multidisciplinary applications. MARS can be used to 
distribute and parallelize collections of otherwise stand-alone 
modules into cooperative ensembles. 

MARS is designed to take expat knowledge embodied in 
multiple compllter programs and glue those programs 
together. The program ensembles formed by this process are 
used to‘solve problems larger than any component module 
can solve. 

FUTURE WORK 

While designing and working with the MARS system, 
several additional components were suggested. Some of 
these modifications have clear implementation paths, while 
othas are still opal ended problems. With these proposed 
features in place, MARS would be one of the most fully 
functional distributed runtime support system available. 
With the support for integrating existing multidisciplinary 
codes, these enhancanents effectively remove any limits to 
designing new applications or modi@ing existing ones. 

Enhanced dynamic scheduling, multi-language support, 
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native threading, and automatic data conversion are projects 
currently being examined. 
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