
Analysis of Transaction Management Performance

Dan Duchamp

Computer Science Department
Columbia University
New York, NY 10027

Abstract
There is currently much interest in incorporating

transactions into both operating systems and general-
purpose programming languages. This paper provides
a detailed examination of the design and performance
of the transaction manager of the Camelot system.
Camelot is a transaction facility that provides a rich
model of transactions intended to support a wide va-
riety of general-purpose applications. The transaction
manager’s principal function is to execute the protocols
that ensure atomicity.

The conclusions of this study are: a simple optimiza-
tion to twophase commit reduces logging activity of dis-
tributed transactions; non-blocking commit is practical
for some applications; multithreaded design improves
throughput provided that log batching is used; multi-
casting reduces the variance of distributed commit pro-
tocols in a LAN environment; and the performance of
transaction mechanisms such as Camelot depend heav-
ily upon kernel performance.

1 Introduction

The semantics of a transaction - atomic, serializable,
permanent - suggest that it should be a good pro-
gramming construct for fault-tolerant (distributed) pro-
grams that operate on long-lived data. This thesis
has recently been explored by incorporating transac-
tions into both operating systems [25][16] and general-
purpose programming languages [21][29]. This paper
examines the design and performance of the transaction
manager (TranMan) of the Camelot system [2], which
is a service, usable by other services at any level of ab-
straction, that provides transactions as a technique for
synchronization, recovery, and fault-tolerance.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0177 $1.50

The transaction manager is responsible for imple-
menting the most basic calls of the transaction inter-
face (begin-transaction, commit-transaction, and abort-
transaction), so its performance is an issue central to the
use of transactions as a programming tool.

In Camelot, transactions can be arbitrarily nested
and distributed. This permits programs to be written
more naturally, but makes several aspects of transaction
management more difficult. The demands that influence
the design of the transaction manager are:

l Function: transactions will be used in widely differ-
ent ways, and the transaction manager should have
mechanisms to cope with this. Two specific mech-
anisms incorporated into the Camelot transaction
manager are nested transactions and non-blocking
commitment.

l Performance: transactions should be cheap enough
to be used as if they were an operating system
primitive. Even short transactions must experience
little overhead, and the transaction manager must
cope with high traffic. Multicast is used to reduce
the overhead of committing large distributed trans-
actions.

This work examines some notable aspects of the
Camelot transaction manager, most of which are in
some way performance-oriented. These aspects and the
conclusions about their performance are:

1. An optimization to the well-known two-phase com-
mit protocol is quite effective in decreasing logging
activity of distributed transactions.

2. A non-blocking commit protocol (one that can
survive any single failure, including partition) al-
though inherently slower than two-phase commit,
is practical for some applications.

3. A multithreaded transaction manager improves
throughput provided that log batching exists.

4. Multicast reduces the variance of distributed pro-
tocols in an extended-LAN environment.

5. Camelot is operating-system-intensive, and so is
heavily dependent upon kernel performance.

177

2 Camelot Overview

Camelot runs on the Mach operating system [IL], which is
a communication-oriented extension of Berkeley UNIX
4.3. Extensions include the ability to send typed mes-
sages to ports of local processes, read-write sharing of
arbitrary regions of memory (among processes that are
related as ancestor and descendant), provision for multi-
threaded processes, and an external pager interface
that allows an extra-kernel process to provide virtual
memory management for arbitrary regions of memory.
Additionally, the Mach implementation is kernelized
and has been reorganized (i.e., with the addition of lock-
ing) to permit it to run on multiprocessors. Camelot
makes extensive use of all of the new Mach functions.
Message passing is used for most inter-process commu-
nication, shared memory for the rest. Threads are used
for parallelism within all processes. The external pager
facility provides Camelot with the control over pageout
needed to implement the write-ahead log protocol.

To use Camelot, someone who possesses a database
that he wishes to make publicly available writes a data
server process that controls the database and allows ac-
cess to client appIication processes. Any computer on
which a data server runs must also run a single instance
of each of four processes that comprise the implementa-
tion of Camelot. An application initiates a transaction
by getting a transaction identifier from the transaction
manager and then performs data manipulation opera-
tions by making synchronous inter-process procedure
calls to any number of data servers, local or refmote. Ev-
ery operation must explicitly list the transaction identi-
fier as one of its arguments. While processing a request,
a data server may in turn call other data servers. Even-
tually, the application orders the transaction manager
to either commit or abort.

Each data server “manages” one or more objects
which are instances of some abstract data types. Ob-
ject management consists of doing storage layout and
concurrency control, and implementing the #operations
advertised in the interface. The first time a server pro-
cesses an operation on behalf of a transaction, it must
first ask the local transaction manager whether it may
join the transaction. Joining allows a transaction man-
ager to keep track of which local servers are lparticipat-
ing in the transaction. A server must serialize access to
its data by locking.

While servers are responsible for ensuring serializ-
ability, atomicity and permanence are implemented by
Camelot using a common stable-storage log. Ejesides the
transaction management process, the other portions of
Camelot are:

l Disk Manager Process. The disk manager is a
virtual-memory buffer manager that protects the
disk copy of servers’ data segments by cooperating
with servers and with Mach (via the external pager
interface) to implement the write-ahead log proto-
col. Also, it is the only process that can write into
the log.

l Communication Manager Process (,or Com-

Man). The communication manager has two func-
tions . First, it forwards inter-site messages from
applications to servers and back again. While doing
so it spies on the contents, keeping track of which
transactions are traveling to which sites. This in-
formation is needed by the transaction manager for
executing the commit and abort protocols. Second,
it acts as a name service.

l Recovery Process. After a failure (of server, site,
or disk) or an abort, the recovery process reads
the log and instructs servers how to undo or redo
updates of interrupted transactions.

l Runtime Library. A library of routines exists
to aid those programming servers or applications.
Among other things, routines exist to facilitate
multi-thread concurrent execution, to implement
shared/exclusive mode locking, and to change con-
trol flow in the event of abort.

A complete illustration of the control flow of a simple
transaction is given in Figure 1.

3 Transaction Manager Overview

The transaction manager is essentially a protocol pro-
cessor; most calls from applications or servers invoke
one protocol or another. As explained in Section 3.1,
hooks in the inter-site communication mechanism allow
the TranMan to know which other sites any particu-
lar transaction has spread to, a necessary condition for
executing the distributed protocols. These protocols in-
clude the two varieties of distributed commitment pro-
tocols described in Sections 3.2 and 3.3, as well as sev-
eral others [lo].

3.1 Inter-site Communication

Mach allows messages to be sent only between two
threads on a single site. Therefore, a forwarding agent
is needed to pass a message from one thread at one site
to a second at another site. The Mach network message
server (“NetMsgServer”) is such a forwarding agent, and
a name service as well. A client wishing to locate some
service presents the NetMsgServer with a string naming
the desired service and gets a port in return. The port
is one endpoint of a reliable connection made between
a client process and a server process. The client then
invokes RPCs along this connection.

The communication manager is used by Camelot ap-
plications and data servers just as a non-Camelot pro-
gram uses the NetMsgServer. The ComMan in turn uses
the NetMsgServer to provide the same services with the
same interface, but it also includes special provisions for
transaction management. The presence of the commu-
nication manager changes the RPC path from

client-NetMsgServer-network-
NetMsgServer-server

to

client-ComMan-NetMsgServer-network-
NetMsgServer-ComMan-server.

178

Figure 1: Execution of a Transaction
Lines with arrows at both ends are synchronous calls. The events of the transaction are:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Application uses the ComMan as a name server, getting a port to the data server.

Application begins a transaction by getting a transaction identifier from ‘RanMan.

Application sends a message requesting service.

Server notifies TranMan that it is taking part in the transaction.

Server sets the appropriate lock(s), pins the required pages in memory, and does the update. Before replying, it reports
both the old and new value of the object to the disk manager. This record is logged as late as possible. In the best (and
typical) case, only one log write is needed to commit the transaction.

Server completes the operation and replies to the Application.

Application tells the transaction manager to try to commit the transaction.

TranMan asks the Server whether it is willing to commit. The Server says that it is.

TranMan writes a record into the log, indicating that the transaction is committed.

TranMan responds to the Application, saying that the transaction is committed.
TranMan telIs the Server to drop the locks held by the transaction.

Messages containing transaction identifiers are spe-
cially marked, and the communication manager is aware
of their format. When a response message leaves one
site, the communication manager at the sending site in-
tercepts the message and before forwarding it adds to it
the list of sites used to generate the response. This list is
removed from the message by the communication man-
ager at the destination site and merged with lists sent in
previous responses. If every operation responds, the site
that begins a transaction will eventually learn the iden-
tity of all other participating sites; these participants
will be the subordinates during commitment. If some
operation fails to respond, the site that invoked it should
eventually initiate the abort protocol [7], which can op-
erate with incomplete knowledge about which sites are
involved.

3.2 Two-phase Commitment

Commitment of distributed transactions is usually
done using the well-known two-phase commit protocol.
Camelot’s version incorporates the improvements of the
Presumed Abort variation (described in [23]), and is
further optimized as described in [9]. The effect of the
optimization is that subordinate update sites make one
fewer log force per transaction. The subordinate drops
its locks befon writing a commit record.

In the unoptimized protocol, a subordinate writes its
own commit record to indicate that the transaction is
committed and therefore that locks may be dropped.
The optimized protocol uses the commit record ai Ihe
coordinator to indicate the same fact. So the coordi-
nator must not forget about the transaction before the
subordinate writes its own commit record; hence, the

179

commit acknowledgement cannot be sent until the sub-
ordinate’s commit record is written.

The optimization has two advantages. First, t,hrough-
put at the subordinate is improved because fewer log
forces are required. The amount of improvement is de-
pendent upon the fraction of transactions that require
distributed commitment. Second, locks are retained at
the subordinate for a slightly shorter time; this fac-
tor is important only if the transaction is very short.
Throughput is improved at no cost to latency.

3.3 Non-blocking Commitment

The twophase commitment protocol has one significant
drawback. For a period of time all of the information
needed to make the decision about whether to commit or
abort is located at the coordinator and nowhere else. If
a subordinate loses contact with the coordinator during
this window of vulnerability, then it must remain
prepared until the failure is repaired and communica-
tion with the coordinator is reestablished. Until then,
the subordinate continues to hold its write locks for the
transaction, and is said to be blocked.

The Camelot transaction manager incorporates a new
“non-blocking” commitment protocol [8] that allows at
least some sites to commit or abort in spite of any sin-
gle site crash or network partition. (The type of com-
mitment protocol to execute - two-phase versus non-
blocking - is specified as an argument to the (commit-
transaction call.) The protocol is correct despite the
occurrence of any number of failures, although all sites
may block if there are two or more failures. It i;s impos-
sible to do better [26]. When there is no failure, the pro-
tocol requires three phases of message exchange between
the coordinator and the subordinates and requires each
site to force two log records. Read-only transactions
are optimized so that a read-only subordinate typically
writes no log records and exchanges only one round of
messages with the coordinator, just as with two-phase
commit.

The protocol makes five changes to two-phase com-
mit:

1. The prepare message contains the list of sites in-
volved in the transaction, as well as quorum sizes
needed in the “replication phase” explained in item
3 below.

2. The subordinates do not wait forever for t,he com-
mit/abort notice, but instead timeout and become
coordinators. The transaction can be finished by a
new coordinator that was once a subordinate. Hav-
ing several simultaneous coordinators is Ipossible,
but is not a problem.

3. An extra phase (called the replication phase) ex-
ists between the two standard phases. Du:ring this
phase, the coordinator collects the information that
it will use to make the commit/abort decision, and
replicates it at some number of subordinates. The
subordinates write the information in the log, just
as they write a prepare record and a commit record.
The coordinator is not allowed to make the decision

4.

5.

until the information has been sufficiently widely
replicated to exclude the other outcome. This is the
well-known quorum consensus method [13]. The
atomic action that marks the commitment point of
the protocol is the writing of a log record that forms
a commit quorum.

No transaction manager forgets (i.e., expunges its
data structures) about a transaction until ail sites
have committed or aborted.

The coordinator prepares before sending the pre-
pare message.

The first two changes are quite intuitive. The first sim-
ply gives subordinates the ability to communicate after
the loss of the coordinator. The second tells how they
communicate: by having a subordinate become a coor-
dinator and tolerating the presence of multiple coordi-
nators, there is no need to elect a new coordinator. The
third change prevents a partition from causing incorrect
operation by ensuring that no site can commit or abort
until it is certain the other outcome is excluded. The
fourth change prevents a site from joining both types
of quorums for the same transaction. The last change
merely increases the chances of committing during the
failure.

3.4 Multi-Threading

The transaction manager is multithreaded to permit
true parallelism when running on multiprocessors, and
to improve throughput by permitting threads to run
even when some others are performing long, synchron-
ous operations such as forcing a log record. The ap-
proach to handling multiple threads is the following:

Create a pool of threads when the process starts
and increase the number as needed. Never destroy
a thread.

Use locks to protect critical regions that manipulate
primary data structures. Avoid sharing message
and log buffers by having a set for each thread.

When executing a distributed protocol, do not “tie”
any thread to any particular function or transac-
tion. Instead, have every thread wait for any type
of input, process the input, and resume waiting.

The transaction manager uses the primitives of the
C-Threads package [6] for creating threads and manag-
ing their access to global data. C-Threads defines data
types for threads, locks, and condition variables, and
provides routines for manipulating all of these types.
Threads are preemptively scheduled by Mach. Condi-
tion signaling is done by sending a message from one
thread to another. Locks are purely exclusive and a
thread waits for a lock by spinning. The method for
indicating whether a lock is held is unsophisticated: a
global integer is either 0 or 1; therefore, a thread can
deadlock with itself by requesting a lock which it already
holds. A second locking package, called “rw-lock,” built
on top of C-Threads is also useful: rw-lock provides
read/write locks, and uses condition variables for wait-
ing, resulting in considerable CPU savings if a thread

180

must wait for a lock for an extended period. The pro-
grammer must choose whether to use a lock that spins
or one that sleeps.

Camelot’s current suite of applications mostly exe-
cute small non-nested transactions serially. It is rare for
there to be concurrent requests for transaction manage-
ment service from the same transaction or even from
different nested transactions within the same nesting
family. Accordingly, locking is designed to permit con-
currency only among different, transaction families. The
principal data structure is a hash table of family descrip-
tors, each with an attached hash table of transaction
descriptors. Each family descriptor is protected by its
own lock. Only uncommon combinations of operations
theoretically suffer contention. These combinations are
mostly cases where many parallel nested transactions
are simultaneously doing the same thing: all joining,
all committing, and so on. Each of these operations is
fast, so in fact contention is unlikely. The method for
deadlock avoidance is classic: there is a defined hierar-
chy of locks, and when a thread is to hold several locks
simultaneously it must obtain the locks in the defined
order.

3.5 Log Batching

If the log is implemented as a disk, then a transaction
facility cannot do more than about 30 log writes per sec-
ond. To provide throughput rates greater than 30 TPS
requires writing log records that indicate the commit-
ment of many transactions, a technique which is called
log batching or “group commit” [12][17]. It sacrifices
latency in order to increase throughput, and is essential
for any system that hopes for high throughput and uses
disks for the log. Camelot batches log records within
the disk manager, which is the single point of access to
the log.

4 Performance Evaluation

This section examines the performance of the various
features explained above. The operating system was a
black box: it was not possible to make measurements
of actions happening inside. So some conclusions are
drawn based on deduction rather than direct measure-
ment .

Most measurements reported here were made in late
1988 using Camelot version 0.98(71) and Mach version
2.0 on one or more IBM RT PCs, model 125, a 2-MIP
machine. The network was a4Mbs IBM token ring with-
out gateways. Table 1 lists the results of several simple
benchmark programs in order to give a feel for the per-
formance of the RT, of Mach, and of common calls of
the C runtime library.

4.1 Inter-site Communication

The breakdown of Camelot RPC latency was deter-
mined as follows:

1. Measure the time used to perform 1000 RPCs (28.5
set).

2. Divide by 1000 (yielding 28.5 ms per call).

BENCHMARK DESCRIPTION TIME
-===-=3=====3====P--======---*=ZEI==EEI=3==E==EE==
Procedure call, 32-byte arg. 12.0 ua
Data copy, bcopyo 8.4 us + lSOus/KB
Kernel call, getpido 149 us
Copy data in/out of kernel 35 ue + copy time
Local IPC, S-byte in-line 1.5 ms
Remote IPC, S-byte in-line 19.1 ms
Context switch, sntcho 137 us
Raw disk write, 1 track 26.8 ms

Table 1: Benchmarks of PC-RT and Mach
The meaning of Unix jargon is:

l bcopy() - L b i rar routine for fast byte copy. y
0 getpid() - Get the process id; fastest kernel call.

0 swtch() - Invoke the scheduler.

3. Measure the time attributable to the basic Mach
NetMsgServer-to-NetMsgServer RPC mechanism
(19.1 ms).

4. Compute the extra time attributable to IPC be-
tween ComMan and NetMsgServer (2 * 1.5 ms = 3
ms).

5. Measure ComMan CPU (3.2 ms per call at each
site). CPU time was measured at both sites using
the Unix process status command.

6. Compare. Miraculously, there is no extra or miss-
ing time:

19.1 + 3 + 3.2 + 3.2 = 28.5

This test was run many times, with stable results.
The very high processing time within communica-

tion managers is due to unusually inefficient coding,
and is not an unavoidable cost. However, it is clear
that, the Mach RPC mechanism is quite slow compared
to other implementations running on similar hardware
[3][28] and that interposing an extra process into the
RPC path increases latency even more.

Mach’s RPC time is its high as it is because:

Messages are not simply collections of bytes, but
are typed and may contain ports and out-of-line
data segments. The message must be scanned.
Ports must be translated into network identifiers.
Out-of-line data - passed lazily by the message
system -must finally be transferred across address
spaces.

The design philosophy to restrict the function of
the kernel to simple data transport, giving rise to
the NetMsgServer process.

The same design philosophy restricts the NetMsgServer
to performing basic connection maintenance and port
translation. Systems like Camelot that require further
communication support are forced to build it into other
processes.

181

4.2 Two-phase Commitment

For judging the latency of the normal case of a com-
mitment protocol, two events are important: the mo-
ment at which all locks have been dropped, .and the
moment when the synchronous commit-transac,tion call
returns. The critical path of a commitment Iprotocol
is the shortest sequence of actions that must be done
sequentially before all locks are dropped and the call
returns. The shortest sequence of actions before (only)
the call returns is the completion path. In Camelot,
the critical path is always longer than the completion
path.

Commitment protocols are amenable to “static”
(non-empirical) analysis [5][14] because serial and paral-
lel portions are clearly separated. Assuming that identi-
cal parallel operations proceed perfectly in parallel and
have constant service time, the length of the critical
path is simply that of the serial portion plus t.he time
of the slowest of each group of parallel operations. The
length of either path can be evaluated approximately
by adding the latencies of the major actions (or prim-
itives) along the path. The evaluation is approximate
because minor costs (such as CPU time spent within
processes) are ignored, and because the assumpt#ions are
somewhat inaccurate. These sources of error tend to
produce an underestimate of the true latency. Nonethe-
less, having a breakdown of the critical path into prim-
itives is significant because it constitutes a more funda-
mental measure of the cost of the protocol than does a
simple measured time. Furthermore, a “formula” stated
in terms of primitive costs can be used to predict la-
tency in case either the cost of the primitives or the
protocol’s use of them should change. There is a ten-
sion between the accuracy and the portability Iof a for-
mula; a detailed latency accounting (such as [3]) is likely
to be system-dependent. The primitives that d.ominate
the latency of a commitment protocol are log forces and
inter-site datagrams used to communicate amon.g trans-
action managers. 1

Throughput is another important measure of perfor-
mance. The general technique for increasing through-
put is batching: having a single execution of a prim-
itive serve several transactions, as with group (commit.
Batching improves throughput, but increases latency,
and so is not always desirable. Message batching (piggy-
backing) could be used to decrease the number of inter-
TranMan messages used per commitment. Camelot
batches only those messages that are not in t’he criti-
cal path.

Both empirical and non-empirical answers are pro-
vided for these questions:

1. What is the latency of distributed commitlment?

‘ComMan does not provide message transport for the
transaction manager. In order to process distributed proto-
cols as quickly as possible, transaction managers on different
sites communicate using datagrams. A transaction manager
is responsible for implementing mechanisms such as time-
out/retry and duplicate detection.

2.

3.

4.

What is the effect of the “read-only optimization”?
(Sites that are read-only do not prepare and are
omitted from the second phase.)
What is the effect of the delayed-commit optimiza-
tion of Section 3.2?

5.

What is the effect of only delaying the commit-
ack message (but forcing the subordinate’s com-
mit record)? This represents a dissection of the
delayed-commit optimization.

What are the formulas for the completion and crit-
ical paths, stated in terms of primitives, and how
accurate are they?

The basic experiment consisted of executing a minimal
distributed transaction on a coordinator and on 1, 2,
and 3 subordinate sites. The “minimal transaction”
performed one small operation at a single server at each
site. A minimal transaction is used in order to more
easily divide the latency of a transaction into two por-
tions attributable to operation processing (not of inter-
est) and transaction management. The reason for doing
one operation at each site as opposed to doing no op-
erations at all is to exercise all portions of transaction
management, including that associated with the com-
munication manager. Transaction management is de-
fined to include all messages used by applications and
data server to communicate with Camelot, and mes-
sages used among the Camelot processes. For a mini-
mal transaction, everything but the operation call from
application to server is charged to transaction manage-
ment.

Each basic experiment was run four times, varying
the type of operation and the implementation of the
protocol. The four variations were:

Write operation, subordinate commit record not
forced and commit-ack piggybacked. This is the
most optimized possible protocol, as described in
Section 3.2.

Write operation, subordinate commit record forced
and commit-ack not piggybacked. This is a com-
pletely unoptimized implementation of two-phase
commit.

Write operation, subordinate commit record forced
and commit-ack not piggybacked. This protocol is
intermediate between the previous two.

Read operation.
The first, three experiments serve to establish the time to
commit a minimal update transaction, and to determine
the value of the optimization of Section 3.2. The fourth
experiment establishes the time to commit a minimal
read transaction.

The empirical results are displayed in Figure 2. The
time attributable to transaction management alone is
a derived number, but it should be quite reliable be-
cause the application performs its update operations in
sequence and because no other activity is in progress
while the updates are performed. Transaction manage-
ment cost is derived by subtracting the time due to op-
eration calls. The cost of a local operation is 3.5ms (3ms

182

for the operation IPC and 0.5ms for locking and data
access). The cost of each remote operation is 29.0ms
(28.5ms for the operation RPC and 0.5ms for locking
and data access). So for an N-subordinate transaction
the number of milliseconds to subtract is 3.5 + 29N.

Two important facts are evident: variance goes up
quickly as the number of subordinates goes up, and the
assumption that “parallel” operations proceed in paral-
lel is far from satisfied. The time attributed to transac-
tion management should be constant for any non-zero
number of subordinates. It is not, but seems to rise
(although not smoothly) as the number of subordinates
rises. The observation of variance rising with network
load is true in this and all subsequent experiments.

Unfortunately, the accurate timing tools needed to
measure and analyze the components of the delay were
not available. The likeliest source of congestion is the
coordinator. It is doubtful that there was much vari-
ance in subordinate processing of phase one. All were
similarly equipped and loaded, and all performed the
same on tests involving either only local transactions or
RPCs. The token ring on which the experiments were
performed is a single continuous ring, and so queueing
at a gateway can be ruled out. One known cause of the
rising times is the “cycle time” for sending datagrams.
A send takes 1.7ms, meaning for example that the third
prepare message is sent about 3.4m.s after the first. This
alone is a small effect.

A surprising result is that multicasting messages from
coordinator to subordinates reduces variance substan-
tially, suggesting that much of the variance is created
by the coordinator’s repeated sends and not by its re-
peated receives. This may be due to operating system
scheduling policies.

More can be said about the latency and variance in-
creases in the unoptimized protocol. First, there is more
network activity due to the commit-ack message not
being piggybacked. Second, there was lock contention.
The application used in the experiment locked and up-
dated the same data element during every transaction.
The operation of the second transaction arrived at the
data element before the first transaction could drop the
lock, so the operation of the second transaction waited.
After the commit-transaction call of the first transac-
tion returns to the application, the time needed for the
remote operation of the second transaction to arrive at
the remote data element is approximately:

1.5ms (begin-transaction) + 5ms (local
join-transaction and operation) -t- 29ms/2
(time for remote operation to arrive) = 21ms

Meanwhile, the time for the first transaction to drop the
lock is:

1Oms (commit datagram) + 15ms (commit
log force) + lms (remote drop-locks call) =
26111s

By this simple analysis, the second operation waits ap-
proximately 5ms. However, these activities are inter-
leaved at the coordinator, so the delay could be much
longer.

PRIMITIVE TIME (ma)
ILI=-PIII--*=IuIup-----*------
Local in-line IPC 1.5
Local in-line IPC to server 3
Local out-of-line IPC 5.5
Local one-way inline message 1
Remote RPC 29
Log force 15
Datagram 10
Get lock 0.5
Drop lock 0.5
Data access: read negligible
Data access: write negligible

Table 2: Latency of Camelot Primitives

The result of static analysis on simple transactions
is presented in Table 3 using latencies of primitives re-
ported in Table 2. The static analysis contained in Table
3 accounts for 24.5 of the 31 milliseconds of the local up-
date experiment, for 99.5 of the 110 milliseconds of the
l-subordinate update experiment, and for 9.5 of the 13
milliseconds of the local read experiment. The missing
time is accounted for by CPU time in various processes,
and by error associated with the primitive latencies and
with the method.

Based on the small sample in Figure 3, the method of
static analysis seems reasonably reliable. As expected,
the addition of primitive latencies provides an underes-
timate of the measured time. In addition, the method
seems less accurate with smaller transactions, possibly
because inaccuracy in the latencies of primitives is more
directly reflected in the predicted total times.

4.3 Non-blocking Commitment

To commit a single transaction as quickly as possible
with the non-blocking protocol, it is necessary for both
the coordinator and each subordinate to force two log
records. The forces take place “in parallel” at the sub-
ordinate sites, so the critical path through the protocol
consists of 4 log forces and 5 messages. This compares
to 2 and 3, respectively, for two-phase commit. It is
the replication phase that accounts for extra log forces
in the non-blocking protocol. The ratios of the domi-
nant primitives are 4/2 and 5/3, which implies that the
critical path of the non-blocking protocol is about twice
the length of that of two-phase commit. The optimality
work of Dwork and Skeen [ll] suggests that the 2-to-1
ratio is to be expected. The length of the completion
path is one datagram shorter for both protocols.

The questions asked for non-blocking commit are:

1. What is the speed of the non-blocking protocol rel-
ative to two-phase commit? Comparisons are made
against the optimized implementation of two-phase
commit explained in Section 3.3.

2. What is its speed in absolute terms?

3. What is the effect of the read-only optimization?

4. How accurate is static analysis?

183

semi-optimi4 write -------
<36)

optimized mite -----
//’

Read /’ 200
--_-

/’

Tram Mgmt. optixnizu3 write - - - - 4’

l-ran Mgmt. read

The basic experiment was the same as that reported in
Section 4.2: a minimal distributed transaction on a co-
ordinator and on 1, 2, and 3 subordinate sites. Each
basic experiment was run twice, for read and .write op-
erations. The results are shown in Figure 3.

Static analysis of a l-subordinate update transaction
gives a completion path consisting of 4 log forces, 4 data-
grams, 1 remote operation, and 2Oms of local transac-
tion management messages. Using the primitive times
listed in Table 2, the sum of these primitives provides an
underestimate of 150ms, yet times as low as 145ms were
measured. As seen above, all numbers go up s.wiftly as
the size of the transactions increases.

Static analysis of a l-subordinate read transaction
gives a completion path consisting of only 2 datagrams,
1 remote operation, and 20ms of local transaction man-
agement messages. This represents only 7Oms, which
is quite far from the measured number of 1Olms. Un-
like in other tests, transaction management cost grows
more slowly as more sites become involved. Variance
remains high, since distributed read-only transactions
consist mostly of inter-site messages.

150

100

SO

Figure 2: Latency of Transactions, Twophase Commit (subordinates vs. ms)
Standard deviation of measured times indicated in parentheses.

The cost of non-blocking commitment relative to two-
phase commitment seems somewhat less than twice as
high, a result that is in line with the ratios computed
statically. In absolute terms, the protocol executes in a
fraction of a second in the Camelot/Mach environment.
In order for the latency of the commitment protocol to
be negligible (say, less than 5%), non-blocking commit-
ment should be used with transactions that last longer
than a few seconds. This implies that non-blocking com-
mitment is suitable for transactions used in application
programming, but not in system programming.

4.4 Multi-Threading

A number of tests measured the extent to which the
transaction manager is able to increase its throughput
as its load increases. The basic experiment consisted
of having different numbers of application/server pairs
execute minimal transactions. Separate pairs of appli-
cations and servers were used to ensure that operation
processing was not a bottleneck. Instead, the system
components experiencing the greatest load were Mach
and Camelot. For read transactions, the transaction

184

300

250

200

150

100

__--

___---
____----

________e- *___-----

1 2 3

Figure 3: Latency of Transactions, Non-blocking Commit (subordinates vs. ms)
Standard deviation of-measured times indicated in parentheses.

manager and the message system are the only compo-
nents that receive substantial load. For update transac-
tions, the logger (disk process) also receives high traf-
fic. The technique was to increase the number of ap-
plication/server pairs until saturation, when through-
put ceased to increase. Because small transactions are
message-intensive, the load on the operating system
was considerably higher than the load on any part of
Camelot. This is an unavoidable consequence of imple-
menting the transaction manager as a service reachable
only via IPC.

The important questions are:

1. Is parallelism ever needed? That is, is the transac-
tion manager ever a bottleneck in transaction pro-
cessing?

2. If so, can significant throughout increase be at-
tained by multithreading?

3. When throughput peaks, what points are the bot-
tlenecks?

The basic experiment was performed on a 4-way sym-
metric shared memory VAX multiprocessor (employ-

ing l-MIP model 8200 CPUs). The number of threads
within the transaction manager was limited to a fixed
number, and was a parameter of experimentation. The
values used were 1,5, and 20. These three numbers were
chosen as being clearly insufficient, barely sufficient, and
easily sufficient, respectively, to handle the offered load.
In each configuration, the load was increased until sat-
uration; that is, until throughput decreased or leveled.
The results are presented in Figures 4 and 5.

From the numbers for read-only transactions, it is
apparent that a single transaction management thread
can accommodate more than 1 client but not more than
2. With more than two clients the experiment becomes
“TranMan-bound .” It is not operating-system-bound,
because the same test with 5 and 20 TranMan threads
yields somewhat better results.

In update tests, the logger is the bottleneck. This
is seen most obviously in comparing the numbers gath-
ered with and without group commit enabled. It is also
suggested more indirectly by the fact that, for a given
number of TranMan threads, there is greater through-
put increase for read tests than for update tests (52%

185

1 2 3 4

Figure 4: Update Transaction Throughput (Appl./server pairs vs. TPS)

vs. 32% from 1 to 2, and 12% vs. 4% from 2 to 3).
The difference between a read and an update test is es-
sentially only the log force (see Table 3). The numbers
for the 20-thread tests are roughly the same as those
for the 5-thread tests. The lack of improvement is a
further piece of indirect evidence that logging, and not
transaction management, is the bottleneck of Camelot
in update tests.

4.5 Camelot Process Structure and Mach
Primitives

One notable aspect of the Camelot design is the large
number of processes used to implement the system. Ad-
vantages of having transaction management bundled in
a separate process are two-fold: those associated with
having transaction management code outside servers,
and improved performance in some cases. Performance
improvements result from sending fewer inter-site mes-
sages and forcing fewer log records when a site has multi-
ple servers involved in a transaction. Instead, the trans-
action manager acts as a forwarding agent for messages
and a gathering point for log writes. Having transaction
management code in a separate address space is safer

and also makes it easier to change transaction manage-
ment software. Inevitably, however, transaction man-
agement performance depends upon Mach primitives.
This section contains a short qualitative evaluation of
IPC and thread-switching performance in Mach version
2.0.

Mach messages are not as fast as those of some other
systems because of the generality of the message model.
It would be helpful to be able to quickly send small
data with restricted semantics, as in Quicksilver and
V [4]. Mach makes more sophisticated scheduling de-
cisions than either Quicksilver or V, and has internal
locking which leads to more and bigger data structures.
Also, being ready for the possibility of page fault be-
fore kernel data copy-in consumes time on kernel entry.
Complications related to maintaining Unix compatibil-
ity include having to check for signals on kernel exit.
Unlike Quicksilver, Mach can pause within the kernel,
meaning that a kernel stack must exist and be managed.
The concern for portability also impacts performance,
since assembly-language solutions cannot be used for
key operations such as scheduling and message-passing
tricks such as passing data in registers. Likewise, “low-

186

/-
/ 34

2Ot.hreads / _----
/

5 threads /
/

Ithread / / 32

I

/'

Figure 5: Read Transaction Throughput (Appl./server pairs vs. TPS)

level hacking” cannot be used. For example, Quicksilver
tunes source code so as to eliminate procedure calls dur-
ing kernel entry and exit.

5 Related Work

In terms of transaction management, the systems most
related to Camelot are Argus and Quicksilver. Camelot
has taken certain techniques, especially those related
to communication support, from another IBM research
system, R* [20][24].

Factors affecting the speed of switching between
threads include the use of sophisticated scheduling and
the fact that the version of Mach on which these tests
were run had only a single run queue on one “master”
processor. Another major factor is that the heavyweight
VAX “load/store context” instruction, intended for task
switching, is used to implement thread switch as well.

In summary, a multi-process, multi-threaded transac-
tion facility built on top of a message-passing kernel is
essentially an extension of the operating system since
transaction overhead consists mostly of operating sys-
tem primitives. If performance is a dominating con-
cern then either the operating system should be very
carefully tuned or the transaction facility should be re-
implemented inside the kernel. The latter strategy has
the effect of converting some inter-process messages into
intra-kernel procedure calls.

Camelot and Argus have nearly the same transac-
tion model; these two projects represent the two im-
plementations of Moss-model nested transactions. The
only major difference is that in Argus a transaction can
make changes at only one site. Diffusion must be done
within a nested transaction. Argus has paid close at-
tention to the performance of their implementation of
two-phase commit [22], but apparently has not incor-
porated the optimization of Section 3.2. There is no
non-blocking protocol despite the fact that transaction
management is built into servers, and therefore failures
are more likely.

Quicksilver is an entire system, consisting of a ker-
nel and several service processes defined similarly to
those in Camelot. While transaction management is
outside the kernel, the notion of a TID is known to

187

CAMELOT LOCAL LOCAL :2-SITE
PRIMITIVES READ WRITE WRITE
------_ -------==51=-1===-====-===E
Begin-transaction
Local operation IPC
Local join-transaction
Get lock \ data access
Notice of diffusion
Notice of arrival
Remote operation RPC
Remote join-transaction
Get lock \ data access
Commit-transaction
Get subordinates from ComMan
Local server prepare
Prepare datagram
Remote server prepare
Force log: prepare
Prepare response datagram
Force log: commit

Predicted total 9.5
Measured total 13
Predicted tran. mgmt. 6
Measured tran. mgmt. 9.5
Critical path formula 0

Local drop locks msg.
Commit datagram
Remote drop locks msg.
Commit-ack datagram
Tell ComMan to forget

1.5
3

1.5
0.5

1.5

1.5

1.5 1.5
3 3

1.5 1.5
0.5 0.5
-mm 1
--- 1
--- 29
--- 1.5
--- 0.5
1.5 1.5
--- 5.5
1.5 1.5
--- 10
-A- 1.5
--- 15
--- 10

15 15

24.5 99.5
31 110
21 66.5

27.5 77.5
1LF 3DG+2LF

1 1
w-0 10
-mm 1
--- 10
--- 1

Table 3: Latency Breakdown
The upper portion of the table lists, in approximate order,
the events on the critical path and their latencies. The mid-
dle portion compares static and empirical analyses. There,
“DG” denotes a datagram, while “LF” denotes a log force.
The lower portion lists other operations that must happen,
but which are not in the critical path.

the kernel, and the IPC system keeps track of the (lo-
cal) spreading of transactions. As in Camelot, a com-
munication manager keeps track of diffusion to remote
sites. Having the IPC system understand transactions
means that TIDs are hidden from clients, which is a
distinct advantage. Quicksilver does not support nested
transactions, although an extension is planned. Its im-
plementation of two-phase commit is hierarchical and
does not include the optimization described in Section
3.2, but does include many variations intended to sup-
port special classes of servers. There is no general non-
blocking protocol, but Quicksilver does have two useful
techniques that address the blocking problem:

l A two-site transaction uses “coordinator migra-
tion.” Coordinator migration allows the subordi-
nate and the coordinator to switch roles. Coordi-
nator migration merely makes the more reliable site
act as coordinator.

l Transactions involving more than two sites may use
“coordinator replication.” In essence, the coordina-
tor nominates one of the subordinates to serve as
a co-coordinator. Each co-coordinator coordinates
commitment of approximately half the sites. If ei-
ther co-coordinator fails, then the other takes over
as coordinator for all sites. Coordinator replication
shortens the window of vulnerability.

The motivation for a non-blocking commitment pro-
tocol has existed for some time, and many protocols
have been proposed. Most previous protocols do not
correctly handle partitions [15][19][26]. The notable ex-
ception is Skeen’s “quorum-based” protocol [27], part
of which resembles the non-blocking protocol of Section
3.3.
are:

l

The improvements incorporated in this work [8]

A complete and correct specification, including
when and how to forget. Most specifications of
commitment protocols end once one site reaches
the outcome. A protocol that allows a site to for-
get too soon can be wrong.

A design optimization: the special handling of the
read-only case.

Performance optimizations: reduction in the num-
ber of log forces and provision for piggybacking
later messages.

A proof that the protocol survives any single fail-
ure.

A complete implementation and evaluation.

TMF uses broadcast and memory-based (rather than
log-based) replication to provide very fast non-blocking
commitment for a different failure model in which more
than a single failure represents disaster. A practical
approach to blocking is the “heuristic commit” feature
of LU 6.2 [18], which allows a blocked transaction to be
resolved either by an operator or by a program. While
not guaranteeing correctness, this approach does not
slow down commitment in the regular case.

188

6 Conclusions

The requirements of transaction management exercise
substantial influence on the design of whatever mech-
anism is used to provide communication between pro
cesses on different sites. Accordingly, it is important for
a transaction facility to have “hooks” at appropriate
points in the communication mechanism.

The critical path of two-phase commit can be opti-
mized so that update transactions need contain only
two log writes (both forces) and two inter-site mes-
sages. Non-blocking commit can be done with a three-
phase protocol, including two log forces at each site and
five messages in the critical path of an update trans-
action. Read-only sites need never participate in the
notify phase, and often need not participate in either
the replication or notify phases. A transaction that is
completely read-only has the same critical path perfor-
mance as in two-phase commitment.

Because of its inherently higher cost, non-blocking
commitment is not suitable for all applications. Its main
uses are for applications that regularly run large trans-
actions, for transactions executed at sites spanning a
wide area, and for systems that, unlike Camelot, have
each server act as a transaction manager. Multicast
communication for coordinator to subordinates does not
reduce commit latency, but does reduce variance.

A multi-threaded design can prevent the transaction
manager from being the bottleneck of a transaction sys-
tem. However, the utility of a multithreaded transac-
tion manager is determined by whether group commit
is turned on.

7 Acknowledgments

Jim Gray’s comments greatly improved both the content
and presentation of this paper.

This work was supported by IBM and the Defense
Advanced Research Projects Agency, ARPA Order No.
4976, monitored by the Air Force Avionics Laboratory
under Contract F33615-84-K-1520. The views and con-
clusions contained in this document are those of the
author and should not be interpreted as representing
the official policies, either expressed or implied, of any
of the sponsoring agencies or of the United States Gov-
ernment.

References

[l] M. Accetta. et. al.
Mach: A New Kernel Foundation for Unix Devel-

opment.
In Proc. of Summer Usenix, pages 93-112, July

1986.
[2] G. Bruell A. Z. Spector, R. Pausch.

Camelot, a Flexible, Distributed Transaction Pro
cessing System.

In Thirty-third IEEE Computer Society Intl. Conf.
(COMPCON), pages 432-437, March 1988.

[3] M. Burrows M. Schroeder.
Performance of Firefly RPC.

Technical Report 43, Digital Systems Research
Center, April 1989.

[4] D. R. Cheriton.
The V Distributed System.
Comm. ACM, 31(3):314-333, March 1988.

[5] D. Daniels and A. Spector.
Performance Evaluation of Distributed Transaction

Facilities.
In Proc. of the Intl. Wkshp. on High Performance

Transaction Systems, page 10. ACM, Septem-
ber 1985.

[6] R. P. Draves and E. C. Cooper.
C Threads.
Technical Report CMU-CS-88-154, Carnegie Mel-

lon University, June 1988.
[7] D. Duchamp.

An Abort Protocol for Nested Distributed Trans-
actions.

Technical Report CUCS-459-89, Columbia Univer-
sity, September 1989.

[8] D. Duchamp.
A Non-blocking Commitment Protocol.
Technical Report CUCS-458-89, Columbia Univer-

sity, September 1989.
[9] D. Duchamp.

Protocols for Distributed and Nested Transactions.
In Proc. Unix Transaction Processing Wkshp.,

pages 45-53, May 1989.
[IO] D. Duchamp.

Transaction Management.
PhD thesis, Carnegie Mellon Univ., December

1988.
Available as Technical Report CMU-CS-88-192,

Carnegie-Mellon University.
[ll] C. Dwork and D. Skeen.

The Inherent Cost of Nonblocking Commit.
In Proc. dnd Ann. Symp. on Principles of Dis-

tributed Computing, pages l-11. ACM, August
1983.

[12] D. Gawlick and D. Kinkade.
Varieties of Concurrency Control in IMS/VS Fast

Path.
Database Engineering, 8(2):63-70, June 1985.

[13] D. 1~. Gifford.
Weighted Voting for Replicated Data.
In Proc. Seventh Symp. on Operating System Prin-

ciples, pages 150-162. ACM, December 19’79.
[14] J. N. Gray.

A View of Database System Performance Mea-
sures.

In Proc. 1987 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems,
pages 3-5, May 1987.

[15] M. Hammer and D. Shipman.
Reliability Mechanisms for SDD-1.
ACM Trans. on Database Systems, 5(4):431-466,

December 1980.
[IS] P. Helland.

189

Cl71

El81

WY

PO1

P13

P21

[231

[241

[251

PGI

P71

PI

The Transaction Monitoring Facility (TMF).
Database Engineering, 8(2):71-78, June 1985.

P. Helland. et. al.
Group Commit Timers and High Volume Transac-

tion Systems.
In Proc. of the Second Intl. Wkshp. on High Perfor-

mance Transaction Systems, page 24, Septem-
ber 1987.

IBM Corporation.
Systems Network Architecture. Format and Proto-

cols Reference Manual: Architecture Logic for
LU Type 6.6, x30-3269-3 edition, Dlecember
1985.

G. Le Lann.
A Distributed System for Real-time Transaction

Processing.
Computer, 14(2):43-48, February 1981.

B. Lindsay et. al.
Computation and Communication in R*: A Dis-

tributed Database Manager.
ACM Trans. on Computer Systems, 2(I):24-38,

February 1984.

B. Liskov et. al.
Argus Reference Manual.
Technical Report MIT/LCS/TR-400, MIT, Nov-

ember 1987.

B. H. Liskov B. M. Oki and R. W. ScheifXer.
Reliable Object Storage to Support Atomic Ac-

tions.
In Proc. Tenth Symp. on Operating System Princi-

ples, pages 147-159. ACM, December 1985.

C. Mohan and B. Lindsay.
Efficient Commit Protocols for the Tree of Pro-

cesses Model of Distributed Transactions.
In Proc. Second Ann. Symp. on Principles of Dis-

tributed Computing, pages 76-88. ACM, August
1983.

R. Obermarck C. Mohan and B. Lindsay.
Transaction Management in the R* Distributed

Data Base Management System.
ACM Trans. on Database Systems, 11(4):378-396,

December 1986.

W. Sawdon R. Haskin, Y. Malachi and G. Chan.
Recovery Management in Quicksilver.
ACM Trans. on Computer Systems, 6(1):82-108,

February 1988.

D. Skeen.
Crash Recovery in a Distributed Database System.
PhD thesis, Univ. of California, Berkeley, May

1982.

D. Skeen.
A Quorum-based Commit Protocol.
In Proc. Sixth Berkeley Workshop on Distributed

Data Management and Computer Networks,
pages 69-80, February 1982.

A. W. Tanenbaum R. van Renessee and H. van Sta-
veren.

Peformance of the World’s Fastest Distributed Op-
erating System.

ACM SIGOPS Operating System Review, 22(4):25-
34, October 1988.

[29] J. M. Wing and M. P. Herlihy.
Avalon: Language Support for Reliable Distributed

Systems.
Technical Report CMU-CS-86-167, Carnegie Mel-

lon University, November 1986.

190

