
A WORD NEXUS FOR SYSTEMATIC INTEROPERATION OF

SEMANTICALLY HETEROGENEOUS DATA SOURCES

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Jan Frederic Jannink

March 2001



c Copyright 2001 by Jan Frederic Jannink

All Rights Reserved

ii



I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold (Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Mark Musen

Approved for the University Committee on Graduate Studies:

iii



Abstract

Ever increasing amounts of information are available in digital form for use in existing and

emerging applications. Data sources, formats and descriptions are accessible in a diversity

unimaginable a few years ago. This information seldom comes with a complete speci�cation

or schema, even though much of it contains some regular structure. Existing speci�cations

or ontologies, developed separately from the data, are of no direct bene�t in organizing

such volumes of data. Tools are needed to assist domain experts linking information from

diverse and changing sources.

This dissertation presents the SKEIN system which is designed around an algebraic

framework. SKEIN is a suite of tools for managing semantic heterogeneity between infor-

mation sources. The presentation focuses on one large scale repository developed using the

algebra. This repository, or nexus, is a graph of dictionary terms related by their de�nitions

as extracted from an on-line Oxford English Dictionary resource. Two algorithms over the

nexus provide assistance to experts in domain interoperation. ArcRank computes the most

relevant arcs between terms, building on an extension of PageRank. All Pairs Similarity

uses ArcRank values to compute which terms have the most similar link structure.

The nexus is a directed labeled graph, four times the size of two other lexical repositories,

WordNet from Princeton U. and MindNet from Microsoft Research, but required orders of

magnitude less development and maintenance e�ort. The operators used to build the repos-

itory are generic and apply equally well to thesauri, encyclopedias, and other dictionaries.

The use of the nexus reduces the e�ort expended by the expert in matching terms between

other sources. Given the task of pairing up English language pages of NATO government

websites, SKEIN achieved 70% of the matches obtained by a human expert, without gen-

erating any false matches. The nexus and assorted algorithms, when used in the context

of the SKEIN system, constitute the �rst steps towards the systematic interoperation of

heterogeneous data sources.

iv



Acknowledgments

More than most endeavors of this type, this work is the result of many people's e�orts and

patience. First and foremost, I thank my wife Dorothy, without whom none of it would have

been possible. There is no doubt in my mind that her love was the fuel that rekindled my

desire to complete this work. I owe a debt to everyone who believed in me when I wasn't sure

I should believe in myself. Carolyn Tajnai and Suzanne Bentley at the Stanford Computer

Forum helped me early on. Nice experiences, like the design of the T-shirt commemorating

the 32nd anniversary of the Computer Science Department, are a result of those contacts.

Laura Haas at IBM Almaden Research lab gave me new con�dence in my ability. The

Garlic team provided a great environment to learn to enjoy coding again.

I thank Gio Wiederhold, my advisor, who gave me a great problem to study, and re-

markable freedom to pursue various approaches to attack it. Professors Erich Neuhold and

Rudi Studer, on sabbatical from Germany, contributed to the creative process. My fellow

research group members Prasenjit Mitra, Vasan Pichai and Danladi Verheijen forced me to

stop taking shortcuts when explaining ideas. Conversations with Mark Musen, Harold Bo-

ley and Martin Kersten sharpened the technical arguments. Interaction with Stefan Decker

helped close gaps in my work. True friends, such as Narayanan Shivakumar, Luca de Alfaro,

Sudarshan Chawathe, have helped me in both good and bad times. My friends at Gigabeat

Inc. allowed me to develop my ideas in a commercial setting.

It is only �tting to remember the example set by my managers and coworkers at the

Toshiba R & D center in Kawasaki, Japan, in particular, T. Kodama, T. Kamitake, and Y.

Shobatake. It was their thorough knowledge of the networking �eld that �rst inspired me

to consider graduate studies. I recognize my brother Jean-Luc, who just completed his own

Ph.D., and from whom I learned the virtues of healthy competition. Last but not least, I

thank my parents, who have always shown me love, and still provide moral support.

v



Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Semantic Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 E�cient Nexus Construction . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Nexus Algorithms Are Scalable . . . . . . . . . . . . . . . . . . . . 14

1.2.4 SKEIN Lowers Articulation Costs . . . . . . . . . . . . . . . . . . . 15

1.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 The SKEIN System and Word Nexus . . . . . . . . . . . . . . . . . . . . . 20

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Research in Integration Fundamentals . . . . . . . . . . . . . . . . 24

1.5.2 Research in Algebraic Methods . . . . . . . . . . . . . . . . . . . . 26

1.5.3 Research in Repository Integration . . . . . . . . . . . . . . . . . . 27

1.5.4 Research in Repository Algorithms . . . . . . . . . . . . . . . . . . 28

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Groundwork for an Algebraic Approach 32

2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Primary Source Data Sets . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.3 Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



2.1.4 Rule Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.5 Algebraic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 The Word Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.2 Nexus Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.3 The SKEIN System . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Groundwork Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Nexus Development and Maintenance 50

3.0.1 Basic Nexus Characteristics . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Webster's Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Repository Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Extraction from Source Data . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Constructing the Coherence Expression . . . . . . . . . . . . . . . 58

3.2.3 Summarization of Exceptions . . . . . . . . . . . . . . . . . . . . . 59

3.3 Repository Re�nement, Maintenance and Reuse . . . . . . . . . . . . . . . 60

3.3.1 Iterative Context Re�nement . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Maintaining the Repository . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Revisions for Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Graph Manipulation Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Peeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Kernel Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Arc Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.4 Cluster Joiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.5 Visualization Front End . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Comparative Analysis of the Nexus . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Comparison to the Structure of the World Wide Web . . . . . . . . 71

3.5.2 Comparison to Other Systems . . . . . . . . . . . . . . . . . . . . . 71

3.6 Nexus Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Word Nexus Algorithms 74

4.0.1 General Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Term Importance from Graph Structure . . . . . . . . . . . . . . . . . . . 76

4.1.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



4.1.2 Relative Arc Importance . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Arc Importance from PageRank . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 ArcRank Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 The Webster's Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Browsing the Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Charts of Representative Terms . . . . . . . . . . . . . . . . . . . . 89

4.3 ArcRank Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Finding Node Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Multi-Source Articulation Support . . . . . . . . . . . . . . . . . . 93

4.4 Term Similarity from Arc Importance . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Dictionary De�nition Pattern . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Kinship Relationship Extraction . . . . . . . . . . . . . . . . . . . 95

4.4.3 All Pairs Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Algorithm Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 SKEIN System Infrastructure 101

5.0.1 Semantic Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Unary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.2 Binary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.3 Operator Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Semantic Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Coherence Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Wrapper Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Wrapper Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2 The Match (M) Operator . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Rule Based Semantic Mismatch Resolution . . . . . . . . . . . . . 111

5.4 SKEIN Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions and Future Work 115

6.1 Novel Word Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Scalable Nexus Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 E�cient SKEIN System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



6.4 Relevant and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Anytime Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.3 Meta-Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Data Format Conversions 120

A.1 AMO DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 ArcRank DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3 Visualization DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.4 Nexus DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B SKEIN Tools and Nexus Scripts 124

B.1 OED Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 Nexus Glossarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.3 Nexus Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.4 Nexus Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.5 Nexus Term Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.6 NATO Term Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C Semantic Heterogeneity in Literature and Art 182

C.1 Limitations in Management of Semantic Heterogeneity . . . . . . . . . . . 184

Bibliography 186

ix



List of Tables

1.1 Information Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Rule Categories and Frequency of Occurrence . . . . . . . . . . . . . . . . . 56

3.2 Coherence Expression for G and E Operations . . . . . . . . . . . . . . . . . 59

3.3 Nexus Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Repository Construction Times . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Cluster Count and Size Information . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Comparison of Repositories to MindNet and WordNet 1.6 . . . . . . . . . . 72

4.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 ArcRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Extract Kinship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 All Pairs Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 NATO matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



List of Figures

1.1 Airline Meal Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Airline Meal Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Airline Meal Mediator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The SKEIN System in the Meal Survey Application . . . . . . . . . . . . . 7

1.5 SKEIN used for Mediator Speci�cation . . . . . . . . . . . . . . . . . . . . . 8

1.6 Finished Mediator Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Query Answers from a SKEIN Generated Mediator . . . . . . . . . . . . . . 10

1.8 SKEIN used for Mediator Speci�cation . . . . . . . . . . . . . . . . . . . . . 10

1.9 Information Refactoring for Novel Applications . . . . . . . . . . . . . . . . 12

1.10 Thesis Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.11 Interoperation in Supply Chain Environment . . . . . . . . . . . . . . . . . 21

2.1 Unary and Binary Articulations . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Dog Articulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 AMO Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Webster De�nition of Egoism . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Automatic Thesaurus Extraction from Dictionary . . . . . . . . . . . . . . . 54

3.3 Overall Dictionary Nexus Structure . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Distribution of Incoming Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Distribution of Outgoing Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Webster's Nexus Cluster Size Graph . . . . . . . . . . . . . . . . . . . . . . 68

3.7 OED Nexus Cluster Size Graph . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Sparse Cluster Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Source and Sink Nodes in Dictionary Subgraph . . . . . . . . . . . . . . . . 78

xi



4.2 Addition of Gateway Node to Dictionary Subgraph . . . . . . . . . . . . . . 79

4.3 Convergence of Gateway Ranking Scheme . . . . . . . . . . . . . . . . . . . 80

4.4 Sample Node from Webster Nexus Interface . . . . . . . . . . . . . . . . . . 84

4.5 Terms Relating to Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Convey Generalizes Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Carry Subsumes Convey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Wagon as a Means of Transport . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Locomotive Specializes Wagon . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 Partial De�nition of Locomotive . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Adjective Dark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 Adverb Ever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.13 Adverb Too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.14 Pronoun It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.15 Stopword To . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.16 Arti�cial Node Scotland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.17 Similarity between Apple and Pear . . . . . . . . . . . . . . . . . . . . . . . 97

4.18 Similarity Computation for Apple and Pear . . . . . . . . . . . . . . . . . . 98

5.1 Relationships between Sources and Target Application . . . . . . . . . . . . 106

5.2 Dog Articulation Approximation . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Partial Graph of Finnish Government Website . . . . . . . . . . . . . . . . 109

5.4 Partial Graph of U.K. Government Website . . . . . . . . . . . . . . . . . . 110

C.1 Upside Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xii



xiii





This is Not a Thesis

This is Not a Thesis

This is Not a Thesis



�*+5�+5��*'5�+5

xvi



Chapter 1

Introduction

The emergence of the World Wide Web as a universal medium of information exchange has

radically transformed our ability to access and exploit heterogeneous information sources.

This shift has exposed issues that have seldom met with deep inquiry in the context of

database research. The assumptions about regularity and quality of information that go

virtually unchallenged in traditional database research are demonstrably not valid in this

environment. The fundamental problem we face is that information is always expressible

and interpretable in multiple di�erent ways. Despite this challenge, it is valuable to be able

to exploit this wealth of information in a coherent fashion. In what follows we examine

the relevance of semantic heterogeneity to data management, and we present a systematic

approach to dealing with it.

Optical illusions and mirages tell us that our senses are not always capable of providing

us with an accurate account of reality. Inspired by the work of Magritte, the preceding pages

contain a lexical component which implicitly encourages us to question where reality ends

and representation begins. Words are objects in their own right, but their principal purpose

is to represent communication about other objects. Semantic heterogeneity arises out of

the ambiguity inherent in the separation between words and what they represent. Puns,

double entendres, and metaphors are the linguistic equivalents of optical illusions. These

statements are examples of semantic heterogeneity, since they contain multiple meanings

purposefully inserted into a single statement. Fortunately, in practice, we only have to deal

with inadvertent semantic heterogeneity, that is, the cases where di�erent meanings arise

because of a lack of a pre-established common meaning. Recently the author had a �rst-hand

experience with business errors caused by semantic heterogeneity on the Web. He received a

1



2 CHAPTER 1. INTRODUCTION

targeted mass-mailing o�ering \the Visa platinum card exclusively for scuba divers," despite

the fact that his only a�liation to diving is the hobby of springboard diving. The author's

home page is the only public source of this information. Such semantic mismatch is by

no means unusual. Most mass mailings also blindly apply the feminine gender to the �rst

name Jan.

The database community is just beginning to investigate some of these issues in the con-

text of model management [BLP00]. In the �eld of arti�cial intelligence, however, research

has been accelerating in the last few years [JPVW98]. The methodology for representing a

domain is named ontology, a term borrowed from philosophy. Ontology concerns itself with

the representation of the objects in the universe and the web of their various connections.

The traditional task of ontologists has been to extract from this tangle a single ordered

structure, in the form of a tree or lattice [Sow00]. This structure consists of the terms that

represent the objects, and the relationships that represent connections between objects.

We propose to defer the task of globally classifying terms and relationships, and to

focus instead on identifying the appropriate ones as we need them. We distinguish context

from concept, the unit of ontological abstraction, and composition from subsumption, or

containment, the relationships which commonly provide structure to ontologies. Context

expresses the conditions under which statements about concepts are true. Composition

recognizes that statements from separate sources about the same objects are not a priori

true in the same context. Composition also recognizes distinct objects as being equivalent

in the right context. Whenever we compose information from separate contexts, we must

create a new context to de�ne the relationships between terms in the original contexts. As

the composition of contexts requires the creation of new contexts we view this composition

as an algebraic operation. We use articulation as the generic term for a context composition

operation. Given the tools of context and composition, it now becomes possible to consider

potential savings in the cost of constructing and maintaining ontologies from components,

over the costs of monolithic ontologies.

This dissertation presents three results that show the value of the SKEIN system. As

we mentioned in the abstract SKEIN, or Scalable Knowledge Extractor and Integrative

Nexus, is a suite of tools, and the nexus is a repository of word relationships. The nexus

we developed is four times larger than other comparable systems, but required orders of

magnitude less development and maintenance e�ort. The operators used to build the nexus

are generic and the articulations developed with them are reusable and scalable. The cost



1.1. SEMANTIC INTEROPERATION 3

Table 1.1: Information Sources
Source Size [MB]

Oxford English Dictionary 570
Webster's Dictionary 50
Roget's Thesaurus 1
NATO & NATO governments' websites 10
British Airways Web schedule 6
United Airlines Web schedule 5

of applying the articulations grows linearly in the size of the information sources. The use

of the nexus reduces the e�ort expended by the expert in matching terms between other

heterogeneous sources, such as the pages of NATO government websites. We used a wide

array of sources in the development of SKEIN and the nexus. Table 1.1 presents a list

of the data sources that we discuss in the dissertation, along with their approximate raw

size. Each of the �rst three sources listed can be used to build a nexus, and the other

three sources serve to demonstrate the use of the SKEIN system. The three interdependent

components of the SKEIN system, the word nexus and the algorithms computed over the

nexus, constitute �rst steps towards the systematic interoperation of heterogeneous data

sources.

The following introductory sections outline the material and contributions of the thesis

along with related work. In Section 1.1 we illustrate with a motivating example the speci�c

problems addressed in the dissertation. We also introduce the SKEIN system and the way

we use it. We present our research hypotheses in Section 1.2 and briey outline the form our

results have taken. Section 1.3 de�nes the terms and their usage in this dissertation, thus

the context of the thesis. We describe the solutions we have identi�ed and implemented in

Section 1.4, and present the related work in Section 1.5.

1.1 Semantic Interoperation

This section presents a de�nition of the problem we address in this work. We seek meth-

ods to achieve e�cient identi�cation of relevant information in heterogeneous repositories,

veri�cation of its appropriateness, its deployment and maintenance for application speci�c

needs.

The major assumptions of this problem statement are the following:



4 CHAPTER 1. INTRODUCTION

� relevancy is de�ned with respect to application requirements

� a priori, no consistency exists between separate repositories

� data in individual sources may contain errors and irregularities

� sources may undergo autonomous changes at any time

More important than the assumptions are the consequences of the problem statement.

In particular, e�ciency drives us to avoid attempting to integrate the entire content of in-

formation sources. The need to maintain knowledge from independently changing sources

means it is unproductive to convert more than the essential information from any source.

Instead, we focus on achieving interoperation of the portions of sources relevant to a spe-

ci�c application. Another consequence of our problem statement is that we make no e�ort

to process free text completely. Although we have performed partial text analysis in ap-

plication speci�c ways, the problem of processing arbitrary texts is far beyond the scope

of the dissertation. We have found, however, that limiting ourselves exclusively to well

formatted structures such as database schemas, XML (eXtensible Markup Language) or

documents, does not simplify the problem in any way except that such documents happen

to be smaller, and somewhat more regular. These formatted documents still possess the full

array of problems such as incompleteness, irregularity, and inconsistency that our research

targets.

Browse Schedules

Dep. from Arr. in Flight Details

SF London BA284

Greens available to those with
restricted food diets

Object from BritishAirways.com Object from UAL.com

Misc

Find a Flight

Flight Info Depart Arrive

UA930
6:50 AM
London

12:40 PM
SF

Kosher, Vegetarian, Children’s
meals available on request

meal

non-smoking flight

Figure 1.1: Airline Meal Survey

We continue with a detailed illustration of the technical aspects of this dissertation,

using a survey of airline meals as a motivating application. In the main body of the disser-

tation we will show large scale examples and actual results of the use and the reusability



1.1. SEMANTIC INTEROPERATION 5

of our technology, which are less well suited to this introductory chapter. The data for

this example comes directly from the United Airlines [Uni97] and British Airways [Bri97]

websites. The particular value of this example is that it clearly exposes the di�erent types

of semantic heterogeneity that we deal with in the dissertation. In order to complete the

airline meal survey, we need to be able to access information from di�erent airlines' web-

sites. Figure 1.1 shows fragments of objects extracted from the schedule pages of both the

British Airways and the United Airlines websites. By inspection, we see that both objects

contain information about ights from San Francisco to London, and some details about

meals available on those ights. We know that the pages contain the appropriate material

to answer human queries about airline meals, and yet the terminology is di�erent enough

that we expect an automatic system would have trouble doing so. For instance, we see

that the labels `Flight' in the British Airways object and `Flight Info' in the United Airlines

object refer to the same type of item, i.e., a ight number, but they are in di�erent positions

in their respective objects, and they do not provide a justi�cation for assuming they are

equivalent. Taking them to be equivalent, we run into our next problem. By extension, we

could then assume that the labels `Arr. in' and `Arrive' refer to equivalent items. Unfortu-

nately that assumption is only partially true, since one only refers to a location, while the

other refers to a time and location.

Superfluous Values/Content

Attribute Names/Values

Object SubstructureValue-Attribute Conversion

Flight Number

Depart Arrive Meal

SF London Veggie

Misc

Find a Flight

Flight Info Depart Arrive

UA930 6:50 AM
London

12:40 PM
SF

Kosher, Vegetarian, Children’s
meals available on request

non-smoking flight Meal

Application Schema Actual Source Data

Sample Path: UA930.Meal.Veggie

Figure 1.2: Airline Meal Wrapper

Having identi�ed the appropriate material to answer our query (the airline schedule

pages) we need to extract the relevant parts (use a wrapper to extract objects from the

pages). After we have the relevant parts we then map the objects into a common format



6 CHAPTER 1. INTRODUCTION

to answer queries (write an application speci�c mediator). Systems exist that enable this

work, such as TSIMMIS [PG95]. We go a step further by investigating which parts of the

speci�cation process can be automated. In other words, we aim to provide a set of facilities

that support the process of identifying, wrapping and mediating the relevant information

in heterogeneous data sources. We've seen in Figure 1.1 that di�erent information sources

express similar information in di�erent ways. It is typical that the format is also di�erent

between information sources and the requirements of any new application which will use

the data. Figure 1.2 lists some of the types of mismatch we need to recognize in order to

properly wrap the United Airlines schedule page. In particular, we need to know when a

value, shown here as a leaf in the structure, is an attribute elsewhere. Attributes in this

example are nodes that refer to other nodes, as indicated by arcs between the nodes. For

example, the `Find a Flight' object has an attribute, `misc', whose value is the string atom

`non-smoking ight' together with a reference to the `meal' sub-object. Incidentally, United

Airlines explicitly indicates that all of its international ights are non-smoking, since they

can not assume that all of their potential customers know that they are a smoke free airline.

We also must handle superuous structure as well as content, such as those among the nodes

referring to meals. We must also handle variety in the names of attributes and their values.

Concept Granularity

Term Variation

Find a Flight

Flight Info Depart Arrive

UA930 6:50 AM
London

12:40 PM
SF

Source #1 Source #2
Airline Catering

United Airlines

Trans PacificTrans Atlantic

Kosher Veggie VeggieKids Sushi

UA930

Depart Arrive Meal

SF London Kosher Veggie Kids

Figure 1.3: Airline Meal Mediator

Finally, when it comes to interoperation of information frommultiple sources, we uncover

an even wider array of problems to handle. Figure 1.3 shows how the granularity of concepts

may be completely di�erent between di�ering information sources, and that the scope of

term variation broadens substantially. In order to properly link the objects for use in our

airline meal survey, we must recognize that a ight from San Francisco to London would be



1.1. SEMANTIC INTEROPERATION 7

categorized as `Trans Atlantic'. The conceptual granularity di�ers in that one node referring

to an ocean encapsulates some semantics of two nodes representing a start and destination

point of a ight. Also, the single `Trans Atlantic' node subsumes many other pairs of nodes

from the other source such as ones for ights between Boston and Paris.

1d. filtered pages

1e. updated filtering rules

1c. result data

rs0

flight (dep, arr , flno), meal(flno , type), ual.com , britishairways.com
     1. Mediator specification

3. Result
     BA284, UA930

     2. Query

flight(SF, London, x) & meal( x, veggie)

 WWW

Sources

Mediator
Engine

Survey App

Query
Rewrite

1b. training requests

1f. page tables,
   filter constraints

Sources
2b. query pages

Mediator
Engine

rs*2c. filter predicates

3a. raw query result

SKEIN
System

Figure 1.4: The SKEIN System in the Meal Survey Application

We use the SKEIN system to identify in heterogeneous information sources terms which

are coherent to those in our application requirements, and recognize terms which are similar

across information sources. We also use SKEIN to extract object graphs of these relevant

sources for use by mediators that ful�ll our application requirements. Figure 1.4 shows

a sequence of steps that are involved in using SKEIN to obtain a query result for the

meal survey. Starting with the requirements of the airline meal survey application at the

center, we have the process of information refactoring in the top half, followed by query

reformulation in the bottom half of the �gure.

We assume that the application requires information from one or more sources designed

for a di�erent original purpose. Information refactoring is the process by which the relevant

source information is cast into a form useful to the application. This iterative process builds

a representation of the source information. Query reformulation is a process which opti-

mizes the development of query expressions over this new representation, given the source

capabilities. Both processes are necessary to ful�ll generic query requirements of such an

application. The magnitude of scope of querying semantically heterogeneous information

sources is large enough that this dissertation discusses only information refactoring. The



8 CHAPTER 1. INTRODUCTION

slightly lighter shading of the Query Rewrite, Sources and Mediator Engine portions of Fig-

ure 1.4 suggest that these features are less emphasized in the dissertation. Since query

reformulation relies on the prior refactoring of information in heterogeneous environments,

we needed to investigate the refactoring problem �rst.

AM <- {UA, BA}

rs1

AM = “<html>…
flight: UA930
depart: 12:40 SF 
arrive: 6:50 London
…
misc:vegetarian,
kosher, children’s
meals on request
…</html>
••• <html>…</html>“

UA = “<html>…</html> ••• <html>…</html> ”, BA= •••

BA

UA
<html>…</html> ••• <html>…</html>

1. Mediator specification
flight  = (flno , dep, arr)
meal  = (flno , type)
dep = {‘depart’, city}
arr  = {‘arrive’, city}
flno  = {‘flight’, number}
type  = {‘meal’, food}
number  = [1-9999]
www.ual.com/UA{number}
www.britishairways.com/fl.cgi?n={number}

www.britishairways.com/fl.cgi?n=*
www.ual.com/sched/UA*

Survey App

Figure 1.5: SKEIN used for Mediator Speci�cation

Information reformulation for the airline survey application consists of building the

mediator to handle the schedule pages of the airlines covered in the survey. Figure 1.5

shows the process of specifying the mediator in more detail. The patterns that describe the

survey's requirements are shipped to SKEIN along with a list of web pages that must be

crawled to obtain the necessary source data. These patterns form a mediator speci�cation,

with a list of relations, that can be nested, as shown in the lower right of the �gure.

At the start of the process, no information from the sources has been analyzed, so there

are no rules yet available to �lter the sources. The initial ruleset rs0 in the upper right corner

of Figure 1.4 is an empty set, and therefore SKEIN receives un�ltered results back from the

information sources. SKEIN then matches up the the speci�cations to the terms contained

in the initial results and generates a modi�ed ruleset rs1 for expert veri�cation. After

veri�cation, the process can continue, so as to further re�ne the emerging mediator ruleset.

The key point in the process is that it is progressive. SKEIN iteratively establishes matches

between the content in the information sources and the mediator speci�cation. Each of

these matches builds on the results of the previous matching, and each iteration provides a

further opportunity for expert veri�cation of the rules. The rule sets that represent these

matches are applied to the source data by a mediator engine, a simple rule processor that

applies the rules to the source data. SKEIN uses a combination of the position of the



1.1. SEMANTIC INTEROPERATION 9

information in the source structure as well as the lexical content of the sources to estimate

the best matches for each approximation towards the �nal mediator.

rs4

AM.*.*.*.veggie <- {BA.*.*.*.greens, UA.*.*.*.vegetarian}

1. Mediator specification
flight  = (flno , dep, arr)
meal  = (flno , type)
dep = {‘depart’, city}
arr  = {‘arrive’, city}
flno  = {‘flight’, number}
type  = {‘meal’, food}
number  = [1-9999]
www.ual.com/UA{number}
www.britishairways.com/fl.cgi?n={number}

dep.  arr.   pageid
SF  NYC   sched/UA200
SF  London sched/UA930
SF  London fl.cgi?n=284

AM.meal.*.veggie
AM.meal.*.kosher

BA

UA
<html>…</html> ••• <html>…</html>www.britishairways.com/fl.cgi?n=*

www.ual.com/sched/UA*

Survey App

UA.930.depart,•••,UA.954.arrive

Figure 1.6: Finished Mediator Speci�cation

The ruleset re�nement process continues until the execution of the ruleset against the

source information returns the desired application data with su�cient accuracy. The ter-

mination condition can be determined by the expert using SKEIN, or simply by de�ning

a benchmark test, which the ruleset, now called rs*, must successfully generate from the

source information.

Once the mediator has been fully speci�ed, as depicted in Figure 1.6 it is possible to ask

queries against it. For instance, we can now ask about the available meals on ights between

San Francisco and London. Since we do not need the full power of SKEIN for query asking,

we have a simpler query reformulation module, that has no facilities for ruleset re�nement,

and is fully autonomous. No expert intervention is required to generate query results, since

the human e�ort went in during the mediator speci�cation.

Although the thesis does not cover query reformulation, there is one aspect of it which

is relevant to our discussion, depicted in Figure 1.7. The query rewrite module determines

how to forward queries to the sources to reduce the amount of superuous data returned.

The rewrite module also sends the �ltering rules to the mediator engine, so that the results

returned by the sources are transformed into the proper format required by the survey

application. The important point is that the query process is symmetrical to the initial

speci�cation process. This is not just for convenience, but is crucial when the information

sources are volatile. The reason for this symmetry is that when a source changes, the

quickest method for updating the mediator rule set is by adapting the existing rules based



10 CHAPTER 1. INTRODUCTION

www.ual.com/sched/UA930
www.britishairways.com/fl.cgi?n=284

BA UA

     2. Query

flight(SF, London, x) & meal( x, veggie)

rs*
AM.meal.veggie

Survey App

3. Result
AM.BA284, AM.UA930

<html>…</html> ••• <html>…</html>

BA.*.other ⊃ greens
   UA.*.misc ⊃ vegetarian

Figure 1.7: Query Answers from a SKEIN Generated Mediator

on the results returned by the mediator engine. The only way to fully leverage this method

is by making the mediator generation functionally equivalent to a sequence of successively

re�ned queries.

WEB
<hw>…</hw> <def>…</def> •••

D.wd <- {WEB.hw, WEB.asp, WEB.ehw} rs0
rs1

ftp.uga.edu/pub/misc/webster/*

A, Aardvark, ABC, •••

Dictionary App

1. nexus specification
entry  = (wdlist , deflist)
wdlist  = {wd+}
deflist  = {def+}
wd = {‘<hw>...</hw>‘}
def  = {‘<def>...</def>‘}
ftp.uga.edu/pub/misc/webster

2. nexus algorithms
   arcrank, all pairs similarity

Figure 1.8: SKEIN used for Mediator Speci�cation

We indicated above that SKEIN uses the lexical content of the sources to estimate the

best matches between the information source and the mediator speci�cation. The method

we developed to enable lexical matches forms the core of the thesis, and is depicted in

Figure 1.8. We use a repository constructed from an on-line dictionary to measure the

strength of relationships between terms used in the information sources and those in the

mediator speci�cation. In order to build this repository, which we call a nexus, we need to

extract the relevant relationships between words in the dictionary. Since we can not use the

nexus to build itself, we do the next best thing: we bootstrap the SKEIN system by using

successive approximations of the nexus to re�ne its own construction. This bootstrapping



1.1. SEMANTIC INTEROPERATION 11

is the subject of Chapter 3.

To detail the technical requirements of the SKEIN system we recast the information

refactoring process into the trapezoid of Figure 1.9. Each layer represents a further re�ne-

ment of the presentation of the source information to the target application. At the interface

of each layer there are issues we must resolve in order to arrive at a correct speci�cation of

our research. The SKEIN system incorporates support for each level of the diagram:

1. sources storing information in their individual original formats

2. object structures representing relevant information in each source

3. rules transforming objects and relating them between sources

4. semantic operators governing the presentation of these object structures

5. experts adjusting operators and rules to articulate the sources correctly

6. applications and customers using the articulated source information

Figure 1.9 shows the layering listed above along with the ow of information from sources

to the application. In some cases, such as when there exists a pre-existing agreement about

the semantics of the data provided by the source, some or all of the intermediate stages are

not considered. The information ow will bypass some or all of those intermediate stages

between the information source and the application. In particular, when a data source is

designed speci�cally for a given application the intermediate transformations do not need

to take place. However, the increasingly common case of heterogeneous information sources

and applications requires at least some transformations. In our de�nition of the process,

we use rules to specify the object structures of the sources, and the operators to select the

appropriate structures and combine them with others from other sources. The role of the

expert is to provide feedback and to adjust the rules as necessary to maintain or improve

the quality of the results obtained from the sources.

Often initial semantic transformations are insu�cient to cover all of the requirements

of an application. We must then resort to multiple iterations of the transformation loop

indicated by the closure arrows in Figure 1.9. Informally, closure consists of adapting the

rules and operators to improve the transformation results. The closure step is repeated until

results meet the application requirements. As we've pointed out above in the airline meal



12 CHAPTER 1. INTRODUCTION

1

2

3

4

5

6

Semantic Inference

Rule Transformations

Object Model

Information Sources

Application

Expert Verification C
losure

Figure 1.9: Information Refactoring for Novel Applications

survey example this iterated closure is a critical aspect of the problem space. Note that

closure does not a�ect the information sources which are autonomous, and are therefore

not available for update by SKEIN.

The next section covers terminology we use throughout the presentation of the disser-

tation. In Section 1.4 we show how our work addresses the problem statement without

making simplifying assumptions. Also, we show our contributions at each of the layers of

the problem space. Finally, we show how our motivating example itself has applications

within our framework.

1.2 Research Hypotheses

This dissertation focuses on a narrow portion of the information refactorization problem.

A single sentence characterization of the question it addresses is:

How do we begin to develop a systematic approach to the interoperation of heterogeneous

data sources?

The answer to this question is in three parts, and combines not only information re-

sources but also the framework to create them and the algorithms that use them. In this

section we present our hypotheses and the techniques we use to con�rm them.

Figure 1.10 depicts the approach taken in the dissertation. Starting from an on-line

dictionary, in this case the Oxford English Dictionary, we use a simple rule engine to extract

the word nexus. The nexus is a repository of all the unique terms of an information source,

together with a relationship that expresses how strongly related the terms are to each other.



1.2. RESEARCH HYPOTHESES 13

Nexus

OED

SKEIN

Rules

Algorithms

Figure 1.10: Thesis Topics

The nexus is the primary result of the dissertation, as indicated by its prominent position

in the �gure, but it depends on two other key results without which the nexus is much less

valuable. First among these other results are the nexus algorithms which use the nexus

to compute the strength of the relationships between terms in the nexus. Without these

algorithms it is impossible to determine which terms are most relevant to each other and

which terms are most similar to each other. The second of the ancillary results is the SKEIN

system which uses the nexus to allow other information sources to interoperate. As implied

in Figure 1.10 the three results depend on each other in a cycle, and none is completely

separable from any of the others.

1.2.1 Thesis Goals

In this section we present the hypotheses we verify in the dissertation.

Hx. 1 implicit term relationships contained in dictionary de�nitions can be e�ciently ex-

tracted into a nexus that expresses them explicitly

Hx. 2 algorithms developed to build and use the nexus scale well and can form the basis of

an information composition system

Hx. 3 the cost of articulation development, maintenance and reuse decreases when using

the information composition system

Each of these hypotheses corresponds to one of the points in the cycle in Figure 1.10.

Each hypothesis has individual merit but is strongest in conjunction with the other two.



14 CHAPTER 1. INTRODUCTION

Each presents an e�ciency, scalability or cost criterion that must be met. We treat each

hypothesis in sequence in Chapters 3, 4 and 5. Together the results we obtain form a

foundation upon which to achieve systematic semantic interoperation. In the next sections

we look at the issues brought up by the hypotheses.

1.2.2 E�cient Nexus Construction

This section concerns the e�ciency of the construction of the word nexus. The work pre-

sented in Chapter 3 illustrates the development of an articulation over an on-line Webster's

dictionary source. This articulation de�nes the transformation which builds the word nexus

we've described above.

1.2.3 Nexus Algorithms Are Scalable

This section concerns the scalability of the algorithms developed using the word nexus. The

dictionary repository explicitly models two relationships present in the source data. First,

term x appears in term y's de�nition, and second, term x uses term y in its de�nition.

What is less clear is that the structure of the repository allows for the computation of

semantic relationship between words. For instance, we can roughly compute the similarity

of terms based on the number of words they share in their de�nition. Algorithms over

the graph de�ned by the structure of the nexus and described in Chapter 4 expose these

implicit relationships for use in other applications. These extensions to the SKEIN system

are crucial for the development of the word nexus.

First, we compute structurally signi�cant de�nitional terms. These are the terms that

are frequently used in de�nitions. As expected, articles and common prepositions dominate

this ranking. On its own this ranking does not help to compute the relative importance of

de�nition words to the words they de�ne. Indeed, articles and prepositions are typically

considered stop words, of little semantic importance in a word's de�nition. The insight we

obtain from this ranking is that few words contribute signi�cantly to the words' rankings.

The measure we �nally selected to compute relative word importance is one that relates the

contribution of one word's rank to the ranks of the words in its de�nition.

Second, we can go on to use the relative importance measure to �nd similar words

in separate structures, based on the similarity of their usage rankings in the dictionary

repository. For example, in Figure 2.1 on page 39, the binary articulation between the



1.2. RESEARCH HYPOTHESES 15

OPEC web pages and the world factbook needs an initial assessment of the most likely

common vocabulary between the two sources. The nexus and a word similarity computation

provide this functionality.

To summarize, we use semantic relationships between the graphs terms to support the

development of other articulations, and we compute these relationships from the repository's

structure. These algorithms are:

1. Arc Importance which computes signi�cant de�nitional terms, (Section 4.1.2)

2. ArcRank which determines relevant arcs between terms, (Section 4.2.1)

3. All Pairs Similarity which �nds classes of similar objects. (Section 4.4.3)

1.2.4 SKEIN Lowers Articulation Costs

This section concerns the information refactoring phase of mediator development that is the

heart of the SKEIN system. Recall that in this dissertation we consider varied information

sources, from plain text to relational tables. We assume that, in a �rst step, source infor-

mation is represented by proxy objects generated using AMORL, the rule language for the

AMO object model de�ned in Section 2.1.4. We will see that the proxy representations and

the rules that generate them are iteratively developed in the course of applying operators

to the source. The notion of approximate solutions that are iteratively improved is central

to all of the operators presented in the following subsections. The iterative process is also

followed when considering an articulation over two pre-existing ontologies for a new target

application. This similarity suggests that it is possible to consider the problem of articula-

tion on well de�ned source ontologies, while also examining the development of ontologies,

via the articulation mechanism, from arbitrary data sources such as plain text or XML

tagged data.

Articulation Development

The presentation of Chapter 3 introduces the operational framework that performs the

necessary transformations to the dictionary for a target application. The target application

of this articulation is the computation of semantic relationships between the dictionary's

de�ned terms, based on the words in their de�nitions. We have generalized the de�nition

of articulation in Section 2.1.2 so that it covers refactoring of a single source with respect



16 CHAPTER 1. INTRODUCTION

to a target application. Thus, an articulation is a sequence of operators, such as those

listed below. The result of applying an articulation to the sources it transforms is a new

ontology, which may or may not be materialized. Each operator applies an AMORL ruleset

to objects of one or two sources, and returns the result of its operation to the target

application. Articulations are unary or binary, based on the number of sources they operate

on. Articulations initially operate on a rough model of the source or sources, and are re�ned

iteratively to meet the requirements of the target application. The sequence of operations

listed below follows the order in which the raw dictionary data is transformed into a directed

graph with head words as terms that label the nodes of the graph.

Glossarize

To construct a repository from the dictionary we enumerate all of the items that must

be considered to be individual, and then generate proxy objects for them.

Extract

To associate de�nition terms with each entry we must �nd those terms within the

dictionary entry, and enter them in a list associated with a proxy in the sequence

from above.

Match

To link dictionary entries using de�nition terms we need to match each extracted

term to a proxy in the glossary, and generate a link to this proxy from the proxy it

associated with in the previous step.

These three operations illustrate both unary and binary operations from the algebra.

The unary operations demonstrate the preparation of the relevant portions of the dictionary

source data. The use of a binary operation on information from a single source shows that

single sources can contain inconsistencies when refactored for a new application.

Articulation Re�nement and Maintenance

The nexus extracted from the Webster's dictionary [MIC96] and described in Chapter 4

contains just under 97,000 de�ned objects, referred to by two million arcs, and requires just

under two hours to generate from the source data downloaded from the ftp (�le transfer

protocol) site [MIC96]. A signi�cant aspect of the development of the articulation is that



1.2. RESEARCH HYPOTHESES 17

it did not initially produce a high quality repository. However, the initial results were good

enough to bootstrap improvements to the articulation. Indeed, we analyzed the data that

did not contribute to the repository, i.e., the exceptions in the data, to generate new rules

that improve the articulation. In addition, the dictionary serves as its own spell checker.

One type of exceptions occur when the de�ned term in the dictionary is misspelled. The

iterated re�nement of the dictionary shows how a knowledge source can bootstrap its own

development.

The maintenance problem for the dictionary repository is the following: the source

maintainer's goal is to add updates and revisions to the dictionary, while also correcting

errors discovered in the original data. At irregular intervals, approximately semi-annually,

these changes are published to the ftp site. The cost of maintenance is the e�ort it requires

to adapt the articulation and regenerate the repository to the level of consistency it had

prior to the update. We measure the cost of adaptation in two ways. First, the number of

rules added and deleted in the articulation's operations. Second, the amount of time spent

between the time the new source data is available, and the time a revised repository, based

on the new data, becomes available.

Articulation Reuse and Scalability

The ability to reuse the articulation on a di�erent source for the same application demon-

strates that articulations can also save development time. We performed two experiments,

one to for reuse, the other for scalability. In the �rst, we constructed a small scale reposi-

tory based on Roget's thesaurus [PRO99b], with one thousand nodes and 5,100 arcs between

them. To con�rm the quality of its structure we computed an all pairs similarity algorithm

over the entire repository. This algorithm �nds all the pairs of nodes which have arcs to

and from the same sets of nodes.

The second experiment con�rmed the scalability of the Webster's dictionary articula-

tion. This experiment required modifying the articulation to accept the Oxford English

Dictionary [Oxf99] as a source. At around ten times the size of its original source, the 570

MB raw data �le converts into a 327,000 object, eight million arc graph. When assessing

the e�ectiveness of articulation scalability, we consider the time required to modify the

articulation, the time to compute the graph, and test the data on a real problem, together

with the original Webster's repository.

In this section we have asked what are the enabling steps towards interoperation of



18 CHAPTER 1. INTRODUCTION

heterogeneous information systems. Our response implies that we need a combination of

an operational framework to perform necessary transformations, and a vocabulary boot-

strapped from the framework to assist in subsequent transformations.

1.3 Terminology

The research in this dissertation is at the crossroads of database systems and arti�cial

intelligence. Since this work considers the problem of composing information from multiple

heterogeneous sources, it is �tting that the �rst task of importance is to reconcile the

vocabularies of these �elds in the context of this work. Indeed, the terms relating to

the problems covered in this dissertation are not the same in the two �elds, nor are the

de�nitions of these terms entirely consistent within the same �eld.

We will generally use the terminology listed below in boldface, and it is preferred over the

other terms listed directly below their de�nition. In Chapter 2 we provide formal de�nitions

for the most signi�cant terms above as they apply to the thesis. For now, to clarify the

discussion that follows, we provide informal de�nitions for the terms below:

Object

abstraction of a physical entity, or a concept, e.g., meal

� Tuple/Instance/Frame

Term

named reference to an object, i.e., ight.misc.meal

� Reference/Slot/Attribute

Domain

information scope where consistent use of terms is implicit; UAL Web schedule

� Class/Relation/Frame model

Relationship

mathematical relation between objects of a domain; meal � vegetarian

� Facet



1.3. TERMINOLOGY 19

Context

object that speci�es semantic consistency constraints on sources

� View/Microtheory

Wrapper

explicit speci�cation of information in an underlying source

� Extractor

Articulation

explicit linkages between multiple sources and a target application

� Ruleset/Mapping/Mediator/Facilitator

Repository

information source associated with a domain, i.e., www.ual.com

� Source/Knowledge Base

Ontology

set of terms and the relationships between them; meal, style, kosher

� Schema/Metadata/Model

We present an example centered around the term `dog.' The dictionary does not as-

sociate a gender with the generic de�nition of dog. Dog in this context is associated with

both genders of the animal. However, in the specialized domain of dog clubs, the object

`dog' is only an abstraction of the male of the species. An ontology which relies on both

repositories for its de�nition of dog must reconcile the di�ering views with an articulation.

To convert the representation of dog in one representation to that of the other, we might

use a rule such as the following:

x 2 dictionary & x.species == dog & x.gender == male , y 2 kennelclub &

y.gender == dog.

Note that `dog' appears both as a value and as a schema element in the examples

above. This situation occurs frequently in general information sources. Henceforth we hold

to the de�nitions given in the vocabulary list above. We will provide formal de�nitions as



20 CHAPTER 1. INTRODUCTION

necessary in the body of the dissertation. The only cases in which the above vocabulary will

be used with di�ering de�nitions is to describe related work when that work's de�nitions

deviate from the above. We now de�ne some terms which are derived from the results of

our research, but have not generally been used in either the database or the AI community.

Interoperation

use of autonomous sources without a�ecting their autonomy

Consistency

relationship specifying that given term meanings be everywhere equivalent

Coherence

relationship of relevancy of source data to requirements of a target application

Similarity

relationship of semantic relatedness between information in distinct sources

Closure

constant outputs between iterations of an updated articulation over a source

1.4 The SKEIN System and Word Nexus

This research introduces a novel approach to describing the process of extracting information

from disparate sources and enabling it to interoperate. Figure 1.11 shows how the results

of the work would be applied in a practical setting such as supply chain management.

There are three sections in the �gure, each representing an information interoperation

activity. The rightmost section depicts a supply management problem which is solved by

the use of an articulation between a supplier database and a facility database. Before cre-

ating such an articulation we need to have an articulation development toolkit, shown in

the central section of the �gure. The articulation toolkit is supported by an articulation of

databases, free text and structured documents geared towards industrial applications such

as supply chain management. The domain repository associated with this toolkit is instan-

tiated from a general purpose articulation generator in the left section of the �gure. This

system is developed by bootstrapping an articulation that constructs the OED nexus. Note



1.4. THE SKEIN SYSTEM AND WORD NEXUS 21

that all of the transitions between sections of the �gure are supported by the veri�cation

of an expert, and that a feedback loop allows for improvement of the articulations. Our

research contribution, illustrated to the left of the dashed line, is the nexus and other tools

that form the core of the SKEIN system. SKEIN in turn simpli�es the job of constructing

articulations between diverse information sources, such as supplier and facility databases,

as shown in Figure 1.11.

OED

XML free text table

Supplier DB Facility DB

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Application

Dictionary

Head word

Definitio
ns

Application
Articulation Expert

Feedback

Feedback

Domain Expert

Similarity

Congruity

Supply Chain Mgmt Software

Bootstrapping Process
(This Dissertation)

Articulation Development Tool Business Activity

Industrial Interoperation

Repository

Repository

Domain

Artic
ulation

Artic
ulation

Artic
ulation

Figure 1.11: Interoperation in Supply Chain Environment

The following three contributions, which we �rst introduced in Section 1.2, form the

core of this dissertation:

1. dictionary repository of semantic relationships among terms (Nexus)

2. algorithms for extracting structural relationships from graphs (extensions)

3. framework for rapid development, and maintenance of articulations (SKEIN)



22 CHAPTER 1. INTRODUCTION

These contributions are made possible by the development of the simple framework of

an object model and rule language. These two form the basis of an ontology algebra, which

allows an algebraic expression of information extraction and composition. The algebra,

important in its own right, is incompletely speci�ed in this dissertation, and is presented in

Chapter 5 simply as infrastructure to the main body of work.

As a preliminary step in building the SKEIN system we developed a simple object model,

AMO (Atoms Modeled in Objects), in the spirit of OEM [GCCM96] and YAT [CDSS98].

AMO represents objects, their contents and the objects' relationships to other objects.

AMO is designed to maximize simplicity of conversion from HTML, XML, database tables,

as well as text �les. The model captures both the rei�cation of uninterpreted data into

objects, as well as the transformation of objects to relate them to others. We use AMO as

our bridge between the �rst and second layers of the problem space as depicted in Figure 1.9.

We construct and maintain repositories with the rule language AMORL. Repositories are

collections of related objects whose relationships can be represented as a directed labeled

graph. AMORL consists of nine functions on object patterns. These nine functions are

classi�ed into the categories of constructors, connectors, editors and converters. An object

structure can be transformed into any other using these rules, and the common portions

of any structures can be mapped into a single structure. Object patterns are expressions

that identify zero or more objects in a repository. AMORL bridges the representation gaps

between object structures extracted from di�erent sources.

In order to demonstrate the scalability and e�ciency of our work through an example, we

use an on-line dictionary. Initially we worked with a Webster's dictionary, and then scaled

our e�orts to a much larger source, namely the Oxford English Dictionary (OED), second

edition. We begin by extracting a glossary of terms from the head-words of the dictionary,

and separately, a set of de�nitions that match the glossary. Then we generate a graph from

the glossary, such that each use of a word in a de�nition results in an arc between the de�ned

and de�ning word. The extraction of a graph requires knowledge of the dictionary domain,

as well as the semantics of the language used to express the de�nitions. The combination

of the glossary and de�nitions into a graph requires knowledge of English morphology and

the idiosyncrasies of usage in the dictionary. Manipulating the OED data set is not a toy

problem. Its 511,000 de�ned terms, including approximately 180,000 exact synonyms, and

eight million de�nition words defy any attempts at systematic manual treatment.

Having generated the dictionary graph we demonstrate our application of the graph



1.4. THE SKEIN SYSTEM AND WORD NEXUS 23

structure. We apply a ranking algorithm to the nodes of the graph, then to its arcs, in

order to express for each given term which are the most important terms in its de�nition

and which are the most important terms that use the given term in their own de�nition.

With this ranking, we are able �rstly to generate classes of terms that have strong kinship

to each other and secondly to determine which terms subsume others, and which terms they

specialize. This is a demonstration of a semantic decomposition of a large graph structure

into smaller hierarchies. The bene�t of this decomposition is that these classes of related

terms may be used to bootstrap the process of relating other information sources that use

varying nomenclature.

A second algorithm we introduce is one which computes the similarity of all pairs of

objects in a directed graph, based on the similarity of the objects with which they share

arcs. We developed this algorithm on the Roget's thesaurus graph, which we built to test

the reusability of the Webster's dictionary articulation. Just as the arc ranking algorithm

allows us to measure the coherence of objects in a graph, the similarity algorithm estimates

the similarity relationship of objects in a graph. These two relationships in turn are the

foundation of our semantic algebra.

The semantic algebra is a higher level language built on top of the rule language, in

the same way relational operators depend on selection conditions, join parameters and

projection attributes. The algebra is a set of composable operators that transform object

repositories into new object repositories. The novel aspect of the algebra is that a form of

closure is applied to the operators, such that each successive application of the operator to

the initial source represents a change to the exported object graph. The iterative application

of the operator terminates when a �xpoint is reached (and the repository no longer changes),

or when an alternative termination criterion has been met.

Our presentation of the semantics of the algebra shows that it adequately represents

the creation, re�nement and maintenance of articulations over information sources. In

particular, we discuss the problem of �nding matching terms between pages of the British

and Finnish government websites, as linked to by the NATO website. We show how the use

of the OED nexus to support the match operator of the algebra obtains 70% of the matchings

of terms that a human expert determined were correct. Also, the match operator did not

produce any so called false positives or inappropriate matches. These encouraging �rst

results indicate that the nexus is a crucial part of the SKEIN system.



24 CHAPTER 1. INTRODUCTION

There has been a signi�cant amount of scienti�c investigation touching on various as-

pects of this research, but semantic heterogeneity has also been a subject of intense study

in philosophy, literature and art. Appendix C devotes space to the the non-scienti�c explo-

ration of heterogeneity, while the next section covers the conventional research literature.

1.5 Related Work

The starting point for the work in this dissertation comes from a proposal for an algebra for

ontology composition [Wie94]. This proposal foresees problems in maintaining knowledge

combined from autonomous knowledge sources. In this section we examine some of the

other work that is relevant to the thesis.

1.5.1 Research in Integration Fundamentals

Integration of data, knowledge and systems is an area that has been gaining attention in

recent years. The relevance of interoperation as opposed to integration has become manifest

with the growth of the Internet. The literature on object models and rule languages appears

in a wide range of domains, so we restrict ourselves here to research in the database �eld.

Citations on formal contexts and articulations appear primarily in the area of arti�cial

intelligence.

Most recently, technology transfer to Gigabeat Inc. [Gig00] allowed a generalization of

the ArcRank algorithm of Chapter 4 to measure the similarity between musical artists, as

well as the similarity between songs. A new visualization technique, the a�nity chart, also

described in Chapter 4, was invented to simplify the comprehension of and the navigation

through these large data sets. Model management [BLP00] is a new �eld that aims to achieve

exactly the same goals as the work in this dissertation. One of the stated goals of model

management is to achieve the automatic speci�cation of transformations of mediators to

support new or changing data and changing application requirements. The lack of a method

for iterated improvement of mediators, and the lack of a structure such as the nexus do not

diminish in any way the importance of this work.

Semantic integration is the focus of the research leading up to the Infosleuth agent ar-

chitecture [BJBB+97], in which ontology agents mediate in cases of semantic heterogeneity.

The derivation of the domain models used by the agents is not considered. However, the



1.5. RELATED WORK 25

establishment and maintenance of these ontologies has a high cost and should not be ig-

nored. The Infomaster system [GKD97] establishes a reference schema for the information

it integrates. In practice each application requires its own schema, so a double translation

is necessary for any information the client applications receive from data sources. As the

reference schema must serve many applications, it must also be extremely general, and si-

multaneously highly detailed. Such a schema is sensitive to any change in the sources it

integrates. The di�culties in creating and maintaining a reference schema independent of

client applications are not considered in Infomaster.

We have anecdotal evidence from the European Esprit program about the cost of pro-

ducing such a reference schema. One of the Esprit program's goals was to to provide a fully

object oriented schema to enable the integration of automobile manufacturing information

between all of the German manufacturers. After years of speci�cation e�orts the schema

remained incomplete, and too general to allow any individual manufacturer to rely solely

on it.

The TSIMMIS project [PG95] introduced the object exchange model (OEM) [GCCM96],

which predates the extensible mark-up language XML, and is quite similar to it. The IFO

model [AH87] considers semantics, but does not focus on issues relating to heterogeneity.

YAT [CDSS98] is an object model that has the property that it is self describing, and can

represent heterogeneous sources, but lacks facilities to restructure them for consistency.

Sequence Datalog [MB95] is a language that can manipulate ordered sequences. The

ability to handle sequences of objects is a vital part of restructuring languages. The reason

sequences are so vital is that they can represent the ordering of objects within a document.

Mathematical sets and relations are not suited to this document management task. The

rise in importance of HTML and XML accentuate the need for tools that support sequence

processing e�ciently. Editor [AM97] is a computationally complete language for restruc-

turing text documents, but does not have an object model. This language has a well-de�ned

class of programs that are polynomial-time restructurings, and therefore e�cient.

Description Logics (DL) [Hul97] are used to represent the information content of sources.

There is also discussion of e�orts to integrate DL with query languages. Semistructured

data has become a signi�cant area of database research. When such data is updated, its

structure frequently changes shape in complex ways. Tracking change in semistructured

data makes it possible to e�ciently reconstruct previous versions of the data, by applying

edit scripts to the current structure. The C3 project [CG97] introduces a set of primitive



26 CHAPTER 1. INTRODUCTION

operators on objects in a semistructured data graph, in order to express change in the graph

as an edit script. This work does not consider semantic inconsistency, as the graphs are

assumed to be snapshots in time of the same structure.

1.5.2 Research in Algebraic Methods

The notion of articulation between microtheories [Guh91] originated in the AI community.

Microtheories are contexts that are statically linked through their articulations into a larger

complete ontology, such as the CYC system. The CYC system is a handcrafted ontology

that has been applied for years in various technology demonstrations. It has not supported

transparent transformation of microtheories, and the repercussion of any transformations on

the articulations are not well understood. This system also ignores the need for maintenance

when knowledge about a domain changes. The Open Directory [Net99b] is a novel approach

to the construction of a large information repository, which relies on thousands of editors

to maintain the structure as it grows. The editors serve in e�ect as articulation agents for

their areas of expertise. Multiple de�nitions are common, and conicting or contradictory

statements by di�erent editors are accepted. All maintenance in these systems is fully

manual.

There exists some work on the use of context [KS96] to handle database object semantics.

This research uses a semantic proximity relationship, but does not discuss relevance of

source data to a target application. The paramount importance of the targeted application

in our research can not be overemphasized. We contend that every information source is

tuned to its original application, and that any interoperation of information must explicitly

express the conversions that allow sources to be used in a new setting. Gradations of a

consistency relationship [HM93] can be used to relate information sources, when consistency

also encompasses relevancy. In considering semantic reconciliation between data source and

data receiver [SM91], some issues relating to coherence are raised. That work does not

discuss maintenance issues nor the actual algorithms used to achieve semantic reconciliation.

TSIMMIS is geared towards query answering, and wrapper speci�cation is considered

orthogonally to query answering with a separate mediator speci�cation language (MSL). A

recent re�nement of this language, TSL [VP99], or tree speci�cation language, has more

e�ciently computable capabilities.

TSIMMIS enables the building of wrappers and mediators that are capable of handling

some semantic heterogeneity, but not systematically nor explicitly. For example, a new



1.5. RELATED WORK 27

relation may be created by manually de�ning the join of two relations in underlying sources

with semantically di�ering names. Wrappers may be coded to resolve conicts and incon-

sistency, but do so silently. Such implicit semantic changes are di�cult to maintain as the

underlying source changes.

Query languages for semistructured data such as Lorel [AGM+97], UnQL [BDHS96],

XML-QL [DFF+98] skirt the issue of heterogeneity entirely. Wrappers that provide data

for these query languages are generated independently, speci�ed with a separate language,

and must be maintained separately from the query system.

Recent theoretical results de�ne the problem of �nding common schema in semistruc-

tured data [NAM98], which roughly corresponds to our Intersection operator. MDM, the

data model of the Rufus system [RS91] describes Aggregate and Partition operators, which

we subsume in the Summarize operator we will introduce in Chapter 2.

The Onion system [MKW00], building on the work presented here, investigates the

problems of applying the Intersect operator to semistructured data. A taxonomy of

information extraction techniques [CJN+00] provides a foundation for the choice of the

Extract and Filter operators.

1.5.3 Research in Repository Integration

In the past few years the problems associated with ontology merging and alignment have

become active areas of research. The medical informatics �eld has played a pioneering role

in integrating information from multiple varying sources.

The medical informatics community has had a long involvement in e�orts to inte-

grate and reuse separately designed and maintained knowledge sources. The UMLS sys-

tem [COS98] is the largest of these systems. Recent e�orts to improve access to these

integrated knowledge sources include [Pra97] and [OSSM99]. Semi-automatic integration of

medical thesauri [DHR+98] could greatly simplify the interaction between insurance, phar-

maceutical and medical information for medical patients. Research in integrating thesauri

for automatic translation [NTR98] is ongoing, and is highly valuable in governmental and

diplomatic systems. Governmental organizations are also involved in e�orts to enable me-

diation between autonomously developed systems, as evidenced by work on environmental

restoration of INEEL [PHW+99].

A rule-based approach to semantic integration [BCV99] uses a description logic to gen-

erate a shared ontology for the source information, and rules to map terms to the common



28 CHAPTER 1. INTRODUCTION

format. However, the notion of maintenance and considerations of scalability are lacking

from the discussion. Also, there is no description of the integration process, as an applica-

tion of an algebra over the source domains. The operations performed in Section 3.2.2 bear

a resemblance to the alignment operation [CHR97] used to reconcile some of the terms of

the CYC upper ontology of 5,000 concepts with the Microkosmos ontology of roughly the

same size.

The fundamental role of placing semantic relationships into an algebra is unique to our

work, but the use of relationships themselves appear in other work as well as ours.

WHIRL [Coh98] uses textual similarity to �nd co-referent terms in distinct sources with

high accuracy. The textual similarity measure it de�nes is one example of the multitude of

initial similarity measures that approximate the similarity relationship between sources.

Techniques for the transformation of ontologies and program speci�cations are discussed

in the context of category theory. While this work describes transformations where the

domains are complete or exception free, it lacks exibility to deal with real world data and

erroneous speci�cations.

The problem of reuse of ontologies in new environments is similar to the problem of

articulating information for new applications. An ontology of numerical properties is retar-

geted for use in an engineering project at Boeing [UHW+98], and a handcrafted adaptation

of the original ontology is presented. This work applies a one-time transformation of the

ontology to �t the requirements of the target application. The notion of maintenance is not

considered in this work, as changes to the speci�c source ontology are infrequent.

Early work on speci�cation morphisms [Smi93] develops a system to iteratively re�ne

a program speci�cation into a working application. Our work follows similar principles for

deriving contexts from sources, and re�ning them for use in a target application. We extend

the notion of speci�cation to allow for inaccuracy, inconsistency and incompleteness found

in real world information sources.

1.5.4 Research in Repository Algorithms

Dictionaries have been the subject of computer investigations for approximately forty years.

Large scale lexical corpora have been constructed in the the past ten years, and automated

construction of these thesauri has occurred in the last �ve years. In particular, the com-

putational linguistics community is interested in so-called semantic parsing of dictionary

entries.



1.5. RELATED WORK 29

Some early work on constructing taxonomies[Ams80] and extracting semantic primi-

tives [Dai86] used a graph generated from the dictionary de�nitions. MindNet [RDV98]

is an example of a lexical knowledge base that relates terms according to some two dozen

relationships. MindNet is generated by phrase parsing an online dictionary. This system

attempts to distinguish semantic relationships between terms by the sentence structure and

keywords in the de�nitions. A di�erent and freely available system based on the Webster's

dictionary data is in early development [Res98]. Such systems have limitations relating to

the sparseness of the structures that are extractable from dictionaries, and the inaccuracy

and slowness of phrase parsing techniques.

The WordNet system [MBF+90] is a corpus of nouns, verbs and adjectives that lists

lexical relationships between entries in the system. WordNet was manually constructed by

a group of linguists. It is publicly available and has been widely used in other linguistic and

computational research. It is speci�c about the relationships between entries, but is there-

fore limited to a small set of possible relationships. Also, it separates the four major parts

of speech (noun, adjective, verb, adverb) into separate categories, and is comprehensive

only to the extent that the developers were interested in particular topics

A number of new algorithms exploit the structure of large graphs to extract semantic

features from them. The main focus of these algorithms is the World Wide Web, but these

algorithms apply to directed labeled graphs in general.

The PageRank algorithm [PB98] is used in the Google search engine [Goo99] for ranking

the importance of web pages. PageRank is a ow algorithm over the graph structure of the

World Wide Web that models the links followed during a random browse through the Web.

Google's phenomenal growth over the past few years from a two person research project

to a system running on several thousand servers supporting over �fty million queries every

day is entirely due to the success of PageRank. This algorithm is the starting point for the

ArcRank algorithm we use to determine the strength of the relationship between dictionary

terms.

Latent semantic indexing (LSI) [DDL+90] and hypertext hubs and authorities [Kle98]

exploit properties of eigenvectors to answer queries over a corpus of text documents or web

pages. The eigenvectors are computed from the adjacency matrix of a graph representing

the structure of the corpus. These methods reject, a priori, stop words such as `the' or

`and,' and any words that appear overly frequently in the document corpus. LSI also fails

to measure the relative importance of relationships between terms. However, the underlying



30 CHAPTER 1. INTRODUCTION

mathematics of these systems are close to those of our dictionary nexus.

In the domain of the World Wide Web, there is a great interest in �nding related

pages. Most Internet portals, such as Netscape [Net99a], and news services now provide

access to similar pages or related articles in their collections. Dean and Henzinger have

done research on �nding structurally similar pages [DH99]. An e�cient all pairs proximity

algorithm [GSVG98] �nds which objects in a graph are most strongly linked.

The relationship extraction algorithm we present in Chapter 4 extends and improves

techniques pioneered in the DIPRE algorithm [Bri98]. There is some other work that uses

the notion of patterns and sample sets to extract relations [GW99]. These algorithms begin

with a sample set of data that follow a �xed structural or lexical pattern. The �rst goal is to

�nd in a large data set other instances of the data items. Then any new patterns that contain

the data items are identi�ed. Now it becomes possible to search for any data instances in

the large data set that conform to the new patterns. The above procedure can be iteratively

applied until a �xpoint is reached and neither new data nor new patterns are uncovered.

There is also a research direction that seeks to uncover universal techniques for extracting

relations from web pages [CF99]. This work is based on approximate matching techniques.

The notion of related web pages in [DH99], and that of clustering search results [ZE99] are

closely tied to the kinship relationship we extract from the dictionary data. In a similar vein

to our work the CLEVER group at IBM [pro99a] uses the hubs and authorities approach,

as de�ned by Kleinberg, to cluster web pages.

1.6 Thesis Outline

The remainder of the dissertation proceeds as follows. Chapter 2 presents the groundwork

for the following chapters. This work initially appeared in [JPVW98], covers a simple

object model and rule language, and presents some key de�nitions. Chapter 3 describes

the Webster's dictionary source and the iterative process of de�ning a wrapper over the

source. This work was presented in [JW99] to demonstrate the maintainability of such

wrappers when the underlying sources change. Chapter 3 then shows how the work on the

Webster's source was extended to the much larger Oxford English Dictionary, with little

additional e�ort. Chapter 4 presents the ranking algorithms which enable restructuring of

newly incorporated sources. [Jan99a] describes these algorithms. Chapter 4 also describes

iterative techniques for extracting subsuming, specializing, and kinship relationships from



1.6. THESIS OUTLINE 31

ranked sources. To provide further infrastructural details, Chapter 5 investigates properties

of an algebra de�ned over wrapped sources. This is work that appeared in [JMN+99].

Conclusions and directions for future work are given in Chapter 6. Appendix A describes

the relationship between our object model, and semi-structured data, such as XML. The

appendix shows how to convert between XML and our model, and provides XML DTDs

for the nexus, and the visualization scheme we use to navigate the structure of the nexus.

Appendix B presents scripts which transform the raw source data from the OED into two

relations, the �rst associating the head words to a numerical key, the second all de�nition

words to the key of the head word they de�ne. The scripts then generate the nexus from

these two relations, and �nally use the nexus to match NATO government websites. Finally,

Appendix C provides a few examples of the extreme cases of semantic heterogeneity present

in art and literature. These cases provide amusing anecdotal evidence that fully automated

integration of information sources is not feasible.



Chapter 2

Groundwork for an Algebraic

Approach

Chapter Outline

In this chapter we provide an overview of the background for the thesis work. We begin

by de�ning ontologies, domains and articulations. We proceed with a simple object model,

AMO. We present a de�nition of context that we use to encapsulate object graphs. Contexts

are the unit of semantic consistency in our framework and are the operands of the algebra.

We continue with a presentation of AMORL, a language of primitive rule operations that

transform objects. We begin the presentation of AMORL by listing the algebraic operators,

in order to motivate the sections that follow. We then de�ne and motivate our model

of semantic consistency, considering two inherently semantic relationships: coherence and

similarity. While the two relationships are very close, distinguishing the two is important

for scalability. We begin with the foundations of the SKEIN system.

2.1 Architecture

The amount of potentially useful data available on the Internet is growing at a tremendous

rate. There are thousands of sites which contain overlapping or complementary information.

It would be most convenient to access related information in a uniform fashion through a

single interface. For example, there is enough freely available data on airline schedules and

fares, car rentals and hotel reservations to plan any trip. However, without a uni�ed access

32



2.1. ARCHITECTURE 33

interface, in which all of the data is presented uniformly, it remains much easier to book

travel arrangements through an actual travel agent. In many domains such as the sciences,

freight shipping, construction and pharmaceuticals, such professional intermediaries do not

exist at all. While some programmatic interfaces do exist, they are handcrafted and require

specialized tools to maintain.

To remedy this state of a�airs we consider two fundamental obstacles to the development

of such interfaces. First, we examine the task of identifying and keeping track of exactly the

relevant portions of each data source, a task which is complicated by the coherence problem.

Coherence was de�ned in Section 1.3 as the relevance of information from a source to the

requirements of a target application. The coherence problem, in brief, is that there is no

automatic procedure to determine what elements of an information source are important

for a given application. As a substitute, we de�ne a coherence score to estimate the true

coherence Cx;t of a term x to a target application t:

0 � Cx;t < 1 (2.1)

The coherence problem, discussed in more detail in Section 5.2.1, occurs because sources

contain not only superuous material, but also incomplete or partially incorrect data. Note

that we use superuity, incompleteness and incorrectness not as absolute terms, but only

relative to a new application for which the sources were not originally designed. In order

to compute the coherence score we need to come up with a procedure to approximate the

true coherence relationship.

Second, we describe the problem of identifying the parts of di�erent sources that overlap,

because they are identical or have related content. We call the recognition of this overlap

the similarity problem. In the introduction we de�ned similarity as the relatedness of

information in distinct sources. Again, the similarity problem refers to the lack of an

automated procedure to compute similarity. As for coherence above, we de�ne a similarity

score Sx;y;t which stands in for the exact similarity relationship:

0 � Sx;y;t < 1 (2.2)

The similarity score estimates the relatedness of two terms x and y, in the context of a

target application t. The similarity problem is treated in Section 5.2.2, and it arises out of

the autonomy and semantic heterogeneity of distinct information sources. The coherence



34 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

and similarity relationships are inherently semantic and are in general not automatically

reducible to a program or mathematical expression. We approach this limitation by con-

sidering how to compute approximations of these relationships. Therefore we introduce

the notion of coherence and similarity measures. Coherence and similarity measures are

explicit mathematical expressions, written in the form of a sequence of rules, that estimate

the coherence and similarity relations de�ned above. Such scripts of transformation rules

are created, re�ned and maintained interactively with a human specialist, using an algebra

to expose individual pieces of the relationships.

The ultimate goal of the SKEIN system is to implement the operators of an algebra.

While the complete algebra is beyond the scope of the dissertation, we have de�ned a

few operators. In order to de�ne an algebra we must �rst chose and de�ne the operands

of the algebra. The algebra operates on semistructured data, as represented by directed

labeled graphs of objects described in Section 2.1.3. Inputs to the operators, as well as

their outputs, are instances of these directed labeled graphs. These graphs are assumed to

be connected components. We de�ne these connected directed labeled graphs below as our

unit of semantic consistency. The nodes and arcs of directed graphs model the terms and

relationships of these data. We require connectedness because we consider disjoint graphs to

have no a priori semantic relationships; they are therefore independent information sources,

or contexts. Contexts in our framework are a representation or mapping m of the objects

in a directed labeled graph, to items in the real world. In our system disjoint graphs may

articulate, that is, join together, according to a similarity measure de�ned by application

requirements.

Each algebraic operator listed in Section 2.1.5 takes as input graphs of semistructured

objects and transforms them according to a coherence measure or a similarity measure.

Having directed graphs both as inputs and outputs to the operators guarantees that the

algebra is composable. The Summarize operator provides the foundation for de�ning the

coherence measure between source data and its new target application. The Match operator

serves to de�ne the similarity measure between information sources. The remaining oper-

ators of the algebra generalize characteristic applications of semistructured data that are

currently under investigation. Unary operators all take a coherence measure, while binary

operators require a similarity measure. Note that these measures do not de�ne a metric,

but they do estimate the level of relevancy and similarity between data sources and target

applications. Operators we have used for one particular source are presented in detail in



2.1. ARCHITECTURE 35

Chapter 4.

The novelty of the algebra is threefold. First, we have decoupled the selection of co-

herent parts of the source data from the determination of the articulation points between

complementary information sources. For example, the relevance of the terms `arrival' and

`arr.' in the airline meal survey is computed using a coherence measure. A separate com-

putation determines that those terms are similar and form an articulation point between

the two sources for the airline meal survey. Second, the coherence and similarity measures

are created, re�ned and maintained in an iterative process using the algebra rather than

a separate language. We bootstrap the development of the nexus, for instance, by using

the operators of the algebra itself, rather than manually creating it. In contrast a system

such as CYC contains an inference system which has never been used to build, maintain

or support the ontology that CYC uses in its inference. Third, we selected operators of

the algebra to mirror classes of applications of semistructured data, rather than low level

abstract primitives which are di�cult to compose into meaningful operations. However,

the algebra still retains the ability to compose and reorder its operations according to for-

mal rules. For example, one of the most common operations performed on an information

source is the computation of all of the unique terms in the source. The Glossarize oper-

ation of the algebra was speci�cally designed to support that type of computation. In this

way, the operations are intuitive and have immediate value to application experts building

articulations.

2.1.1 Primary Source Data Sets

Typical Web sources are semistructured, that is, they contain well de�ned structural ele-

ments, but do not have a fully regular schema. There is a growing literature on generating

wrappers for individual semistructured data sources [MMK98], and on the subsequent ac-

cess of the data through a query interface [LRO96]. Also, there is some research in the

area of view maintenance of these wrapped sources. However, the wrappers seen today

are handcrafted using languages separate from the query language, and the primary as-

sumption for view maintenance is that the source structure and formatting is stable. In

practice, handcrafting wrappers is only feasible as long as the total number of data sources

is small, and as long as the sources themselves are fairly stable. On the other hand, when

sources change frequently as on the World Wide Web, it becomes di�cult to fully maintain

more than a few sources. Experience at mySimon.com [myS99], a successful comparison



36 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

shopping website, showed that at any given time one quarter to one third of the manually

constructed wrappers were not functioning correctly. To further complicate matters, when

the data source is large as well as irregular, handcrafting the wrapper in itself becomes an

onerous task.

Our initial experiments were with an on-line version of the 1913 Webster's dictionary

that is available through the Gutenberg Project [PRO99b]. The original dictionary is a

corpus of over 50 MB containing some 113,000 terms, 15,000 of which are variant spellings

and synonyms. Altogether, the de�nitions contain over 2,000,000 words. The source data

of the dictionary was originally scanned and converted to text via character recognition

software; it therefore contains thousands of errors and inconsistencies. Having to deal

with errors helps our scheme to achieve the robustness needed for real-world settings. Our

target application for the dictionary data is the construction of a graph of the de�nitions

from which we can determine related terms and automatically generate thesaurus entries.

Misspellings and incompleteness in the terms and de�nitions, as well as errors in the labeling

of the data, resulted in over �ve percent of the data being incorrectly interpreted using a

naive wrapper. In this case the source inaccuracy a�ected over 100,000 arcs in the graph,

and about 4,000 of the graph's nodes.

Subsequently we developed an entirely new repository based on the Oxford English

Dictionary, Second Edition (OED) [Tom99], a corpus of 570 MB. The resulting structure,

at over 510,000 nodes and 8,000,000 arcs, is four times the size of the Webster's repository,

and demonstrates the scalability of our approach. One strength of the system is the ability

to iteratively re�ne a simple wrapper using an operator from our algebra to reduce the

exception rate below one percent. We will present the OED and wrapper re�nement in

Chapters 3 and 4.

Bringing similar information together frommultiple data sources introduces the problem

of semantic heterogeneity. The data in an individual source serves a purpose originally

de�ned by the source's maintainer. This purpose is partially spelled out in the schema

and structure of the data set. The applications which use the data usually express implicit

assumptions about the data, which are not contained in the data itself. When gathering

information from multiple sources to apply to a new use, it is necessary to explicitly resolve

di�erences in the semantics of the data. It is formally su�cient to resolve only the di�erences

that are germane to the new context to which the data is to be applied. Unfortunately, there

are no exact computational methods for recovering implicit semantics from multiple data



2.1. ARCHITECTURE 37

sets. Instead, we developed semi-automatic techniques for exposing incorrect, incomplete

and inconsistent data within a source. Such semi-automatic techniques reduce the burden

of manually deriving the source semantics that are relevant to the new applications of the

source data.

We �nd an example of substantial source heterogeneity from the NATO [NAT99] Web

pages starting at: http://www.nato.int/. This site contains information about the NATO

alliance, as well as the Partnership for Peace alliance, and contains links to various pages

from their member nations. In particular, two pages provide links to web pages maintained

by the governments of the members of these two organizations. On the surface, these pages

would appear to represent similar information, but they revealed substantial heterogeneity

when we used them in combination. Beyond the di�erences in language of expression, it was

necessary to understand the types of di�erences in the data in order to work with the data

we collected. Using the algebra's Match operator allowed us to iteratively de�ne conditions

for combining NATO member government data from their Web sites. The results show that

our initial speci�cation of the articulation obtains 70% of the matches that a human expert

would de�ne, without adding any incorrect matches.

Since we assume sources are autonomous, they may change at any time. We are able to

separate changes of a source that a�ect their relevancy to our application from those changes

that a�ect their similarity to other sources with which we combine them. These de�nitions

form the underpinning for the formal de�nitions of the coherence and similarity measures.

We begin by pinning down a de�nition of ontology, domain context and articulation.

2.1.2 Ontologies

The term ontology is used to mean di�erent things by almost every researcher who works

with ontologies. We have developed a hierarchy of de�nitions that cover the most common

usages of the term [DJ00]. In this dissertation, however, we will stick to a very simple

mathematical de�nition of ontology, given below:

M = (S; r1; :::; rn; m
�) (2.3)

An ontology M is a tuple, containing a set S, whose elements are objects. M also

contains one or more relations ri ranging over the objects in S, and a mapping m�, whose

domain are objects in S and whose range are items and concepts in the external world. We

provide a small example to show a minimalistic ontology of pets. Here the set of objects



38 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

S is given in brackets. The relation r indicates that there are three kinds of pets (dog,

cat, gold�sh), and that two of those are mammals (dog, cat), while the other is a �sh. The

mapping m� simply indicates that we can associate each object in S with the intended real

world equivalent having the same name. We assume that the capitalized terms here refer

to an actual real-world concept.

Mpet =

(S : [dog ; cat ;mammal ; gold�sh; �sh; pet];

r : dog � pet ; cat � pet ; gold�sh � pet ;

dog � mammal ; cat � mammal ; gold�sh � �sh

m : dog 7! DOG ; cat 7! CAT ;mammal 7! MAMMAL;

gold�sh 7! GOLDFISH ; �sh 7! FISH ; pet 7! PET )

(2.4)

The mapping m� may be implicitly de�ned in the object labels or terms applied to the

elements of the set, or may be computable from the relations ri between object items. In

the above example the object labels do indeed map directly to a real world equivalent. If,

however, the object label for gold�sh were gf we could perhaps still deduce gf 7! GOLDFISH

from the facts in r, namely, gf � pet and gf � �sh. The mapping m� is not directly repre-

sentable, since its range contains external world objects, but it is critical to the de�nition.

We may write a proxy function or ruleset m, as we've done above, to stand in for the

mapping m� when we agree on the terms that represent the external objects. From this

standpoint, we see that an ontology represents an agreement to de�ne the relationships

between external world objects in a certain form, and the mapping m� is the vocabulary

that represents that agreement. The proxy function m mentioned above is equivalent to an

interpretation function as de�ned in the �eld of logic [GN88]. Given the above de�nition, we

now clarify the notion of ontological domain. Note that we distinguish ontological domain

from mathematical domain as used above. In the text that follows we will use domain to

mean ontological domain. A domain is simply a vocabulary that represents a set of exter-

nal objects consistently. We typically use the domain vocabulary as our proxy function m

in an ontology, because each term in the vocabulary is used to represent one object from

the external world. We will also consider n-tuples of terms from a domain to be part of

the domain. Referring back to the example above, tuples such as (dog, cat) belong to the

domain of Mpet .

The above de�nition of ontology illuminates the need for articulations. When we want

to use an existing ontology for a new application, or combine terms from more than one



2.1. ARCHITECTURE 39

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Spell Check

Glossary

OED

Crisis Mgmt

Membership

OPEC WFB

Figure 2.1: Unary and Binary Articulations

source ontology for use in an application, the semantic mappings, or more properly the proxy

functions associated with the ontologies, must undergo a transformation. If we want to use

Mpet to cover the type of food the animals eat, we see that we can transform mammal

to carnivore, and �sh to vegetarian. Note that this transformation is only valid for the

speci�c data of Mpet , and the addition of piranha would require a di�erent transformation.

Articulations embody this transformation and enforce access to a controlled portion of one

or two source ontologies, using the vocabulary of a target application. An articulation is

one or two functions from source domains to a target domain, associated with composition

rules over the ontologies' object sets. We use the functions to describe how a vocabulary

is transformed into a distinct target vocabulary. Each term transformed by the function is

associated with composition rules that describe how the items in the ontology are viewed

through the articulation.

Formally, our articulation At is a partial transform of possibly multiple source ontologies

M1; :::;Mn. This transform provides a new proxy function mt that maps only a portion of

the objects, relations in the source ontologies. The new mapping preserves only the objects

that are relevant to a target application t.

Mt = At(M1; :::;Mn) (2.5)

The equation above expresses the most general case where there are n source ontologies,

but we will restrict ourselves to the unary and binary cases only. Note that we consider

both unary and binary articulations where unary and binary refer to the number of source



40 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

ontologies. We do not consider n-ary articulations separately as they can be de�ned by

the composition of multiple binary articulations. Articulation is needed not only to adapt

sources to operate together, but also to adapt sources to the requirements of a new appli-

cation for which the sources were not originally designed. We introduce a new ontology,

Mkennelclub , in order to show a sample articulation with Mpet .

Mkennelclub =

(S : [kennelclub; dog ; bitch; hound ; toy ; terrier];

r : hound � dog ; toy � dog ; terrier � dog ;

hound � bitch; toy � bitch; terrier � bitch;

dog � kennelclub; bitch � kennelclub

m : hound 7! HOUND ; toy 7! TOY ; terrier 7! TERRIER;

dog 7! DOG ; bitch 7! BITCH ; kennelclub 7! KENNELCLUB)

(2.6)

Figure 2.2 is an example of an articulation which blends the objects of Mpet and

Mkennelclub above. Note that dog in Mpet matches two objects in Mkennelclub , and that

these are the only true matches between the two source ontologies. This simple matching

produces a new ontology which blends the two sources without �ltering out any of the

objects. We will see in Section 2.1.4 the connect rule which we use to make the matches

between the two above ontologies explicit. It is important to note that it is common for

articulations to reduce the size of the source ontologies that they process.

Goldfish

Pet

Cat Dog

Fish Mammal

TerrierToyHound

Dog Bitch

Kennel club

Figure 2.2: Dog Articulation

As examples, Figure 2.1 illustrates the two types of articulations we consider. The

unary type of articulation bene�ts a spell checking application by glossarizing the de�ned

terms in the Oxford English Dictionary. In contrast, a crisis management application can



2.1. ARCHITECTURE 41

use a binary articulation that combines current OPEC membership information from the

OPEC web pages with geographical and political information about OPEC members taken

from the World Factbook (WFB) [Cen97]. The following sections cover the de�nitions of

the objects which are members of an ontology and the composition rules that allow us to

construct articulations.

2.1.3 Object Model

Rather than invent yet another model to represent the objects of our ontologies, we simply

allow any model that satis�es the semantic abstractions listed below. We call our instance of

this model Atoms Modeled in Objects or AMO for short. An object O is a tuple containing

as its arguments an identi�er r, an attribute set s, and a sequence of labeled atoms a[ ].

O = (r; s; a[ ]) (2.7)

These object semantics are general enough to subsume some existing models, and are

powerful enough to simulate others. In particular, it is easy to import XML documents

and convert OEM objects to this model. As speci�ed, objects do not explicitly type their

arguments, because none of the material in this dissertation depends on object typing.

In short, any object model that is adequate for our purposes provides for the following

abstractions:

Reference

object identity

Atom

object references, strings, numbers

Attribute set

labeled set of atoms

Value

sequence of atoms and sub-objects

In addition to its attribute set, an object has a value which is an ordered list of atoms

and nested objects. Since an object value is a sequence, position of its subcomponents is



42 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

an important part of the value. Any atom or reference in an object value is indexed by

its position in the object. A reference is an object identi�er (OID), and all objects contain

an OID attribute, that is unique across all objects. Also, the label attribute of an object is

optionally set. References from an object to others represent local identi�ers of the referred

object. Indeed, they can only be used to access the referred object from the objects which

contain them, and can form part of a path expression to reach the referred object. References

without a source object are OIDs which are considered global with respect to the domain of

the information source. Reachability of objects through repeated traversal of references in

the AMO model is the sole criterion of object existence. The set of objects reachable from

a given object constitute its universe. The set of objects reachable from OID (globally)

referenced objects constitute the universe of a domain. Figure 2.3 shows each of the above

abstractions' graphical representation. The arc pointing to the object is the OID, the small

white rectangles are the atoms which together represent the value of the object. The �rst

atom represents the object's attribute set, the second and fourth are strings, while the third

atom is a number. The �fth atom is a reference to a sub-object of the object. Changing the

order of any of the atoms changes the value of the object, as much as changing the value

of any of the atoms. Below we present primitive operations over AMO which relate the

di�erent parts of the model.

ValueOID

Atoms
AB 12 yz

Attribute Set

Figure 2.3: AMO Object Model

Note that only objects have an identity to which others can refer. All other components

of the model are atomic values, which may not be shared, and have no existence independent

of the object that contains them. Atoms may, however, be copied, edited and rei�ed.

Objects have a value, which is de�ned as the sequence of values that compose it. This model

corresponds to XML supplemented with object identity, where a bracketed <obj>...</obj>

XML object corresponds to an object in our model, and its URI is its identi�er. This style

of object access corresponds very closely to applying a document object model (DOM) to

XML. The object model allows us to represent, without modi�cation, HTML and XML



2.1. ARCHITECTURE 43

documents, data in Stanford's OEM [GCCM96] format, plain text, and database relations.

It is simple to convert plain text to AMO, by simply wrapping the text in a single object

where the entire text is the sole atom. Furthermore, AMO is rich enough to represent

more complex relationships such as inheritance and typing. This expressiveness allows it to

simulate UML [Fow98] and frame [Kar92] models.

2.1.4 Rule Language

While the algebra we've alluded to in Section 2.1 transforms contexts and the object graphs

they represent, it is also convenient to be able to express these transformations speci�cally

in terms of operations on the objects that constitute the graphs. These primitive operations

support the algebra and form the rule language AMORL, out of which we construct the

similarity and coherence expressions de�ned below. These expressions are constraints to the

algebraic operators, as selection and join conditions are in the relational algebra. In essence,

AMORL performs the low-level syntactic transformations on components, in support of the

semantic operations of the algebra.

The operators listed below form expressions that operate on an idealized data stream

from the information source to the application. Expressions concatenated together are

executed in sequential order, and require pipelined execution or multiple passes of the data

stream, while nested expressions represent a single pass of the data stream.

In addition we've listed a few sample rules taken from the articulation that de�nes the

Webster's dictionary nexus. Note that these rules apply equally well to AMO objects as

they do to plain text, since plain text can be considered an atom of a single enclosing object.

Also, these rules specify portions of objects or atoms based on regular expression patterns.

This object addressing style allows us to refer to zero or more objects, depending on the

speci�city of the expression.

A pattern identi�es one or more objects in an object graph by value or by reference.

When a rule matches objects, the transformations are determined by the other parameters

of the rule. OID sets, atom sets and position sets that serve as rule parameters contain the

values that modify the objects that match the pattern. The types of pattern predicates are:

� path expressions over references

� set membership expressions over attributes

� regular expressions over strings



44 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

� relational expressions over numbers

Note that the last three pattern expression types refer to values contained within an

object, whereas the �rst expression type refers to any path that reaches an object. Given

a classi�cation of vehicles by the medium in which they operate, and their purpose of use,

vehicle.land.recreational.* is a path expression that will reach objects such as bicy-

cle, skates, skis, and vehicle.*.cargo reaches freight train, tanker ship, and cargo plane.

Membership expressions appear in path expressions, as well as on their own and are com-

bined disjunctively or conjunctively. Assuming that vehicles have attributes wheel, license

and motor, then the disjunctive pattern vehicle.land.recreation.*.[wheel|motor] can

return in-line skate or snowmobile, which have either attribute. In contrast, the conjunc-

tive expression vehicle.air.recreational.*.[wheel&license] returns piper cub, but

not hang glider (since hang gliders don't have wheels).

Note that the conversion rules de�ned below allow transformations from values to objects

(reify), which enables their use in wrapping sources which are not already within the object

model. These conversion operators also allow the uninterpreted substructure of an object

to be transformed into attributes of the object. Such re�nement of structure enables us to

recognize objects with di�ering granularities as being similar.

� constructor

create

generate new objects to proxy, or stand in for and refer to existing objects. Takes

an object pattern and a set of references as parameters, to create objects based

on the pattern.

create(`England', f`English'g)

add the proper noun England to the articulation and have it reference the

term English.

� connectors

connect

generate new objects to proxy for and equate distinct objects from separate

sources. Takes two object patterns and an OID set as parameters.



2.1. ARCHITECTURE 45

inherit

generate new proxy objects in a subsumption relationship between separate

sources. Takes an existing OID, an object pattern and an OID set as parameters.

� editors

insert

insert an atom into object at a speci�ed index position. Takes an object pattern,

an atom set and a position set as parameters.

edit

edit an atom within object at a speci�ed index position. Takes a source pattern,

a replacement value, an atom set and a position set as parameters.

edit(`&ccdiln.', `c', *)

replace French �c with c because it is not uniformly applied throughout the

document

move

move an atom within object to a speci�ed index position. Takes a source pattern,

a destination value, an atom set and a position set as parameters.

delete

delete an atom from object at a speci�ed index position. Takes an object pattern,

an atom set and a position set as parameters.

� converters

reify

replace an atom in an object with a reference to an object containing that value.

Takes an object pattern and a position set as parameters.

reify(edit(`ie[drs]$', `y', *), *)

plurals of words ending in `y' are returned to singular form to match with

dictionary entries

fuse

replace the reference(s) in the referring object with the values of the referred

object in the appropriate index position. Takes an object pattern and a position

set as parameters.



46 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

Strictly speaking, the set of operators above is not minimal. It is simple to simulate the

inherit object, edit value, and move value rules using the other rules.

Note that a context is itself an object and that the rule language speci�es how the

context is populated with values from sources. Constructors create new objects which are

not represented directly in sources. Connectors generate proxy objects that stand in for one

or more objects from sources, which may then be modi�ed using editors and converters.

In the following section we list the algebraic operators without going deeper into their

de�nitions.

2.1.5 Algebraic Operators

The algebra consists of a composable set of operators that transform contexts into contexts.

These contexts, de�ned in more detail in Section 5.0.1, encapsulate ontologies with a guar-

antee of semantic consistency. The operators are listed below with a brief description of the

operation they perform. The abbreviated form of operator names given here is also used in

the dissertation.

� Unary operators

S Summarize

term classi�cation

G Glossarize

listing of terms

F Filter

object instance reduction

E Extract

schema simpli�cation

� Binary operators

M Match

term corroboration and refactoring

D Difference

schema distance measure



2.2. THESIS CONTRIBUTIONS 47

I Intersect

schema discovery

B Blend

schema extension

Unary operators reformulate source information with respect to the requirements of

the target application. Summarize is the canonical unary operator. It is used to establish

and re�ne a context within which the source knowledge meets the requirements of the

application. For example, S groups a set of objects by an attribute's value, by the attribute's

presence or absence, or by objects' current path expression. Binary operators express the

linkages between sources that are germane to the needs of an application. Playing the same

role for binary operators that S plays for unary operators, Match or M is the canonical

binary operator, and is used to develop and re�ne articulations between sources. M groups

objects in two sources together when they have similar attribute values and path structure.

We de�ne the operators in greater detail in Chapter 5, for those wanting a more complete

overview of the infrastructure supporting the claims of the thesis. These claims are the

subject of Section 2.2, which led us to the hypotheses we de�ned in Section 1.2.

2.2 Thesis Contributions

As we saw in Section 1.2 we have three hypotheses to con�rm in the dissertation. This

chapter has provided the background to describe our contributions in more detail and to

introduce the key chapters of this dissertation. Although database systems typically allow

a very rich query capability over the data they maintain, there is a deep assumption that

the data conforms strictly to its schema. This assumption is so pervasive in the database

�eld that it is very di�cult to present work under di�erent conditions. In this dissertation

the paramount assumption is that it is di�cult to bring information from multiple sources

into a single consistent format. Even stronger, it is non-trivial to refactor a single large

information source for a new purpose, regardless of its level of consistency for its original

application. The scope of this thesis does not permit us to build a complete query answering

system; we focus instead on this lower level problem of restructuring information.



48 CHAPTER 2. GROUNDWORK FOR AN ALGEBRAIC APPROACH

2.2.1 The Word Nexus

The nexus is a repository of relationships between terms contained in an on-line dictionary.

With this new graph structure it becomes possible to consider a large number of relationships

over the dictionary terms, and to contemplate the feasibility of computing them from the

structure itself, rather than manually extracting them. First o�, is it possible to determine

the most important de�nitional terms in the dictionary? More conservatively, can we �nd

for a given term, which are the words in its de�nition that contribute most to its meaning?

Also, how are similar terms related in the graph structure? As it turns out, new algorithms

adapted from graph theory point in the right direction. With these algorithms the dictionary

repository itself plays a central role in facilitating the development of other articulations

over other information sources.

2.2.2 Nexus Extensions

We extend the word nexus by computing new structural relationships between directed

labeled graphs. Structural relationships refer to sets of arcs in a graph that may share an

end point, or have end points with related labels. Considering the entire graph as a ow

network, we look for steady states of ow across the arcs between the nodes. This ow

represents the importance, with respect to usage, of each term in the dictionary. Once the

notion of network ow over the graph exists, we de�ne further relationships. For example,

similar terms in the dictionary should have similar de�nitions. We de�ne a new algorithm

for computing similarity of terms in a large repository. Using the ow between nodes it

becomes possible to quantify what similar means. With these relationships the cost of

computing similar terms across other repositories is reduced to a linear time operation.

2.2.3 The SKEIN System

SKEIN is our framework for rapid development and maintenance of rule sets that mediate

heterogeneous information sources. We show how the object model makes it easy to establish

new structures given a model of the source information. We de�ne how the rule language

supports the restructuring of the data as inconsistencies and other irregularities become

evident in the data. Taking an on-line Webster's dictionary as our example we create a

97,000 node directed labeled graph from the dictionary de�nitions. We see the adaptability

of the rules creating this graph when the underlying data source is updated. We reuse the



2.3. GROUNDWORK REVIEW 49

rules to transform two other related data sources. First, a Roget's thesaurus, with one

thousand nodes in the resulting graph, demonstrates resilience across data sources. Second,

the Oxford English Dictionary, with over 327,000 nodes, shows the scalability of the rule

system.

2.3 Groundwork Review

In this chapter we de�ned the important terms of the dissertation. We presented a simple

object model and rule language which form the foundation of an algebra, and are also

prerequisites for constructing structures such as the nexus. We also very briey introduced

the notion of algebraic operators in our system. In the following chapters we treat each of

our thesis contributions in turn, and show how it ful�lls one of the hypotheses we de�ned

in Section 1.2.



Chapter 3

Nexus Development and

Maintenance

Chapter Outline

This chapter investigates the refactoring of existing knowledge bases for uses that were

unanticipated by their original creators. The extended example of Chapter 1 shows how

general-purpose airline ight schedules can be refactored to provide information about meals

on airline ights. In our model knowledge sources are assumed to be autonomous and are

not changed by the refactoring process, but may change as they are updated for their

original application domain. The techniques developed for refactoring knowledge bases

are therefore also applied to the maintenance of such refactored information when the

underlying knowledge sources change. The autonomy of diverse knowledge sources is an

obstacle to integrating all pertinent knowledge within a single integrated knowledge base.

The cost of maintaining integrated knowledge within a single knowledge base grows both

with the volatility and the number of the sources from which the information originates.

Establishing and maintaining application speci�c portions of knowledge sources are therefore

major challenges to ontology management.

Rather than materializing all of the information from the sources into a single knowledge

base, we present algebraic operations in Sections 3.2.1 and 3.2.3 that enable the construction

of virtual knowledge bases geared towards a speci�c application. Operators express the

relevant parts of a source and the conditions for combining sources using AMORL de�ned

in Chapter 2. Rules which expose the relevant parts of a source determine what we de�ned

50



51

in Section 2.1 a coherence measure between the source and its target application. The rules

which articulate knowledge from diverse sources establish a similarity measure between

them. The sections that follow describe our selection of our �rst large data source to

analyze and how we reused and extended our results to other data sources.

3.0.1 Basic Nexus Characteristics

This chapter presents a case study of repository construction from an autonomous source, for

use in a real world application. In the course of developing the application, the underlying

data has been updated three times, requiring repeated execution of a source refactoring

operation to bring the repository up to date. We show how a principled approach based on

algebraic operators has made it possible to create and maintain access to this information

with a low overhead cost, thus ful�lling the �rst hypothesis of this dissertation.

Proprietary dictionaries such as the Mirriam-Webster [Mir99] and encyclopedias like

Encyclopedia Britannica [Enc99] are available on the World Wide Web. Typically they

present a user interface that provides access to one term at a time in the typical case. Most

freely available dictionaries have partial coverage, or are limited to a speci�c domain [Ger96].

Among the most extensive freely available corpora we �nd WordNet [MBF+90], which has

been hand-crafted over several years by interested specialists, and does not claim to be a

complete language reference. However, some sources with complete and relatively unbiased

coverage do exist. The on-line version of the 1913 Webster's dictionary [MIC96] is available

through the Gutenberg Project [PRO99b].

The source data of the dictionary was originally scanned and converted to text via char-

acter recognition software and therefore contains thousands of errors and inconsistencies.

The abundance of errors in the dictionary data makes it an ideal test bed for our research.

Dealing with incorrectness in sources provides our approach with the robustness needed for

real-world settings. The second reason the Webster's dictionary is a valuable source for

study is that it is autonomously maintained and updated. At roughly semi-annual intervals

its maintainer adds material to it and corrects some of the errors in the text. The purpose

of the updates is to eventually bring up the content up to date. Our target application

for the dictionary data is the construction of a graph of the de�nitions, forming a dictio-

nary repository, from which we can determine related terms, and automatically generate

thesaurus-style entries [Jan99b]. Accuracy in the data is important for meaningful results,

since we run ow algorithms on the graph structure. Misspellings and incompleteness in



52 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

the terms and de�nitions, as well as errors in the labeling of the data resulted in over �ve

percent of the data being incorrectly interpreted using a naive wrapper. We iteratively re-

�ned the naive wrapper using operators from our algebra to reduce the exception rate below

one percent. For comparison, our �nal articulation requires just under 500 rules performing

some 300,000 transformations in total. These transformations handle approximately 80,000

inconsistencies representing approximately 4% of the Webster's source data. Of these rules

the majority are executed exactly once. The great bene�t is that the number of rules is so

many orders of magnitude less than the size of the resulting nexus.

The Webster's dictionary is autonomously updated as part of an ongoing e�ort to remove

its inconsistencies, and to add updated material. This updating makes it possible to verify

our maintenance claims for the repository we have constructed. Our use for the information

contained in the dictionary is typical of a demanding application, as it provides a legitimate

service and it has strict tolerances for how much erroneous information it allows. We

discuss, within an algebraic framework, how we establish and maintain a context that

takes the source data and makes it available to the application, meeting the application's

requirements. We present the initial derivation of the context for our application, and show

in the following section how the re�nement process is repeated, albeit with less overhead,

when the source undergoes change. In the �nal section we describe our application, and

discuss our future directions of research.

In the next section, we describe the dictionary repository, as well as its creation and

re�nement. We focus on four operators used in this process, the Glossarize, Extract,

Match and Summarize (G, E, M, S, respectively) operators. The G operator generates the

objects in the repository, while E associates a sequence of terms with each object, and M

generates references between objects based on the sequences created by E. The S operator

is the primary tool for re�ning and maintaining a context between a knowledge source and

an application.

3.1 Webster's Dictionary

This section describes the source data, the on-line Webster's dictionary, that we use in

our experiments. This edition of Webster's dictionary was recently (1996) converted to text

format from scanned images using OCR (Optical Character Recognition) The resulting text

is tagged using SGML style tags to mark the parts of the de�nitions. De�nitions from the



3.1. WEBSTER'S DICTIONARY 53

<p><hw>E"go*ism</hw> <pr>(?)</pr>,

<pos>n.</pos> <ety>[F.

<ets>\'82go\'8bsme</ets>,

fr. L. <ets>-ego</ets>

I. See <er>I</er>, and

cf. <er>Egotism</er>.]</ety>

<sn>1.</sn> <fld>(Philos.)</fld>

<def>The doctrine of certain extreme

adherents or disciples of Descartes and

Johann Gottlieb Fichte, which finds all

the elements of knowledge in the

<xex>ego</xex> and the relations which

it implies or provides for.</def></p>

<p><sn>2.</sn>

<def>Excessive love and thought of self;

the habit of regarding one's self as the

center of every interest; selfishness; --

opposed to <xex>altruism</xex>.</def></p>

Figure 3.1: Webster De�nition of Egoism

dictionary data for Egoism are shown in Figure 3.1.

We have been using the dictionary data to research the relationships between dictionary

terms. One potential application of these relationships is the extraction of thesaurus style

entries, such as for the term Egoism in Figure 3.2. The terms in the �gure all have dictionary

de�nitions that contain other terms in the �gure. Whenever there is an arc between two

nodes it indicates that the de�nition of the �rst term contains the second term. For example,

the term Altruism contains the term Egoism in its de�nition, and as it turns out the reverse

is also true. The relationships between terms are expressed by extracting the implicit

structure contained in the dictionary, rather than explicitly marked ones such as synonyms.

This implicit structure is found by positing that terms must be connected to the words

used to de�ne them. Note the strong relationships between terms in the graph. Most of the

terms in the cluster depicted in Figure 3.2 are synonyms or near synonyms of Egoism, and

the others are antonyms. We've de�ned as coherence the relationship that connects these

terms, that is, the degree of relevance to each other that the words share. In the SKEIN

system we use the coherence relation to discover which terms in an information source are



54 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

Altruism

Egoism

Altruist

Egoist

Conceitedly

Egotistic

OverweenOpinionately Coxcomically

Egoistic Subjectivism

Solipsism

Egotism Egoical Egomism Suicism

SubjectivistAltruistic Egoistically Overman Egotist Egotistically

EgotizeAutophoby

Overweener

SubjectistSuperman

Figure 3.2: Automatic Thesaurus Extraction from Dictionary

relevant to the application for which we are building a mediator. We call nexus the tool we

build with all of the collected dictionary data. Its purpose is to serve as a tool in reducing

the occurrence of lexical mismatch when enabling diverse ontologies to interoperate. We

describe this use of the nexus in Chapter 5.

The dictionary is organized as a set of head words, associated with a pronunciation,

etymology, possibly multiple de�nition entries, quotes and other tagged items. For the pur-

pose of our application we were interested in the head words <hw>...</hw> and de�nitions

<def>...</def>. The special meaning of many other types of tagging, such as cross refer-

ences, <xex>...</xex>, are ignored. While it is certain that these ignored tags would add

relevant terms to the structure we wish to extract. However, preserving the terms in these

other tags would make it di�cult to verify the hypothesis that the de�nitions contain words

that are strongly related to the terms they de�ne. Since part of our research aims to show

the value of the nexus we extract from the dictionary, it is best to measure the value of the

nexus without additional terms that would complicate the measurement. Head words and

de�nitions are in a many to many relationship, as each de�nition refers to di�erent senses

of a term, and each head word has variant spellings. We constructed a directed graph from

the de�nitions as follows:

1. each head word and de�nition grouping is a node

2. each word in a de�nition node is an arc to the node having that head word

Substantial manipulation is required to bring the dictionary data into a format ready



3.1. WEBSTER'S DICTIONARY 55

for generating a graph [JW99]. Other problems in the transformation process are listed

below.

� syllable and accent markers in head words (E"go*ism)

� mis-tagged �elds

� misspelled head words

� stemming and irregular verbs (Hopelessness)

� common abbreviations in de�nitions (etc.)

� unde�ned words with common pre�xes (un-)

� multi-word head words (Water Bu�alo)

� unde�ned hyphenated and compound words

Markers such as those indicated here in E"go*ism are removed �rst. We discover �elds

that are missing an end tag when head words are inordinately long, or de�nitions are missing,

or contain other de�nitions inside them. Misspelled head words are recognized when the

de�nitions consistently use a variant form of the term. The easiest type of misspelled head

word to identify are compound words, others contain sequences of characters that do not

occur in English. De�nitions use many forms of a word that do not appear as a head

word. In particular, word forms that contain multiple su�xes rarely are head words, so we

need procedures to convert de�nition words to head words. Likewise, abbreviations, proper

nouns, and words with very common pre�xes are infrequently de�ned. Finally, hyphenated

words and compound words are very inconsistently de�ned and used. Thousands of cases

occur where words are de�ned with a hyphen and used without, and vice-versa.

When a conjugated verb form appears as a head word we use it for generating graph

arcs. Otherwise we stem de�nition words until we �nd a head word that matches. Also,

whenever we �nd instances of a multi-word head word in the de�nitions, we prefer it over

the individual words for generating a graph arc. Since words often appear multiple times

in a single de�nition we allow multiple arcs between graph nodes. Dealing with unde�ned

terms and spelling errors is the most complex issue in the graph generation, and accounts

for the quasi-totality of the structural errors in the graph.



56 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

Table 3.1: Rule Categories and Frequency of Occurrence

� Domain Universals: 1�1 � 1

edit(`&ccdiln.', `c', *) : replace French �c with c

� Language Related: 1�2 � 1�1

reify(edit(`ie[drs]$', `y', *), *) : plurals of words ending in `y'

reify(edit(`[Dd]rn.', `doctor', *), *) : abbr. of doctor

� Domain/Language Interaction: 1�4 � 1�3

create(`England', `English') : add proper noun to dictionary

� Domain Idiosyncratic Instances: 1�6 � 1�5

edit(`aconitiq', `aconitia', *) : spelling error in dictionary head word

To give a better sense of the types of rules we used and how frequently they �re, we've

listed a few of the rules in Table 3.1. Frequencies are listed relative to the number of

terms processed in the sources. Domain universals are the rules which apply to terms that

appear frequently throughout the data source. Note that these terms are universal to the

speci�c source domain, and rules developed to change them are not generally valid in other

contexts. Language related rules are those that morphologically transform terms into a core

form. For example, transforming a plural into a singular form or a past tense into a present

tense, are examples of language related rules. There are also rules to handle cases where

the characteristics of the domain interact with the language. In our example, we developed

rules to handle situations where proper nouns were used in de�nitions, even though they

themselves are not de�ned in the dictionary. Finally, a category of rules handle domain

idiosyncratic problems, such as spelling errors. We have found that domain idiosyncratic

rules make up the majority of those in our articulations, but that the domain universals

are those that �re most often. We've listed the categories in Table 3.1 in their order of

frequency of occurrence.

Even after accounting for accented characters, a naive script is unable to properly assign

over �ve percent of the words, because of the above mentioned di�erences between the

actual data in the dictionary and its assumed structure. Any errors in the computation

of the graph would a�ect any subsequent computation of related terms for the thesaurus



3.2. REPOSITORY CONSTRUCTION 57

application. Therefore, we set a goal of 99% accuracy in the conversion of the dictionary

data to a graph structure.

3.2 Repository Construction

In this section we show how we use the algebraic framework to rapidly generate a large object

repository from a text source. The product of the algebraic operators are articulations, the

rulesets that generate the repository. We show that without complete knowledge of both

sources and target application, iterative construction of articulations is necessary.

3.2.1 Extraction from Source Data

In this section we cover the application of G, E and M operators to the dictionary source.

The actual code for these operations can be found in Appendix B.

The Glossarize operator G takes source data in AMO format and returns a list con-

taining all of the objects in the source data. Recall from Section 2.1.3 that plain text

converts trivially to AMO. In fact G can contain a reify rule that explicitly performs this

conversion. The e�ect of G is to atten any complex object structure in a source, because

all sub-object relationships are removed from the resulting list of objects. In the case of

the Webster's dictionary, there are no objects in the source initially. We use AMORL to

reify objects from the raw data. The sequence is implemented in Table 3.2. The code we

use to perform the extraction is presented in Section B.2. The method of generating proxy

objects to represent the raw source is as follows:

1. segment data into chunks de�ned as containing a minimum of:

� one head word (marked by <hw>, </hw> tags)

� one de�nition (marked by <def>, </def> tags)

2. merge chunks if head words match a pre-existing chunk

3. reify chunks as objects then enumerate them

4. label objects using head word value

The Extract operator E takes source data and generates objects whose contents are a

list of primitive values. In the case of the dictionary, only the portion of the source contained



58 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

within <def>, </def> tags is used. From the de�nitions we generate one list of string values

for each glossarized object of the nexus. This step of extracting the list of string values is

the central part of the E operator. We list the code we use to perform the extraction in

Section B.3. The method of extracting the de�nition portion of the proxy objects de�ned

above is as follows:

1. from each object chunk, select the <def>, </def> tagged data

2. generate a list using the white-space separated terms in the de�nitions

3. replace the current object chunk's value with the newly created list

The line marked (2) of Table 3.2 shows the AMORL operations to compute E over the

unstructured object chunks created by G. Finally, Match takes the value of each object (the

list computed above by E), and determines for each element of the list which object best

matches it. The M operator substitutes into each glossarized object a list of references to

other objects for each list of strings extracted by E. We perform the match using code listed

in Appendix B.5.

3.2.2 Constructing the Coherence Expression

The dictionary nexus is constructed from the raw corpus data of the dictionary as obtained

from the ftp site. We proceed by writing the transformation as a coherence expression.

The simplest form of the script that represents such an expression consists of the following

AMORL operations. Table 3.2 shows the �rst cut of the expression. The key lines in

the table are (1) that generates the objects for G and (2) that extracts the sequences of

de�nition terms for E given the Webster's dictionary source data. Regular expressions are

simpli�ed for conciseness of presentation.

This script creates an object that represents the entire source, which is then subdivided

into chunks containing at least one head word and one de�nition, which are then extracted

into separate sets within the chunk. Each script fragment such as Table 3.2 represents

operations in the course of a single pass through the source data, the output of which may

be passed to another script. This initial script very approximately expresses the coher-

ence relationship between the dictionary and the thesaurus application. The �nal script,

containing about 500 conversion operations that perform over 300,000 transformations, is

presented in Appendices B.2 and B.3. The script remains associated with the output, and is



3.2. REPOSITORY CONSTRUCTION 59

Table 3.2: Coherence Expression for G and E Operations

// assign contents to object

dictionary = create(".*") {

// generate dictionary entries

entry = reify("<hw>\(.*\)<hw>") {

// insert head word values

(1) head_word = insert("<hw>\([^<]+\)</hw>") {

// remove syllable and accent markers

self = edit("[\"`*]", "")

}

// insert definition object

(2) definition = reify("<def>\(.*\)</def>") {

// insert definition word attributes

word[] = insert("\([^ ]+\)[ \n]")

}

}

}

part of the de�nition of the context which represents that output. In the following section,

we show how the S operator allows us to capture some of the classes of conversions which

enhanced the above initial script.

This articulation represents the �rst large scale example that we developed for our

thesis research. It demonstrates parts of the algebraic framework that we use to structure

the dictionary nexus and to make our system scalable. Here we present a de�nition for the

Summarize operator and show its use in re�ning the repository.

3.2.3 Summarization of Exceptions

This section shows how we take the results of one iteration of the algebraic operation,

determine those results which do not match application requirements, and aggregate them

to �nd classes of exceptions.

The Summarize operator is a unary operator that transforms source data according to a

predicate which corresponds to a coherence expression. The predicate therefore consists of a

ruleset from the rule language. S creates a new object, in e�ect a context, that encapsulates

the information of the source, and populates the object with results of an aggregation

operation over the source information. The application that motivates the existence of the



60 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

S operator is data classi�cation. The aggregation over the source data e�ectively groups the

source into equivalence classes. Given contexts c1, c2, a ruleset e that de�nes the coherence

expression, the syntax of the operator is as follows:

c2 = Se(c1)

Formally, the matching predicate e partitions the objects of the initial context c1 into

n equivalence classes. The constructed result context c2, is an object consisting of n + 1

values: the �rst is e, and the following n values are sets s1 : : : sn of references to each of the

objects of c1. One of the equivalence classes of the result context is an exception class, for

objects that do not match e.

Since it is di�cult to follow the capabilities of the S operator from a description alone,

we present an extended example from our research.

3.3 Repository Re�nement, Maintenance and Reuse

In this section we see how we use the algebra to re�ne the nexus iteratively by discovering

anomalies in the source data and incorporating any resulting �xes into the context of the

articulation. The new rules that we add after the analysis of the uncovered anomalies

contribute to the consistency guarantees of the context. We show how this process is

equivalent to the maintenance process when the underlying source data changes.

3.3.1 Iterative Context Re�nement

This section shows how the exception classes of one iteration of an operator are expressed

in new rules that extend the articulation for another iteration of the operator.

The S operator provides a simple method for assessing the contents of a context. For

example, we use a simple AMORL rule together with S to split the dictionary head words

into equivalence classes. The expression Slen(hw)div20(dictionary) returns the entries of the

dictionary grouped by length of the head words. Applying this operation on the actual data

reveals terms with missing end tags in the data (implied by long head word length). Less

than ten of these cases occur in the source data, and we easily construct individual rules

to correct the run-on head words. Once the errors are identi�ed, the rules to convert terms

with missing end tags are added to the de�nition of the set `hw' above. Using S we are

also able to determine that other tags were equally valuable as head words, that we need to



3.3. REPOSITORY REFINEMENT, MAINTENANCE AND REUSE 61

remove accentuation from foreign words. We also discover spelling errors in the head words

by analyzing the frequency of words found in de�nitions, but do not occur as head words.

The context re�nement algorithm is as follows:

1. For i in f1; � � �; ng

2. ci0 = Sei(ci)

3. Generate rule(s) ri to handle exception objects

4. Insert ri into ruleset for ci creating ci+1

5. Generate ei+1

3.3.2 Maintaining the Repository

This section shows how updates to the information sources requires adjustments to the artic-

ulation built on top of them. These adjustments are shown to be equivalent to articulation

improvements de�ned above.

In the course of developing the wrapper to the Webster's dictionary the maintainer of the

source data performed a major revision of the source, a�ecting 10%-25% of all of the entries.

These changes are part of an ongoing e�ort to correct and extend the dictionary, and they

included corrections in the tagging of the entries, spelling corrections, reformatting of the

text, addition of notes and comments, etc. By maintaining statistics with the S operator

on the process of extracting the relevant parts of the dictionary, we were able to note which

rules were no longer needed because the exception they handled had been updated. A

comparison of the terms that we could not classify in the old and updated sources revealed

a few new errors that had been introduced in the data. Since the editorial e�ort for this

on-line Webster's dictionary is volunteer driven, it is possible that the level of rigor in the

updates is lower than for a professional publication. As it turns out there was relatively

little within the wrapper that required correction when the source changed. In fact, only

approximately 40 rules, or 8% of the total, were rendered unnecessary as a result of the

source change. There were very few changes to the size statistics of the dictionary, and

the wrapper execution time decreased slightly as a result of the reduced number of rules.

Formulating the coherence measure within the algebraic framework signi�cantly simpli�ed

the process of identifying and handling the changes.



62 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

3.3.3 Revisions for Reuse

This section shows that the operator code developed for one dictionary source is portable

and scalable. We obtained source data for a 1911 edition Roget's thesaurus, which we

processed using the Webster's dictionary articulation. The changes to account for the

di�erent source structure took approximately one half hour to implement. The compact

resulting nexus with 1022 nodes and 5,100 arcs served as a convenient test bed for early

experiments with the all pairs similarity algorithm described in Section 4.4.3. The success

of this refactorization of the nexus articulation allowed us to characterize it better. The

nexus articulation is easily applied to any source which refers to its own component parts,

such as dictionaries, glossaries, thesauri, and encyclopedias. To con�rm the generality of

the articulation it was still important to show its scalability.

By adapting the code developed for the Webster's dictionary to operate on the Oxford

English Dictionary, we tackled a data source that was over eleven times as large as the

�rst. While the original wrapper was developed over a four month period, the code update

required �ve weeks and 1000 lines of code, while the execution time of the refactoring

code scaled linearly with the data size. The main e�ort involved segmenting the OED into

chunks containing complete de�nitions. As with the Webster's dictionary, we found many

cases where the tagging that was provided with the dictionary was insu�cient to be used

without modi�cation. Speci�cally in the case of the OED there were literally thousands of

de�nitional words that were found outside of the de�nition tags.

The resulting OED nexus is four times the size of the Webster's nexus. The articulation

adaptation is also represented as an iterative improvement. Table 3.3 shows the ratio of sizes

of the two repositories. The two entries in bold are the most signi�cant in the scalability

of the algorithms. The �rst is relevant in the initial construction of the repository, the

second in the algorithms computed over the repository structure. Note that there is some

duplication of arcs between nodes, since some words are repeated within many dictionary

de�nitions. The unique arcs row in the table counts no duplicate arcs.

The major insight gained by this e�ort is, again, that whenever refactoring bodies

of information for a new purpose, it is crucial to evaluate that the requirements of the

new application are met by the semantics of the source. The initial \naive" expression

to adjust the refactoring code for the Oxford English Dictionary was developed in a few

days. However, this transformation uncovered literally thousands (7%) of the de�nitions

empty or containing single word connectors such as `Hence,' `So' and `Also,' and thousands



3.3. REPOSITORY REFINEMENT, MAINTENANCE AND REUSE 63

Table 3.3: Nexus Size Comparison
Repository Component OED Size Webster Size Ratio

raw data 570 MB 50 MB 11.4
terms 510,984 112,897 4.53
nodes 327,680 96,800 3.39
arcs 8,090,735 2,021,549 4.00
unique arcs 5,253,332 1,438,532 3.65

more containing the words `see prev.' or `see next.' An additional two weeks of coding was

necessary to account for these factors. In contrast to the four months of e�ort to create the

Webster's repository the OED repository, building on the existing code base only required

a total of �ve additional weeks. Although four times as large, the OED repository needed

one quarter the development time. This result indicates that our framework is an e�cient

one for reuse as well.

It is important to note that the source semantics of the OED are not incorrect. In

the actual text of the dictionary, a de�nition such as `Hence', is always followed with a

more complete de�nition, for a subsequent equivalent term. Likewise, it is easy to visually

refer to a previous de�nition, when the current term's de�nition reads `see prev.' However,

in their existing form, these semantic references to other de�nitions were unsuited to the

novel application which we were targeting. Our solution was to segment the OED in such

a way that these terms with referential de�nitions were always grouped together with the

previous, or where appropriate, with the following term.

Table 3.4: Repository Construction Times
Construction Phase OED Time Webster Time Ratio

segmentation/glossarization 72 min. 14 min. 5.14
graph matching 134 min. 21 min. 6.38
ranking functions 309 min. 77 min. 4.01
overall times 9.5 hr. 1.85 hr. 4.60

Table 3.4 gives the ratio in execution time for the construction and ranking of the two

repositories. The �rst two phases have a computational cost that is dominated by the

terms of the repositories. E�ectively, the �rst phase �nds all of the repository terms, and

the second phase matches up de�nition words to those terms. The second order cost in

the �rst two phases is the size of the raw data, since both phases must pass through the

entire data set to �nd the terms and de�nition words. The ranking phase is dominated



64 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

in computational cost by the number of arcs in the repository graph, since a function is

repeatedly computed for each arc. Overall, we observe a linear growth in computation time

with respect to the size of the source data.

In order to check that all of the rule transformations execute consistently, we developed

visualization techniques in parallel with the articulation. Also, the process of developing

algorithms to exploit the nexus proceeded through trial and error. The �rst step we took

towards these algorithms was to explore the structure of the nexus. In the next section we

discuss the �rst tools developed to visualize the repository structure.

3.4 Graph Manipulation Toolkit

This section presents tools for graph exploration, and visualization, that expose the overall

structure of labeled directed graphs. Prior to this work, there was no description of the

overall structure of the graph of de�nition terms of the dictionary. The tools below exposed

this structure, and made it possible to determine what kinds of graph algorithms would be

well suited for such graphs. One discovery due to these tools was the tight coherence of

meaning for the terms in the thousands of word clusters found in the nexus, such as the

one shown for the term `Egoism' in Figure 3.2.

Common
Vocabulary

“apple”
Scientific Terms

“dinosaur”

Numbers, Names
“1898”

New/Rare Words
“dotcom”

Webster’s
27005
69795
3931
4938

OED
82692

244988
27442
15709

Cluster Terms
Strongly Connected Component: Kernel
Connect into Kernel
Connect from Kernel
Disconnected

Figure 3.3: Overall Dictionary Nexus Structure

The word nexus contains a central cluster or kernel, which is strongly connected, that is,

there exists a cycle of directed arcs between any pair of nodes. The nexus is surrounded by



3.4. GRAPH MANIPULATION TOOLKIT 65

a cloud of much smaller clusters, which link to the kernel, but no nodes link to them. After

processing by the graph manipulation tools, the kernel and satellite clusters emerge from

the tangle of repository links. Figure 3.3 presents this general structure and lists the total

number of nodes in the various types of clusters. The �gure depicts the great di�erence

in relative size between the di�erent types of cluster, but only very roughly approximates

the relative numbers of the cluster types. The central circle represents the kernel, which

contains common vocabulary of the English language, such as the word `apple.' Words

like `dinosaur' which are not used as frequently, form clusters that connect into the kernel,

while dates, `1898' and proper nouns `England', which are not de�ned in the dictionary,

but are used in the dictionary de�nitions form clusters that are connected from the kernel.

In every living language there exist terms which have not entered the dictionary, because

they are new or have limited usage, like `dotcom'. For completeness we have included these

terms in Figure 3.3 in the disconnected category. We have approximated their number

by considering in this category all terms that appear in exactly one de�nition, but aren't

de�ned themselves. Other estimates of the number of disconnected terms could be obtained

by computing the number of terms used in secondary sources that do not appear in the

dictionary. We do not consider the disconnected category any further for lack of data.

Figure 3.3 also gives the number of terms that fall into these categories in the OED nexus

and the Webster's nexus.

Given this overall graph structure consisting of one large component surrounded by a

multitude of small components, it is interesting to examine the distribution of incoming and

outgoing arcs for each node. These distributions should provide clues as to why the graph

is structured as it is. Figure 3.4 shows that for both the Webster's and OED repository,

the in-degree of the nodes of the graph follows a Zip�an [Zip49] distribution with the

same exponent. Likewise, Figure 3.5 shows the out-degree of nodes in both repositories is

Zip�an, except for de�nitions under twenty words in length, which represent 20% of the arcs

of the graph. It is striking that these distributions arise in independent repositories that

represent the same entity, namely the English language. The distributions, and therefore

the macroscopic structure of the graph, must arise out of properties of the language.

The tools described in the next sections were developed to explore the structure of the

large directed graphs that form the nexus. These tools allow us to empirically verify that

the nexus conforms semantically to the source dictionary from which it is extracted. They

represent the early e�orts at making use of the nexus before the algorithms of Chapter 4



66 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

nu
m

be
r 

of
 w

or
ds

frequency of word usage

OED word usage
slope = -1.47

Webster word usage
slope = -1.47

Figure 3.4: Distribution of Incoming Arcs

were invented.

3.4.1 Peeler

The graph peeler is a tool that iteratively cuts nodes from a directed graph, when they have

no incoming links. As an example, a singly-linked list loses its �rst element to the peeler at

every iteration, until it is an empty list. In contrast, a cycle of links never loses an element.

Simple garbage collectors use this reference counting mechanism to reclaim memory space

no longer needed by an application. This algorithm is linear in the number of arcs. The

purpose for using the peeler is a divide and conquer strategy. The hope is to reduce the

nexus to a size where its visualization and use is manageable.

3.4.2 Kernel Finder

The kernel �nder takes a graph as input and returns the largest strongly connected com-

ponent of the graph. A directed graph is strongly connected when there exists a round

trip through the graph between any two nodes of the graph. The graph peeler serves as a

preprocessing step to improve the e�ciency of the process. We developed the kernel �nder



3.4. GRAPH MANIPULATION TOOLKIT 67

1

10

100

1000

10000

100000

1 10 100 1000 10000

nu
m

be
r 

of
 w

or
ds

word count in definition

OED definition words
slope = -2.05

Webster definition words
slope = -2.05

Figure 3.5: Distribution of Outgoing Arcs

once we discovered that the peeler reached a point where the nexus stop shrinking in size.

Once we have computed the kernel of the graph, we examine the clusters of nodes that

are not in the kernel. These so-called satellite clusters are not required to be strongly

connected. A cluster is de�ned as follows: each cluster has a seed that only has arcs to the

kernel. Add nodes to the cluster if they have an arc to the seed, or to another node in the

cluster. The seed is always a single node. If the seed is a pair of nodes that refer to each

other, and to nodes in the kernel, we show by contradiction that this pair must also belong

to the kernel (we assumed this is not the case).

3.4.3 Arc Filter

Now that we have de�ned the notion of cluster, it is interesting to visualize them. To do

this, we �rst remove extraneous arcs. These are arcs from the cluster to the kernel. By

removing them, we are left with the the arcs that de�ne the cluster. The arc �lter takes two

graphs as input, and returns a subgraph of the �rst, with no arcs to nodes in the second.



68 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

1

10

100

1000

10000

1 10 100

nu
m

be
r 

of
 c

lu
st

er
s

cluster size

Webster clusters
slope = -2.75

Figure 3.6: Webster's Nexus Cluster Size Graph

3.4.4 Cluster Joiner

We may join clusters together when they share nodes. This situation occurs when a node

has arcs that refer to terms in otherwise distinct clusters. By joining clusters, we have the

ability to consider possible meaning associated with the aggregated set of terms. As an

example, one joined cluster contained sub-clusters relating to marine dinosaurs, dinosaurs

of the Triassic age, ying dinosaurs, as well as a broad category of dinosaurs. This super-

cluster has single nodes that join the sub-clusters, each to the broad category of dinosaurs.

The value of joining the clusters is to be able to visualize the larger structure and recognize

that it has its own unity of meaning as well. Figure 3.6 shows that the clusters, as well as the

joined clusters, follow a Zip�an distribution according to their size. The satellite clusters

are sorted in decreasing order of size before plotting the graph. We predict the likelihood

of a cluster of any given size in the dictionary by constructing a probability distribution

based on a power of the cluster size. The exponent is given by the slope of the line that

approximates the plots in the �gure. Figure 3.7 shows that the OED clusters are Zip�an

with a di�erent slope. Since the in-degree and out-degree statistics are so alike, as well

as the ratio of the size of the kernel to the size of the nexus, it appears that clusters do



3.4. GRAPH MANIPULATION TOOLKIT 69

1

10

100

1000

10000

100000

1 10 100

nu
m

be
r 

of
 c

lu
st

er
s

cluster size

OED clusters
slope = -3.05

Figure 3.7: OED Nexus Cluster Size Graph

not grow beyond a certain size before being absorbed into the kernel. Table 3.5 gives more

statistics on cluster sizes and their number. Note the small median size of satellite clusters.

This statistic is an indication of how preponderant the importance of the kernel is.

By doing this analysis of the structure of the nexus we have been able to ascertain

the consistency of the rules used to generate it. The clusters we extract from the nexus

show that dictionary de�nitions de�ne semantic neighborhoods, and that our articulation

preserves them. The properties of the arcs in the nexus lead us to the intuition that both

in-arcs and out-arcs are important to the nodes of the nexus. It is this realization that

informed the development of the algorithms we present in Chapter 4.

3.4.5 Visualization Front End

This section describes two graph visualization techniques, one for small sparse multi-level

clusters, the other for richly connected objects. The �rst centers longer object chains, the

other ranks and centers objects around important incoming and outgoing arcs. Figure 3.8

illustrates how satellite clusters from the graph can be visualized. After applying the graph

manipulation tools to the dictionary repository, the clusters smaller than 20 nodes in size are



70 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

Table 3.5: Cluster Count and Size Information

Type OED Webster's

total cluster count 189,149 50,485
singleton satellites 164,086 40,742
multi-node satellites 25,063 9,743
nexus size 327,680 96,800
kernel size 82,692 27,005
median satellite size 2 2
average satellite size 3.23 3.69

Aerodynamics

Aeromechanics

Aerostatics Aeronaut

Balloonist

Aerostat

Passive Balloon

Ballooner Skyman Aerial Sickness

Aeronautic

Aeronautics

Sounding Balloon Aerostatic

Ballooning

Aeroclub

Aeromechanic

Balloonry

Aerostation

Airsickness

Figure 3.8: Sparse Cluster Visualization

easily rendered using graph visualization tools such as dot from AT&T Research [ATT99].

Figure 3.2 is another representative example of the �rst style of visualization, while Fig-

ures 4.4 on Page 84 and 4.11 on Page 91 are representatives of latter style. Note that the

central node and other nodes of Figure 4.11 have many more arcs than are displayed. The

actual number of outgoing and incoming arcs for the central node is marked in the central

node. In order to select the best nodes to display, we need a mechanism to select the most

signi�cant arcs for any given node. This is the topic of Chapter 4.

3.5 Comparative Analysis of the Nexus

In this section we compare the macroscopic structure of the nexus to another large structure,

the World Wide Web. We also compare the nexus to two related lexical systems, WordNet

and MindNet.



3.5. COMPARATIVE ANALYSIS OF THE NEXUS 71

3.5.1 Comparison to the Structure of the World Wide Web

The most striking aspect of the structure uncovered in the previous sections is that it

is invariant across the two dictionary repositories. What's more, this structure is shared

by the World Wide Web when it is viewed as a directed graph. Recent results of Ra-

jagopalan [RBK+00], based on a survey of 200,000,000 web pages, give the Web a kernel

of 56,000,000 pages. The in degree, out degree and cluster size distributions are all Zip�an

with exponents 2.1, 2.7, and 2.54, respectively. Contrast this with exponents of 1.47, 2.05

and 2.75 (3.05) for the corresponding distributions in the nexus. We hypothesize that the

di�erence in exponents stems from the much greater volatility of web pages as compared

to words in the English language, but that both structures are shaped by the same type of

evolutionary process. This is very strong evidence supporting the use, over the dictionary

repositories, of algorithms that have proven value in the graph structure of the Web.

3.5.2 Comparison to Other Systems

This section compares the nexus to two other repositories, the �rst manually constructed,

the second generated by phrase parsing a dictionary. We discuss where the dictionary

repository approach expands on the capabilities of existing lexical repositories. We show

the broadness of the repository as a complement to the preciseness of the relationships in

other repositories.

WordNet has been in development since 1990, using a painstaking manual process, and

its design has been elaborated since 1986. Its current revision, WordNet 1.6 was released in

1998, and includes four principal data �les, and a number of programs to aid in searching

and displaying the data. Of the existing electronic lexical tools, WordNet is the one that

most closely resembles the Webster's repository. Recently Plumb Design [Plu00] has made a

java applet visualization available of WordNet, in which each term connects to the others of

the same category. This technology demonstration, is revealing. It gives a powerful visual

indication of the sparseness of the relationships between terms in the WordNet system. In

the visualization of the WordNet graph each term connects to a small number of other

nodes, on average less than �ve. Choosing the simple metric of average number of arcs

per node, Table 3.6 shows that the nexus has between two to three times as many of these

relationships, despite its much larger number of nodes.



72 CHAPTER 3. NEXUS DEVELOPMENT AND MAINTENANCE

Table 3.6: Comparison of Repositories to MindNet and WordNet 1.6

Name Location Nodes
(1,000s)

Senses
(1,000s)

Arcs
(1,000s)

Devel.
(month )

Webster’s
Nexus

Stanford
(Jannink)

97 113 1439 4

OED
Nexus

Stanford
(Jannink)

327 511 5253 1

WordNet
(Miller)

Princeton 100 174 727 ~96

MindNet
(Richardson)

Microsoft
Research

159 713 ~48

MindNet is not publicly available, but its scale is 159,000 head words and 713,000 rela-

tionships between head words. Its development began in 1992, and it supports 24 di�erent

relationship types between terms. MindNet relies on phrase parsing and grammatical anal-

ysis to extract these di�erent relationships. According to Richardson [Ric97], its initial

developer, the part-of relationship was only correctly extracted 15% of the time. Dozens of

specialized parsing structures had to be inferred in order to account for the non-grammatical

phrases in a large percentage of the dictionary de�nitions. As a result, it would appear that

MindNet su�ers from problems, both in terms of accuracy and completeness of extraction.

The relationships WordNet de�nes between terms are more precise, as they were manu-

ally entered; however, there are necessarily fewer of them, and they are far from exhaustive.

Also, since the design of WordNet long preceded its implementation, arti�cial concepts,

such as non-existent words, and arti�cial categorizations, such as non-conforming adjec-

tives, were introduced when the repository was built. These constructs are a valid ad hoc

approach to make the terms conform to the design, but they do not arise out of the usage

of the language. WordNet carefully distinguishes between senses of a term, and separates a

term into multiple entries when it may be used as di�erent parts of speech, i.e., to run vs. a

computer run vs. a run salmon (a run salmon is a salmon that has completed the return to

its spawning grounds). The Webster's nexus distinguishes senses of a term based only on

usage, not on grammar. Another signi�cant di�erence between the two structures is that



3.6. NEXUS REVIEW 73

the data in WordNet is separated by lexical categories, whereas our dictionary repositories

allow any relationship between terms to exist. Table 3.6 makes some simple numerical

comparisons between the two systems.

The most striking contrast in Table 3.6 is that the OED nexus contains almost seven

times the number of unique relationships between terms as WordNet, but at a development

cost that was orders of magnitude smaller. Using the OED makes it possible to cover

the breadth of the English language, and capitalize on the decades of work that went into

that opus. Having compared the repositories numerically, it is necessary to illustrate with

an example what the Webster's repository provides. Speci�cally, it relates terms without

de�ning the type of relationship, just the importance of the relationship. In Section 4.2.3

we examine some subgraphs that emerge from the repository data, based on terms relating

to transportation.

3.6 Nexus Review

In this chapter we have examined the creation of two large scale repositories, the Webster's

nexus and the OED nexus, explored its structure and discussed the procedure used in

its construction. We have shown that the techniques used in the construction are usable

in di�erent settings, and demonstrated the scalability of the operators used in the nexus

construction We also showed that these operators are e�ciently maintainable when the

source data changes. We veri�ed empirically and statistically that the construction of

the nexus was semantically consistent with the contents of the source dictionaries. The

construction time for the OED nexus scaled linearly from the construction time for the

Webster's nexus.



Chapter 4

Word Nexus Algorithms

Chapter Outline

This chapter describes the ArcRank model of relationships between nodes in a directed

labeled graph, such as hypertext. ArcRank ful�lls the second of our hypotheses in this

dissertation, which holds that the nexus algorithms are scalable and make it possible to

use the nexus e�ciently to match information from diverse sources. We present a ranking

algorithm for directed arcs, and an algorithm for extraction of hierarchical relationships

between words in a dictionary. Using ArcRank we create a thesaurus style tool to aid in the

integration of texts and databases whose content is similar but whose terms are di�erent.

These algorithms produce repositories that complement handcrafted thesauri by determin-

ing more complete relationships between words, although they are less speci�c. Exploiting

hierarchies of relationships between words paves the way for broadening and related term

queries in web-based repositories. In this chapter we also show how the ArcRank model of

arc importance allows us to de�ne similar paths, and compute all pairs of similar nodes.

More precisely, when nodes are reachable through similar arc paths, or reach similar node

sets, then they themselves are similar. The all pairs similarity algorithm is e�cient on the

dictionary nexus graphs, which have Zip�an arc distributions. Using ArcRank, we apply

a simple generalization of the pattern/relationship extraction algorithm to generate sets of

nodes having a kinship or near synonymy relationship.

74



75

4.0.1 General Intuition

The principal obstacle in integrating information from multiple sources is their semantic

heterogeneity. The most easily recognized form of heterogeneity is when di�erent terms are

used to mean the same thing: lexical heterogeneity. Even more frequently terms have some

incomplete overlap of meaning, and we can recognize the cases of overlap. Even so, there

is no algorithmic procedure to resolve problems of lexical heterogeneity authoritatively.

However, we still desire assistance in determining semantically related terms.

The starting point for this research is the hypothesis that structural relationships be-

tween terms are relevant to their meaning. These relationships become interesting when

all items in the domain of interest contain the relationships, and are organized according

to them. Dictionary de�nitions form a closed domain in the sense that the words used

in de�nitions, taken as a set, should be de�ned elsewhere in the dictionary. This property

leads to a directed labeled graph representation of the dictionary. Nodes of the graph model

de�nitions, head words are labels for the nodes, and a word in a de�nition represents an

arc to the node having that word as a label. Notable collections which are not closed in-

clude encyclopedias, which cover a selected partial set of terms equivalent to the dictionary

nouns together with proper nouns, and search engines, which return documents for all but

stop words. Thesauri are not closed either, since the categories which group terms together

form a kind of meta language, di�erent from the terms found within the categories. This is

especially true for categories that contain verbs.

PageRank is an algorithm that ranks objects according to the ranking of objects that

refer to them. At �rst glance, the PageRank model of Web structure [PB98] does not lend

itself to direct application in non-hypertextual domains, since it relies on the link structure

to compute a ranking over items. However, we have found that a related model, which we

call ArcRank and de�ne in Section 4.2, is useful for extracting relationships between words

in a dictionary. This model expresses the importance of a word when used in the de�nition

of another. The attraction of using the dictionary as a structuring tool is precisely that

head words are distinguished terms for the de�nition text. This extra information allows

types of analysis that are not currently performed in traditional data mining and IR, where

no term is assigned as `head word' of a document.

Using the extraction technique discussed in Chapter 3 we generate such a graph structure

and then use it to create thesaurus entries for all words de�ned in the structure, including

stop words such as `the,' `a,' `of' that most systems speci�cally ignore. The thesaurus engine,



76 CHAPTER 4. WORD NEXUS ALGORITHMS

based on our relationship ranking technique, constructs more complete repositories than

manually constructed thesauri, since every term has at least one relationship de�ned through

its dictionary de�nition. These relationships are less speci�c than those in the manually

constructed thesauri. The thesaurus graph is a potentially important tool for systems

integration experts. More interestingly, we also �nd that the algorithms that generate the

thesaurus may be applied to document classi�cation and the ranking of results of mining

queries.

Given a directed graph whose nodes and arcs have been ranked according to the ArcRank

model, it becomes possible to consider the extraction of hierarchical relationships between

terms. Indeed, the structure made explicit in the data, as in Figure 4.9, indicates that

it is rich enough to �nd terms similar to locomotive, based on the terms which relate to

locomotive. We show how the all pairs similarity algorithm allows us to group terms by

kinship, according to their link structure. We show how these clusters, along with the

accompanying link structures, also de�ne ancestor candidates for the clusters. The number

of ancestor candidates vary according to the selection and scope of the kinship clusters.

These algorithms are the tools that make the nexus an integral part of the SKEIN system.

4.1 Term Importance from Graph Structure

This section motivates the iterative measurement of an object's rank, based on its structural

relationships in the object graph to which it belongs. We present the basis of our dictionary

structuring techniques. Before presenting the ArcRank measure, we present the PageRank

algorithm and the variants we have used in our experiments.

4.1.1 PageRank

The PageRank algorithm is the initial step of the ArcRank ranking technique described

in Section 4.2, and is important to de�ne before discussing the ranking of arcs. Table 4.1

shows a pseudocode description of the algorithm.

The PageRank algorithm is a ow algorithm over the graph's arcs. It assumes no

capacity constraints limiting the amount of ow possible between two nodes. All nodes

begin with an initial ranking, in our case a constant 1=jnj, where jnj is the number of nodes

in the graph. At each iteration, nodes distribute their rank to their neighbors on outgoing

arcs, and receive rank from neighbors on incoming arcs. The total outgoing ow from a



4.1. TERM IMPORTANCE FROM GRAPH STRUCTURE 77

Table 4.1: PageRank
input: directed graph, output: scored node list

1. Make adjacency list representation of directed graph

2. Make rank array of size jnj for graph nodes

3. Set (round 0) rank p
0s = 1=n for all nodes s

4. While rankchange > threshold (round i)

5. For nodes s in f1� � �jnjg (ranking step)

6. For arcs as;t in s's adjacency list as

7. Transfer rank p
is=jasj from source s to target t

8. For nodes s in f1� � �jnjg (adjustment step)

9. Normalize, if needed, rank p
is wrt to total rank

10. Compute rankchange from previous iteration

11. Return �nal values from rank array

node is never greater than its rank,
P

t as;t � ps, nor is any individual as;t ever less than

zero. The intuition behind the ow is that more richly connected areas of the graph carry

larger capacity, and therefore nodes in these areas maintain a higher rank. The rank ow of

nodes in strongly connected aperiodic graphs is shown to converge to a steady state [MP95].

Steady state ow is desirable, because it allows us to assert stable relationships between

nodes in the graph. In practice, we accept variability in the ow between nodes, as long as

the total variability over the entire graph lies below a threshold.

In general graphs, nodes and clusters of nodes with only outgoing arcs act as sources

which lose all of their rank. Likewise, nodes with incoming arcs only act as sinks for the rank

of their neighbors. The dictionary graph contains both source and sink nodes: source nodes

represent words which are never used in other words' de�nitions, sink nodes are words whose

de�nitions are not found in the dictionary. Figure 4.1 shows a representative subgraph of

the dictionary repository centered around the node Fruit. In this subgraph, Marmalade is a

source node, while Fleshy is a sink node. In the repository taken as a whole, sinks consist

of misspellings, proper nouns such as geographical and Latin species names, and scienti�c

formulae, which we do not consider. In PageRank, the rank of sources, sinks and weakly

connected clusters do not reect their local structural di�erences well. The intuitive idea

is that sources and weakly connected clusters lose all of their rank to the overall graph,

while sinks continuously accumulate rank, giving them an increasingly disproportionate



78 CHAPTER 4. WORD NEXUS ALGORITHMS

Quince Preserve

Rosaceous Pyrus

Fruit

Orchard Plant

Apple Pear

Marmelade

Fleshy

Figure 4.1: Source and Sink Nodes in Dictionary Subgraph

importance.

In our algorithm, the �nal rank of a node should be de�ned in such a way that, when any

two nodes have a distinct pattern of connections, then their rank will di�er. We adapted

the algorithm from Table 4.1 in each of the following four ways so that sources and weakly

connected clusters preserve some rank at each iteration. Ultimately we settled on the fourth

technique, as it presented a signi�cant performance bene�t.

1. redistribute b%(b=100) of total graph rank before each iteration

2. limit rank transfer to a fraction 1=c of a node's rank

3. add a self-arc at;t (node t is both source and target) to nodes

4. add a gateway node g and arcs ag;n and an;g for all nodes n

It is su�cient to set a non-zero threshold for termination of PageRank, and to use one of

the above adaptations, to ensure that all graph nodes preserve a non zero rank. Figure 4.2

shows a small subgraph of the repository centered around Fruit, with the addition of a

gateway node. The arrows from the gateway node are bidirectional to indicate they consist

of an arc in each direction, as de�ned above. We show here that, given a node t, at iteration

i with rank p
it, the following holds:

Theorem 1 8t 2 G; p
it > 0



4.1. TERM IMPORTANCE FROM GRAPH STRUCTURE 79

Marmelade Orchard Plant

Apple Fruit Pear

Quince Preserve

FleshyRosaceous

Gateway

Pyrus

Figure 4.2: Addition of Gateway Node to Dictionary Subgraph

Proceeding by induction, we have: by de�nition, at the initial iteration, p
0t = 1=n > 0.

Assuming the property holds at iteration i, the following holds:

p
i+1t = fb=100; 1=c; p

it=(jatj+ 1)g+
X

v 6=t

av;t

Since, by de�nition, all quantities on the right hand side are positive and greater than

zero, p
i+1t is greater than zero. As indicated by the equation, this property holds for each

PageRank variant enumerated above.

We see that PageRank for dictionary terms represents the transitive contribution of

each term to the de�nitions of all of the dictionary terms. We capitalize on this property

to compute the relative importance of terms with respect to each other. This measure is

a feature of the arcs between nodes, or equivalently in the dictionary, the usage of terms

in the de�nitions of others. For the purpose of our discussion we de�ne usage to mean

occurrence in the dictionary.

Gateway Extension to PageRank

The gateway technique is de�ned above as a node g and arcs ag;n and an;g for all nodes n

of a graph. The gateway is a novel adaptation of PageRank and it provides a substantial

improvement in algorithm runtime. Figure 4.3 shows the performance bene�t of using the

gateway. The convergence of the graph rank to a stable value is orders of magnitude faster



80 CHAPTER 4. WORD NEXUS ALGORITHMS

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 20 40 60 80 100

V
ar

ia
tio

n 
of

 T
ot

al
 G

ra
ph

 R
an

k 
B

et
w

ee
n 

Ite
ra

tio
ns

PageRank iteration

roundoff error occurs within gateway

roundoff error occurs within nodes

Fruit Subgraph
Webster

OED
Non-gateway OED

Figure 4.3: Convergence of Gateway Ranking Scheme

than the redistribution version of the PageRank algorithm, depicted by the light squares

in the �gure. An additional bene�t of the gateway scheme is that it allows us to use the

PageRank algorithm for all of the nodes that do not connect into the kernel. Previously,

we had to discard all unde�ned terms such as dates from consideration in the nexus. With

the gateway node it becomes possible to include them in the structure, and use them in

the analysis of relationships between terms. The gateway technique preserves the overall

structure of the graph, because it a�ects every other node of the graph in a minimal and

isomorphic fashion. The gateway also guarantees convergence because the graph becomes

a single strongly connected component. We �nish by mentioning one feature of the graph,

namely the angles in the OED and Webster curves. We have determined that these are

cumulative roundo� errors in the gateway version of the PageRank algorithm. Fortunately

the level of error, less than 10�8, even accumulated over 60 iterations is well below the

threshold of di�erence between average nodes in the graph.



4.1. TERM IMPORTANCE FROM GRAPH STRUCTURE 81

4.1.2 Relative Arc Importance

In the dictionary application, PageRank su�ers from some inherent limitations. First of all,

PageRank is inherently a node-oriented algorithm. The top ranked nodes are the common

conjunctions and prepositions, which convey little conceptual meaning, and are commonly

considered stop words by other applications. It is clear that on its own, PageRank is

insu�cient to conceptually organize the dictionary structure. We may consider an extension

to PageRank which assigns to each arc the amount of rank that ows across it at each

iteration. As an absolute measure, this extension is also unsatisfactory, because it favors

ows between the most highly ranked terms, that is, between stop words. Besides this

obvious extension, there appears to be no self-evident technique to extract an absolute

arc-based measure from PageRank.

However, our original goal is to identify the most important arcs for a given individual

node. By casting our ranking problem in terms of our original goal we see that rather than

an absolute measure, a relative measure between nodes is preferable. For any term in the

dictionary, the words that signify the most in their de�nition should correspond to the arcs

in the graph which are most signi�cant in a ranking of arcs. Hence we arrive at the relative

measure of arc relevance. Given an edge e, having source node s with rank ps, target node

t with rank pt, and given jasj outgoing arcs from s, the arc relevance r for e is de�ned as:

re =
ps=jasj

pt

When s and t share several (m) edges e1 : : : em, we sum the arc ranks to compute the

importance of t in the de�nition of s:

rs;t =
mX

e=1

ps=jasj

pt

rs;t measures the relative contribution of the rank of s to the rank of t which we show

has desirable properties, such as:

Theorem 2 0 < rs;t � 1

This follows directly from Theorem 1 and the de�nition of pt, since both numerator and

denominator must be positive and pt =
P

v pv=javj = ps=jasj+
P

v 6=s pv=javj ) pt � ps=jasj.

Note that the arc importance measure is an indicator valid only in the immediate local



82 CHAPTER 4. WORD NEXUS ALGORITHMS

vicinity of the end points of the arc. There is no reason to expect it to be globally commen-

surate. Having established an arc importance measure we are ready to present the ArcRank

algorithm and walk through a hierarchical set of relationships the algorithm uncovers.

4.2 Arc Importance from PageRank

This section shows that arc importance is a local measure of ow in the stationary dis-

tribution of a directed graph. Arc importance provides a value that, while local to the

arcs' source and target nodes respects a ow measure that is germane to the entire graph

structure. Removal of low ranking arcs minimizes change to stationary distribution.

In the previous section, we computed a relative measure of arc importance. Here we

show how to rank it with respect to both the source node and the target node, to promote

arcs which are important to both endpoints. We discuss the repository we construct using

ArcRank, and compare it to other systems.

4.2.1 ArcRank Algorithm Overview

Table 4.2: ArcRank
input: triples (source s, target t, arc importance vs;t)

1. given source s and target t nodes

2. at s, let rs(vs;tj ) = Rank Arcs(vs;tj )

3. at t, let rt(vsi;t) = Rank Arcs(vsi;t)

4. compute ArcRank: as;t = mean(rs(vs;t); rt(vs;t))

5. Subroutine Rank Arcs input: list of arc importance values

(a) sort arc importance values
sample values f0:9; 0:75;0:75; 0:75; 0:6;0:5; : : :; 0:1g

(b) replace importance values with rank
equal values take same rank f1;2;2;2; : : :g
number ranks consecutively f1; 2; 2; 2;3; : : :g

(c) return list of ranks

The ranking of an arc according to the arc importance metric de�ned above is typically

di�erent at the source and the target node. Indeed, it is possible for the highest arc im-

portance value of arcs from a source node to be the lowest value for arcs coming into the



4.2. ARC IMPORTANCE FROM PAGERANK 83

target node. ArcRank, de�ned in Table 4.2, computes a mean of the ranked importance of

arcs, so as to promote arcs which are important both to the source nodes and to the target

nodes.

The form of the sample output of step 5 above f1; 2; 2; 2; 3; : : :g appears to be the

only one that does not favor any particular type of node. This equal treatment of nodes

is independent of the number of arcs and ranks associated with the nodes. Other rank

numbering techniques resulted in skewed output. Competition style ranking, which counts

equal values equally, but orders subsequent values di�erently, disadvantages arcs to nodes

with many in-arcs. Given the same sample values from the above, the boldface value in

the list here shows where competition ranking di�ers: f1; 2; 2; 2; 5; 6; : : :g. Also, computing

rank as a fraction of the total number of ranks: f1=n; 2=n; : : :;n=ng favors arcs to nodes

with a larger number of distinct ranks.

The ArcRank algorithm is more space intensive than PageRank, because it is arc ori-

ented, but it is fast and easily made into a disk-based version. It essentially requires two

passes through the data, and storage for twice the number of arcs. In the course of devel-

oping ArcRank, we derived a further extension to PageRank. The idea is to vary according

to the arc importance ratio the amount of a source node's rank transfered to the targets.

Tuning this optimization properly strengthens strong relationships and weakens less impor-

tant ones. The additional cost of the technique is minimal, and it requires ranking arcs and

summing ranks per node, before pushing value across arcs.

4.2.2 The Webster's Nexus

The repository we have built [Jan99b] has a very general structure, and it is de�ned by

usage, that is, dictionary occurrence alone. There are no pre-imposed limitations, based on

grammatical models, as to how terms relate. There is no attempt to perform a complete

parse of the sentences in the de�nitions. This decision is necessitated by two concerns: the

�rst is that dictionary de�nitions are often terse, non-grammatical sentences in which the

parts of speech can be hard to identify. The second is that no parser exists that always

correctly identi�es the scope of every part of speech in a phrase. Since one goal of the

structure is to use every de�nition word possible, without exceptions, it is not acceptable

to use a parsing technique to preassign meanings to the graph arcs. Similarly, the scope

of negation is not considered. As a result we often �nd opposites clustered together in

the graph. Such clustering is appropriate for our objectives, since opposites are used very



84 CHAPTER 4. WORD NEXUS ALGORITHMS

similarly.

This repository is the only one that does not exclude stop words, and as a result we are

able to �nd that stop words most strongly relate to each other. On the down side, the type

of relationship expressed in the repository is not always self evident, especially since many

de�nitions and terms are now obsolete. Also, the accuracy of the ArcRank measure increases

with the amount of data, and much of the dictionary contains very sparse de�nitions. Due to

this sparseness we often �nd that the ArcRank scores of arcs to nodes with low PageRank is

arti�cially high. The sparseness of data can also be misleading. A simple metric of ranking

sources by the paucity of arcs works reasonably well, as long as there are relatively few arcs.

In the general case, however, this metric does not hold up.

4.2.3 Browsing the Nexus

Highest ranked
definitional term

Lowest ranked
definitional term

Highest ranked
usage term

Lower ranked
usage term

Principal
term

Figure 4.4: Sample Node from Webster Nexus Interface

Because of the size of the dictionary repositories, there is an inherent tradeo� when

considering visualization techniques. The current trend in information visualization is to

pursue sophisticated algorithms for displaying as large a portion of the graph structure as

possible. This decision is often to the detriment of the legibility of the information in the



4.2. ARC IMPORTANCE FROM PAGERANK 85

nodes. Given our assertion that ArcRank is a high quality ranking of each node's incoming

and outgoing arcs, we have chosen a di�erent approach. Instead of displaying a hard to

understand tangle of nodes and arcs, we have chosen for our browser as simple a display

as possible. However, it still e�ectively communicates the notion of ranked relationships

between nodes. The result of this e�ort is shown in Figure 4.4, and can be tested on-line

at: http://skeptic.stanford.edu/data/ [Jan99b, Jan00].

Transport <60:43>

Convey

Transporting Transportation Enrapture Enravish Deport Seaworthy Ravish Wagon Boat Sled

Figure 4.5: Terms Relating to Transport

We do not show all arcs for every node, but instead display the nodes associated with

the highest ranked arcs. These are arrayed over a spiral curve, such that the nodes closest

to the center are most closely related to the center node, based on the ArcRank measure.

In Figure 4.4, with a little e�ort, we can deduce that the dictionary entry for Russia reads

`A country of Europe and Asia.' We �nd those words on the upper arc of the spiral, the

de�nitional arc, which contain the words that are in the de�nition of the central or principal

term. The words in the lower arc of the spiral, the usage arc, are some of the words that

use the principal term in their de�nition.

Note that ArcRank ensures that the stop words And, Of and A have lower ranking than

the other terms in the de�nition. In the set of terms that use Russia in their de�nition, the

quality of the ordering is less immediately clear, but there is no question of the relatedness



86 CHAPTER 4. WORD NEXUS ALGORITHMS

of these terms to the central node. In the discussion that follows, we use an interface

that allows us to ascertain the cyclical case when a node is both in an other's de�nition,

while using the other in its own de�nition (a situation that occurs more frequently than

anticipated). Figure 4.5 shows arcs in both directions between nodes when the terms have

each other in their de�nition. Transport is the principal node in this �gure, and we see that

it has arcs in both directions with Convey, Transporting and Transportation. Nodes in the

bottom row of the graph that have a dashed oval have a PageRank value that is higher than

that of the principal node. Nodes in the top row of the graph that have a dashed oval, such

as in Figure 4.8, have a PageRank value that is lower than that of the principal node.

Convey <58:271>

Carry

Borne Bring Transported Signification Speaking Synonymous Cargo Carriage Conduct Chariot Transfer Transport

Figure 4.6: Convey Generalizes Transport

It is instructive to browse through the repository to get an idea of how it organizes the

dictionary terms. The example below is prompted by an interest in developing a transporta-

tion ontology to support logistics applications. We start at the term Transport as shown

below in Figure 4.5. The general form of charts generated using the repository, such as

Figure 4.9, frame a term above by the terms used in its de�nition and below by terms that

use it in their de�nition. These terms are placed from left to right in order of their ArcRank

measure. The ArcRank values are not displayed in these �gures to maximize the clarity

and legibility of the charts. No more than the two dozen most signi�cant associated terms



4.2. ARC IMPORTANCE FROM PAGERANK 87

are displayed: the label for the central term contains a count of incoming and outgoing arcs

of the form <outgoing, incoming>. In addition to the ArcRank measure on arcs, each term

has an associated PageRank value (not displayed). Arcs and Term borders are dotted when

the arc's source node has a lower PageRank than its target node. We use this convention

to recognize cases when ArcRank ranks an arc highly to a node that PageRank does not

rank as highly.

Carry <145:509>

Hold

Borne Carriage Convey Behave Transact Conduct Warfare Transported Correspondent Deport Performance Bear

Figure 4.7: Carry Subsumes Convey

In Figure 4.5, which has been pruned for clarity, we see that the term Convey is used

in transport's de�nition. Transport has multiple senses, including one relating to emotional

transport, which is emphasized in the set of terms that use Transport in their de�nition.

When we next examine the term chart for Convey, Figure 4.6, we �nd Transport, along with

transported and cargo, which are also signi�cant for the logistics ontology. Other terms

in the set illustrate the more general nature of Convey as compared to Transport. Further

browsing upwards in the repository takes us to the chart for Carry in Figure 4.7. Note how

Carry subsumes Convey in the sense of transport, and that the term transported is also in its

set of terms. We expect too that Hold, given its position as a parent of Carry in Figure 4.7,

expresses a more general notion relating to Carry.

Starting from Transport in the downwards direction, we select Wagon and arrive at



88 CHAPTER 4. WORD NEXUS ALGORITHMS

Wagon <41:84>

Freight Chariot Wheeled Car Merchandise Transport Vehicle

Wagonful Charioteer Hinder Park Fore Democrat Van Locomotive Caravan Wheelwright

Figure 4.8: Wagon as a Means of Transport

Figure 4.8. Wagon is not a specialization of transport, although transport does subsume

it: a wagon is one of a number of forms of transport. We see that terms such as Car

and Vehicle, also shown in Figure 4.8, represent a generalization relationship for Wagon.

Also, terms such as Charioteer, Caravan and Wheelwright relate to wagon without being

specializations. Locomotive is, however, a specialization, and we continue to browse with

the chart in Figure 4.9.

The chart for Locomotive illustrates a spectrum of relationships between terms, some of

which are altogether unexpected, such as locomotive's relationship to the term Appendix. A

glance at the de�nition of locomotive in Figure 4.10 reveals that a reference to an illustration

in the appendix of the dictionary appears inappropriately within the de�nition �eld of the

term. This unfortunate noise in the source data appears throughout the repository, but is

typically outweighed by the amount of useful relationships that emerge from the repository

structure. In this case, for instance, the other associated terms all respect some subsuming

or entailment relationship to locomotive.

A more careful examination of the de�nition in Figure 4.10 shows that ArcRank is able

to eliminate all stopwords from achieving high ranking, as well as words such as `especially,'

`one,' `communicate,' `motion,' `bear,' `convey,' `draw,' which are either not directly related



4.2. ARC IMPORTANCE FROM PAGERANK 89

Locomotive <46:57>

Propel Boiler Steam_Engine Appendix Wagon Passenger Carriage Wheel Engine Car Steam

Extremity Equipment Steamer Gearing Wood Driver Turntable Union Smokestack Ambulacra Cab

Figure 4.9: Locomotive Specializes Wagon

to Locomotive, or too general. Indeed, we've seen that Bear and Convey appeared at a higher

level of abstraction in Figure 4.7.

4.2.4 Charts of Representative Terms

In the examples above we have seen verbs and nouns, and their organization as facilitated

by the ArcRank algorithm. In this section we see that the ranking ability of the algorithm

extends to adjectives, adverbs, pronouns, prepositions, and beyond these categories, to

stopwords. Recall that a unique aspect of ArcRank is that it excludes no terms in its

ranking mechanism, so it is able to provide information about stopwords. No other ranking

methods handle the stopwords gracefully. We also observe the algorithm handles with no

degradation the addition of nodes that represent proper nouns, such as country names.

Figure 4.11 provides a strong example of the clustering of concepts that ArcRank

achieves. Light, as well as a multitude of terms relating to darkness, �gure prominently

in this chart. Note that although adjectives are predominant, nouns and verbs are also

present among the important relationships. Such relationships between parts of speech are

typical of those that are not captured in WordNet and MindNet.

Figure 4.12 shows how time oriented adverbs cluster around the term Ever. Note again



90 CHAPTER 4. WORD NEXUS ALGORITHMS

<hw>Lo"co*mo`tive</hw> <pr>(?)</pr>, <pos>n.</pos>

<def>A locomotive engine; a self-propelling wheel carriage,

especially one which bears a steam boiler and one or more

steam engines which communicate motion to the wheels and thus

propel the carriage, -- used to convey goods or passengers,

or to draw wagons, railroad cars, etc.

See <xex>Illustration</xex> in Appendix.</def></p>

...

Figure 4.10: Partial De�nition of Locomotive

that, in the previous example, the antonym for the term, Never, is also present. The largest

category of terms in the chart are adverbs, and two thirds of the terms are time oriented.

Figure 4.13 shows the common adverb Too, and presents us its two common senses, `also'

(as in me too) and `excess' (as in too much). A class of terms pre�xed with Over- emerges

clearly. This category contains verbs, adjectives, nouns and adverbs, and could not appear

in WordNet, since WordNet separates the parts of speech. The problem of disambiguating

the senses of terms is left for the next chapter.

Figure 4.14 shows a borderline stopword, since the term It appears in just about 5% of

the dictionary terms. Note how well the ranking algorithm performs. The term Pronoun is

selected as having a top ranking arc out of 4866 possible candidates. Stopwords as well as

the class of terms that emphasize the pronominal aspect of It.

The stopword To in Figure 4.15 still manages to achieve a most interesting top ranking

of nodes. The incoming arcs are all from common verbs, and from another stopword, The.

The notion of In�nitive and Arrival are the top two outgoing arcs for the term. ArcRank

produces useful results where other algorithms are unable to perform, and in categories that

WordNet does not cover.

Perhaps the most interesting of all of the categories we examine in this section are the

set of special nodes created to represent one class of words that are not de�ned in the

dictionary. Proper nouns, for the most part, are not de�ned in the Webster's dictionary.

However, many of these nouns have a related adjective which is de�ned. For example,

Scotland ! Scottish. In these cases, we add a node to our original de�nition chart, labeled

by the proper noun, and having as a single word de�nition the related adjective. We use

ArcRank to order the terms that use the proper noun to glean insight into the meaning of



4.2. ARC IMPORTANCE FROM PAGERANK 91

Dark <81:309>

Jealous Atrocious Foreboding Gloom Blind Radiate Ignorance Darkness Villain Light Secrecy

Darken Obscure Darkish Lightless Dusky Lowering Betoken Ounce Cloudy Blacken Brown

Figure 4.11: Adjective Dark

the proper noun. As we see in the case of Scotland, the terms listed provide information

about Scotland. Even Logarithm is relevant, as John Napier, who developed the natural

logarithms, was from Scotland.

The ability to add terms to the structure suggests a number of possible extensions to

the repository to handle misspellings in the de�nition terms. For example, when confronted

with a word that does not appear as a dictionary head word, such as `bamana,' we currently

ignore the term. Instead, we may take the lexically most similar word `banana,' using a

cost model developed for spelling errors, to be the single word de�nition for `bamana,' and

just add `bamana' to the repository.

We have seen how ArcRank is a powerful algorithm for determining the most important

relationships between nodes of a directed graph. In the context of the dictionary nexus

ArcRank allows us to recognize for each term which are the most relevant terms in its

de�nition, and which are the most relevant terms that us it in their de�nition. In SKEIN we

can therefore exploit the ArcRank values to compute coherency of terms in an information

source with respect to the target application. In the next section we suggest applications

that build on the ArcRank algorithm. In particular we are interested in using ArcRank to

guide the extraction of hierarchical relationships between terms.



92 CHAPTER 4. WORD NEXUS ALGORITHMS

Ever <19:17>

Forever Continually Contraction Cessation Always Period Time All At Point Through

Once Never Soever However Still-closing Whate’er Ay Excelsior Hobby Post-captain

Figure 4.12: Adverb Ever

4.3 ArcRank Applications

Having traveled through a very small sample of the structure of the repository, it becomes

clear that the ordering provided by ArcRank is in itself not su�cient to automatically ex-

tract the signi�cant terms relating to a given term. An algorithm to achieve this extraction

is the basis for the application we are building on top of the repository and is discussed

later. As it turns out, the rankings provided by PageRank and ArcRank enable an ef-

�cient extraction procedure to make explicit the hierarchical structures embedded in the

relationships between terms.

4.3.1 Finding Node Clusters

The ArcRank algorithm identi�es the relative importance of nodes to each other. The ap-

plications that suggest themselves immediately, therefore, are �nding similar nodes, �nding

nodes that subsume classes of similar nodes, and �nding classes of related nodes that spe-

cialize a node. Much ongoing research [DH99] is investigating the idea that we may �nd that

nodes are related when they share similar sets of arcs. This research assumes that all arcs

are equally important, and therefore is limited in its ability to recognize on which arcs to



4.3. ARCRANK APPLICATIONS 93

Too <22:303>

Enough Wide Excess Short Note Addition Over Long Many High

Likewise Also Overmuch Overready Overeager Overhaste Overpowering Overzealous Overrefine Indisputable Oversee

Figure 4.13: Adverb Too

focus. ArcRank provides precisely the information we need to make the distinction between

important arcs and less important arcs in order to improve the quality of the extraction of

related nodes.

4.3.2 Multi-Source Articulation Support

In Chapter 5 we will develop an example which shows how the repository is used to generate

an initial estimate of similarity between terms in distinct information sources. We use the

ArcRank values to choose the most likely candidates for similarity between terms in the

two sources. The basic approach for this method is to consider the terms from each source

as nodes in a bipartite graph. We immediately remove from the graph the nodes which are

equivalent on both sides of the graph. The remaining nodes from each side rank the others

based on similarity computed according to the algorithm in Section 4.4. We then can use

a variant of the stable marriage algorithm to select the best matches between nodes from

both sources.



94 CHAPTER 4. WORD NEXUS ALGORITHMS

It <83:4866>

Humorously Intransitive Feminine Neuter Sick John Snow Impersonal Substitute Masculine Pointing As

Its Itself Upon Any And The Pronoun Perhaps Been Although An

Figure 4.14: Pronoun It

4.4 Term Similarity from Arc Importance

In this section we present the basis for a relationship of kinship or coherence between

dictionary terms. We use this notion to de�ne a kinship extraction algorithm and the all

pairs similarity algorithm. We use these in Chapter 5 to support the generation of new

articulations between heterogeneous sources.

4.4.1 Dictionary De�nition Pattern

So far, in this chapter we have capitalized on a simple relation between dictionary terms to

compute a second, ArcRank, which we posit has a relevancy semantics. Given terms x and

y, this amounts to the following:

� y is present in the de�nition of x

� y is relevant to the de�nition of x

In the next section we use this relevancy assumption to compute kinship between dic-

tionary terms. Our guiding principle is that terms that are coherent to each other must

share relevant terms in their de�nitions and must be relevant to some of the same terms.



4.4. TERM SIMILARITY FROM ARC IMPORTANCE 95

To <224:32526>

Infinitive Arrival Sang Prepositional Guitar Subserve Tendency Pleasantly Appropriation Faction Indirect Inclusion

Make Take Pertain Bring Have See Contain Relate Be Consider Apply The

Figure 4.15: Stopword To

4.4.2 Kinship Relationship Extraction

The kinship relationship extraction algorithm is the basic technique described in this sec-

tion. This is a new algorithm based on the principles of the Pattern/Relation extraction

algorithm DIPRE [Bri98], which does not consider hierarchical relationships. Kinship ex-

traction is novel in that it is inherently self-limiting because it applies a thresholding based

on ArcRank values. The thresholding reduces the possible number of new candidate nodes

at any iteration of the algorithm, to only the most quali�ed. Also, DIPRE only considers

lexical patterns in the the formulation of the problem, whereas our results show that it is

possible to use the most general structural relationships between terms as input patterns

of the algorithm.

Having a repository with rank relationships between terms, it becomes possible to ex-

tract groups of related terms based on the strengths of their relationships. In particular,

we are interested in extracting three relationships: subsuming, specializing and kinship.

The kinship relationship is a similarity relationship broader than synonymy. We are able

to achieve this extraction using a new iterative algorithm, based on the Pattern/Relation

extraction algorithm [Bri98], as follows in Table 4.3.

The output of the algorithm computes a set of terms that are related by the strength



96 CHAPTER 4. WORD NEXUS ALGORITHMS

Scotland <1:108>

Scottish

Nation Pict Highland Highlander Logarithm Scotch Bagpipe Whisky Dillisk Graves Erse

Figure 4.16: Arti�cial Node Scotland

of the associations in the arcs that they contain. These associations correspond to local

hierarchies of subsuming and specializing relationships, and the set of terms are related by

a kinship relationship. The algorithm is naturally self-limiting via the thresholds.

This approach allows us to distinguish senses of terms when they engender di�erent

structures according to the extract kinship algorithm. Indeed, the senses of a word such as

dark in Figure 4.11 may be distinguished by the choice of association with lightless versus

foreboding. Also, ranking the di�erent senses of a term by the strength of its associations

with other terms allows us to uncover the principal senses of a term.

Table 4.3: Extract Kinship
input graph with ArcRank computed, & seed arc set, output local hierarchy based on seed arc set

1. Compute set of nodes that contain arcs comparable to seed arc set

2. Threshold them according to ArcRank value

3. Extend seed arc set, when nodes contain further commonality

4. If node set increased in size repeat from 1.



4.4. TERM SIMILARITY FROM ARC IMPORTANCE 97

4.4.3 All Pairs Similarity

This section presents a new algorithm for iteratively computing the similarity of objects

based on the importance ranking relationship developed in the previous sections. We show

the use of similarity data to support the development of new articulations for interoperation.

Marmelade Orchard Plant

Quince Preserve

FleshyRosaceous Pyrus

FruitApple Pear

Figure 4.17: Similarity between Apple and Pear

We revisit in Figure 4.17 the fruit subgraph seen earlier with the view of comparing the

similarity between Apple and Pear. By inspection, we see that the two terms share, in this

small subgraph alone, incoming arcs from Marmalade and Orchard, as well as outgoing arcs

to Fruit, Rosaceous and Fleshy. More interestingly, since Rosaceous and Pyrus have similar

arcs they have a computed similarity value. Then the paths Apple ! Rosaceous ! Pear and

Pear! Pyrus ! Apple have a similarity value associated with them, therefore contributing

to the similarity of Apple and Pear. In general, every two paths of equal length, with equal

end-points, where for every i, the ith items in the paths have a non-null similarity value,

contribute to the similarity value of the endpoints of the paths.

In order to do the actual computation of the similarity between Apple and Pear we

de�ne a few new terms. The Usage arc importance Vector for a term x is a vector of all

arc importance values of terms that refer to x. For example, UVpear is the vector of arc

importance values for the terms Marmalade, Orchard, Pyrus and Rosaceous which refer to

Pear. The usage arc importance vector of a term is easily determined from its backlinks.

Similarly, the De�nitional arc importance Vector for x is the vector of all arc importance

values of terms referred to by x. For example, DVapple is the vector of arc importance values



98 CHAPTER 4. WORD NEXUS ALGORITHMS

Apple
Orchard
Pyrus

Quince

Pear

Marmelade
Orchard
Pyrus

Rosaceous

Marmelade Fruit
Fleshy

Rosaceous

Fruit
Fleshy

Rosaceous
Pyrus

DVappleUVapple

UVpear DVpear

Figure 4.18: Similarity Computation for Apple and Pear

for the terms to which Apple refers. Figure 4.18 depicts the vectors for both Apple and Pear.

Given these vectors we now have a tool for computing the similarity of terms. The basic

formula for computing the similarity between Apple and Pear is given by the equation below:

Simapple;pear = (UVapple �UVpear +DVapple �DVpear )=2 (4.1)

In the equation multiplication represents the dot product of the two vectors. The al-

gorithm which we develop to use this formula has one additional feature, based on the

following observation. The similarity relationship is partially transitive in the following

way: When u and v are similar and u are adjacent to x and v are adjacent to y, then x and

y should also be similar. Referring back to Figure 4.17, we see that Quince and Rosaceous

should be similar because Quince is adjacent to Apple, Rosaceous is adjacent to Pear, and

Apple and Pear have a similarity score. This notion of similarity is also reected in the

lightly shaded entries in UVapple and UVpear . The problem remains of how to recognize

and pair up these partially similar terms in the vectors. The solution is to perform substi-

tutions in the vectors based on the stable marriage algorithm [Knu97]. A stable marriage

algorithm pairs items up from two sets, based on stated preferences, in such a way that no

swapping of item pairs would improve the pairing's preference score. For all of the terms

that don't match exactly in the UV vectors, compute the best matching ones based on their

current similarity values. The stable marriage algorithm guarantees that no swapping of

substitutions of term pairs will produce a better overall matching. Once we run the stable



4.4. TERM SIMILARITY FROM ARC IMPORTANCE 99

Table 4.4: All Pairs Similarity
input: directed graph G, output: ranked node lists s

1. For each graph node j

2. Make adjacency list representation of input aj

3. Compute reverse adjacency list representation of input (backlinks bj)

4. xj = union of all adjacency lists containing the node �j

5. For each node k in xj

6. s0j;k = 0

7. s0j;j = 1

8. simchange = jsj

9. While simchange > threshold (round i)

10. For each graph node j

11. For each node k in xj

12. moutj;k =stable marriage(aj � ak; ak � aj; si)

13. noutj;k = jaj \ akj

14. voutj;k = moutj;k + noutj;k

15. minj;k
=stable marriage(bj � bk; bk � bj ; si)

16. ninj;k
= jbj \ bkj

17. vinj;k
= minj;k

+ ninj;k

18. lj;k = jajj+ jakj+ jbjj+ jbkj

19. sij;k = (voutj;k + vinj;k
)=lj;k

20. simchange =
P

sij;k� simchange

marriage algorithm, and perform the suggested substitutions, we can compute an updated

similarity value for any pair of terms. This algorithm contains the same notion of iteration

as the PageRank algorithm does.

Table 4.4 is a pseudocode description of the all pairs similarity algorithm. The stable

marriage algorithm uses s as the preference ranking between elements of the two input sets.

A similarity value of 1 between nodes implies perfect similarity, while the value 0 implies

no relationship at all. The initial state of the algorithm is that every node is perfectly

similar to itself, and itself only. The algorithm is monotonic and converges within log n

iterations, for a total cost of n logn log2 k log log k, where k is the average number of nodes

in an adjacency list. In the OED nexus k = 16 while in the Webster's nexus k = 15, giving



100 CHAPTER 4. WORD NEXUS ALGORITHMS

a runtime on the order of 32n logn. The algorithm also guarantees that nodes that have no

adjacent nodes in common have similarity 0, and nodes whose adjacency lists are identical

have similarity 1. Another desirable property is that perfect similarity is transitive. If two

nodes have adjacency lists whose nodes are perfectly similar, then the two nodes themselves

are also perfectly similar.

All pairs similarity gives us the means to determine similarity in diverse information

sources. It does not rely on lexical similarity, but rather on similarity of context as provided

by the dictionary de�nitions extracted into the nexus, and prioritized by ArcRank. We use

the results of all pairs similarity in the SKEIN system to perform similarity computations.

4.5 Algorithm Review

In this chapter we have presented the ranking algorithms which form the basis of all of our

computations over the dictionary repository structure. We compute the ow over each arc in

the repository, as it approaches a steady state, and compute the arcs' relative importance to

be the proportion of the destination's node's PageRank that is contributed by the arc. The

arc importance values are ranked for each node, and the rankings are used to compute an

ArcRank value for each arc of the repository. ArcRank is the basis for the all pairs similarity

algorithm between nodes of the repository, and also for the initial similarity evaluation of

nodes from di�ering sources for which an articulation is being constructed. The all pairs

similarity algorithm can be computed in m logn time where m is the number of arcs and n

the number of nodes. The other algorithms are linear in the size of the number of arcs of

their inputs.



Chapter 5

SKEIN System Infrastructure

Chapter Outline

In this chapter we provide a more detailed description of the algebraic infrastructure for the

dissertation. Recall that in Chapter 2 we presented only a brief description of the object

model AMO and its associated rule language AMORL. It is the case, however, that the

thesis work would not be possible without the underpinnings described in this chapter. We

did not have the opportunity to fully esh out the algebra as proposed for SKEIN. We

were able to ful�ll the third hypothesis of this dissertation which concerns interoperation

cost reductions from using SKEIN. We achieve this result here to the extent that we used

the algebraic operators to develop the nexus and that we based them on the results of the

ArcRank and similarity algorithms. The algebraic operators described here, three of which

were extensively used for the thesis work, are presented in the sections that follow.

We begin with a discussion of semantic context, followed by a listing of algebraic opera-

tors considered in the context of the thesis work. We continue with an in-depth presentation

of these operators.

5.0.1 Semantic Context

We motivate the need for context by observing that there is no global notion of consistency

of information. Models of knowledge that are appropriate for one application may be useless

for another. Referring back to the introduction, the database that links my name to diving,

is perfectly useless as an advertising tool. However, it is perfectly adequate for myself,

my coach, and my teammates, because we know to qualify diving as springboard diving.

101



102 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

Identical terms in separate sources will invariably have di�ering semantics, while distinct

terms, even within the same source, may have equivalent semantics. What we desire is the

ability to specify that the semantics of the objects relevant to an application are locally

consistent and free of mismatch.

We de�ne, following [Guh91], contexts to be objects that encapsulate other objects.

Contexts assert the validity of statements about the objects they encapsulate. In other

words, given an appropriate set of statements about its objects, a context provides guar-

antees about their consistency. Since we use contexts to model knowledge obtained from

diverse sources for application-speci�c uses, we are concerned with two speci�c relation-

ships: coherence and similarity. The former expresses the relevance of source information

to the target application, the latter identi�es equivalent and mergeable objects between

di�erent sources. While the two relationships resemble each other, distinguishing the two

is important for maintenance and scalability. This distinction is motivated, for example,

in our earlier work on Ontology composition [JPVW98]. Because we assume sources are

autonomous, they may change at any time. In particular, as the number of sources grows,

the likelihood of change at any time increases dramatically. By distinguishing coherence

and similarity we are able to separate changes of a source that a�ect their relevancy to our

application from those changes that a�ect their similarity to other sources with which we

combine them.

In the SKEIN system, contexts are an object whose value consists of a ruleset and a

sequence of objects represented by the ruleset. As implied by the previous statement, object

values are a sequence of values, both of primitive and object types. The ruleset itself is an

object whose interpretation de�nes other objects. The ruleset transforms source knowledge

into an object set that meets the consistency requirements of the target application. The

consistency guarantee, as embodied by a coherence expression, is written in the AMORL

rule language de�ned in Chapter 2. In the next section we present the operators of the

ontology algebra in more detail.

5.1 Operators

In this section we review the operators that comprise the algebra. We also detail the

application that motivates the inclusion of each of the operators in the algebra. We begin

with unary operators, which all transform a source according to a coherence measure. The



5.1. OPERATORS 103

binary operators, in contrast, take a similarity measure to combine information from two

sources.

5.1.1 Unary Operators

We consider four unary operators. The two operators S (Summarize) and G (Glossarize)

maintain source information, and wrap it in a new object or set. The two others, F (Filter)

and E (Extract), reduce the source according to an additional predicate. To preserve

composability of the algebra, these operators take a directed graph as input and return one

as output.

Summarize

We've presented Summarize or S in detail in Sections 3.2.3 and 3.3.1. S is the canonical

unary operator of the algebra. S creates an object that encapsulates the information of the

source, and populates the object with results of an aggregation operation over the source

information. The application that motivates the existence of the S operator is data classi�-

cation. The aggregation over the source data e�ectively groups the source into equivalence

classes.

Glossarize

The Glossarize or G operator, which we detailed in Section 3.2.1, creates an object that

contains the set of objects from the source, without any of the object substructure. G

e�ectively attens the source data into members of a single set. G is motivated by the need

to list all terms that are subordinate to an object.

Filter

The Filter or F operator reduces the instance objects from the source data according to a

selection predicate. At its most restrictive, this operator returns only the schema structure

of the source. It is the complement to the G operator. F is important in reducing the size

of a source for veri�cation and validation purposes.



104 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

Extract

As we de�ned it in Section 3.2.1, the Extract or E operator reduces the schema objects,

as well as corresponding instances, from the source data according to a selection predicate.

Wrappers that build on existing wrappers use E to present a reduced view of the original

wrapper.

5.1.2 Binary Operators

As with the unary operators there are four binary operators. M (Match) and B (Blend)

maintain the source data as they combine them. The two operators I (Intersect) and D

(Difference) reduce the sources. These four operators take two input directed graphs, and

return one as output.

Match

The prototypical binary operator, de�ned in Section 3.2.1, Match or M returns the infor-

mation from both sources, along with a new object that contains a sequence of pairs of

references to matching objects in both sources. Where matching objects di�er in name or

granularity, new objects are created as necessary to mark the transformation.

Blend

The Blend or B operator extends matching objects from both sources. The transformation

adds the attributes to each object in a source that are present in the other. The e�ect

of this operation is to map a copy of all the objects reachable from the matching objects

in one source onto the other source. The need to extend the schema of objects with the

attributes they contain in other sources motivates the addition of B to the algebra. The

resulting objects represent blended subclasses of the original source objects.

Intersect

The Intersect operator or I returns only the portions of the sources that match. Both

copies of the matching objects are returned, since the objects that mark heterogeneity of

name, granularity or reference di�er between the two sources. The common application for

I in practice is the identi�cation of common schema between sources. I returns objects that

conform to the schema de�ned in both sources.



5.2. SEMANTIC CONSISTENCY 105

Di�erence

The Difference operator or D returns only the portions of each source which are unique

to it. In e�ect, this corresponds to a symmetric di�erence between the two sources. The

substructure supporting the di�ering objects in each source (those objects and attributes

that keep the graph of the source information connected) is also preserved. In practice, D

is used to determine the semantic distance between sources. The cost of transforming the

di�ering objects is in fact the measure of this distance.

5.1.3 Operator Semantics

The eight operators above take semi-structured object graphs as parameters and return

them as results. The unary operators are augmented by a coherence expression that de�nes

constraints on the objects transformed by the operator. Binary operators use a similarity

expression to specify constraints on the objects that match between sources.

5.2 Semantic Consistency

Before de�ning the relationships below, it is necessary to de�ne the unit of semantic con-

sistency we use throughout. As we have seen above, there is no meaningful notion of global

semantic consistency. Recall that the object model we de�ned above is structurally related

to HTML. In a graph as large and heterogeneous as the World Wide Web, we must use

heuristics to de�ne semantically consistent subgraphs. For example, content based heuris-

tics such as: pages located at the same server, having the same URL pre�x, pages using

relative addressing, or sharing the same style sheet, are candidates for being considered

semantically consistent. With XML, document type de�nitions (DTDs), determine a set of

consistent documents, as long as the DTDs are properly used. The types of heterogeneity

within documents that we need to address are as follows:

� vocabulary di�erences

term di�erences head of state is president vs. chancellor

term de�nitions president is ceremonial vs. powerful

term polymorphism o�cials are simultaneously ministers & parliament members

� structural di�erences



106 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

term multiplicity government is Commons & Lords vs. Parliament

term relation ministers are in parliament vs. cabinet

term repetition council of state is separately government & prime minister's o�ce

In practice, even single page documents contain inconsistencies and incorrect data.

Therefore, we do not de�ne an a priori measure of semantic consistency at any granu-

larity. Instead, we de�ne a coherence measure, which expresses a data source's relevance to

an intended application. Only data sources which enforce the same coherence measure are

considered semantically consistent with respect to an application.

����
����
����
����
����
����

����
����
����
����
����
����

Application

tablefree textXML

Similarity

C
oh

er
en

ce
 R

el
at

io
ns

hi
p

Relationship

Data
Sources

Figure 5.1: Relationships between Sources and Target Application

5.2.1 Coherence Measure

The coherence measure is a binary relationship between a data source and a target ap-

plication of the data. It states explicitly the portion of the source that is relevant to the

target application. Data which is only partially useful due to errors or incompleteness is

also expressed in the measure. In Figure 5.1 the coherence measure is represented by the

arrow in the vertical dimension. We start with a target vocabulary, small or large, which is

a set of terms we know are relevant to the target application. Terms in the source data that

have high ArcRank scores relative to the target set are coherent to the target application.



5.3. WRAPPER SEMANTICS 107

For example, referring back to the graph of Figure 4.17, Orchard is coherent to Apple, Fruit

and Pear.

In SKEIN we write the coherence measure as a script of the primitive operators de�ned

in Section 2.1.4 above. In the two extreme cases The empty script represents no relation-

ship between a source and the target application. A script creating a single object that

encapsulates the entire source is equivalent to accepting the entire source contents for the

target. A script that establishes a coherence measure is also called coherence expression.

In Section 5.3 we give a detailed example of an iterative use of the algebra to establish

a coherence expression between an on-line Webster's dictionary and an application that

graphs its structure.

When multiple information sources require di�erent coherence measures to be brought

together within a single application, we do not assume that they are mutually consistent.

Any blending of information from di�ering sources requires additionally the application of

a similarity measure.

5.2.2 Similarity Measure

The similarity measure is a binary relationship between two data sources. It identi�es in two

sources, the objects which can be considered equivalent, as well as those objects which may

be merged for the purposes of the target application without being identical. The horizontal

arrow in Figure 5.1 corresponds to the direction of the similarity relationship in our system.

We de�ne similar terms as being terms that share coherent terms. For example, since both

Pear and Apple in the OED are coherent with Fruit, then Pear and Apple are similar.

The similarity measure is also represented by a script, or similarity expression of the

primitive operators in our system. The measure is the empty script when there are no

matches between sources. Otherwise, scripts for a similarity measure consist of an object

containing a set of references for each matching pair of objects in the sources. We show in

Section 5.3 the use of the Match operator to create and re�ne a similarity measure between

two government websites.

5.3 Wrapper Semantics

The Summarize operator is a unary operator that transforms source data based on a predi-

cate which corresponds to a coherence measure. As described in Section 5.2.1 the coherence



108 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

measure is not an ideal coherence relationship, but rather an approximation of the ideal.

We need a coherence relationship to apply the Summarize operator, but it is impossible to

establish such a relationship prior to applying the operator. This paradox is what compels

us to consider approximations of the relationship. Indeed, we use approximations to boot-

strap the construction of better approximations. The algorithm establishing a coherence

measure must therefore be iterative and begin with an initial coherence measure. This ini-

tial coherence measure represents a �rst order approximation of the coherence relationship.

Figure 5.2 shows such a �rst order approximation for the dog articulation we presented in

Section 2.1.2. In this approximation, only the objects that have an exact lexical match are

joined in the articulation.

Goldfish

Pet

Cat Dog

Fish Mammal

TerrierToyHound

Dog Bitch

Kennel club

Figure 5.2: Dog Articulation Approximation

At each iteration, an analysis of the outcome of the previous Summarize operation

allows a re�nement of the coherence measure to account for newly recognized exceptions

and misclassi�ed data. The iterative re�nement continues, until the coherence measure

approximates the ideal, within the tolerance level of the application that requires the data.

For the dog articulation, we can compute a new approximation by matching all objects

that have an arc set identical to the objects in the original match. This new approximation

produces the articulation of Figure 2.2 on Page 40. Each application of the operator keeps

statistics on the performance of the coherence measure. If an application of the operator

produces an inferior result, an exception occurs. If the result of a prior application of

Summarize, or S for short, is acceptable it will be used. Otherwise, a follow-up round of

re�nement begins. In this way, changes to sources which a�ect the performance of S are

detected and signaled. Note that the procedure for maintaining the coherence measure is

identical to the initial creation and re�nement of the measure.



5.3. WRAPPER SEMANTICS 109

5.3.1 Wrapper Mediation

Systems such as Strudel [FFLS98] provide the ability to restructure consistent pages within

a website. Ultimately, we would also like to structure pages with similar content across

websites, in order to more easily browse the pages of interest. As an example of sites

we would like to browse in a similar fashion, we chose the government websites of NATO

members and their partners. Figure 5.3 below represents a partial set of pages and links

from the Finnish government's website. The shape of the nodes serves as a visual aid in

relating this graph with Figure 5.4. Similarly shaped nodes in the two �gures are considered

similar by the NATO website, that is they link to them from the same table entries.

1

2

Council of State

3

Government

4

Ministries

5

Basic Information

6

History

7

Prime Minister 8

Ministers

9

Minister
portfolios

10

Government
Programme

11

Ministerial
Committees

12

Prime Minister’s
Office

13

Department
of Defense

18

President of
the Republic

19

Parliament

14

Finnish Constitution

15

Parliamentary System

Prime Minister’s
Office

16

Curriculum
Vitae

Prime Minister

17

Minister of DefenseCouncil of State

Prime Minister

President of
the Republic Parliament

20

Wife

21

Ministry of Defence

Minstry of Defense

Figure 5.3: Partial Graph of Finnish Government Website

5.3.2 The Match (M) Operator

The Match operator takes two graphs and �nds objects that correspond to each other

based on a similarity measure that indicates how the correspondence is to be determined.

We will highlight the matching using two object graphs obtained from the websites of

NATO countries using the S operator de�ned in Section 5.3. Websites can be thought of as

structured as a graph with a root page which has links to other related pages. The labeled



110 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

graph structure of each website is constructed where each page is a node and all the links

found on the page are modeled as outgoing arcs. Each arc is labeled with the text found

along with the link, which describes the contents of the pages that the anchor point to.

Each node in the graph corresponds to a web page and is assigned a term, based upon the

tags on its incoming arcs. The matching of the nodes is based on the similarity of labels,

where similarity is determined based upon the similarity measure. Typical mismatches that

exist in such object graphs are as follows:

11

12

The Monarchy Today

13

Links to other sites

14

Today’s Royal Family

1

The UK Parliament

15

Parliamentary Services

2

House of Commons

17

House of Lords

16

The UK Parliamentary
System: a brief guide

Parliament

3

Information about the
House of Commons and
Members of Parliament

18

Information about
the house of Lords

4

Lists of Members,
Ministers and Committees

5

Her Majesty’s Government

6

Members of the Cabinet

7

DEPARTMENTS OF
STATE AND MINISTERS

8

PRIME MINISTER, FIRST LORD
OF THE TREASURY & MINISTER

FOR THE CIVIL SERVICE

9

Defence (Ministry of

10

Cabinet Office

Figure 5.4: Partial Graph of U.K. Government Website

Structural Mismatches : these types of mismatches occur when the same term in one

source matches multiple terms in another and causes one node in a graph to match

with many in the other. For example, we see that the Prime Minister of the U.K. in



5.3. WRAPPER SEMANTICS 111

Figure 5.4 is simultaneously Lord of the Treasury. The Finnish Prime Minister is not

Treasury Minister, which is the closest counterpart to Lord of the Treasury. The node

for the British Prime Minister should thus match two nodes in the Finnish graph.

Instance Mismatches : these mismatches occur because in one source an instance of a

class is not an instance of the same class in the second source. The closest case of

such mismatch in our �gures is that Parliament in Figure 5.4 is a parent to both the

House of Commons and the House of Lords, while Parliament refers to a single body

in Figure 5.3.

5.3.3 Rule Based Semantic Mismatch Resolution

In the next subsections we describe heuristics which we apply to the establishment of a

similarity measure between the government Web page graphs of Finland and the U.K.

Context Identi�er Tagging

Our application may require that we di�erentiate Parliament in the U.K. and Finland gov-

ernments, and associate the Finnish Parliament with the British House of Commons. We

must distinguish the semantics of the same term used in two di�erent graphs. The basic

technique allows a preprocessing of terms so as to distinguish them later when performing

a lexical comparison of terms. For instance, we may edit the Finnish `Parliament' to `Par-

liamentary Body'. We can also consider a more general-purpose heuristic which indicates

\if TermX is a descendant of Government and TermY is not, then do not match TermX to

TermY." Such a heuristic generalizes a structural observation from our graphs.

Context Identi�er Removal

Matching is performed based on a similarity criterion. In our running example, we want to

match the government nodes of our two nation's graphs, e.g., we want to match the node

labeled Her Majesty's Government in Figure 5.4 with that labeled Government in Figure 5.3.

Therefore, a set of edit operations can be supplied that strips the labels such as pre�xes

such as Her Majesty's and thereby enable the matching.



112 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

Term Mismatch Resolution

These operations simply express that two terms are semantically related and should match.

Examples from our two �gures include rules such as: (Match Monarchy President) and

(Match Defence Defense). The �rst one indicates that we intend to match the head of

states though they might be named di�erently.

These can be more complex than such simple lookup rules if we have a theorem prover

at our service, e.g., the two labels `The UK Parliamentary System' and `Finnish Parliamentary

System' can be matched using a more complex rule like:

(Instance-Of Country UK)

(Instance-Of Country Finland)

(<= (Match ?Country1 ?Country2)

(and (Instance-Of Country ?Country1)

(Instance-Of Country ?Country2)))

Our system should generate the tuple (Match UK Finland). The fact that U.K. and

Finland are two countries can either be explicitly speci�ed or can be obtained from standard

knowledge libraries. The fact that we are interested in matching countries is indicated by

the last statement.

The second type of operations are needed for di�erences in spelling in British versus

American English, for example. The second type of mismatch will in certain cases be re-

solved in the preprocessing stage wherein we indicate root-words of words, e.g., (Root-Word

Parliamentary Parliament). The preprocessor substitutes the word for its root-word be-

fore proceeding with the matching. In the absence of any of such case speci�c rules, we may

proceed with algorithms like Porter's stemming algorithm. As with any automatic process,

stemming may result in some spurious matches or cause some matches to fail, whereas the

rules let one dictate exactly what we want to match and what not to match.

Irrelevant Match Resolution

A preprocessing stage removes stop-words like `of' and `the,' which can cause spurious

matches, either by looking up a table which the user can supply or by using an IR metric

which assigns weights to words based on their occurrences across nodes and in a particular

node. Words that are very frequently used across nodes are assigned very low weighting.



5.4. SKEIN PERFORMANCE 113

The matching process then computes a weight which indicates the degree of match and these

low weighting words do not contribute to the match and the process is as good as having

deleted them. An alternate source of spurious matches is the use of stemming algorithms.

Words such as minister and ministry might have been stemmed to minister and therefore

result in a match, despite our wanting to preserve the di�erence between the two. Sanity

checking heuristics, which state explicit mismatches (Mismatch Minister Ministry) or a

more general (Instance-of Person X) and (Instance-of Office Y) => (Mismatch X

Y) help us in preserving the semantics we desire.

5.4 SKEIN Performance

The SKEIN system has been used to generate matches between the above two NATO

government sites. The �rst attempts to match up nodes from the two graphs produced the

results in Table 5.1. The match was produced by applying the script in Appendix B.6 to

the text of the graphs extracted from the web pages.

Table 5.1: NATO matching results
UK graph Finland graph

The UK Parliament Members of the Parliament
Information about the House of Commons Statistical data on Parliament

and Members of Parliament
The Government Government
House of Commons Council of State
The UK Parliamentary System: a brief guide Finnish Parliamentary System
House of Lords Council of State
Desc. of Ministry of Defense Department of Defense
Prime Minister, First Lord of the Prime Minister

Treasury & Minister for the Civil Service
Defence (Ministry of Ministry of Defence
Information about the house of Lords Basic Information

Her Majesty's Government Government Programme
Cabinet O�ce Prime Minister's O�ce
DEPARTMENTS OF STATE AND MINISTERS Minister of Defense
Members of the Cabinet President of the Republic

These results contain only four false positive matches. The �nal four, separated from the

others by a horizontal line, are the false positives. All but one of the correct matches that

the human expert produced are present in the results. What's more, the �rst re�nement



114 CHAPTER 5. SKEIN SYSTEM INFRASTRUCTURE

to the system that incorporated graph structure into the computation produced no false

positives at all, but also reduced the total number of correct matches to 70%. These initial

results are extremely promising, especially since computation times grow sub-linearly in the

product of the size of the input data sets. The SKEIN system, coupled with the word nexus

has great promise in cutting down the amount of e�ort that goes into producing mediators

between such heterogeneous information sources.

In this chapter we have seen how the use of our algebraic infrastructure makes it possible

for the SKEIN system to reduce the cost of articulation development. Two websites designed

by di�erent people in di�erent countries, but containing related information are matched up

with 70% accuracy using the SKEIN system. SKEIN's initial matches are generated using

the output of the ArcRank and all pairs similarity data that we described in Chapter 4.

These algorithms operated on the nexus whose construction we presented in Chapter 3.

ArcRank and all pair similarity scaled well as we quadrupled the size of the nexus by

operating on the OED rather than theWebster's dictionary. The nexus itself is bootstrapped

from its source data using the object model and rule language developed for the SKEIN

system and presented in Chapter 2. Each result builds on the previous one as suggested in

Figure 1.10 and ful�lls one of the hypotheses presented in Section 1.2. The next chapter

suggests future directions to take this work, based on the results we have achieved.



Chapter 6

Conclusions and Future Work

In the preceding chapters we presented an e�ciently computed structure, the word nexus,

which explicitly models the relatedness of terms in the dictionary. We developed algorithms

that use the nexus to express the coherency of the dictionary terms based only on their

de�nitions, and the similarity of terms based on how many coherent terms they share. We

used the output of these algorithms to reduce the cost of determining similar pages between

two European government websites linked from the NATO website. We have come full circle

in this process. The object model and rule language form the foundations of SKEIN. These

foundations were su�cient to produce a nexus from the OED source. The study of the

structure of the nexus led us to algorithms for computing coherence and similarity values

between dictionary terms. These algorithms allow us to specify the algebraic operators

which complete the SKEIN system. Along the way we were able to verify scalability and

extensibility results for our work. In the next sections we review how these results ful�ll

the hypotheses we de�ned in Section 1.2, and consider future directions for our research.

6.1 Novel Word Nexus

Chapter 2 introduced the object model AMO and the rule language AMORL that form the

two fundamental layers underlying the articulation algebra we de�ned in Chapter 5. AMO

is a simple object model which is general enough to easily represent Web pages, as well

as database relations, and plain text. It also is su�ciently exible to model more complex

object models with strong typing and inheritance. AMORL enables the use of objects

as proxies for objects and values taken from individual sources as well as the matching

115



116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of objects from disparate sources. We exploited the simplicity of AMO and AMORL to

bootstrap the construction of a word nexus.

In Chapter 3 we presented our case study demonstrating advantages of the algebraic

approach to ontology management. An on-line dictionary represents an ideal test bed for

the use of our ontology algebra on real world problems. We used AMORL to develop a

ruleset that converted the dictionary de�nition into the nexus structure. We showed how

the consistency guarantees established for the ruleset were essentially preserved in the face

of substantial changes to the source data.

6.2 Scalable Nexus Algorithms

In Chapter 4 we showed an important application over an information source that relies

heavily on the articulation algebra. We showed how we derive a ranking algorithm that

assigns an importance to the arcs of a large directed graph, based on a prior ranking of

the nodes of the graph. We proceeded to determine subsuming and kinship relationships

between nodes, using an algorithm which capitalizes on these ranks. These techniques

represent an important step in extracting hierarchical structures from graph structured

information in a way that respects the internal structure of the data.

The development of the ArcRank algorithm was the culmination of an e�ort to visualize

the complex and vast structure of the nexus. The early tools we developed to simplify the

structure of the graph reduced by almost three quarters the size of the graph we needed to

visualize, but the strongly connected cluster or kernel of the graph required an approach

that would e�ciently and scalably prioritize the arcs in the graph's kernel. ArcRank ful�lled

this requirement.

6.3 E�cient SKEIN System

We de�ned a set of operators for semantic interoperation of heterogeneous information

sources and shows how they are applied to develop articulations rapidly. These articulations

serve as the mediating glue between existing information and the new applications that

need the information. These operators account for the requirements of target applications

through a coherence measure and handle semantic heterogeneity of information sources

using a similarity measure. These measures approximate the semantic relationships between



6.4. RELEVANT AND FUTURE WORK 117

source and target application on the one hand, and between di�ering sources on the other.

The articulation algebra builds on AMO and AMORL as well as on the nexus to support

experts in generating articulations.

The unique feature of the articulation algebra is that it incorporates a form of closure

to model realistically the process of mediator creation, re�nement and maintenance. By

representing this process as a sequence of iterative steps associated with a qualitative mea-

sure, it is possible to make speci�c claims about the value of the information obtained using

the algebra. Also, it represents mediator maintenance within the same framework. Any

changes of information in the sources, expert quali�cations or application requirements are

fed back into the algebraic operators as a further iterative step. This iteration may induce

further rounds of re�nement before an amended mediator is complete.

Our examples show the use of SKEIN on real-world problems, such as the processing

of a large source such as the OED. We also demonstrate the matching of terms between

NATO government websites. SKEIN's proposed NATO articulation matches are 70% ac-

curate, contain no false matches. What's more, these results were achieved without any

�ne-tuning whatsoever of the system. We describe the close relationship between the al-

gebra and the process of creating, re�ning and maintaining wrappers and mediators for

our applications. Our experience shows that building wrappers within SKEIN's framework

substantially simpli�es their creation, as well as improves their maintainability.

6.4 Relevant and Future Work

This thesis work has pioneered a new representation of the process of developing semantic

mediation services for the interoperation of disparate information sources. The full devel-

opment of the SKEIN system remains a work in progress. In its current state, however,

it represents a �rst step in a systematic treatment of semantic heterogeneity within the

framework of an algebra over semistructured data. It has opened a number of avenues of

further research in the following areas:

1. stopping articulation algorithms at any time without losing results

2. opposing the expert and information sources in the context of game theory

3. mining market baskets with a label in the domain of the basket items

The subsections below consider these areas in turn.



118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.4.1 Anytime Algorithms

In Section 1.2 we use a termination criterion to de�ne a minimal quantitative standard

for the quality of an articulation. We take a random sample from the instances accessible

from the sources through the articulation to determine whether the articulation meets the

minimal standard. Therefore, the termination criterion also serves as a con�dence measure

of the quality of the data.

If we terminate the operator closure at any time, we may collect a few random samples

to de�ne a con�dence interval, which tells us how reliable our articulation is likely to be over

the entire accessible data set. When our applications handle uncertainty in information,

we have a new way of using the articulation algebra. Indeed, the operators take on the

characteristics of an anytime algorithm, since no matter when we stop the iteration, we are

able to associate a con�dence interval with the resulting data. Anytime algorithms [HP98]

are a class of algorithms that are increasingly being considered for real-time and on-line

applications.

6.4.2 Game Theory

The iterative process of mediator development is related to a non-cooperative two player

game [Nas51]. The information source represents an adversary to the expert, who must ef-

�ciently extract the relevant information from the source. The information source passively

resists the expert's e�orts. Each iteration in the operator closure represents a turn in the

game. The game ends in victory for the expert when the termination criterion is reached.

If a �xpoint is reached before the termination criterion, the game ends in victory for the in-

formation source. The connection between game theory and the iterative closure employed

by the operators of the algebra could lead to a better understanding of the convergence and

completion of the operators' execution.

6.4.3 Meta-Data Mining

In traditional market basket analysis, the basket is an aggregation that is separate from

the domain of the items in the basket. It could be of interest to label each basket with

the name of the most important item in the basket. Of course, we do not have access

to the information which tells us what the important item in the basket is, so we must

hypothesize what it could be. On the contrary, in the dictionary domain, each de�nition



6.4. RELEVANT AND FUTURE WORK 119

represents a basket, and the basket is labeled with the term represented by the de�nition.

This characterization gives us two new data mining problems of interest. What new types

of data mining algorithms emerge from the labeled basket problem? How does one label an

unlabeled market basket problem? There exists some work on mining metadata [WM00]

and extracting ER diagrams from at �les [BHA96], but this work appears to focus on small

sources only. We have completed some preliminary work on implication rules and clustering

rules that investigate the �rst question. We have an algorithm that extends ArcRank by

generating links between the basket domain and the item domain to explore the second

question.

6.4.4 Final Thoughts

The process of opening up new ground in a �eld invariably opens up many more problems

to attack than were originally answered. We feel that the above subsections provide the

best sign of fruitful results in our work.

Future work aside, this thesis research has produced some results of lasting merit. The

OED nexus is interesting for its sheer size compared to any other on-line repository of

semantic relationships between dictionary words. What adds to its value signi�cantly is

that it has been analyzed at three di�erent levels which corroborate its consistency: �rst,

it clusters terms semantically, as evidenced by such clusters as the one for the term egoism

as presented in Chapter 4; second, the macroscopic arc structure of the nexus is preserved

for both the Webster's dictionary and the OED, a feature which could not possibly emerge

if the nexus were inconsistently constructed; third, the NATO government web page artic-

ulation could not statistically achieve a 70% matching success, if the nexus structure was

inconsistent. The ArcRank and all pairs similarity algorithms are scalable techniques to

compute coherence and similarity scores for nexus entries. The recognition of the coherence

problem as an important one in the interoperation of information is another insight gleaned

from this work. The OED nexus will continue to live in ongoing research at Stanford,

such as RegNet/RegBase [LW01] and OntoAgents [DMW00], and visualization techniques

pioneered for the nexus have found commercial implementations at Gigabeat Inc. [Gig00]



Appendix A

Data Format Conversions

Data Conversion Basics

In this chapter we express some of our data formats with XML DTDs to improve the porta-

bility of the SKEIN system. We begin with a simple expression of the AMO object model,

which forms the basis of SKEIN. The ArcRank de�nition is the basis for the term nexus,

while the Visualization DTD is used in the commercial implementation of our technol-

ogy at http://www.gigabeat.com/disc/. The nexus de�nition allows us to export the nexus

structure with a minimal amount of tagging overhead.

A.1 AMO DTD

The AMO model is a minimalist object model. The only requirement of an object is that it

have an OID, and everything else is an atom. objects may also contain a set of attributes

with atomic values and have a value that is a sequence of object references and atoms.

This simplicity guarantees that it is easy to instantiate objects from atoms. It is powerful

enough, however, to model more complex object systems, albeit ine�ciently.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE AMO [

<!ELEMENT OBJECT (OID,ATTRIBUTES,VALUE)>

<!ELEMENT ATTRIBUTES (NAME,ATOM)*>

<!ELEMENT VALUE (OID|ATOM)*>

<!ELEMENT OID (#PCDATA)>

120



A.2. ARCRANK DTD 121

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT ATOM (#PCDATA)>

]>

A.2 ArcRank DTD

The ArcRank type is again, quite minimalist. It in fact represents a special kind of rei�ed

arc. If we assume that the source and target nodes described by the DTD are objects, then

ArcRank objects are simply rei�ed arcs that have a score associated with them. The point

is that ArcRank can be easily computed from AMO objects using the reify method of the

AMORL described in Chapter 2.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE ArcRank [

<!ELEMENT RANK (ITEM)+>

<!ELEMENT ITEM (NUMBER,NUMBER,RANK)>

<!ATTLIST ITEM type (source|target) "source">

<!ELEMENT NUMBER (#PCDATA)>

<!ELEMENT RANK (#PCDATA)>

]>

A.3 Visualization DTD

Although its development was not a part of this dissertation, the patented visualization

method used at Gigabeat Inc. and known as an a�nity chart was heavily inuenced by

the SKEIN system. Figure 4.4 on Page 84 illustrates the general features of an a�nity

chart. The chart's design responds to the need to have a simple method of visualizing and

navigating a large graph structure such as the word nexus. The patent underlying the a�n-

ity chart covers the visualization of objects based on the strength of their connections to

others, i.e., coherence. The coherence can be computed using the ArcRank algorithm. The

a�nity chart has a compact and easy to understand layout that is clickable, allowing the

traversal of the entire data set. A key usability innovation is that it allows the navigation of

a directed graph in both the forward and the reverse direction of the arcs. A feature of the

layout is that it optimizes the amount of information that can be unambiguously presented



122 APPENDIX A. DATA FORMAT CONVERSIONS

in a given rectangular space, where menus would be ine�ective. No other visualization sys-

tems combine this simplicity and comprehensiveness together with quick graphical updates

compatible with any web browser.

The a�nity chart contains a central item and one or two lists of items, ordered by

strength of relationship to the central item.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE affinityChart [

<!ELEMENT SIMILAR (ITEM,(LIST)*)>

<!ELEMENT LIST (ITEM)+>

<!ATTLIST LIST arm (upper|lower) "upper">

<!ELEMENT ITEM (SEARCH,NAVIGATION)>

<!ATTLIST ITEM type (principal|related) "related">

<!ELEMENT SEARCH (#PCDATA)>

<!ELEMENT NAVIGATION (#PCDATA)>

]>

A.4 Nexus DTD

Finally, we present a sample DTD for a nexus. The primary goal with this DTD is to

completely encode the structure using as few superuous characters as possible. The reason

for this is simply the size of the nexus data. Without any explicit formatting at all the nexus

is just under 150MB, so it is imperative to minimize the overhead caused by the tags. Below

the DTD are a few sample values showing two entries and a directed arc between them.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE Nexus [

<!ELEMENT E (S)*> <!-- dictionary entry -->

<!ATTLIST E

i ID #REQUIRED <!-- entry id -->

l CDATA ""> <!-- entry label -->

<!ELEMENT S EMPTY> <!-- dictionary subentry -->

<!ATTLIST S

l CDATA ""> <!-- entry label -->



A.4. NEXUS DTD 123

<!ELEMENT A EMPTY> <!-- directed definitional arc -->

<!ATTLIST A

s IDREF <!-- source entry -->

t IDREF <!-- target entry -->

r CDATA "1" <!-- arc multiplicity -->

f CDATA "0.0"> <!-- ArcRank score -->

]>

<E i=0 l="dog">

<S l="hound"/>

</E>

<E i=1 l="mammal"/>

<A s=0 t=1 r="1" f="0.82"/>



Appendix B

SKEIN Tools and Nexus Scripts

Script Details

This chapter presents listings of some of the code used to develop SKEIN and the OED

word nexus. The �rst code is a script that is used to segment the original corpus. AWK is

preferable for this task because the on-line OED does not contain any carriage returns, and

every other text processing tool's performance is highly dependent on handling text line by

line. Python is used for the other scripts. It provides the best balance of quick development

time, maintainability, and broad functionality provided by its libraries.

B.1 OED Segmentation

This script takes the input and breaks it into chunks containing each at least one head word

and one or more de�nition words. The di�culty is that the tagging of the OED corpus is

de�cient in many respects. Many de�nition words are inadvertently left out of the de�nition

tags, and many of the terms have sub parts that are not well delineated.

BEGIN { # Changed 7/19/00 Jan Jannink

IGNORECASE = 1

FS = "<DEF>" # separates definition from other fields

RS = "</DEF>" #'</DEF>' is the record separator

j = "" #output record

k = "" #active record

m = "" #output definition content

n = "" #active definition

124



B.1. OED SEGMENTATION 125

q0 = "" #input record

q1 = "" #input miscellanea

q2 = "" #input definition

q3 = ""

q4 = ""

q5 = ""

u = ""

v = ""

w = ""

xx = 0

yy = 0

x = 0

y = 0

z = 0

}

{ #first define q0, q1, q2

q0 = gensub("= *", "= ", "g", $0)

q1 = gensub("= *", "= ", "g", $1)

q2 = gensub("> *$", "&_", "g", $2) #prevents bad ALSO trigger

if (length(k)) { #k & n initialized at ""

if (match(q1, "<LF>.*<E>.*<LF>")) { #check if chunks span Entries

while (match(q1, "<LF>.*<E>.*<LF>")) { #break up some chunks

if (match(q1, "<ET>..*</ET>.*</E>")) { #if ET tags before /E

q4 = gensub("</ET>.*", "", "g", q1) #find more definition text

q5 = gensub("<ET>.*", "", "g", q4)

lq = length(q4) + 6 #total length of segment

q4 = substr(q4, length(q5) + 5)

} else {

q4 = ""

q5 = gensub("<E>.*", "", "g", q1)

lq = length(q5) + 4 #segment length (length(q4) = 0)

}

#print "::q4::", q2, "|", q5, "|", q4, "|", z

#print "::err::"

dochunk(q5 FS q4, q5, q4) #fix tagging errors in the OED

q0 = substr(q0, lq) #avoid duplicate use of text



126 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

q1 = substr(q1, lq)

#print "::q3::", q3, "|", q1, "|", q0

}

} else {

fixq3(n) #define q3 from n

if (length(q3) < 10 && match(q1, "</SE>..*<SE>") == 1) {

q4 = gensub("<SE>.*", "", "g", q1) #free text (should be a def)

lq = length(q4) + 4 #total length of segment

y = sub("^</SE>", "", q4)

dochunk(FS q4, "", q4)

q0 = substr(q0, lq) #avoid duplicate use of text

q1 = substr(q1, lq)

}

}

dochunk(q0, q1, q2)

} else { #k null, update previous data

#print "::nok::"

doprint(q0, fixq2(q2))

}

}

END { # not guaranteed to be correct, but happens to be so for the OED

doprint("", "") #output final values

doprint("", "")

}

#print "::m::", m

function doprint(q0, q2) { #global q0,q2 / dochunk q0,q2

if (length(j)) { #<======= OUTPUT result

print j

}

j = k

m = n

k = q0 RS

n = q2

}



B.1. OED SEGMENTATION 127

function fixq2(q2) { #global q2 / dochunk q2

z = gsub(" *<MPR>.*</MPR>", "", q2) #clean up q2

z = sub("<IPR>.*</IPR> *", "", q2)

z = gsub("<PS>[^>]*</PS>", "", q2)

z = sub("<SN>[^>]*</SN>", "", q2)

z = sub("([a-z]*\. <LB*>[^>]*</LB*>)", "", q2)

z = sub("<LB*>[^>]*</LB*>", "", q2)

z = sub("<#>[^#]*</#>", "", q2)

z = sub("<gk>[^>]*</gk>", "", q2)

z = sub("<QP>.*</QP>", "", q2) #keep quotations in some cases?

z = gsub("<[^>]*>", " ", q2)

z = gsub(" *", " ", q2)

z = sub("^ ", "", q2)

z = sub(" $", "", q2)

z = sub("^[)(_.,;!?':-]*$", "_", q2) #avoids false sense merging

return q2

}

function fixq3(n) { #q3 must always be global var

q3 = gensub(" *[|] *", " ", "g", n) #update n => update q3

z = gsub("[?()']", "", q3)

z = gsub(" *", " ", q3)

z = sub("^ ", "", q3)

z = sub(" $", "", q3)

}

function dochunk(q0, q1, q2) {

q2 = fixq2(q2) #clean value of q2

fixq3(n) #define q3 from n

if (index(q1, "<LF>") > 0) {

z = match(q3, ", ?$") #value of z IMPORTANT

if (z == 0) {

z = match(q3, "Hence$")

if (z == 0) {

z = match(q3, "Also$")

if (z == 0) {

z = match(q3, "So$")



128 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

}

}

}

y = sub(" *[_]$", "", q3)

y = sub(" *[_]$", "", n) #fix trigger preventer

#print "::z::", q3, z, length(q3) - z

if (z > 0 && length(q3) - z < 8) { #value of z IMPORTANT

#print "::so::"

k = k q0 RS

n = n "|" q2

} else {

z = gsub("[;:.]* *[.,]", ".", q3)

z = sub(" [sv]*[bi1][.]", "", q3) #stray 'part of speech' tags

z = gsub("[,; ][,; ]*", " ", q3)

z = gsub(" *", " ", q3)

z = sub("^ ", "", q3)

z = sub(" $", "", q3)

z = match(q3, "= *prec\.[^=]*$")

xx = z > 0 && z > length(q3) - 20 #match to previous word

z = match(q3, ": see prec\.")

xx = xx || (z > 0 && z > length(q3) - 24) #match to previous word

z = match(q3, "= *next[^=]*$")

yy = z > 0 && z > length(q3) - 10 #match to following word

z = match(q3, ": see next\.")

yy = yy || (z > 0 && z > length(q3) - 24) #match to following word

#print "::xx::", xx, "::yy::", yy

if (match(q3, "^etc\.$") || match(q3, "pl\.$") || xx || yy) {

z = 0

} else {

if (length(q3) < 10) {

z = sub("^[a-zA-Z][a-zA-Z() -]*[a-zA-Z-][\!.;:]$", "", q3)

} else {

z = match(q3, "[a-zA-Z]")

}

}

#print "::q3::", q3, z

if (z) { #normal case



B.1. OED SEGMENTATION 129

#print "::norm::"

doprint(q0, q2) #<======= OUTPUT result

} else { #exception case

if (xx || match(q3, "^etc\.$")) {

x = y + 1

} else {

if (yy || match(q3, "pl\.$")) {

z = sub("= *next[^=]*$", "", n)

x = y - 1

} else {

u = gensub("</LF>.*", "", "g", j)

v = gensub("</LF>.*", "", "g", k)

w = gensub("</LF>.*", "", "g", q0)

z = sub(".*<LF>", "", u)

z = sub(".*<LF>", "", v)

z = sub(".*<LF>", "", w)

z = gsub("[^a-zA-Z0-9]", "", u)

z = gsub("[^a-zA-Z0-9]", "", v)

z = gsub("[^a-zA-Z0-9]", "", w)

x = length(u)

y = length(v)

z = x < y ? x : y

x = 1

while (x <= z && index(substr(u, 1, x), substr(v, 1, x)) == 1) {

x = x + 1

}

z = length(w)

z = z < y ? z : y

y = 1

while (y <= z && index(substr(w, 1, y), substr(v, 1, y)) == 1) {

y = y + 1

}

}

}

if (x < y) { #matched up to following item

#print "::nxt::", substr(u, 1, x), substr(v, 1, y), substr(w, 1, y)

k = k q0 RS



130 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

n = n "|" q2

} else { #matched up to previous item

#print "::prv::", substr(u, 1, x), substr(v, 1, x), substr(w, 1, y)

j = j k

m = m "|" n

k = q0 RS

n = q2

}

}

}

} else { #no head word, continue

#print "::!LF::"

k = k q0 RS

n = n "|" q2

}

}

B.2 Nexus Glossarization

This script takes the output of the previous script and constructs a glossary of all of the

terms contained in it, and lists of all of the words used to de�ne those terms. All of the

rules used by the script appear with the code that uses them, for clarity. The ruleset is

separable from the engine that executes them, but it is simpler to present them together.

import sys, regex, regsub, string

# Newly modified: 7/5/00

# Usage: Biggerweb.py <WEBfile(s)> <wordfile.txt>

# this script grabs dictionary headwords and associates them with definitions

# global set of tag patterns used to parse the dictionary

# Very few changes for OED patterns

hw = '<LF>' # <HL>?

wf = '<LF>' # <CF> <XL>?

asp = '<LF>' # <VF>

plw = '<LF>'

singw = '<LF>'



B.2. NEXUS GLOSSARIZATION 131

wordsep = hw

pattern1 = regex.compile(hw)

bdef = '<DEF>'

pattern2 = regex.compile(bdef)

ehw = '</LF>'

pat_end1 = regex.compile(ehw)

edef = '</DEF>'

pat_end2 = regex.compile(edef)

ewf = '</SF>'

pat_end3 = regex.compile(ewf)

easp = '</LF>'

pat_end4 = regex.compile(easp)

eplw = '</LF>'

pat_end5 = regex.compile(eplw)

esingw = '</LF>'

pat_end6 = regex.compile(esingw)

acc_sign = "&[^\.][^\.]*." # pattern for accented character error checking

acc_patt = regex.compile(acc_sign)

xpt_sign = "[)!?-]\| \|^ \|[, :] *$" # pattern for special char. error checking

xpt_patt = regex.compile(xpt_sign)

spl_sign = "^[28]" # spelling error checking (first letters)

spl_patt = regex.compile(spl_sign)

def_sign = "&[^\.][^\.]*.\|--\|[\]'\|" '[<"]' # pattern for def. error checking

def_patt = regex.compile(def_sign)

xsw_sign = "[ ]" # pattern for erroneous single word definitions

xsw_patt = regex.compile(xsw_sign)

# returns in a single line an entry with at least 1 head word and 1 definition

# the functionality of this code is implemented elsewhere in AWK for speed

def getchunk (chunk):

nextl = input.readline()



132 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

return [nextl, chunk]

# returns head words removing special characters and spelling errors

def fixwords (d):

y = 0

for z in d:

zy = regsub.sub(ehw+'.*', '', z)

if len(zy) == 0: # works since SF is after LF in text

zy = regsub.sub(ewf+'.*', '', z)

zy = regsub.sub('.*<SF>', '', zy)

d[y] = zy

y = y + 1

accents(d)

excepts(d)

if len(d) > 1: # remove ones that don't match properly

yyy = string.lower(regsub.sub(' .*', '', d[0]))

ly = len(yyy) / 3 + 2

lyy = len(yyy) * 2 / 3

zz = regex.compile(yyy[:ly])

zzz = regex.compile(' ' + yyy[:lyy])

y = 1

for z in d[y:]:

z = string.lower(z)

if zz.match(z) < 1 and (lyy < 4 or zzz.search(z) < 0):

del d[y]

else:

y = y + 1

addhead(d)

return d

# checks if a head word has been previously defined

def chkword (b, z):

if b.has_key(z):

tmp = b[z]



B.2. NEXUS GLOSSARIZATION 133

else:

z = string.capitalize(z)

if b.has_key(z):

tmp = b[z]

else:

z = string.capwords(z)

if b.has_key(z):

tmp = b[z]

else:

z = string.lower(z)

if b.has_key(z):

tmp = b[z]

else:

tmp = None

return tmp

# checks if any of the head words have been previously defined

# immediately merges duplicate chunks due to multiple alternate spellings

# happens when at least three chunks logically belong together (~170 cases)

# final list of node numbers is not sequential without further massaging

def chkwords (b, d):

if len(d) == 1:

found = chkword(b, d[0])

else:

found = None

fz = ''

for z in d[:]:

if not (z[0] == '-'): # usu. strange plural suffixes

tmp = chkword(b, z)

if tmp:

if found and found[0] != tmp[0]:

print "Matching definition: %s %d, %s %d" % (fz, found[0], z, tmp[0])

if found[0] < tmp[0]:

tmp[0] = found[0]

else:

found[0] = tmp[0]



134 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

found = tmp

fz = z

return found

# writes out chunk information along with the words defined in the chunk

def writechk (noerror, w, y, tk):

if noerror:

chkout.write('%s %s\n' % (y, tk)) # to def chunk counter file

noerror = (pat_end2.search(w) >= 0)

if not noerror:

print 'No matching end def. tag:', y

else:

print 'BAD CHUNK:', w

return noerror

# writes out definitions word by word followed by their key value and

# chunk number

def writedef (webdef, y, token, chunk):

noerror = 1

c = chunk

for w in webdef[:]:

endval = writechk(noerror, w, y, token)

token = ''

if noerror:

noerror = endval

#print '::1::', w

if endval > 0:

w = regsub.sub(edef+'.*', '', w)

#print '::2::', w

w = fixdefs(w)

#print '::3::', w

adef = string.split(w)

for v in adef[:]:

webout.write('%s %s %s\n' % (v, y, c)) # to def files

else:



B.2. NEXUS GLOSSARIZATION 135

noerror = 1

c = c + 1

return c

# returns the string that matched against the rule

def gettrcstr (s, n):

if len(s) <= 40:

return s

else:

if n > 10:

b = n - 10

else:

b = 0

if b + 40 > len(s):

f = len(s)

else:

f = b + 40

return s[b:f]

# handles the tracing of string matching rules

def tracerule (ruleset, s):

for r in ruleset[:]:

n = r[-1].search(s)

if n >= 0: # the rule fires

r[2] = gettrcstr(s, n)

r[3] = r[3] + 1 # r[3] counts the number of firings

s = regsub.gsub(r[0], r[1], s) # may multiply fire

return s

usedexpt = []

# handles the tracing of exception matching rules

def excptrule (ruleset, s):

y = 0



136 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

for r in ruleset[:]:

n = r[-1].search(s)

if r[3] < 0 and n >= 0: # the rule fires

r[2] = gettrcstr(s, n)

r[3] = r[3] + 1 # -r[3] counts times the rule may fire

s = regsub.sub(r[0], r[1], s) # handle unique exception

if r[3] == 0: # the rule has been used up

usedexpt.append(r)

del ruleset[y]

else: # go on to the next rule

y = y + 1

return s

# handles making regular expressions objects out of the re strings

def makere (r):

o = regex.compile(r[0])

r.append(o)

# handles the printing out of the traces

def showtrace (r):

global rulecount

p1 = 'Rule #' + str(rulecount) + ' '

rulecount = rulecount + 1

p3 = ': [' + r[0] + '] --> [' + r[1] + '] '

if r[3] > 1:

trcout.write('%sfired %d times%s\n' % (p1, r[3], p3))

elif r[3] < 0:

trcout.write('%shas %d firings left%s\n' % (p1, -r[3], p3))

elif r[2] != '':

trcout.write('%sfired at "%s"%s\n' % (p1, r[2], p3))

else:

trcout.write('%sdid not fire%s\n' % (p1, p3))



B.2. NEXUS GLOSSARIZATION 137

accrule = [ # few special characters in head words

["&asg.", 'g', '', 0], # not sure here

["&edh.", 'th', '', 0],

["&th.", 'th', '', 0],

["^&ygh.", 'y', '', 0], # old yogh sound

[" &ygh.", 'y', '', 0],

["&ygh.", 'gh', '', 0],

["&amp.", '&', '', 0] ]

accexpt = [ # special definitions

["&104.", 'c.', '', -1],

["&Pi.", 'Product Symbol', '', -1],

["&pi.", 'pi', '', -1],

["&psi.&p.", "psi'", '', -1],

["&300.", 'resp.', '', -1],

["&302.", 'reg.', '', -1],

["&491.", 'levo', '', -1], # a chemical symbol?

["&pstlg.1", 'pound', '', -1], # pound coin

["&pstlg.", 'L', '', -2] ] # British pound symbol

# handles the transformation of special characters to ASCII

def accents (d):

y = 0

for z in d:

# z = tracerule (accrule[0:2], z) # for most common ones

if acc_patt.search(z) >= 0:

z = tracerule (accrule, z)

z = excptrule (accexpt, z)

d[y] = z

y = y + 1

# return d

allexpt = [

["[!?]", '', '', -641], # remove !,? in head words

[" *", ' ', '', -300], # multiple space in head words

["^ *", '', '', -280], # initial space in head words



138 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

[" *[ ,:] *$", '', '', -710], # final space in head words

[" *- *", '-', '', -3303], # space in hyphenated head words

[" -[a-z]*, -[a-z].*$", '', '', -45], # remove , -... in head words

[", *-[2 a-z].*$", '', '', -152], # remove , -... in head words

["(graul)", "graul", '', -1],

["(-ys)", "-ys", '', -1],

["(ruchche)", "ruchche", '', -1],

["(tiss-)", "tissic", '', -1],

["(Zabiism)", "Zabiism", '', -1],

["joyse)", "joyse", '', -1],

["daw)", "daw", '', -1],

["Riemann zeta ) function", "Riemann zeta function", '', -1],

["Cape) leaping hare", "Cape leaping hare", '', -1],

["la) vie interieure", "vie interieure", '', -1],

["hagh)e", "haghe", '', -1],

["Our) Lady eve, even", "Our Lady eve", '', -1],

["St.) Martin's eve", "St. Martin's eve", '', -1],

["American) bastard sanicle", "American bastard sanicle", '', -1],

["correcting) plate", "correcting plate", '', -1],

["la) vie intime", "vie intime", '', -1],

["East) Indian rosewood", "East Indian rosewood", '', -1],

["earth-)inductor compass", "earth-inductor compass", '', -1],

["St.) Cuthbert's duck", "St. Cuthbert's duck", '', -1],

["Miss) Lonelyhearts", "Miss Lonelyhearts", '', -1],

["fried) potatoes", "fried potatoes", '', -1],

["felt-tipped) pen", "felt-tipped pen", '', -1],

["St.) Cuthbert's beads", "St. Cuthbert's beads", '', -1],

["Our) Lady-psalter", "Our Lady-psalter", '', -1],

["St.) Martin's", "St. Martin's", '', -1],

["fur-) side", "fur-side", '', -1],

["h)ostry faggot", "hostry faggot", '', -1],

["just) for the hell of it", "just for the hell of it", '', -1],

["kit-key)", "kit-key", '', -1],

["Colonel) Blimp", "Colonel Blimp", '', -1],

["free) mason-wasp", "free mason-wasp", '', -1],

["white-)wave", "white-wave", '', -1],



B.2. NEXUS GLOSSARIZATION 139

["acute) yellow atrophy", "acute yellow atrophy", '', -1],

["old) soldier bird", "old soldier bird", '', -1],

["high) cargeing", "high cargeing", '', -1],

["Our) Lady's hair", "Our Lady's hair", '', -1],

["helicopter) gunship", "helicopter gunship", '', -1],

["golden) maidenhair-moss", "golden maidenhair-moss", '', -1],

["Dr.) Strangelovean", "strangelovean", '', -1],

["Saint) Mary's flower", "Saint Mary's flower", '', -1],

["rattlesnake) master weed", "rattlesnake master weed", '', -1],

["cross) mitre drain", "cross mitre drain", '', -1],

["in), on, upon one's top", "in, on, upon one's top", '', -1],

["net) muslin", "net muslin", '', -1],

["critical) fusion frequency", "critical fusion frequency", '', -1],

["great) crested grebe", "great crested grebe", '', -1],

["Lord) Steward of the King's Household", \

"Steward of the King's Household", '', -1],

["Pitot's) tube", "Pitot's tube", '', -1],

["squash-melon) pumpkin", "squash-melon pumpkin", '', -1],

["the) time was been, shall be", "the time was been, shall be", '', -1],

["weather-beaten-bet)", "weather-beaten-bet", '', -1],

["Pyrenean or guard) dog", "Pyrenean dog", '', -1],

["Onsager or reciprocity) relation", "Onsager relation", '', -1],

["in statu quo prius, or nunc)", "in statu quo prius", '', -1],

["put thing) in or into person's) head", "put in a person's head", '', -1],

["Hefner or amyl-acetate) lamp", "Hefner lamp", '', -1],

["chilli chile or chili) con carne", "chile con carne", '', -1],

["high solemn or great) mass", "high solemn mass", '', -1],

["Russian etc.) encephalitis", "Russian encephalitis", '', -1],

["first- second-, etc.) generation", "first-generation", '', -1],

["cry fight, plague, slave, tease, tire, weary, weep, etc.) \

one's heart out", "cry one's heart out", '', -1],

["in spite of maugre, etc.) one's teeth", "in spite of one's teeth", '', -1],

["squatter's squatters'; occas. squatter) right", "squatter's right", '', -1],

["on a commonly the) wind", "on the wind", '', -1],

["on upon) the, or one's, way", "upon the way", '', -1],

["young Young) America", "Young America", '', -1],

["turn the one's) back", "turn one's back", '', -1],



140 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

["WW II)", "WW II", '', -1],

["to work do obs.) annoy", "to work do", '', -1],

["what-ye -you) -calletc.)", "what-you-call", '', -1],

[" [^ ][^ ]*)", '', '', -106]] # remove ) in head words

splexpt = [

["8", "section eight", '', -1],

["2,4,5-T", "2-T", '', -1]]

# handles spelling errors and other bizarre stuff in the head words

def excepts (d):

y = 0

for z in d[:]:

if xpt_patt.search(z) >= 0: # non-alphabetic "[?.(0-9/<>^\]"

z = excptrule (allexpt, z)

if len(z) > 0:

d[y] = z

y = y + 1

else:

print 'Deleted word: ' + d[y]

del d[y]

elif spl_patt.search(z) == 0: # match "^[abce-npr-uwA-LNOPR-W]"

z = excptrule (splexpt, z)

if len(z) > 0:

d[y] = z

y = y + 1

else:

print 'Deleted word: ' + d[y]

del d[y]

else:

y = y + 1

# return d

headexpt = [ # all fire exactly once (to add second word to node)

["^aconitia", 'aconitic', '', -1],



B.2. NEXUS GLOSSARIZATION 141

["^anguine lizard", 'lizard', '', -1],

["^anise hyssop", 'hyssop', '', -1],

["^Arkansas cabbage", 'cabbage', '', -1],

["^aronia, thorn", 'thorn', '', -1],

["^black i$", 'ipecac', '', -1],

["^bleinerite", 'bieberite', '', -1], # least damage

["^Brazil or Brazilian tea", 'tea', '', -1],

["^broom-bush", 'bush', '', -1],

["^brush-grass", 'grass', '', -1],

["^bush-grass", 'grass', '', -1],

["^campholic acid", 'camphol', '', -1],

["^Canadian or Quebec m", 'marmot', '', -1],

["^carbanilide", 'carbanil', '', -1],

["^cat-footedness", 'cat-footed', '', -1],

["^chalice-moss", 'moss', '', -1],

["^close about", 'close in', '', -1],

["^copahuvic", 'copaiva', '', -1],

["^crab-eating seal", 'seal', '', -1],

["^crew cut", 'hair-cut', '', -1],

["^dilettant", 'dilettante', '', -1],

["^ditch-bur", 'burr', '', -1],

["^ditch-grass", 'grass', '', -1],

["^dulcoacid", 'sweet-sour', '', -1],

["^dysgenesic", 'dysgenesis', '', -1],

["^enzymatically", 'enzymatic', '', -1],

["^fairies'-hair", 'fairy-weed', '', -1],

["^false or summer heliotrope", 'heliotrope', '', -1],

["^field-kale", 'kale', '', -1],

["^fleyedly", 'fley', '', -1],

["^foppasty", 'fop', '', -1],

["^fore-goodsire", 'great-grandfather', '', -1],

["^French honey-suckle", 'honey-suck', '', -1],

["^fuller's teazel", 'teazel', '', -1],

["^fuller's thorn", 'thorn', '', -1],

["^gold-breasted trumpeter", 'trumpeter swan', '', -1],

["^gonosphaerium", 'gonosphere', '', -1],

["^G\.T\.T\.", 'gone', '', -1],



142 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

["^gum-thistle", 'thistle', '', -1],

["^handgriping", 'handgrip', '', -1],

["^hare's-bane", 'bane', '', -1],

["^hisis", 'his', '', -1],

["^hithertoward", 'hitherto', '', -1],

["^horse-willow", 'willow', '', -1],

["^hydantoin", 'hydantoic', '', -1],

["^incense c$", 'cedar', '', -1],

["^inexpleble", 'inexpleable', '', -1],

["^Irish or St\. Dabeoc's h", 'heather', '', -1],

["^king-penguin", 'penguin', '', -1],

["^knot-grass moth", 'moth', '', -1],

["^kolbasa", 'kielbasa', '', -1],

["^ligno-sulphuric", 'lignosulphonic acid', '', -1],

["^lock-knit", 'Locknit', '', -1],

["^lotus-berry", 'berry', '', -1],

["^louse-burr", 'burr', '', -1],

["^Malay porcupine", 'porcupine', '', -1],

["^manganicyanhydric acid", 'manganicyanide', '', -1],

["^marsh fern", 'fern', '', -1],

["^Mississippi k", 'kite', '', -1],

["^monkey guava", 'guava', '', -1],

["^mountain s$", 'sweetwood', '', -1],

["^musk-scabious", 'musk', '', -1],

["^narcoticalness", 'narcotical', '', -1],

["^neurilematic", 'neurilemma', '', -1],

["^obedientiar", 'obedientiary', '', -1],

["^oil of cedar", 'cedar', '', -1],

["^overmodiness", 'overmod', '', -1],

["^pin-setting", 'pin-setter', '', -1],

["^potash-felspar", 'feldspar', '', -1],

["^pounce-tree", 'tree', '', -1],

["^pseudo-bacillus", 'bacillus', '', -1],

["^pseudo-bacterium", 'bacterium', '', -1],

["^Ptolemaean", 'Ptolemaian', '', -1],

["^pyrocamphretic acid", 'pyro-camphretic', '', -1],

["^pyromellitic acid", 'mellitic acid', '', -1],



B.2. NEXUS GLOSSARIZATION 143

["^pyrophosphamic acid", 'pyrophosphamic', '', -1],

["^quack-grass", 'grass', '', -1],

["^Queensland box", 'red box', '', -1],

["^quinquertian", 'pentathletical', '', -1],

["^r\. night-jar", 'nightjar', '', -1],

["^rebreathing", 'rebreathe', '', -1],

["^red m$", 'red manganese', '', -1],

["^reforestization", 'reforestation', '', -1],

["^renovater", 'renovate', '', -1],

["^retrogradingly", 'retrogradely', '', -1],

["^ringtail hawk", 'hawk', '', -1],

["^rope's-ending", "rope's-end", '', -1],

["^round h", 'herring', '', -1],

["^sable-mouse", 'mouse', '', -1],

["^Saint Mary's seed", 'seed', '', -1],

["^satin bower-bird", 'bower-bird', '', -1],

["^scarlet mite", 'mite', '', -1],

["^serpently", 'serpent-like', '', -1],

["^sexto-decimo", 'sextodecimo', '', -1],

["^shrubby tansy", 'tansy', '', -1],

["^slim-down", 'slim', '', -1],

["^smarty-boots", 'smarty-pants', '', -1],

["^standing c$", 'cypress', '', -1],

["^sweet bent", 'bent', '', -1],

["^tetradecinene", 'tetradecenyl', '', -1],

["^the whole world", 'the world', '', -1],

["^thoraco-centesis", 'thoracocentesis', '', -1],

["^thymotide", 'thymotic', '', -1],

["^tin p", 'tin-pyrites', '', -1],

["^track system", 'tenure track', '', -1],

["^trey-bit", 'tray-bit', '', -1],

["^triethylurea", 'triethylmethane', '', -1],

["^trimethyl phosphate", 'trimethyl-phosphine', '', -1],

["^unshakeable", 'unshakable', '', -1],

["^water trefoil", 'trefoil', '', -1],

["^water-stoma", 'stoma', '', -1],

["^white chameleon", 'chameleon', '', -1],



144 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

["^wide-body", 'wide-bodied', '', -1],

["^and$", '&', '', -1],

["^learn$", 'learnt', '', -1],

["^sleep$", 'slept', '', -1],

["^antenna", 'antennae', '', -1],

["^cilia", 'cilium', '', -1],

["^formula", 'formulae', '', -1],

["^fungus", 'fungi', '', -1],

["^focus", 'foci', '', -1],

["^locus", 'loci', '', -1],

["^nebula", 'nebulae', '', -1],

["^craftsman", 'craftsmen', '', -1],

["^draughtsman", 'draughtsmen', '', -1],

["^huntsman", 'huntsmen', '', -1],

["^radius", 'radii', '', -1],

["^sportsman", 'sportsmen', '', -1],

["^stimulus", 'stimuli', '', -1] ]

# ["^And", '&', '', -1],

# handles addition of abbreviations or irregular forms in head word list

def addhead (d):

# global headexpt

x = -1

result = []

for z in d[:]:

y = 0

for head in headexpt[:]:

if x < 0 and head[-1].search(z) == 0:

head[2] = z

result = head

x = y

y = y + 1

if x >= 0: # only one ever fires at a time

d.append(result[1])



B.2. NEXUS GLOSSARIZATION 145

result[3] = result[3] + 1 # -result[3] is times the rule fires

usedexpt.append(result)

del headexpt[x]

# return d

defsrule = [ # fewer patterns to remove in the OED

['[][(),;:!?"*`]', '', '', 0], # not ok (1st with punct., 2nd without)

["<QP>.*</QP>", '', '', 0], # quote paragraph (fixes to source)

["<#>.*</#>", '', '', 0], # quote paragraph (fixes to source)

["</?S[24678]>", '', '', 0],

["<[IB]L>[^L]*<LF>", '', '', 0], # not exact

["</LF>[^L]*</[IB]L>", '', '', 0], # not exact

["<MPR>[^M]*</MPR>", '', '', 0], # modern pronounciation

["<IPR>[^R]*</IPR>", '', '', 0], # pronounciation

["<ST>.[^>]*</ST>", '', '', 0], # status (before IPH)

["<X?DAT>[^>]*</X?DAT>", '', '', 0], # date

["<RX>[^>]*</RX>", '', '', 0], # cross reference

["<FS>[^F]*</FS>", '', '', 0], # foreign sense ???

["<FS>[^<][^<]*$", '', '', 0], # foreign sense ???

["<PS>.[^P]*</PS>", '', '', 0], # part of speech

#["<OLD#>[^>]*</OLD#>", '', '', 0], # pronounciation

["<SN>.[^N]*</SN>", '', '', 0], # sense number

["<HO>.[^>]*</HO>", '', '', 0], # homonym number

["<L>.[^>]*</L>", '', '', 0], # language

["<[/MVCS][/<>LFMVCS]*F>", '', '', 0], # remove consecutive form tags

# must be last of 'CAP' rules

["<fr>.[^f]*</fr>", '', '', 0], # fraction

["<form>.[^f]*</form>", '', '', 0], # formula

["<just>.[^f]*</just>", '', '', 0], # formula

["<chem>.[^f]*</chem>", '', '', 0], # chemical formula

["<gk>.[^>]*</gk>", '', '', 0], # greek

["<sc>.[^>]*</sc>", '', '', 0],

["<su>.[^>]*</su>", '', '', 0],

["</?XL>", '', '', 0],

["</?XR>", '', '', 0],

["</?XIL>", '', '', 0],



146 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

["</?IL>", '', '', 0],

["</?LB>", '', '', 0],

["</?ETN>", '', '', 0],

["</?col>", '', '', 0],

["</?ln>", '', '', 0],

["</?s[suc]>", '', '', 0],

["</?ss[bi]>", '', '', 0],

["</?r>", '', '', 0],

["</?b>", '', '', 0],

["</?i>", '', '', 0],

["</?in>", '', '', 0],

["</?p>", '', '', 0],

["</?note>", '', '', 0],

["&[1-9][0-9][0-9].", '', '', 0],

["&74.", '', '', 0],

["&amp.", '&', '', 0],

["&Oe.", 'Oe', '', 0],

["&oe.", 'oe', '', 0],

["&Ae.", 'Ae', '', 0],

["&ae.", 'ae', '', 0],

["&ccdil.", 'c', '', 0],

["&Aacu.", 'A', '', 0],

["&aacu.", 'a', '', 0],

["&Eacu.", 'E', '', 0],

["&eacu.", 'e', '', 0],

["&iacu.", 'i', '', 0],

["&Oacu.", 'O', '', 0],

["&oacu.", 'o', '', 0],

["&uacu.", 'u', '', 0],

["&egrave.", 'e', '', 0],

["&igrave.", 'i', '', 0],

["&ugrave.", 'u', '', 0],

["&acirc.", 'a', '', 0],

["&Ecirc.", 'E', '', 0],

["&ecirc.", 'e', '', 0],

["&icirc.", 'i', '', 0],

["&ocirc.", 'o', '', 0],



B.2. NEXUS GLOSSARIZATION 147

["&ucirc.", 'u', '', 0],

["&Auml.", 'A', '', 0],

["&auml.", 'a', '', 0],

["&euml.", 'e', '', 0],

["&iuml.", 'i', '', 0],

["&Ouml.", 'O', '', 0],

["&ouml.", 'o', '', 0],

["&Uuml.", 'U', '', 0],

["&uuml.", 'u', '', 0],

["&obar.", 'o', '', 0],

["&Th.", 'Th', '', 0],

["&th.", 'th', '', 0],

["&Edh.", 'Th', '', 0],

["&edh.", 'th', '', 0],

["&ygh.", 'gh', '', 0],

["&Ygh.", 'Y', '', 0],

["&pstlg.", '', '', 0], # pound symbol

["&sm.", '', '', 0],

["&sd.", '', '', 0],

["&acu.", '', '', 0],

["&breve.", '', '', 0],

["&lenis.", '', '', 0],

["&mac.", '', '', 0],

["&dubh.", '', '', 0],

["&dag.", '', '', 0],

["&deg.", '', '', 0],

["&para.", '', '', 0],

["&times.", '', '', 0],

["<or/", 'or', '', 0] ]

defsexpt = [ # given in order they appear (only for single word definitions)

['Apostacy', 'apostasy', '', -1] ]

# handles the removal of special characters in the definitions

def fixdefs (z):

z = tracerule (defsrule[0:1], z)



148 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

if def_patt.search(z) >= 0: # key patterns in defs "--\|[\\]'\|<"

z = tracerule (defsrule[1:], z)

elif xsw_patt.search(z) < 0: # only single word exceptions "[^ ]<"

z = excptrule (defsexpt, z)

return z

# does the code run

def maincode (args):

global input, zout, webout, chkout, trcout, rulecount

map(makere, accrule)

map(makere, accexpt)

map(makere, allexpt)

map(makere, splexpt)

map(makere, headexpt)

map(makere, defsrule)

map(makere, defsexpt)

rhw = []

rdf = []

curr = 0

a = {}

t = []

bins = []

chkstr = regsub.sub('\.txt', '', args[-1]) + '.chk'

print chkstr # trace output files

for z in args[:-1]:

print z # dictionary input files

input = open(z, 'r')

zout = regsub.sub('\.txt', '', z) + '.def'

cbin = (zout, [], [], [])

line = input.readline()

while line:

#n = pattern1.search(line)

#if n >= 0:

# ONLY the lookup form is considered in OED

t = ['', line[:-1]]

#t = getchunk(line[n:-1])



B.2. NEXUS GLOSSARIZATION 149

#line = t[0]

#c = fixwords(regsub.split(t[1], wordsep)[1:2])

#c = fixwords(regsub.split(t[1], wordsep)[1:])

c = fixwords(string.split(t[1], wordsep)[1:])

rhw.append(c)

rdf.append(t[1])

v = chkwords(a, c)

if not v:

curr = curr + 1

v = [curr]

tk = []

for token in c[:]:

if not a.has_key(token):

a[token] = v

tk.append(token)

cbin[1].append(t[1])

cbin[2].append(v)

cbin[3].append(tk)

#else:

line = input.readline()

input.close()

bins.append(cbin)

chkout = open(chkstr, 'w')

aa = {}

cc = {}

n = 0

for z in bins:

webout = open(z[0], 'w')

print z[0] # definition output files

lenz = len(z[1])

i = 0

while i < lenz:

zz = regsub.split(z[1][i], bdef)[1:]

rr = z[3][i]

v = z[2][i][0]

if not aa.has_key(v):

n = n + 1



150 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

aa[v] = n

nn = 1

cc[n] = nn

elif len(rr) == 0:

nn = cc[aa[v]]

else:

nn = 1

vv = aa[v]

nn = writedef(zz, vv, rr, nn)

if nn > cc[aa[v]]:

cc[aa[v]] = nn

i = i + 1

webout.close()

chkout.close()

print args[-1] # head word output file

output = open(args[-1], 'w')

i = 0

tenth = (len(a.items()) + 9) / 10

for w in a.items():

output.write('%s %s\n' % (w[0], aa[w[1][0]]))

i = i + 1

if i % tenth == 0:

print i

output.close()

trcstr = regsub.sub('\.txt', '', args[-1]) + '.trc'

print trcstr # trace output files

trcout = open(trcstr, 'w')

rulecount = 0

map(showtrace, accrule)

map(showtrace, accexpt)

map(showtrace, allexpt)

map(showtrace, splexpt)

map(showtrace, headexpt)

map(showtrace, defsrule)

map(showtrace, defsexpt)



B.3. NEXUS EXTRACTION 151

map(showtrace, usedexpt)

trcout.close()

defstr = regsub.sub('\.txt', '', args[-1]) + '.raw'

print defstr # raw definition output files

defout = open(defstr, 'w')

i = 0

for ri in rhw:

rdfs = '%s' % (aa[a[ri[0]][0]],)

for rj in ri:

rdfs = rdfs + ' ' + rj

defout.write('%s\n%s\n\n' % (rdfs, rdf[i]))

i = i + 1

defout.close()

input = None

zout = None

webout = None

chkout = None

trcout = None

rulecount = 0

if len(sys.argv) > 1:

maincode(sys.argv[1:])

B.3 Nexus Extraction

The output of the glossarization step feeds into the nexus extractor, which generates a list of

all of the arcs in the nexus, as well as a list giving the most popular terms for each de�nition

(in general, there are more than one term per de�nition). Again all of the morphological

rules used in this script accompany the code that executes them.

import sys, regex, regsub, string

# Newly modified: 4/25/99

# Usage: Graph.py wordfile.txt <WEBfile(s).*.def> graphfile.txt



152 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

# this script creates the graph of the dictionary words

a = {}

aa = {}

aaa = {}

exlines = []

grout = open(sys.argv[-1], 'w')

# returns a line with a FROM node number and a TO node number and a counter

def wordarc (org, dest, wc):

aa[dest] = aa[dest] + 1

if aa[dest] > aa[aaa[a[dest]]]:

aaa[a[dest]] = dest

return "%s %s %d\n" % (org, a[dest], wc)

# stemming suffixes

sfdc = 'bb$\|ch$\|dd$\|ff$\|gg$\|kk$\|ll$\|mm$\|nn$\|pp$\|rr$\|s[hs]$\|tt$\|zz$'

rxdc = regex.compile(sfdc)

sfly = 'ly$'; rxly = regex.compile(sfly)

sfing = 'ing$'; rxing = regex.compile(sfing)

sfdrs = '[drs]$'

sfedr = 'e' + sfdrs; rxedr = regex.compile(sfedr)

sfiedr = 'ie' + sfdrs; rxiedr = regex.compile(sfiedr)

sfst = 'est$'; rxst = regex.compile(sfst)

sfist = 'i' + sfst; rxist = regex.compile(sfist)

sfaps = "'?s$"; rxaps = regex.compile(sfaps)

sflike = 'like$'; rxlike = regex.compile(sflike)

sfn = 'n$'; rxewn = regex.compile('[ew]' + sfn)

sfen = 'e' + sfn

sften = 't' + sfen; rxten = regex.compile(sften)

rxtten = regex.compile('t' + sften)

sfgtn = 'ot' + sften; rxgtn = regex.compile('g' + sfgtn)

rxkvn = regex.compile('[kv]en$')

rxaown = regex.compile('[nrs][ao]wn$')

rxhst = regex.compile('[hst]$')



B.3. NEXUS EXTRACTION 153

# returns an arc specified by stemming the word in the definition file

# handles most stemming problems

def stemarc (wc, arc, key):

arcline = ""

plok = 1 # try removing s from stem

trye = 0 # don't try adding e to stem

dblc = 0 # don't check for double consonant

if rxly.search(arc) > 0:

arc = regsub.sub(sfly, '', arc)

plok = 0

if rxing.search(arc) > 0:

trye = 1

dblc = 1

arc = regsub.sub(sfing, '', arc)

elif rxedr.search(arc) > 0:

if rxiedr.search(arc) > 0:

if len(arc) > 4:

arc = regsub.sub(sfiedr, 'y', arc)

else:

arc = regsub.sub(sfdrs, '', arc)

else:

dblc = 1

trye = 1

arc = regsub.sub(sfedr, '', arc)

elif plok and rxaps.search(arc) > 0:

arc = regsub.sub(sfaps, '', arc)

elif rxst.search(arc) > 0:

if rxist.search(arc) > 0:

arc = regsub.sub(sfist, 'y', arc)

else:

dblc = 1

trye = 1

arc = regsub.sub(sfst, '', arc)

elif rxlike.search(arc) > 0:

arc = regsub.sub(sflike, '', arc)



154 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

elif rxewn.search(arc) > 0:

if rxten.search(arc) > 0:

if rxtten.search(arc) > 0:

if rxgtn.search(arc) > 0:

arc = regsub.sub(sfgtn, 'et', arc)

else:

arc = regsub.sub(sften, 'e', arc)

else:

arc = regsub.sub(sfen, '', arc)

elif rxkvn.search(arc) > 0 or rxaown.search(arc) > 0:

arc = regsub.sub(sfn, '', arc)

if dblc and (rxdc.search(arc) > 0): # ff, ss don't stem

if rxhst.search(arc) > 0:

trye = -1

arce = arc + 'e'

else:

trye = 0

a2 = regsub.sub('tt$', 't', arc) # no good for boycott

a2 = regsub.sub('pp$', 'p', a2)

a2 = regsub.sub('gg$', 'g', a2)

a2 = regsub.sub('nn$', 'n', a2)

a2 = regsub.sub('mm$', 'm', a2)

a2 = regsub.sub('kk$', 'k', a2)

if len(arc) > 3:

a2 = regsub.sub('bb$', 'b', a2) # ebb

a2 = regsub.sub('dd$', 'd', a2) # add

a2 = regsub.sub('rr$', 'r', a2) # err

if len(arc) > 4:

# no good for frizz

a2 = regsub.sub('zz$', 'z', a2)

if len(arc) > 5:

# no good for foretell, recall, befall, stroll, thrill, shrill, appall

a2 = regsub.sub('ll$', 'l', a2)

if a2 != arc:

arc = a2



B.3. NEXUS EXTRACTION 155

if trye > 0:

arce = arc + 'e'

if trye > 0 and a.has_key(arce):

arcline = wordarc (key, arce, wc)

elif a.has_key(arc):

arcline = wordarc (key, arc, wc)

elif trye < 0 and a.has_key(arce):

arcline = wordarc (key, arce, wc)

return arcline

# handles common place name suffixes and latin terms

def placearc (wc, arc, key):

global mkey

arcline = ""

t1 = not a.has_key(string.lower(arc))

sarc = string.lower(arc)

arc = regsub.sub("[.']*$\|[']s$", '', arc)

nosarc = string.lower(regsub.sub("s$", '', arc))

tst = not (a.has_key(sarc) or a.has_key(string.lower(arc)) or \

a.has_key(nosarc)) and len(nosarc) > 3

if tst and regex.search('^[a-zA-Z].*[a-z]$', arc) >= 0:

oldarc = arc

arc = regsub.sub("n$", 'nian', arc)

arc = regsub.sub("a$", 'an', arc)

arc = regsub.sub("e$", 'ean', arc)

arc = regsub.sub("i$", 'ian', arc)

arc = regsub.sub("iensis$", 'ian', arc)

arc = regsub.sub("is$", 'isian', arc)

arc = regsub.sub("[os]$", 'an', arc)

arc = regsub.sub("gium$", 'gian', arc)

arc = regsub.sub("way$", 'wegian', arc)

arc = regsub.sub("y$", 'ian', arc)

if regex.search('land$', arc) >= 0:

arc = regsub.sub("ngland", 'nglish', arc)



156 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

arc = regsub.sub("reland", 'rish', arc)

arc = regsub.sub("otland", 'ottish', arc)

arc = regsub.sub("land", 'lander', arc)

elif regex.search("Denmark$\|Portugal$\|Swedenian$\|\

Spainian$\|Germanian$\|Francean$", arc) >= 0:

arc = regsub.sub("enmark", 'anish', arc)

arc = regsub.sub("gal", 'guese', arc)

arc = regsub.sub("edenian", 'edish', arc)

arc = regsub.sub("painian", 'panish', arc)

arc = regsub.sub("ancean", 'ench', arc)

arc = regsub.sub("manian", 'man', arc)

elif regex.search('[^n]$', arc) >= 0:

arc = regsub.sub("$", 'ian', arc)

arc = string.lower(arc)

larc = string.lower(oldarc)

if (regex.search('^[A-Z]', oldarc) == 0) and a.has_key(arc):

a[larc] = mkey

aa[larc] = 0

aaa[mkey] = larc

wordout.write('%s %s\n' % (oldarc, mkey))

arcline = wordarc (key, larc, wc) + wordarc (mkey, arc, 1)

mkey = mkey + 1

else:

arc = larc

arc = regsub.sub("a$\|us$\|um$\|is$", '', arc)

if (len(arc) > 6) and (a.has_key(arc)):

arcline = wordarc (key, arc, wc)

return arcline

# returns an arc specified by the word in the definition file

def buildarc (wc, arc, key):

arcline = ""

if a.has_key(arc):

arcline = wordarc (key, arc, wc)

else:



B.3. NEXUS EXTRACTION 157

arc = regsub.sub("[.']*$\|[']s$", '', arc)

if a.has_key(arc):

arcline = wordarc (key, arc, wc)

else:

arcline = stemarc (wc, arc, key)

return arcline

# returns an arc specified by the word in the definition file

def hyphenarc (wc, arc, key):

arcline = ""

arch = regsub.sub("[^a-zA-Z]*$", '', arc) + '-'

if a.has_key(arch):

arcline = wordarc (key, arch, wc)

elif a.has_key(arch[:-1]):

arcline = wordarc (key, arch[:-1], wc)

return arcline

# finds arcs in simple as well as compound and hyphenated words

def subarc (wc, word, key):

arcline = ""

capword = word

word = string.lower(word)

if regex.search('[-]', word) < 0:

arcline = placearc(wc, capword, key)

if len(arcline) == 0:

arcline = buildarc(wc, word, key)

if len(arcline) == 0:

xline = 0

hyphens = []

if regex.search('[-]', word) >= 0:

word = regsub.gsub('-', ' ', word)

if a.has_key(word):

arcline = wordarc (key, word, wc)

else:

hyphens = string.split(word)



158 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

for awd in hyphens:

aline = hyphenarc(wc, awd, key)

if len(aline) == 0:

aline = buildarc(wc, awd, key)

arcline = arcline + aline

if len(aline) > 0:

xline = xline + 1

lword = len(regsub.sub("[-.']", '', word))

if len(arcline) > 0:

# print "hyphens", hyphens, xline

if xline < len(hyphens):

grout.write(arcline) # partial success

arcline = ""

elif lword > 3:

s = 2

while s <= lword - 2:

arc1 = word[:s]

arc2 = word[s:]

s = s + 1

aline1 = hyphenarc(wc, arc1, key)

aline2 = buildarc(wc, arc2, key)

if len(aline1) > 0 and len(aline2) > 0:

arcline = aline1 + aline2

# print "compound", arc1 + ' | ' + arc2

break

return arcline

# finds arcs in multiword environment

def findarc (wc, w1, w2, w3, key, line):

found = 0

if len(w1) > 0:

word = string.lower(string.join([w1, w2, w3]))

arcline = buildarc(wc, word, key)

if len(arcline) == 0:

word = string.lower(string.join([w1, w2]))

arcline = buildarc(wc, word, key)



B.3. NEXUS EXTRACTION 159

if len(arcline) == 0:

arcline = subarc(wc, w1, key)

if len(arcline) > 0:

found = 1

# print arcline, "one word", (w1, wc)

else:

found = 2

# print arcline, "two wds.", (word, wc)

else:

found = 3

# print arcline, "three wds.", (word, wc)

elif len(w2) > 0:

word = string.lower(string.join([w2, w3]))

arcline = buildarc(wc, word, key)

if len(arcline) == 0:

arcline = subarc(wc, w2, key)

if len(arcline) > 0:

found = 1

# print arcline, "penult wd.", (w2, wc)

else:

found = 2

# print arcline, "two last wds.", (word, wc)

else:

arcline = subarc(wc, w3, key)

if len(arcline) > 0:

found = 1

# print arcline, "last wd.", (w3, wc)

if found == 0:

# print line

exlines.append("%s %d\n" % (line[:-1], wc))

# this file never gets too large

else:

grout.write(arcline)

return found



160 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

wordin = open(sys.argv[1], 'r')

wordout = open(regsub.sub('\.txt', '', sys.argv[-1]) + '.sup', 'w')

webfile = wordin.readlines()

wordin.close()

mkey = 0

for line in webfile[:]:

word = string.lower(regsub.sub(' *[0-9]*$', '', line[:-1]))

b = string.split(line)

key = string.atoi(b[-1])

mkey = max(key, mkey)

a[word] = key

aa[word] = 0

aaa[key] = word

mkey = mkey + 1

wdnum = 1

wdcount = -1

l1 = ""

l2 = ""

l3 = ""

w1 = ""

w2 = ""

w3 = ""

for z in sys.argv[2:-1]:

print z # dictionary input files

defsin = open(z, 'r')

webfile = defsin.readlines()

defsin.close()

for line in webfile[:]: # change to account for chunks

l1 = l2

l2 = l3

l3 = line

word = regsub.sub(' *[0-9]* ?[0-9]*$', '', line[:-1])

w1 = w2

w2 = w3



B.3. NEXUS EXTRACTION 161

w3 = word

b = string.split(line)

key = b[-2]

chunk = b[-1] # new model includes chunk number

r = 0

if wdnum == key:

if len(w1) > 0:

r = findarc(wdcount, w1, w2, w3, wdnum, l1)

if r > 1:

w2 = ""

if r > 2:

w3 = ""

wdcount = wdcount + 1

else:

if len(w1) > 0:

r = findarc(wdcount, "", w1, w2, wdnum, l1)

if r < 2 and len(w2) > 0:

r = findarc(wdcount + 1, "", "", w2, wdnum, l2)

w1 = ""

w2 = ""

wdnum = key

wdcount = -1

r = 0

if len(w2) > 0:

r = findarc(wdcount, "", w2, w3, wdnum, l2)

if r < 2 and len(w3) > 0:

r = findarc(wdcount + 1, "", "", w3, wdnum, l3)

wordout.close()

exout = open(regsub.sub('\.txt', '', sys.argv[-1]) + '.xpt', 'w')

exout.write(string.joinfields(exlines, ''))

exout.close()

popout = open(regsub.sub('\.txt', '', sys.argv[-1]) + '.pop', 'w')

x = aaa.keys()

x.sort()



162 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

for i in x:

popout.write('%u %s\n' % (i, string.capwords(aaa[i])))

popout.close()

B.4 Nexus Ranking

Once all of the arcs of the graph have been computed, the ranking script computes the ranks

of each of the terms based on the arcs of the graph. This is a preliminary step required for

the matching computed later on, and corresponds to the implementation of the PageRank

algorithm.

import sys, regex, regsub, string

# Newly updated: 3/21/99

# Usage: Qyrank.py inputweb.txt [outputrank] [ranking setup {0.0-1.0,2}]

# this script computes arc adjusted page rank on an input graph file

# functions to compute NodeRank values

def fullflow(srcl, arcl, val, indx): # for dampened or undampened model

srcl[indx] = 0.0

arcl[indx] = val / a[indx]

# !!! can withhold smaller and smaller amounts as algorithm converges

strength = 2.0

def ergodic(srcl, arcl, val, indx): # for ergodic browse model

srcl[indx] = val / strength

arcl[indx] = (val - srcl[indx]) / a[indx]

# !!! can reduce strength as algorithm converges

def selfloop(srcl, arcl, val, indx): # for structure respecting model

strength = 2

arcl[indx] = val / (a[indx] + strength)

srcl[indx] = strength * arcl[indx]

# the functions in this list are ranking functions for various models

rankingfuncs = [fullflow, ergodic, selfloop]



B.4. NEXUS RANKING 163

# compute page rank & sum of ranks

def rankfn(slist1, slist2):

sum = 0.0

i = startnode

for elem in slist2[i:]:

sum = sum + elem

tarc[i] = 0.0

rankingfunctor(slist1, arcv, elem, i)

i = i + 1

i = 0

for line in snod:

aval[i] = arcv[line]/slist2[dnod[i]]

tarc[line] = tarc[line] + aval[i]

i = i + 1

i = 0

for line in dnod:

slist1[line] = slist1[line] + aval[i]/tarc[snod[i]] * \

slist2[snod[i]] * (1 - 1.0 / strength)

i = i + 1

return sum

# write out log information

def printlog(iter, sum, dif):

print "iteration: ", iter, "\tsum: ", initsum, '+', sum - initsum, \

"\tdiff: ", dif

wordlog.write("iter: %u\tsum: %g + %12.8g\tdiff: %12.8g\n" \

% (iter, initsum, sum - initsum, dif))

wordlog.flush()

# write out iteration information

def printitr(outfile, ranklist):

wordout = open(outfile, 'w')

i = startnode



164 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

for item in ranklist[i:]:

wordout.write("%u\t%12.8g\n" % (i, item))

i = i + 1

wordout.close()

# adjust node values after iteration & compute difference between iterations

# the two functions below are the adjusting functions for the damping

# and undamping ranking models

def dampen(slist1, slist2):

diff = 0.0

i = startnode

for elem in slist1[i:]:

slist1[i] = elem * normflow + initflow

diff = diff + abs(slist1[i] - slist2[i])

i = i + 1

return diff

def undamp(slist1, slist2):

diff = 0.0

i = startnode

# fact = initsum / sum

for elem in slist1[i:]:

# slist1[i] = elem * fact

diff = diff + abs(slist1[i] - slist2[i])

i = i + 1

return diff

# handle input and output filename parameters

# select damping style (can also use command line parameter)

if 1:

adjustingfunctor = undamp

rankingfunctor = ergodic # can be fullflow, ergodic, selfloop

else:

flow = 0.015625 #steady state flow from graph



B.4. NEXUS RANKING 165

normflow = 1.0 - flow

adjustingfunctor = dampen

rankingfunctor = fullflow # use only fullflow here

infile = ""

outfile = "pagerk"

logsuff = ".log"

ranksuff = ".i" # i stands for iteration

argc = len(sys.argv)

if argc < 2 or argc > 4:

sys.exit(1)

else:

infile = sys.argv[1]

if argc > 2:

outfile = regsub.sub('\.txt', '', sys.argv[2])

if argc > 3:

flow = string.atof(sys.argv[3])

if (flow <= 0.0) or ((flow > 1.0) and (flow != 2)):

flow = 1.0

rankfnval = int(flow)

rankingfunctor = rankingfuncs[rankfnval]

if (flow - rankfnval) > 0:

normflow = 1.0 - flow

adjustingfunctor = dampen

print '%s %s' % (rankingfunctor, adjustingfunctor)

print "reading ", infile

wordin = open(infile, 'r')

inweb = wordin.readlines()

wordin.close()

print "step: ", 1

# change arc file strings to int array

i = len(inweb)

snod = [0] * i

dnod = [0] * i

aval = [0.0] * i

while i > 0:



166 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

i = i - 1

if i % 100000 == 0:

print "> ", i

b = string.split(inweb[i])

snod[i] = string.atoi(b[0])

dnod[i] = string.atoi(b[1])

del inweb[i]

print "step: ", 2

# count number of arcs per node & number of nodes & max mode number

gmax = 0

a = {}

i = len(snod)

while i > 0:

i = i - 1

if i % 100000 == 0:

print "> ", i

v = snod[i]

if v > gmax:

gmax = v

if a.has_key(v):

a[v] = a[v] + 1

else:

a[v] = 1

print "step: ", 3

# set up the ranking array & verify presence of all nodes

wordlog = open(outfile + logsuff, 'w')

startnode = 1 #not using node #0 here

gnode = len(a)

gsize = gnode + startnode

initsum = 1.0

sum = initsum #initialize for the adjusting function

diff = sum #initialize for the log printing function

initial = sum / gnode



B.5. NEXUS TERM MATCHING 167

if (adjustingfunctor == dampen):

initflow = initial * flow #initialize dampened flow here

ranks = []

ranks.append([0.0] * gsize)

ranks.append([0.0] * startnode + [initial] * gnode)

arcv = [0.0] * gsize

tarc = [0.0] * gsize

i = gmax

while i > 0:

if not a.has_key(i):

wordlog.write("empty node %d \n" % (i,))

i = i - 1

print "step: ", 4

# iterate page rank algorithm

stable = 0

x = 0

while x < 80 and stable < 2:

sum = rankfn(ranks[x & 1], ranks[x & 1 ^ 1])

diff = adjustingfunctor(ranks[x & 1], ranks[x & 1 ^ 1])

printitr(outfile + ranksuff + str(x/10) + str(x%10), ranks[x & 1])

printlog(x, sum, diff)

if diff == 0.0:

stable = stable + 1

print "step: ", 5 + x

x = x + 1

wordlog.close()

B.5 Nexus Term Matching

Finally, the ArcRank scores are computed for the graph based on the ranks of terms com-

puted in the previous step. The resulting �le is the term nexus.

import sys, os, re, string, math



168 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

# Newly created: 12/2/99 Redesigned 8/12/00 for OED

# Usage: Dualink.py OedA.txt qergrk.i100.srt OedA.pop [outprefix]

# this script computes important neighbors to nodes and prepares graph

# output for them. Memory intensive, but fast

# functions to compute arc importance value for getallarcs() function below

def dstprp1(src, dst, weight): # based on proportion of destination value

return weight / dst

def dstprp2(dst, src, weight): # based on proportion of destination value

return weight / dst

#def harmean(src, dst, weight): # based on harmonic mean

# weight = weight / 2

# return weight / src + weight / dst

#def submean(src, dst, weight): # based on subcontrary harmonic mean

# return (weight * src + weight * dst) / (src * src + dst * dst)

#def subrmean(src, dst, weight): # based on subcontrary harmonic mean

# return (weight * math.sqrt(src) + weight * math.sqrt(dst)) / (src + dst)

#def sub2mean(src, dst, weight): # based on subcontrary harmonic mean

# return (weight * src * src + weight * dst * dst) / (src + dst)

# computes the arc importance for each node

def getallarcs(k, irnk, arcfn):

j = len(k)

while j > 0:

j = j - 1

l = list(k[j])

l[1] = arcfn(irnk, ranks[l[0]], l[1]) # compute importance

l.reverse()

k[j] = l

k.sort()



B.5. NEXUS TERM MATCHING 169

q = {}

v = -1.0

n = 0

j = len(k)

while j > 0:

j = j - 1

t = k[j]

if t[0] != v:

v = t[0]

n = n + 1

# n = p # n = n + 1 (was the old style)

q[t[1]] = n

k.reverse()

return (k, q)

# functions to compute arc rank for rankarcs() function below

def armean(x, y): # arithmetic mean

return (x + y) / 2.0

def gmmean(x, y): # geometric mean

return math.sqrt(x * y)

def hmmean(x, y): # harmonic mean

return x * y * 2.0 / (x + y)

def sbmean(x, y): # subcontrary harmonic mean

return (x * x + y * y) / (x + y)

# computes arc ranks based on arc importance to each endpoint

def rankarcs(i, z, p, q, rankfn):

k = len(z)

# if k > 0:

# zz = 1.0 / k # so as to normalize by number of arcs

while k > 0:

k = k - 1



170 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

j = z[k][1]

# qq = 1.0 / len(q[j]) # for normalization purposes

# z[k][0] = rankfn(p[j] * zz, q[j][i] * qq)

z[k][0] = rankfn(p[j], q[j][i]) # compute rank

z.sort()

# prints graph parameters

# prints the central node: (number of arcs) name rank order

def printgraph(i, ival, irnk, of):

of.write('%s:%-.4g [%u-%u]' % (ival, irnk, len(sv[i]), len(dv[i])))

# of.write('%s' % (ival,))

# globals used in printing function

klim = 40

klim2 = klim - 1

# prints parent/child nodes: name rank order

# prints arcs: strength (order)

def printnodes(i, irnk, z, k, order, of):

lenz = len(z)

gw = 0 # gw = 1 needed when gateway taken out

if order:

gw = gw + lenz

if lenz > 0:

of.write('<>')

c = 0

for item in z: # select items in current row

j = item[1]

jrnk = ranks[j]

if (order ^ (irnk > jrnk)) and (i != j):

break

c = c + 1

if lenz > klim:

if (c > klim2) and (c < len(z)):

tt = z[c]



B.5. NEXUS TERM MATCHING 171

z = z[:klim2]

z.append(tt)

else:

z = z[:klim]

for item in z:

j = item[1]

jrnk = ranks[j]

if order:

aival = irnk / jrnk / gw

else:

aival = jrnk / irnk / (len(sv[j]) + gw)

of.write('<>%s:%-.4g' % (w[j], aival))

# of.write('|%s' % (w[j],))

# fnlist MUST only have one item for the OED

# list of outputs the script creates and the function that drives the output

fnlist = [ [armean, 'ar']] # small one for testing

fnlen = len(fnlist)

# memory is tight so we aggresively delete data that is no longer used

# handle input and output filename parameters

infile = ""

rkfile = ""

outfile = "out"

outsuff = ".aff"

argc = len(sys.argv)

if argc < 4 or argc > 5:

sys.exit(1)

else:

infile = sys.argv[1]

rkfile = sys.argv[2]

wdfile = sys.argv[3]

if argc == 5:

outfile = sys.argv[4]

print "reading: ", infile



172 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

wordin = open(infile, 'r') # use OedA.txt

inweb = wordin.readlines()

wordin.close()

del wordin

print "step: ", 1

# change arc file strings to int array

# count number of arcs per node & number of nodes & max node number

gmax = 0

a = {}

i = len(inweb)

snod = [0] * i

dnod = [0] * i

while i > 0:

i = i - 1

if i % 200000 == 0:

print "> ", i

b = string.split(inweb[i])

del inweb[i]

snod[i] = string.atoi(b[0])

dnod[i] = string.atoi(b[1])

v = snod[i]

if v > gmax:

gmax = v

if a.has_key(v):

a[v] = a[v] + 1

else:

a[v] = 1

# gsize = number of array entries needed assuming nodes are numbered 1, ...

gnode = len(a)

gsize = gnode + 1

del inweb

print "step: ", 2



B.5. NEXUS TERM MATCHING 173

# set up ranks arrays and arc rank arrays

wordin = open(rkfile, 'r') # use qergrk.i100.srt

inweb = wordin.readlines()

wordin.close()

del wordin

g = 0

j = 0.0

k = 1.0

h = {}

ranks = [0.0] * gsize

sv = [0] * gsize

dv = [0] * gsize

i = len(inweb)

while i > 0:

i = i - 1

if i % 50000 == 0:

print "> ", i

b = string.split(inweb[i])

nod = string.atoi(b[0])

val = string.atof(b[1])

if not h.has_key(val):

g = g + 1

h[val] = g

j = max(j, val)

k = min(k, val)

ranks[nod] = val

sv[nod] = {}

dv[nod] = {}

del inweb

del h

print 'there are %d different ranks: %g is highest, %g is lowest' % (g, j, k)

print "step: ", 3

# set up word name dictionary

initnum = re.compile('^[0-9]+ ')

wordin = open(wdfile, 'r') # use OedA.pop



174 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

inweb = wordin.readlines()

wordin.close()

del wordin

w = {}

i = len(inweb)

for line in inweb:

i = i - 1

if i % 50000 == 0:

print "> ", i

u = string.atoi(string.split(line)[0])

v = initnum.sub('', line[:-1])

if not w.has_key(u):

w[u] = v

del inweb

print "step: ", 4

# compute arc rank array values

i = len(snod)

while i > 0:

i = i - 1

if i % 200000 == 0:

print "> ", i

u = snod[i]

del snod[i]

v = dnod[i]

del dnod[i]

arnk = ranks[u] / a[u]

if sv[u].has_key(v):

sv[u][v] = sv[u][v] + arnk

else:

sv[u][v] = arnk

if dv[v].has_key(u):

dv[v][u] = dv[v][u] + arnk

else:

dv[v][u] = arnk

del a



B.5. NEXUS TERM MATCHING 175

print "step: ", 5

# open all output files

k = fnlen

while k > 0:

k = k - 1

fnlist[k][1] = open(outfile + fnlist[k][1] + outsuff, 'w')

# compute reverse direction arc importance arrays

sq = [0] * gsize

dq = [0] * gsize

i = 0

while i < gnode:

if i % 50000 == 0:

print "> ", i

i = i + 1

irnk = ranks[i]

sq[i] = getallarcs(sv[i].items(), irnk, dstprp1)[1]

dq[i] = getallarcs(dv[i].items(), irnk, dstprp2)[1]

print "step: ", 6

# compute forward direction arc importance, arcrank & print out results

i = 0

while i < gnode:

if i % 50000 == 0:

print "> ", i

i = i + 1

irnk = ranks[i]

sr = getallarcs(sv[i].items(), irnk, dstprp1)

dr = getallarcs(dv[i].items(), irnk, dstprp2)

k = fnlen

while k > 0:

k = k - 1

rankarcs(i, sr[0], sr[1], dq, fnlist[k][0]) #change sr[0]



176 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

rankarcs(i, dr[0], dr[1], sq, fnlist[k][0]) #change dr[0]

wordout = fnlist[k][1]

printgraph(i, w[i], irnk, wordout) #print node i

printnodes(i, irnk, sr[0], dr[0], 1, wordout)

printnodes(i, irnk, dr[0], sr[0], 0, wordout)

wordout.write('\n')

print "step: ", 7

# close all output files

for wordout in fnlist:

wordout[1].close()

print "done.\n"

os._exit(0)

B.6 NATO Term Matching

Once the nexus has been computed, we use it as a part of SKEIN to �nd the matches

between pages in the NATO government websites. This code is generic, and can be used to

compute matches between any two text inputs. This code's current limiting factor is the

time it takes to load the nexus into memory. This loading time accounts for the longest

part of the computation, even though the current algorithm has optimized this process to

the point where loading speed has improved by two orders of magnitude. Another order of

magnitude can easily be gained by inserting the nexus into a database, and by loading only

the terms in the nexus speci�cally related to the terms in the sources.

#import os, math, sys, re, string, shelve

import os, math, sys, re, string, marshal

# Newly written: 8/13/00

# Updated: 8/14/00 use cPickle instead of shelve

# Updated: 8/15/00 marshal is by far the fastest

# Usage: ontocmp.py file1 file2

# this script uses oed dictionary data for onto intersection

sep = '\n'



B.6. NATO TERM MATCHING 177

dictfile = 'dict.dct'

#dictfile = 'dict.pkl'

#dictfile = 'dict.wds'

#rankfile = 'rank.wds'

datapat = "grep label %s | sed -e 's/.*label=\"//' -e 's/\".*$//'"

comppat = '%s intersecting %s\n'

rankpat = '%s <--%d--> %s'

rulre1 = re.compile('[(,:]')

rulre2 = re.compile("ies ")

rulre3 = re.compile("ies$")

rulre4 = re.compile("'*s ")

rulre5 = re.compile("'*s$")

rep1 = ''

rep2 = 'y '

rep3 = 'y'

rep4 = ' '

rep5 = ''

aaa = open(dictfile)

a = marshal.load(aaa)

aa = marshal.load(aaa)

aaa.close()

#aaa = open(dictfile)

#a = cPickle.load(aaa)

#aa = cPickle.load(aaa)

#aaa.close()

#a = shelve.open(rankfile, 'r')

#aa = shelve.open(dictfile, 'r')

#print 'phase', 1

arg1 = sys.argv[-2] # first parameter

arg2 = sys.argv[-1] # second parameter



178 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

def getwds(arg, b = {}, b_wds = []):

numin = os.popen(datapat % (arg,))

numfile = numin.read() # read input file

numin.close()

b_lines = string.split(numfile, sep)[:-1]

for line in b_lines:

line = string.lower(line) # apply transformations

line = rulre1.sub(rep1, line)

line = rulre2.sub(rep2, line)

line = rulre3.sub(rep3, line)

line = rulre4.sub(rep4, line)

line = rulre5.sub(rep5, line)

line = string.capwords(line)

wds = string.split(line) # split data into words

prs = [] # word pairs

tri = [] # word triples

wdln = len(wds)

i = 0

while i < wdln: # search word occurences

if b.has_key(wds[i]):

b[wds[i]] = b[wds[i]] + 1

else:

b[wds[i]] = 1

i = i + 1

i = 1

while i < wdln: # search word pair occurences

i = i + 1

pr = string.join(wds[i-2:i])

if b.has_key(pr):

b[pr] = b[pr] + 1

else:

b[pr] = 1

prs.append(pr)

i = 2

while i < wdln: # search word triple occurences

i = i + 1

tr = string.join(wds[i-3:i])



B.6. NATO TERM MATCHING 179

if b.has_key(tr):

b[tr] = b[tr] + 1

else:

b[tr] = 1

tri.append(tr)

b_wds.append((wds, prs, tri))

return (b, b_wds) # returns all relevant terms

def simwds(bx, u = []): # compute most relevant phrase terms

b, b_wds = bx

nl = len(b_wds)

i = 0

while i < nl:

nw = len(b_wds[i][0])

j = 0

q = []

while j < nw:

t = b_wds[i][0][j]

tt = t

if not a.has_key(t) and aa.has_key(t):

tt = aa[t]

if a.has_key(tt):

p = -a[tt][0] / ((math.log(j + 1) + 1) * b[t])

q.append((p, t))

if j < nw - 1:

t = b_wds[i][1][j]

tt = t

if not a.has_key(t) and aa.has_key(t):

tt = aa[t]

if a.has_key(tt):

p = -a[tt][0] / ((math.log(j + 1) + 1) * b[t])

q.append((p, t))

if j < nw - 2:

t = b_wds[i][2][j]

tt = t

if not a.has_key(t) and aa.has_key(t):



180 APPENDIX B. SKEIN TOOLS AND NEXUS SCRIPTS

tt = aa[t]

if a.has_key(tt):

p = -a[tt][0] / ((math.log(j + 1) + 1) * b[t])

q.append((p, t))

j = j + 1

q.sort() # sorts in order of importance

u.append(q)

#print b_lines[i], q[:3]

i = i + 1

return u

def chkwds(u, b = {}, z = []): # eliminate duplication of terms

for items in u:

for item in items[:3]:

t = item[1]

if not b.has_key(t):

b[t] = 1

z.append(t)

return z

def dowds(arg):

return chkwds(simwds(getwds(arg)))

x = dowds(arg1) # relevant terms from source 1

#print 'phase', 2

y = dowds(arg2) # relevant terms from source 2

#print 'phase', 3

d = [] # comparison phase

for xtem in x:

e = []

for ytem in y: # all term pairs from the two sources

z = 0

if xtem != ytem:

z = 1



B.6. NATO TERM MATCHING 181

q = 1

for item in a[aa[xtem]][1:]: # compute similarity

tt = -1

if item == ytem:

z = z - (15.0 / q)

elif item == '':

q = 1

else:

q = q + 1

if item in a[aa[ytem]][1:]:

t = a[aa[ytem]][1:].index(item)

if a[aa[ytem]].count('') == 2:

tt = a[aa[ytem]][2:].index('')

if t > tt:

t = t - tt

tt = (14.0 - abs(q - t)) / q

z = z - tt

e.append((z, ytem))

e.sort() # sort by strength of similarity

d.append(e) # prepare for output phase

#a.close()

#aa.close()

#print 'phase', 4

print comppat % (arg1, arg2) # output phase

i = -1

for xtem in x:

j = 0

i = i + 1

for item in d[i]:

j = j + 1

if item[0] < 0: # only print if non-null similarity

print rankpat % (xtem, j, item[1])



Appendix C

Semantic Heterogeneity in

Literature and Art

Finally, we dedicate a section to the peripheral work that illustrates the issues of semantic

heterogeneity more succinctly and clearly than any examples or toy problems can. An

insightful analysis of Magritte's paintings, written by the philosopher Foucault, appears

in [Fou73]. The worlds displayed in Magritte's work, called heterotopias by Foucault, are

powerful examples of semantic mismatch. In particular, Magritte's use of lexical components

within the art is disconcerting, because we are irresistibly drawn to interpret it. Doing so

immediately changes the meaning of the entire piece within which the words appear.

Figure C.1: Upside Down

Another strongly visual example of the semantic issues resulting from the inclusion

182



183

of text into art is a design by Scott Kim in Inversions [Kim81]. The design, shown in

Figure C.1, when taken as text reads `upside down,' no matter which orientation you give

it. Other works that contain multiple heterogeneous meanings within single lexical domains

are listed with brief explanations below.

Lewis Carroll's Jabberwocky [Car90]

'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

The verses of Jabberwocky are in�nitely interpretable, since most of the terms are

invented. The invented terms are, however, so strongly reminiscent of actual English words

that we do attempt to make sense of them. It is remarkable that the verb `to chortle'

entered into the English language as a result of appearing in this poem.

Howard Chace's Ladle Rat Rotten Hut [Cha56]

Wants pawn term, dare worsted ladle gull hoe lift wetter murder

inner ladle cordage, honor itch o�er lodge, dock, orist.

Disk ladle gull orphan worry putty ladle rat cluck wetter ladle rat hut,

an fur disk raisin pimple colder Ladle Rat Rotten Hut.

This fairy tale, reinterpreted, makes no sense at all when read literally. Every word in

the text is lexically English, but there is no accompanying grammar to make meaningful

sentences out of the words. However, when read out loud, or even better, having the text

read out loud by someone else, makes the words sound like the original tale:

Once upon a time, there was a little girl who lived with her mother...

C. van Rooten's Mots d'Heures, Gousses, Rames [van67]

Raseuse arrête, valet de Tsar bat loups

Joues gare et suite, un sot voyou

Roses are red, violets are blue

Sugar is sweet and so are you



184 APPENDIX C. SEMANTIC HETEROGENEITY IN LITERATURE AND ART

The above verse, when read aloud with proper French pronunciation, sounds quite like

the well known Mother Goose nursery rhyme shown to its right. The French text is puzzling,

somewhat fanciful or archaic, yet it is grammatical. It is astonishing that it could even be

possible for such completely di�erent dual meanings to coexist in a single source of infor-

mation. However, this example just ampli�es what is common in every typical information

source; di�erent interpretations of the data results in di�erent extracted meaning.

Smullyan's logic puzzles [Smu87]

Two cards have successive, positive integers written on them.

Two logicians each take one of them, without seeing the other's card.

The ensuing dialog, in which each logician speaks in turn, is a sequence of

n statements,

A: I don't know your number

B: I don't know your number

...

A or B: I know your number

What are the numbers on the cards?

This logical puzzle is an example of how additional information collapses two distinct

world views into a coherent state. Simply stating, back and forth, their ignorance of the

cards values, the logicians eventually rule out one of the possible values of their colleague's

card. If A makes the nth statement, the cards show the values [n; n+ 1]; if B makes the

last statement the cards have the values [n; n� 1].

C.1 Limitations in Management of Semantic Heterogeneity

These examples all bring us back to the mirages, optical illusions mentioned the beginning

of the introduction to the dissertation. While they appear to be extreme cases, they are in

fact just indicative of the range of semantic heterogeneity that is in fact present in ordinary

information sources. We have been trained to work only with data sources that are regular

and well de�ned, and conditioned to think that every new source we encounter will follow

the same pattern. Much of the work in this dissertation has reinforced a realization of how

even the best maintained information sources are limited in their accuracy. The limitation



C.1. LIMITATIONS IN MANAGEMENT OF SEMANTIC HETEROGENEITY 185

seems to be simply the extent to which the information is used in practice. Every real world

information source examined for this dissertation contained substantial inaccuracies, before

even considering whether the content was appropriate for the tasks to which we applied

it. The SKEIN system was designed to be built and to be used within this framework of

uncertainty. The lesson learned is that no work of this magnitude is ever complete, and

indeed, this dissertation and SKEIN are no exceptions. The best we can hope for is to be

able to reach an acceptable level of re�nement.



Bibliography

[AGM+97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for

semistructured data. In Proceedings of the Workshop on Management of Semi-

Structured Data, pages 83{90. NSF, 1997.

[AH87] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Trans-

actions on Database Systems, 12(4):525{565, December 1987.

[AM97] P. Atzeni and G. Mecca. Cut and paste. In Proceedings, 17th ACM Symposium

on Principles of Database Systems, pages 144{153, June 1997.

[Ams80] R. Amsler. The Structure of the Mirriam Webster Pocket Dictionary. PhD

thesis, University of Texas, Austin, 1980.

[ATT99] ATT Research. Graphviz. http://www.research.att.com/sw/tools/graphviz/, 1999.

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-

tured and structured data sources. SIGMOD Record, 28(1):54{59, 1999.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and

optimization techniques for unstructured data. In ACM SIGMOD '96, pages

505{516. ACM, 1996.

[BHA96] C. J. Breiteneder, M. Hitz, and Mueck T. A. Metadata mining in legacy data

sets. In First IEEE Metadata Conference, pages 48{57. IEEE, April 1996.

[BJBB+97] R. J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,

V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz,

R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. Infosleuth: Agent-Based

186



BIBLIOGRAPHY 187

semantic integration of information in open and dynamic environments. In ACM

SIGMOD '97, pages 195{206. ACM, 1997.

[BLP00] P. A. Bernstein, A. Y. Levy, and R. A. Pottinger. A vision for management of

complex models. Technical report, Microsoft Research, June 2000.

[Bri97] British Airways. British airways { ights. http://www.us.british-airways.com/ights/, July

1997. HTML table of BA Flights from San Francisco to London.

[Bri98] S. Brin. Extracting patterns and relations from the world wide web. In Pro-

ceedings of International Workshop on the Web and Databases WEBDB, 1998.

http://www-db.stanford.edu/~sergey/booklist.html.

[Car90] L. Carroll. Alice's adventures in wonderland / More annotated Alice. Random

House, New York, NY, 1990.

[CDSS98] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data

conversion. In ACM SIGMOD '98, pages 177{188. ACM, 1998.

[Cen97] Central Intelligence Agency. CIA site. http://www.odci.gov/cia, November 1997. CIA

Factbook 1996.

[CF99] W. Cohen and W. Fan. Learning page independent heuristics for extracting data

from web pages. In Proceedings, 8th International World Wide Web Conference

WWW8, May 1999.

[CG97] S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured

data. In ACM SIGMOD '97, pages 26{37. ACM, 1997.

[Cha56] H. L. Chace. Anguish Languish. Prentice Hall, Englewood Cli�s, NJ, 1956.

[CHR97] H. Chalupsky, E. Hovy, and T. Russ. NCITS.TC.T2 ANSI ad hoc group on

ontology. Talk on Ontology Alignment, November 1997.

[CJN+00] A. Crespo, J. Jannink, E. Neuhold, M. Rys, and R. Studer. A survey of semi-

automatic extraction and transformation. Technical report, Stanford University,

2000.



188 BIBLIOGRAPHY

[Coh98] W. Cohen. Integration of heterogeneous databases without common domains

using queries based on textual similarity. In ACM SIGMOD '98, pages 201{212.

ACM, 1998.

[COS98] K. E. Campbell, D. E. Oliver, and E. H. Shortli�e. The uni�ed medical language

system: toward a collaborative approach for solving terminologic problems. Jour-

nal of the American Medical Informatics Association, 5(1):12{16, 1998.

[Dai86] D. P. Dailey. On the search for semantic primitives. Computational Linguistics,

12(4):306{307, 1986.

[DDL+90] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-

man. Indexing by latent semantic analysis. Journal of the Society for Information

Science, 41(6):391{407, 1990.

[DFF+98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query lan-

guage for XML. http://www.research.att.com/~m�/xml/w3c-note.html, August 1998. Work-

ing Draft.

[DH99] J. Dean and M. R. Henzinger. Finding related pages in the world wide web. In

Proceedings, 8th International World Wide Web Conference WWW8, May 1999.

[DHR+98] R. H. Dolin, S. M. Hu�, R. A. Rocha, K. A. Spackman, and K. E. Campbell.

Evaluation of a \lexically assign, logically re�ne" strategy for semi-automated

integration of overlapping terminologies. Journal of the American Medical In-

formatics Association, 5(2):203{213, 1998.

[DJ00] S. Decker and J. Jannink. Toward formal ontology algebras: First steps. Tech-

nical report, Stanford University, 2000.

[DMW00] S. Decker, S. Melnik, and G. Wiederhold. Ontoagents project. http://www-

db.stanford.edu/OntoAgents/, 2000.

[Enc99] Encyclopedia Britannica. Encyclopedia britannica online. http://www.eb.com/, 1999.

[FFLS98] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Reasoning about web-site

structure. In AAAI Workshop on AI and Information Integration, pages 505{

516. AAAI, July 1998.



BIBLIOGRAPHY 189

[Fou73] M. Foucault. Ceci n'est pas une pipe. Editions fata morgana, Montpellier, France,

1973. trans: This is not a Pipe, Harkness, J., U. C. Press, 1983.

[Fow98] M. Fowler. UML Distilled. Addison{Wesley, Reading, MA, 1998.

[GCCM96] R. Goldman, S. Chawathe, A. Crespo, and J. McHugh. A standard

textual interchange format for the object exchange model. http://www-

db.stanford.edu/pub/papers/oemsyntax.ps, 1996.

[Ger96] A. Geraci. The computer dictionary project: An update. Computer, 29(7):95,

July 1996.

[Gig00] Gigabeat. Discover new music. http://www.gigabeat.com/disc/, June 2000. Visualiza-

tion of Relationships Between Artists and Songs.

[GKD97] M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: An information

integration system. In ACM SIGMOD '97, pages 539{542. ACM, 1997.

[GN88] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Arti�cial Intelligence.

Morgan Kaufmann, Palo Alto CA, 1988.

[Goo99] Google. Google search. http://www.google.com/, 1999.

[GSVG98] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina.

Proximity searching in databases. In Proceedings of the 24th VLDB Conference,

pages 26{37. VLDB, 1998.

[Guh91] R. V. Guha. Contexts: A Formalization and Some Applications. PhD thesis,

Stanford University, 1991.

[GW99] T. Guan and K.-F. Wong. KPS: a web information mining algorithm. In Pro-

ceedings, 8th International World Wide Web Conference WWW8, May 1999.

[HM93] J. Hammer and D. McLeod. An approach to resolving semantic heterogeneity

in a federation of autonomous, heterogeneous database systems. International

Journal of Intelligent and Cooperative Information Systems, 2(1):51{83, March

1993.



190 BIBLIOGRAPHY

[HP98] M. C. Horsch and D. Poole. An anytime algorithm for decision making under

uncertainty. In 14th Conference on Uncertainty in Arti�cial Intelligence (UAI-

98), pages 246{255. AUAI, July 1998.

[Hul97] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspec-

tive. http://www-db.research.bel-labs.com/user/hull/pods97-tutorial.html, 1997. tutorial slides &

references.

[Jan99a] J. Jannink. Thesaurus entry extraction from an on-line dictionary. In Pro-

ceedings, Second International Conference on Information Fusion. ISIF, 1999.

http://www-db.stanford.edu/SKC/papers/thesau.ps.

[Jan99b] J. Jannink. Webster's dictionary nexus. http://skeptic.stanford.edu/data/, 1999.

[Jan00] J. Jannink. Oxford english dictionary nexus. http://skeptic.stanford.edu/data/oed.html,

2000.

[JMN+99] J. Jannink, P. Mitra, E. Neuhold, S. Pichai, R. Studer, and G. Wiederhold. An

algebra for semantic interoperation of semistructured data (extended version). In

IEEE Knowledge and Data Engineering Exchange Workshop, KDEX '99. IEEE,

November 1999.

[JPVW98] J. Jannink, S. Pichai, D. Verheijen, and G. Wiederhold. Encapsulation and com-

position of ontologies. In AAAI Workshop on AI and Information Integration.

AAAI, 1998. http://www-db.stanford.edu/SKC/publications/jpvw encaps.ps.

[JW99] J. Jannink and G. Wiederhold. Ontology maintenance with an algebraic method-

ology: a case study. In Proceedings, AAAI Workshop on Ontology Management.

AAAI, 1999. http://www-db.stanford.edu/SKC/papers/summar.ps.

[Kar92] P. D. Karp. The design space of frame knowledge representation systems. Tech-

nical report, SRI International Arti�cial Intelligence Center, 1992.

[Kim81] S. Kim. Inversions. BYTE Books, Peterborough, NH, 1981. see also:

http://www.scottkim.com/.

[Kle98] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Pro-

ceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, 1998.

http://simon.cs.cornell.edu/home/kleinber/auth.ps.



BIBLIOGRAPHY 191

[Knu97] D. E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems.

American Mathematical Society, Providence RI, 1997.

[KS96] V. Kashyap and A. Sheth. Semantic and schematic similarities between database

objects: a context-based approach. VLDB Journal, 5(4):276{304, October 1996.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information

sources using source descriptions. In Proceedings of the 22nd VLDB Conference,

pages 251{262. VLDB, 1996.

[LW01] K. Law and G. Wiederhold. Regnet and regbase regulation interoperation

projects. http://eil.stanford.edu/law/home/research.htm, 2001.

[MB95] G. Mecca and A. J. Bonner. Sequences, datalog and transducers. In Proceedings,

15th ACM Symposium on Principles of Database Systems, pages 23{35, May

1995.

[MBF+90] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Five papers

on WordNet. Technical Report 43, Cognitive Science Laboratory, Princeton

University, 1990.

[MIC96] MICRA inc. Webster's dictionary, 1913. ftp://ftp.uga.edu/pub/misc/webster/, 1996. also

available from Project Gutenberg.

[Mir99] Mirriam-Webster. WWWebster dictionary. http://www.m-w.com/, 1999.

[MKW00] P. Mitra, M. Kersten, and G. Wiederhold. A graph-oriented model for articula-

tion of ontology interdependencies. In Proceedings, 7th International Conference

on Extending Database Technology, pages xx{xx, March 2000.

[MMK98] I. Muslea, S. Minton, and C. Knoblock. Wrapper induction for semistructured,

web-based information sources. In Proceedings of the Conference on Automatic

Learning and Discovery, CONALD-98, 1998.

[MP95] R. Motwani and Raghavan P. Randomized algorithms. Cambridge University

Press, New York NY, 1995.

[myS99] mySimon. mysimon inc. - mysimon comparison shopping. http://www.mysimon.com/,

1999.



192 BIBLIOGRAPHY

[NAM98] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistruc-

tured data. In ACM SIGMOD '98. ACM, June 1998.

[Nas51] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286{295, 1951.

[NAT99] NATO. Partnership for Peace. http://www.nato.int/pfp/partners.htm, 1999.

[Net99a] Netscape Inc. Netscape netcenter. http://www.netscape.com/, 1999.

[Net99b] Netscape Inc., Open Directory Team. Open Directory Project. http://www.dmoz.org/,

1999.

[NTR98] R. Nikolai, A. Traupe, and Kramer R. Thesaurus federations: A framework

for the exible integration of heterogeneous, autonomous thesauri. In Proc.

Conference on Research and Technology Advances in Digital Libraries (ADL'98),

pages 46{55, 1998.

[OSSM99] D. E. Oliver, Y. Shahar, E. H. Shortli�e, and M. Musen. Representation of

change in controlled medical terminologies. Arti�cial Intelligence in Medicine,

15(1):53{76, January 1999.

[Oxf99] Oxford University Press. Oxford english dictionary. http://www.oed.com/, 1999.

[PB98] L. Page and S. Brin. The anatomy of a large-scale hypertextual web search

engine. Proceedings of the 7th Annual World Wide Web Conference, 1998.

[PG95] Y. Papakonstantinou and H. Garcia-Molina. Object fusion in mediator systems

(extended version). Technical report, Stanford University, 1995.

[PHW+99] P. Panchapagesan, J. Hui, G. Wiederhold, S. Erickson, L. Dean, and A. Hemp-

stead. The INEEL data integration mediation system. In Proceedings, Interna-

tional ICSC Symposium on Advances in Intelligent Data Analysis, AIDA '99,

1999.

[Plu00] Plumb Design. WordNet applet. http://www.plumbdesign.com/thesaurus/, 2000. Applet

to Visualize the Relationship Between WordNet Terms.

[Pra97] W. Pratt. Dynamic organization of search results using the UMLS. In Proceed-

ings, Amia Annual Fall Symposium, pages 480{484, 1997.



BIBLIOGRAPHY 193

[pro99a] CLEVER project. CLEVER searching. http://www.almaden.ibm.com/cs/k53/clever.html,

August 1999. HITS, Hubs and Authorities research.

[PRO99b] PROMO.NET. Project Gutenberg. http://www.gutenberg.net/, 1999.

[RBK+00] S. Rajagopalan, A. Broder, R. Kumar, F. Maghoul, P. Raghavan, R. Stata,

A. Tomkins, and J. Weiner. The web as a graph: structure and interpreta-

tion. http://www.almaden.ibm.com/cs/k53/clever.html, March 2000. presentation at Stan-

ford University.

[RDV98] S. Richardson, W. Dolan, and L. Vanderwende. MindNet: acquiring and struc-

turing semantic information from text. In Proceedings of COLING '98, 1998.

ftp://ftp.research.microsoft.com/pub/tr/tr-98-23.doc.

[Res98] CL Research. Dictionary parsing project. http://www.clres.com/dpp.html, 1998.

[Ric97] S. D. Richardson. Inferring Relations in a Lexical Knowledge Base. PhD thesis,

City University of New York, 1997.

[RS91] J. Richardson and P. Schwarz. MDM: An object-oriented data model. In Pro-

ceedings, Third International Workshop on Database Programming Languages,

pages 86{95, 1991.

[SM91] M. Siegel and S. E. Madnick. A metadata approach to resolving semantic con-

icts. In Proceedings of the 17th International Conference on Very Large Data

Bases, pages 133{145, 1991.

[Smi93] D. R. Smith. Constructing speci�cation morphisms. Journal of Symbolic Com-

putation, 15:571{606, 1993.

[Smu87] R. M. Smullyan. Forever undecided : a puzzle guide to G�odel. Knopf, New York,

NY, 1987.

[Sow00] J. F. Sowa. Knowledge Representation Logical, Philosophical and Computational

Foundations. Brooks/Cole, Paci�c Grove, CA, 2000.

[Tom99] F. Tompa. Centre for the New OED and Text Research. http://db.uwaterloo.ca/OED/,

1999.



194 BIBLIOGRAPHY

[UHW+98] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology reuse

and application. In Formal Ontology in Information Systems, FOIS'98, 1998.

[Uni97] United Airlines. United airlines ight search. http://ights.ual.com/cgi-

bin/ua search/ight grep.cgi/style=hi, July 1997. HTML table of UA Flights from San

Francisco to London.

[van67] C. H. K. van Rooten. Mots d'heures, gousses, rames. Penguin Books, New York,

NY, 1967.

[VP99] V. Vasalos and Y. Papakonstantinou. Query rewriting for semistructured data.

In ACM SIGMOD '99. ACM, 1999.

[Wie94] G. Wiederhold. An algebra for ontology composition. In Proceedings of 1994

Monterey Workshop on Formal Methods, pages 56{61. U.S. Naval Postgraduate

School, September 1994.

[WM00] P. Walms and J. P. Morgenthal. Mining for metadata. Software Magazine,

2(2):12{18, 2000.

[ZE99] O. Zamir and O. Etzioni. Grouper: a dynamic clustering interface to web search

results. In Proceedings, 8th International World Wide Web Conference WWW8,

May 1999.

[Zip49] G. K. Zipf. Human Behavior and the Principle of Least E�ort. Addison{Wesley,

Cambridge, MA, 1949.


