Inferring Structure in Semistructured Data

SVETLOZAR NESTOROV SERGE ABITEBOUL RAJEEV MOTWANI*

Department of Computer Science
Stanford University
Stanford, CA 94305-9040

{evtimov,abitebou’} @db.stanford.edu, rajeev@cs.stanford.edu

Abstract

When dealing with semistructured data such as that available on the Web, it becomes important to
infer the inherent structure, both for the user (e.g., to facilitate querying) and for the system (eg., to
optimizeaccess). Inthispaper, we consider the problem of identifying some underlying structureinlarge
collections of semistructured data. Since we expect the datato be fairly irregular, this structure consists
of an approximate classification of objectsinto ahierarchica collection of types. We propose anotion of
atype hierarchy for such data, an agorithm for deriving the type hierarchy, and rulesfor assigning types
to data el ements.

1 Introduction

An increasing number of information sources available to the casua user export data in a variety of
different formats. In most cases, although there is some structure in the data, it istoo irregular to be easily
modeled using arelational [14] or an object-oriented approach [7]. We refer to this as semistructured data.
Discussionsof semistructured datahave recently appeared intheliterature[1, 4]. Because of the very nature
of semistructured data, it becomes important to derive some sort of a concise representation or a summary
of the inherent structure in order to give the casua user someidea of the structure and contents of the data
source. Such information facilitates query formulation and could also be used for query optimization. We
propose an algorithm for inferring some underlying structure, more precisely, an approximate classification
of objectsinto types, for large collections of semistructured data.

Severa approaches have been proposed recently [5, 10, 13] to describethe* schema’ of asemistructured
database using graphs. In one approach [5], the schemais given a priori. However, notably for Web data,
the schemaisrarely given apriori. In another approach [10, 13], it is required that the schema be a faithful
representation of the data set. For large and irregular data sets, such a schema may become very complex
and difficult to use. Our goal isto extract a“reasonably small approximation” of the typing of alarge and
irregular data collection.

Following two recent independent proposals[6, 12], we assumethat the dataconsistsof adirected |abeled
graph. For aconcrete example, consider theintegration of several data sources containing information about
moviesfound on the Web. We assume that the datais “wrapped” in acommon model, specifically OEM, as
donein Tsimmis[8]. Because thedatais drawn from many different sources, itishighly irregular. To obtain
a concrete sense of the kinds of problems we wish to address, suppose that the resulting database consists
of thousands of labels and hundreds of thousands of objects, most of which have relatively few (dozens)
of distinct labels on outgoing edges. Consider now a browser or a QBE-like interface for such a data set.

*Supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Partnership Award, an ARO MURI Grant DAAH04-96-
1-0007, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Mitsubishi, Schlumberger Foundation,
Shell Foundation, and Xerox Corporation.



The user will rapidly be overwhelmed by the sheer number of alternative labels to choose from. Thus, it
is important to be able to automatically analyze the data, type the objects (to the extent possible), assign
meaningful names to these types, distinguish the “core” attributes from the more circumstantial ones, etc.
A precise and complete description of the database is not to be expected since the datamay be too irregular.
However, the technique should be able to adapt to the needs of user, e.g., to refine the description locally if
so desired, perhaps explain the precision of the typing that is obtained, or the degree of irregularity of the
data.

In this paper, we propose a notion of atype hierarchy for such data, an algorithm for deriving the type
hierarchy, and rules for assigning types to elements of semistructured data sets. This may be viewed as a
standard classification problem. A particularity of the problem isthe size of the data set. Also, since some
of this classification will be done at query time, it has to be performed quickly even at the expense of some
loss of precision. Our initial ideawas to employ data mining techniques developed for mining association
rules[2]. Clearly, other techniques devel oped in the areas of machine learning, classification and clustering,
eg. [11, 9], are relevant to a certain extent and could provide alternative approaches. After running some
experiments with association-rule mining techniques, we found the results somewhat unsatisfactory. The
notions of support and confidence that are central to mining association rules seem less pertinent to our
problem. Instead, the technigue we use is based on another criteria, called jump, based on the relative
importance of some attributesin alarger set. We propose an agorithm to select types and assign objectsto
types. As previously mentioned, we do not insist that this provides a high-precision typing of the data. In
particular, some objects may remain untyped and other objects may be assigned atype that does not describe
them exactly.

We providesome preliminary experimental resultson Web data. Whileour initial resultsareencouraging,
more experiments are needed, particularly with larger data sets. Comparison with more standard techniques
such as BDDs 3] should aso be performed. Finaly, our initial experimentsallowed usto further refine our
algorithm. We intend to continue this process and also consider improving performance.

2 Préiminaries

In this section we describe the data model and define some terminol ogy that is heeded for the next section.
Two similar models for semistructured data have been proposed recently and independently [6, 12]. In
both models, semistructured datais modeled as arooted, labeled, directed graph with the objects as vertices
and labels on edges. While we will employ the Object Exchange Model (OEM) [12], our work is equally
applicableto any graph-based data model (e.g., [6]). An exampleof an OEM databaseis shownin Figure 1.

Let D denotethedataset. For each object oin D, letattributes(o) betheset of |abelson the outgoing
edgesat o, and let roles(o) be the set of labels on incoming edges at o. For aset S of labelsand a data set
D, we define at(.S) to be the number of objects o in D such that attributes(o) = S, and above(S) to
be the number of objectso in D such that attributes(o) O S. Note that above(S) > at(S) becauseall
objects counted in at(.S) are also counted in above(.S). We aso define the following function: for each S,

at(S)

jump(S) = above(S)’

where jump(S) is set to 0 whenever at(S) = 0, regardless of whether above(S) is0 or not. Since for any
Sand D,0 < at(S) < above(S), thenwehave 0 < jump(S) < 1.



"Elf" "France"

1000000 35 "Eric" "Paris' 15 "John" "male" "London"

Figure 1: Example database D in OEM.

3 Algorithm

In this section we present an agorithm for constructing a type hierarchy for a semistructured data source.
We also present the rules for assigning typesto objects given atype hierarchy. The skeleton of our algorithm
consists of four main steps, some of which may may be applied iteratively.

Step 1. Identify candidate types.

Step 2: Select types and subtypes from the candidates and organize them into a type hierarchy.
Step 3: Derivethetyping rules.

Step 4: Vdidate or type-check the type hierarchy against the data.

For ease of exposition, we use a small and rather simplistic example to introduce the algorithm. The
basic ideais to use jumps to discover the types, i.e., the increase in the number of “fitted” objects when an
atributeis added to a set. Besides this guiding principle, the choice of types and the assignment of typesto
objects is based on a number of heuristic rules. The rulesin area system should be expected to be more
complicated! that those presented in the paper. We focus here on the main idea and mention briefly possible
improvements.

For the example, suppose we have a data set D that contains various information about people and
companies such as their names (for both compani esand people), addresses (for both companiesand people),
age (for people), sex (for people), saary (for people), employees (for companies), and subsidiaries (for
companies). We will illustrate how our agorithm derives atype hierarchy for D which isintuitively correct
in thissimplistic example.

Remark 3.1 Observe that in many cases, we may already have some partial typing information, e.g.,
obtained from the data sources or computed in a previous run of the algorithm on a subset of the data set.
Our algorithmmay be adapted to use such information. For the sake of simplicity, we ignore this aspect of
the problemin the current discussion.

!Indeed, our prototype does use more complex rules.



3.1 Identifying Candidate Types

The types we consider are sets of labels. Intuitively, an object o has type 7 if the set of labels on edges
with source o coincide with 7. Of course, thisis too demanding so we will insist that this set be as close as
possibleto 7. Note that the role should also be taken into consideration since we would like the type of an
object o to adso indicate the type of objects found if we follow edges, starting from o, with some particular
label.

To identify candidate types, we first create a counting lattice, L, with an aphabet consisting of al
distinct labelsin D. The counted words are attributes(o) for al objectso in D. Note that from L we
can efficiently compute the functions at and above for every set of labels. The counting lattice L can be
constructed in one pass over D, as can the computation of at values. The task of computing above values
can be performed intime O (n?), where n isthe number of non-zero at val ues, which should be significantly
less than than the size of D in any reasonable application.

To continue with our example, suppose the relevant part of L (i.e., with non-zero at vaues) for the
data set D is as shown in Figure 2. Each vertex contains the lattice entry (i.e., the set of different |abels)
associated with the vertex and the number of exact occurrences of theword, i.e,, theat value. For example,
the bottom vertex corresponds to the fact that in D there are 100 objects that have only subobjects |abeled
Name and Address.

Address,Age,Name,Salary,Sex
3000

[Addr&ss, Name,Sal ary,Sex} [Addr&ss,Age, Name,Sex } [Address,Empl oyee,Name,Subsidiary }

2000 4000 10
Address,Name,Sex Address,Employee,Name
1500 50

=

Address,Name
100

Figure 2: The counting lattice L constructed from the data set D.

Once L has been created, we identify sets of labels (i.e., vertices in the lattice) that present significant
jumps by selecting all sets of labels S such that jump(.S) > 8, where 8 is a predetermined threshold. (The
choiceof 4 will bediscussed later.) The setsof labelswith significant jumpsare added to the set of candidate
types. Then, we try to obtain more vertices with significant jumps by pushing counts “down” for vertices
that are not “above’ any candidate type. Intuitively, if an object is not in a candidate type, it is going to be
assigned to less precise types, thereby increasing the population of such types and possibly turning them
into candidates. Formally, the ruleis:

Rulel Let the set of candidate types be C'. Then, modify at by adding to at (S) for each S ¢ C, the
number of objects counted in at (S’) for all S’ O S such that no candidate W in C lies between S and S’,
i.e, thereisnoW inC suchthat S C W C §'.



After applying Rule 1, we only add to the candidate set the vertices with the largest possible set of
labels, i.e, if both S and S’ have become vertices with significant jumpsand S’ C S, thenwe only add S
to C'. Werepeatedly apply Rule 1 until no new candidate types are discovered during an iteration. (Clearly,
more complex rules may be used here; for instance, we could decide to attach some objects to a type with
more attributes than what they actually have, thereby growing the population of more refined types.)

To continue with our example, suppose that we choose a threshold # = 0.7. Then, there are three
significant jumpsin thelattice L shown in Figure 2:

e jump({Address, Age, Name, Salary,Sex}) =1
e jump({Address,Employee,Name, Subsidiary}) =1
e jump({Address,Employee,Name}) = 0.83

Applying Rule 1 yields an additional significant jump because the at value of {Address, Name, Sex} is
incremented to 7500 and we obtain that jump({Address, Name, Sex}) = 0.71. A second application of the
rule does not introduce any new candidate type.

Remark 3.2 Asmentioned in the introduction, we first intended to use an approach involving data mining
for association rules [2]. However, looking for types with large support, i.e., large at values, does not
work. Thiswould lead to missing some types that occur relatively infrequently even though they are rather
regular in terms of their attributes and neatly distinguished from the rest of the data.

3.2 Buildingthe TypeHierarchy

In the first step, we focused exclusively on the attribute labels of each object. Here we aso consider roles.
Simplifying again the problem for exposition purposes, for each of the candidate types, we defineitsprimary
role as the label occurring most frequently in roles(o) for al objects o of the given candidate type. We
will denote the primary role of a candidate type S as p-role(.S). We may want to choose the type names
using the following rule:

Rule 2 Sdect candidate T as a type if there does not exist another candidate 7”7 suchthat 77 C T'.

Rule 3 Sdect candidate S asa subtypeifit isnot already a type and there does not exist another candidate
S’ suchthat S O S’ and p-role(S) = p-role(S’).

Going back to our running example, Figure 3 shows the candidate types chosen from Figure 2 and
their primary roles. Applying Rule 2, we find two types, namely {Address, Name, Sex} with a primary
role Person and {Name, Address, Employee} with a primary role Company. When we apply Rule 3 we
find one subtype, namely {Name, Address, Age, Sex, Salary} with aprimary role Employee. Notethat the
candidate {Address, Employee, Name, Subsidiary} does not become a subtype because its primary role
isthe same as the primary role of thetype {Address, Employee, Name}.

In general, we can use more than onelabel as the primary role of a given candidate S. Indeed, it might
be the case that the two most frequent labelsin p-role(.S) occur an (almost) equal number of times. In our
simple example we do not address this problem but our algorithm can handle more complex structures in
p-role(S), eg., aset of labelswith weights. In this case, Rules 2 and 3 also become more complex.



Employee (2800) : Company (10)

Address,Age,Name,Salary,Sex . Address, Employee,Name, Subsidiary
3000 - o ‘
Person (5500) Company (45)
Address,Name,Sex Address,Employee,Name
7500 50

Figure 3: The candidate types with their primary roles.

3.3 Typing Rules

Let the types we found in the previous step be Si,...,Sy. Consider an object 0. Then we have the
following typing rules:

Rule4 Ifattri butes(o) = Sk for somel < k < N then we assign type Si to o.

Rule5 Consider all types and subtypes S such that p-role(.S) € r ol es(o). Then we assign to o the type
or subtype, considered above, that has the shortest “ distance” to o. By distance? we mean the number of
labelsin the set differencesat t ri but es (o) — Sand S — at tri but es (o).

Note that a given object may be assigned to more than one type. We consider thisto be a feature of
the algorithm rather than a shortcoming. In many real life situations, objects do belong to more than one
type. Thisisimplicit because of the type hierarchy. For instance, an Employee object is aso a Person.
Furthermore, we do not “close” the lattice. So, for instance, we may have selected classes Sudent and
Instructor and not necessarily a class for studentswho are also instructors (i.e., TA) if thisis not suggested
by the data set.

3.4 Validation and Evaluation

Once we have build the type hierarchy and assigned types to the objects, we need to evaluate the result and
validate the classification we obtained. One important measureisthe type size (e.g., the number of classes)
of the typing. Another category of measures involves correctness or accuracy of the typing. Consider, for
instance, the number of objects that have been assigned a certain type even though they are missing some
of the attributes characterizing the type or they have more than what isrequired. Also, consider the number
of objectsthat we failed to classify.

As mentioned earlier, the result of the algorithm depends crucially on the choice of threshhold 6 that
we considered so far somewhat arbitrary. Clearly, there is atrade-off between type size and accuracy. For
example, with 8§ = 0, we abtain a perfect typing by creating a separate type for each dight variation of
object structure. On the other hand, atoo high 8 would require very large jumps and may result in very low
accuracy. If the number of classes does not fit our expectations (e.g., istoo large to be tractable) or if the
accuracy is not sufficient, we have to try new valuesfor 6.

It would be useful to relate directly 6 to the database size, number of labels, type size, accuracy and
other fixed parameters of the problem. However, thisisignoring another important measure we introduce,

2More complex distances could clearly be used, e.g., adistance that would give less weight to the presence of an extra attribute
than to the absence of arequired one.



i.e., the degree of regularity of the data set. This degree of regularity may be a useful information for the
system (e.g., for physically organizing the data) as well as for the user who is told what kind of data to
expect. It can also be useful in guiding the choice of avaluefor 6.

4 Conclusions

We presented an algorithm for deriving a type hierarchy for a semistructured data source and rules for
assigning typesto objects. The algorithm evolved from experiments on Web data. In our experiments, we
used two different data sources: asubset of the ESPN SportsZone® that provides various sportsinformation,
and an on-line database containing information about the Stanford Database Group (DBG)*. Both data sets
are of relatively modest size (hundreds of objects and dozens of labels) but DBG is highly cyclic whereas
ESPN iscloseto atree. Thetypingissimple enough so we could interpret the results of the algorithm; but
thedataisirregular enough so that finding the type hierarchy isnontrivia. Our initial resultsare encouraging
athough clearly more experiments and work are needed. In particular, our agorithm is sensitive to the
jump threshold in the sense that lower threshold values result in a greater number of subtypes. We plan to
investigate techniquesto provide “good” estimatesfor thisthreshold. Also, the rulesthat we present in this
paper are simplified for presentation purposes. The choice of such rules has a strong impact on the quality
of the results, and we are currently experimenting with more complex rules and working on the tuning of
our agorithm with respect to such rules. Finally, we designed the algorithm with performance in mind. We
are now working on designing appropriate access structures to improve the performance of our prototype.

References

[1] S. Abiteboul. Querying semi-structured data. In Proceedingsof ICDT, pages 1-18, Delphi, Greece, January 1997.

[2] R.Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings
of ACM SIGMOD International Conferenceon Management of Data, pages 207-216, May 1993.

[3] S.B. Akers. Binary decision diagrams. |IEEE Transactionson Computers, C-27(6):509-516, 1978.
[4] P.Buneman. Semistructured data: atutorial. In Proceedingsof PODS, Tucson, Arizona, May 1997.

[5] P.Buneman, S. Davidson, M. Fernandez, and D. Suciu. Addind structure to unstructured data. In Proceedingsof ICDT, pages
336-350, Delphi, Greece, January 1997.

[6] P.Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization techniquesfor unstructured data.
In Proceedings of the ACM SSIGMOD International Conference, pages 505-516, Montreal, Canada, June 1996.

[7] R.G.G. Cattell. Object data management. Addison-Wesley, Reading, Mass., 1994.

[8] S.Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. The Tsimmis project:
Integration of heterogeneousinformation sources. In Proceedingsof 100th Anniver sary Meeting of the Infor mation Processing
Society of Japan, pages 7-18, Tokyo, Japan, October 1994.

[9] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine learning, neural and statistical classification. Prentice Hall,
Englewood Cliffs, N.J., 1994.

[10] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects: Concise representations of semistructured,
hierarchical data. In Proceedingsof ICDE, pages 79-90, Birmingham, U.K., April 1997.

[11] N.J. Nilsson. The mathematical foundations of learning machines. Morgan Kaufmann, San Mateo, Calif., 1990.

[12] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous information sources. In
Proceedingsof ICDE, pages 251-260, Taipei, Taiwan, March 1995.

[13] D. Quassand et. al. Lore: A lightweight object repository for semistructured data. In Proceedings of the ACM SSGMOD
International Conference on Management of Data, page 549, Montreal, Canada, June 1996.

[14] J.D. Ullman. Principlesof Database and Knowledge-Base Systems, Volumel. Computer Science Press, Rockville, Maryland,
1989.

3http://espnet.sportszone.com/
*http://www-lore.stanford.edu:8765/ui2/



