
Integrating Data Mining with Relational DBMS:

A Tightly-Coupled Approach

Svetlozar Nestorov1 and Shalom Tsur2?

1 Department of Computer Science, Stanford University,
Stanford, CA 94305, USA
evtimov@db.stanford.edu

http://www-db.stanford.edu/people/evtimov.html
2 Surromed, Inc.

Palo Alto, CA 94303, USA
tsur@surromed.com

Abstract. Data mining is rapidly �nding its way into mainstream com-
puting. The development of generic methods such as itemset counting
has opened the area to academic inquiry and has resulted in a large har-
vest of research results. While the mined datasets are often in relational
format, most mining systems do not use relational DBMS. Thus, they
miss the opportunity to leverage the database technology developed in
the last couple of decades.
In this paper, we propose a data mining architecture, based on the query
ock framework, that is tightly-coupled with RDBMS. To achieve opti-
mal performance we transform a complex data mining query into a se-
quence of simpler queries that can be executed e�ciently at the DBMS.
We present a class of levelwise algorithms that generate such transfor-
mations for a large class of data mining queries. We also present some
experimental results that validate the viability of our approach.

1 Introduction

Data mining | the application of methods to analyze very large volumes of
data so as to infer new knowledge | is rapidly �nding its way into mainstream
computing and becoming commonplace in such environments as �nance and
retail, in which large volumes of cash register data are routinely analyzed for
user buying patterns of goods, shopping habits of individual users, e�ciency
of marketing strategies for services and other information. The development of
generic methods such as itemset counting and the derivation of association rules
[1,3] has opened the area to academic inquiry and has resulted in a large harvest
of research results.

From an architectural perspective, the common way of implementing a data
mining task is to perform it using a special purpose algorithm which typically
analyzes the data by performing multiple sequential passes over a data �le. The

? This work was done while the author was a�liated with Research and Development
Lab, Hitachi America, Ltd., Santa Clara, California, USA.

performance measure is usually the number of passes required to conclude the
analysis. There are obvious advantages in integrating a database system in this
process. In addition to such controlling parameters as support and con�dence
levels, the user has an additional degree of freedom in the choice of the data set
to be analyzed, which can be generated as the result of a query. Furthermore,
the well understood methods for query optimization, built into the DBMS, can
be utilized without further development. While the potential bene�ts of an inte-
grated data-mining/DBMS system are easy to perceive, there is a performance
issue that requires consideration: can we achieve a comparable, or at least an
acceptable level of performance from these integrated methods when compared
to the special-purpose external methods? This question was previously exam-
ined in a more narrow context of association rules and a particular DBMS in [7]
and [2]. Section 2 of this paper elaborates on the general architectural choices
available and their comparison.

The idea of ocks [11] was presented as a framework for performing complex
data analysis tasks on relational database systems. The method consists of a
generator of candidate query parameter settings and their concomitant queries,
and a �lter which passes only those results that meet the speci�ed condition.
The canonical example for ocks is itemset counting. An earlier paper [8] has
addressed the query optimization problems that arise when existing query op-
timizers are used in the context of ocks. Various means of pushing aggregate
conditions down into the query execution plan were examined and a new logical
operator group-select was de�ned to improve the ock execution optimization
plan.

The emphasis of this paper is on the relationship between the system archi-
tecture and the ock execution plan. The choices involved are not independent:
di�erent optimization plans may result in the execution of the ock either inter-
nally, by optimizing the order of introduction of selection and grouping criteria
on the underlying relations or externally, by means of auxiliary relations. Sec-
tion 3 of this paper introduces the idea of auxiliary relations and their use in
ocks execution. Section 4 elaborates on the generation of query ock plans. Sec-
tion 5 reports on some experimental results applying these methods and choices
to a large database of health-care data. In section 6 we conclude this paper.

2 Architecture

There are three di�erent ways in which data mining systems use relational
DBMS. They may not use a database at all, be loosely coupled, or be tightly
coupled. We have chosen the tightly-coupled approach that does (almost) all of
the data processing at the database. Before we justify our choice, we discuss the
major advantages and drawback of the the other two approaches.

Most current data mining systems do not use a relational DBMS. Instead
they provide their own memory and storage management. This approach has its
advantages and disadvantages. The main advantage is the ability to �ne-tune the
memory management algorithms with respect to the speci�c data mining task.

Thus, the data mining systems can achieve optimal performance. The downside
of this database-less approach is the lost opportunity to leverage the existing
relational database technology developed in the last couple of decades. Indeed,
conventional DBMS provide various extra features, apart from good memory
management, that can greatly bene�t the data mining process. For example, the
recovery and loggingmechanisms, provided by most DBMS, can make the results
of long computations durable. Furthermore, concurrency control can allow many
di�erent users to utilize the same copy of the data and run data mining queries
simultaneously.

Some data mining systems use a DBMS but only to store and retrieve the
data. This loosely-coupled approach does not use the querying capability pro-
vided by the database which constitutes both its main advantage and disadvan-
tage. Since the data processing is done by specialized algorithms their perfor-
mance can be optimized. On the other hand, there is still the requirement for at
least temporary storage of the data once it leaves the database. Therefore, this
approach also does not use the full services o�ered by the DBMS.

The tightly-coupled approach, in contrast, takes full advantage of the database
technology. The data are stored in the database and all query processing is done
locally (at the database). The downside of this approach is the limitations of the
current query optimizers. In was shown in [10] that performance su�ers greatly
if we leave the data mining queries entirely in the hands of the current query
optimizers. Therefore, we need to perform some optimizations before we send
the queries to the database, taking into account the capabilities of the current
optimizers. To achieve this we introduce an external optimizer that sits on top
of the DBMS. The external optimizer e�ectively breaks a complex data mining
query into a sequence of smaller queries that can be executed e�ciently at the
database. This architecture is shown in Fig. 1.

The external optimizer can be a part of larger system for formulating data
mining queries such as query ocks. The communication between this system
and the database can be carried out in ODBC or JDBC.

3 Framework

3.1 Query Flocks

The query ock framework [11] generalizes the a-priori trick [1] for a larger
class of problems. Informally, a query ock is a generate-and-test system, in
which a family of queries that are identical except for the values of one or more
parameters are asked simultaneously. The answers to these queries are �ltered
and those that pass the �lter test enable their parameters to become part of the
answer to the query ock. The setting for a query ock system is:

{ A language to express the parameterized queries.
{ A language to express the �lter condition about the results of a query.

Given these two languages we can specify a query ock by designating:

Translator

Optimizer
External

Query Flock Plan

RDBMS

Sequence of

Simple Queries

(in SQL)

Query Flock Compiler

Complex DM Query

(Query Flock)

via ODBC or JDBC

Fig. 1. Tightly-coupled integration of data mining and DBMS.

{ One or more predicates that represent data stored as relations.
{ A set of parameters whose names always begin with $.
{ A query expressed in the chosen query language, using the parameters as
constants.

{ A �lter condition that the result of the query must satisfy in order for a
given assignment of values to the parameters to be acceptable.

The meaning of a query ock is a set of tuples that represent "acceptable"
assignments of values for the parameters.We determine the acceptable parameter
assignments by, in principle, trying all such assignments in the query, evaluating
the query, and checking whether the results pass the �lter condition.

In this paper, we will describe query ocks using conjunctive queries [4],
augmented with arithmetics, as a query language and an SQL-like notation for
the �lter condition. The following example illustrates the query ock idea and
our notation:

Example 1. Consider a relation diagnoses(Patient,Disease) that contains in-
formation about patients at some hospital and the diseases with which they have
been diagnosed. Each patient may have more than one disease. Suppose we are
interested in pairs of diseases such that there are least 200 di�erent patients
diagnosed with this pair. We can write this question as a query ock in the
following way:

QUERY:

answer(P) :- diagnoses(P,$D1) AND diagnoses(P,$D2)

AND $D1 < $D2

FILTER:

COUNT(answer) >= 200

First, let us examine the query part. For a given pair of diseases ($D1 and
$D2) the answer relation contains all patients diagnosed with the pair. The last
predicate ($D1 < $D2) insures that the result contains only pairs of di�erent
diseases and does not contain a pair and its reverse. The �lter part expresses
the condition that there should be at least 200 such patients. Thus, any pair
($D1,$D2) that is in the result of the query ock must have at least 200 patients
diagnosed with it.

Another way to think about the meaning of the query ock is the following.
Suppose we have all possible disease values. Then, we substitute $D1 and $D2
with all possible pairs and check if the �lter condition is satis�ed for the query
part. Only those values for which the result of the query part passes the test will
be in the query ock result. Thus, the result of the query ock is a relation of
pairs of diseases; an example relation is shown in Table 1.

Table 1. Example query ock result.

$D1 $D2

anaphylaxis rhinitis
ankylosing spondylitis osteoporosis

bi-polar disorder insomnia

3.2 Auxiliary Relations

Auxiliary relations are a central concept in the query ock framework. An aux-
iliary relation is a relation over a subset of the parameters of a query ock and
contains candidate values for the given subset of parameters. The main property
of auxiliary relations is that all parameter values that satisfy the �lter condition
are contained in the auxiliary relations. In other words, any value that is not
in an auxiliary relation is guaranteed not satisfy the �lter condition. Through-
out the examples in this paper we only consider �lter conditions of the form
COUNT (ans) >= X. However, our results and algorithms are valid for a larger
class of �lter conditions called monotone in [11] or anti-monotone in [9]. For this
class of �lter conditions, the auxiliary relations can be de�ned with subset of the
goals in the query part of the query ock. For a concrete example, consider the
query ock from Example 1:

Example 2. An auxiliary relation ok d1 for parameter $D1 can be de�ned as the
result of the following query ock:

QUERY:

ans(P) :- Diagnoses(P,$D1)

FILTER:

COUNT(ans) >= 200

The result of this ock consists of all diseases such that for each disease there
are at least 200 patients diagnosed with it. Consider a pair of diseases such that
there are at least 200 patients diagnosed with the pair. Then, both diseases must
appear in the above result. Thus, the auxiliary relation is a superset of the result
of the original query ock.

3.3 Query Flock Plans

Intuitively, a query ock plan represents the transformation of a complex query
ock into a sequence of simpler steps. This sequence of simpler steps represent
the way a query ock is executed at the underlying RDBMS. In principal, we can
translate any query ock directly in SQL and then execute it at the RDBMS.
However, due to limitations of the current query optimizers, such an implemen-
tation will be very slow and ine�cient. Thus, using query ock plans we can
e�ectively pre-optimize complex mining queries and then feed the sequence of
smaller, simpler queries to the query optimizer at the DBMS.

A query ock plan is a (partially ordered) sequence of operations of the
following 3 types:

Type 1 Materialization of an auxiliary relation
Type 2 Reduction of a base relation
Type 3 Computation of the �nal result

The last operation of any query ock plan is always of type 3 and is also the
only one of type 3.

Materialization of an auxiliary relation: This type of operation is actually a
query ock that is meant to be executed directly at the RDBMS. The query
part of this query ock is formed by choosing a safe subquery [12] of the original
query. The �lter condition is the same as in the original query ock. Of course,
there are many di�erent ways to choose a safe subquery for a given subset of the
parameters. We investigate several ways to choose safe subqueries according to
some rule-based heuristics later in the paper. This type of operation is translated
into an SQL query with aggregation and �lter condition.

For an example of a step of type 1, recall the query ock that materializes
an auxiliary relation for $D1 from Example 2.

QUERY:

ans(P) :- Diagnoses(P,$D1)

FILTER:

COUNT(ans) >= 200

This materialization step can be translated directly into SQL as follows:

(1) ok_d1(Disease) AS

SELECT Disease

FROM diagnoses

GROUP BY Disease

HAVING COUNT(Patient) >= 200

Reduction of a base relation: This type of operation is a semijoin of a base
relation with one or more previously materialized auxiliary relations. The result
replaces the original base relation. In general, when a base relation is reduced
we have a choice between several reducers. Later in this paper, we describes how
to choose \good" reducers.

For an example of a step of type 2, consider the materialized auxiliary relation
ok d1. Using ok d1 we can reduce the base relation diagnoses as follows:

QUERY:

diagnoses_1(P) :- diagnoses(P,$D1) AND ok_d1($D1)

This can be translated directly into SQL as follows:

(2) diagnoses_1(Patient,Disease) AS

SELECT b.Patient, b.Disease

FROM diagnoses b, ok_d1 r

WHERE b.Disease = r.Disease

Computation of the �nal result: The last step of every query ock plan is a
computation of the �nal result. This step is essentially a query ock with a
query part formed by the reduced base relations from the original query ock.
The �lter is the same as in the original query ock.

4 Algorithms

In this section we present algorithms that generate e�cient query ock plans.
Recall that in our tightly-coupled mining architecture these plans are meant to
be translated in SQL and then executed directly at the underlying RDBMS.
Thus, we call a query ock plan e�cient if its execution at the RDBMS is e�-
cient. There are two main approaches to evaluate the e�ciency of a given query
plan: cost-based and rule-based. A cost-based approach involves developing an
appropriate cost model and methods for gathering and using statistics. In con-
trast, a rule-based approach relies on heuristics based on general principles, such
as applying �lter conditions as early as possible. In this paper, we focus on the
rule-based approach to generating e�cient query ock plans. The development
of a cost-based approach is a topic of a future paper.

The presentation of our rule-based algorithms is organized as follows. First,
we describe a general nondeterministic algorithm that can generate all possible
query ock plans under the framework described in Section 3.3. The balance
of this section is devoted to the development of appropriate heuristics, and the

intuition behind them, that make the nondeterministic parts of the general al-
gorithm deterministic. At the end of this section we discuss the limitations of
conventional query optimizers and show how the query ock plans generated by
our algorithm overcome these limitations.

4.1 General Nondeterministic Algorithm

The general nondeterministic algorithm can produce any query ock plan in our
framework. Recall that a valid plan consists of a sequence of steps of types 1
and 2 followed by a �nal step of type 3. One can also think of the plan as being
a sequence of two alternating phases: materialization of auxiliary relations and
reduction of base relations. In the materialization phase we choose what auxiliary
relations to materialize one by one. Then we move to the reduction phase or,
if no new auxiliary relations have been materialized, to the computation of the
�nal result. In the reduction phase we choose the base relations to reduce one
by one and then go back to the materialization phase.

Before we described the nondeterministic algorithm in details we introduce
the following two helper functions.

MaterializeAuxRel(Params, De�nition) takes a subset of the parameters
of the original query ock and a subset of the base relations. This subset
forms the body of the safe subquery de�ning an auxiliary relation for the
given parameters. The function assigns a unique name to the materialized
auxiliary relation and produces a step of type 1.

ReduceBaseRel(BaseRel, Reducer) takes a base relation and a set of aux-
iliary relations. This set forms the reducer for the given base relation. The
function assigns a unique name to the reduced base relation and produces a
step of type 2.

We also assume the existence of functions add and replace, with their usual
meanings, for sets and the function append for ordered sets. The nondeterministic
algorithm is shown in Fig. 2

The number of query ock plans that this nondeterministic algorithm can
generate is rather large. Infact, with no additional restrictions, the number of
syntactically di�erent query ock plans that can be produced by Algorithm 1
is in�nite. Even if we restrict the algorithm to materializing only one auxiliary
relation for a given subset of parameters, the number of query ock plans is
more than double exponential in the size of the original query. Thus, we have to
choose a subspace that will be tractable and also contains query ock plans that
work well empirically. To do so e�ectively we need to answer several questions
about the space of potential query ock plans. We have denoted these questions
in Algorithm 1 with (Q1) - (Q5).

(Q1) How to sequence the steps of type 1 and 2?
(Q2) What auxiliary relations to materialize?
(Q3) What de�nition to choose for a given auxiliary relation?

Algorithm 1

Input: Query ock QF

Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query ock plan QFPlan

== Initialization

BaseRels = Predicates
AuxRels = ;
QFPlan = ;

== Iterative Generation of Query Flock Plan

while(true) do
(Q1) choose NextStepType from fMATERIALIZE, REDUCE, FINALg

case NextStepType:
MATERIALIZE: == Materialization of Auxiliary Relation

(Q2) choose subset S of Parameters
(Q3) choose subset D of BaseRels

Step =MaterializeAuxRel(S;D)
QFPlan:append(Step)
AuxRels:add(Step:ResultRel)

REDUCE: == Reduction of Base Relation

(Q4) choose element B from BaseRels
(Q5) choose subset R of AuxRels

Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B;Step:ResultRel)

FINAL: == Computation of Final Result

Step =MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

end case
end while

Fig. 2. General nondeterministic algorithm.

(Q4) What base relations to reduce?

(Q5) What reducer to choose for a given base relation?

There are two main approaches to answering (Q1) - (Q5). The �rst one
involves using a cost model similar to the one used by the query optimizer
within the RDBMS. The second approach is to use rule-based optimizations. As
we noted earlier, in this paper we focus on the second approach.

In order to illustrate Algorithm 1, consider the following example query ock,
that was �rst introduced in [11].

Example 3. Consider the following four relations from a medical database about
patients and their symptoms, diagnoses, and treatments.

diagnoses(Patient, Disease) The patient is diagnosed with the disease.

exhibits(Patient, Symptom) The patient exhibits the symptom.

treatment(Patient, Medicine) The patient is treated with the medicine.

causes(Disease, Symptom) The disease causes the symptom.

We are interested in �nding side e�ects of medicine, i.e., �nding pairs of
medicines $M and symptoms $S such that there are at least 20 patients taking
the medicine and exhibiting the symptom but their diseases do not cause the
symptoms. The question can be expressed as a query ock as follows:

QUERY:

ans(P) :- exhibits(P,$S) AND

treatment(P,$M) AND

diagnoses(P,D) AND

NOT causes(D,$S)

FILTER:

COUNT(ans) >= 20

One possible query ock plan that can be generated by Algorithm 1 for
the above query ock is shown in Table 2. This plan consists of a step of type
1 followed by two steps of type 2 and ending with the �nal step of type 3.
The �rst step materializes an auxiliary relation ok s($S) for parameter $S. The
next two step reduce the base relations causes(D,$S) and exhibits(P,$S) by
joining them with ok s($S). The last step computes the �nal result, relation
res($M,$S), using the reduced base relations.

Table 2. Example of a query ock plan produced by Algorithm 1.

Step Type Result QUERY FILTER

(1) 1 ok s($S) ans 1(P) :- exhibits(P,$S) COUNT(ans 1) >= 20

(2) 2 c 1(D,$S) c 1(D,$S) :- causes(D,$S) -
AND ok s($S)

(3) 2 e 1(P,$S) e 1(P,$S) :- exhibits(P,$S) -
AND ok s($S)

(4) 3 res($M,$S) ans(P) :- e 1(P,$S) COUNT(ans) >= 20

AND treatment(P,$M)

AND diagnoses(P,D)

AND NOT c 1(D,$S)

4.2 Levelwise Heuristic

First, we address the question how to sequence the steps of types 1 and 2 ((Q1))
along with the questions what auxiliary relations to materialize ((Q2)) and what
base relations to reduce ((Q4)). The levelwise heuristic that we propose is loosely
fashioned after the highly successful a-priori trick [1]. The idea is to materialize
the auxiliary relations for all parameter subsets of size up to and including k in
a levelwise manner reducing base relations after each level is materialized. So,
starting at level 1, we materializing an auxiliary relations for every parameter.
Then we reduce the base relations with the materialized auxiliary relations. At
level 2, we materialize the auxiliary relations for all pairs of parameters, and so
on. The general levelwise algorithm is formally described in Fig. 3.

Algorithm 2

Input: Query ock QF; K { max level
Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query ock plan QFPlan

== Initialization

BaseRels = Predicates
QFPlan = ;

== Levelwise Generation of Query Flock Plan

for i = 1 to K do
AuxRelsi = ;

== Materialization of Auxiliary Relations

for all S � Parameters with j S j= i do
(Q3) choose subset D of BaseRels

Step =MaterializeAuxRel(S;D)
QFPlan:append(Step)
AuxRelsi:add(Step:ResultRel)

end for
== Reduction of Base Relations

for all B 2 BaseRels
(Q5) choose subset R of AuxRelsi

Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B;Step:ResultRel)

end for
end for

== Computation of Final Result

Step = MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

Fig. 3. General levelwise algorithm.

The levelwise heuristic has also some important implications on the choice
of de�nitions of auxiliary relations and the choice of reducer for base relations
discussed in the next two section.

4.3 Choosing De�nitions of Auxiliary Relations

When choosing de�nitions of auxliary relations ((Q3)) there are two main ap-
proaches single and group. In the single approach, we choose a de�nition for a
single auxiliary relation without regard to any other choices. In the group ap-
proach, in contrast, we choose de�nitions for several auxiliary relations at the
same time. Thus, we can exploit existing symmetries among the parameters or
equivalences among syntactically di�erent de�nitions. Regardless of the partic-
ular approach we only consider de�nitions that form minimal safe subquesies,
not involving a cartesian product. The subquesies are minimal in a sense that
eliminating any subgoal will either make the subquery unsafe or will turn it into
a cartesian product.

The already chosen levelwise heuristic dictates the use of the group approach
in our algorithm. We can take advantage of the fact that we are choosing def-
initions for all auxiliary relations for a given level simultaneously. Thus, it is
rather straightforward to use symmetries among parameters and equivalences
among subqueries to choose the smallest the number of de�nitions that cover all
auxliary relations. We refer to this strategy as the least-cover heuristic.

4.4 Choosing Reducers of Base Relations

When choosing a reducer for a given base relation we can employ two strategies.
The �rst strategy is to semijoin it with the join of all auxliary relations that
have parameters in common with the base relation. The second strategy is to
semijoin it with all auxiliary relations that only have parameters appearing in
the given base relation. With the second strategy we minimize the number of
relations in the reduction joins while keeping the selectivity as high as possible.
Again the use of the levelwise heuristic dictates our strategy choice. At the end
of each level we have materialized auxiliary relations for all parameter subsets
of the given size. Thus, the �rst strategy yields unnecessarily large reducers for
every base relation at almost every level. Therefore, in our algorithm, we employ
the second strategy.

4.5 K-Levelwise Deterministic Algorithm

Choosing the least-cover heuristic for (Q3) and the strategy outlined in Sec-
tion 4.4 for (Q5) we �nalize our algorithm that generates query ock plans. The
formal description of the k-levelwise deterministic algorithm is shown in Fig.3.

Algorithm 3

Input: Query ock QF; K { max level
Parameters { set of parameters of QF
Predicates { set of predicates in the body of the query part of QF

Output: Query ock plan QFPlan

== Initialization

BaseRels = Predicates;QFPlan = ;
== Levelwise Generation of Query Flock Plan, up to level K

for i = 1 to K do
AuxRelsi = ;; MinDefsi = ;

== find all minimal definitions of auxiliary relations

for all S � Parameters with j S j= i do
MinDefsi:add(GetMinDefs(S;BaseRels))

end for
== choose least cover of minimal definitions

Coveri = GetLeastCover(MinDefsi)
== for each definition in the cover add corresponding

== auxiliary realtions for all covered parameter subsets

for all hDef;CoveredParamSetsi 2 Coveri do
for all S 2 CoveredParamSets do

Step =MaterializeAuxRel(S;Def)
AuxRelsi:add(Step:ResultRel)

end for
== materialize the shared definition only once

QFPlan:append(Step)
end for

== Reduction of Base Relations

for all B 2 BaseRels do
R = ;

== choose reducer for base relation

for all A 2 AuxRelsi do
if GetParams(A) � GetParams(B) then

R:add(A)
end for
Step = ReduceBaseRel(B;R)
QFPlan:append(Step)
BaseRels:replace(B;Step:ResultRel)

end for
end for

== Computation of Final Result

Step = MaterializeAuxRel(Parameters; BaseRels)
QFPlan:append(Step)
return QFPlan

Fig. 4. K-Levelwise deterministic algorithm.

The k-levelwise deterministic algorithm uses the following three helper func-
tions.

GetMinDefs(Params,Preds) takes a set of parameters and a set a of predi-
cates (query). The function returns a tuple where the �rst element is the set
of parameters and the second element is the set of all minimal de�nitions
(subqueries) for the auxiliary relation for the given set of parameters.

GetLeastCover(Set of (Params,Defs)) takes a set of tuples composed of a
set of parameters and a set of de�nitions. The function returns the smallest
set of de�nitions that covers all sets of parameters using equivalences among
syntactically di�erent de�nitions.

GetParams(Pred) takes a predicate and returns the set of parameters that
appear in the given predicate.

The query ock plan produced by Algorithm 3 with k = 1 for the query ock
from Example 3 is shown in Table 3.

Table 3. Query ock plan produced by Algorithm 3 with K = 1.

Step Type Result QUERY FILTER

(1) 1 ok s($S) ans 1(P) :- exhibits(P,$S) COUNT(ans 1) >= 20

(2) 1 ok m($M) ans 2(P) :- treatment(P,$M) COUNT(ans 2) >= 20

(3) 2 c 1(D,$S) c 1(D,$S) :- causes(D,$S) -
AND ok s($S)

(4) 2 e 1(P,$S) e 1(P,$S) :- exhibits(P,$S) -
AND ok s($S)

(5) 2 t 1(P,$M) t 1(P,$M) :- treatment(P,$M) -
AND ok m($M)

(6) 3 res($M,$S) ans(P) :- e 1(P,$S) COUNT(ans) >= 20

AND t 1(P,$M)

AND diagnoses(P,D)

AND NOT c 1(D,$S)

4.6 Comparison with Conventional Query Optimizers

Recall that we use query ock plans to insure the e�cient execution of query
ocks at the underlying RDBMS. The shortcomings, with respect to query ocks,
of conventional query optimizers are the �xed shape (left-deep trees) of their
query plans and the fact that aggregation is usually done last. Query ock plans
rectify these problems by using reduction of base relations to circumvent the
shape of the query plan and auxiliary relations to use aggregation on partial
results as early as possible

The problem of including aggregation in query optimization is studied in
[13,6, 5]. In these papers, aggregation is pushed down, (or sometimes up), the

query plan tree. The key di�erence with our work is that we use aggregation
on a subset of the original query and the result is used to reduce the size of
intermediate steps. Eventually the aggregation must be performed again but we
have gained e�ciency by having much smaller intermediate results.

5 Experiments

Our experiments are based on real-life health-care data. Below we describe a
representative problem and the performance results.

Consider a relation Diagnoses(PatientID,StayCode,Diagnose) that con-
tains the diagnoses information for patients during their stays at some hos-
pital. Another relation, Observe(PatientID,StayCode), contains the pairs of
PatientID and StayCode for patients that are kept for observations for less
than 24 hours. The rest of the patients are admitted to the hospital. Consider
the following problem.

Find all pairs of diagnoses such that:

1. There are at least N patients diagnosed with the pair of diagnoses
2. At least one of them is an observation patient

We can express this problem naturally as a query ock:

QUERY:

ans(P,S) :- Diagnoses(P,S,$D1) AND

Diagnoses(P,S,$D2) AND

Diagnoses(Q,T,$D1) AND

Diagnoses(Q,T,$D2) AND

Observe(Q,T) AND

$D1 < $D2

FILTER:

COUNT(ans) >= N

This problem is important to the hospital management because the reim-
bursement procedures and amounts for admitted and observation patients are
di�erent. Thus, management would like to identify some exceptions to the gen-
eral trends, �nd their causes, and investigate them further for possible malprac-
tice or fraud.

The Diagnoses relation contains more than 100,000 tuples, while the Observe
relation contains about 8,000 tuples. We compared the performance of the 1-
levelwise and 2-levelwise algorithms as well as the direct approach where the
query ock is directly translated into SQL. We used a standard installation of
ORACLE 8.0 running under Windows NT. The results are shown in Fig. 5.

For this dataset, the 2-levelwise algorithm outperforms the 1-levelwise algo-
rithm more than 3 times. This result is somewhat surprising because the two

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

N (Support)

2-levelwise
1-levelwise

direct+

Fig. 5. Performance results on health-care data.

parameters $D1 and $D2 are symmetric (excluding the inequality) and thus,
only one relation is materialized at level 1. However, the reduced base relation
Diagnoses after level 1 is still rather large and the computation of the �nal
result at this stage is much slower than materializing the auxiliary relation for
the pair of parameters.

As expected, both algorithms perform much better than the direct approach
where we translate the query ock directly in SQL. Infact, the actual translation
did not �nish executing in a reasonable amount of time. Thus, we had to augment
the direct translation, hence direct+, with a preliminary step where we joined
the Observe and Diagnoses relations. This step had the e�ect of reducing the
size of the relations for two of the four Diagnoses predicates and eliminating
the Observe predicate.

6 Conclusions

In this paper, we presented a tightly-coupled approach to integrating data min-
ing and relational DBMS. We based our approach on the query ock framework
where complex mining queries expressed as ocks are transformed into a query
ock plan that consists of simpler queries. These queries can be optimized e�ec-
tively by the query optimizer in the RDBMS. Thus, using query ock plans, we
can execute complex mining queries e�ciently in the RDBMS. We presented a
class of levelwise algorithms for generating query ock plans. We also reported
on some performance results that validate the e�ectiveness of our approach.

We are currently investigating cost-based optimization algorithms that in-
teract with the internal optimizer of the RDBMS. Query ock plans produced

by such algorithms could be even more e�cient than the plans produced by
rule-based algorithms. Our future work includes combining the rule-based and
cost-based approaches to achieve optimal performance.

Acknowledgment: The authors would like to thank prof. Je�rey Ullman for many
discussions on the topic of query ocks.

References

1. R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of ACM SIGMOD International Confer-

ence on Management of Data, pages 207{216, May 1993.
2. R. Agrawal and K. Shim. Developing tightly-coupled applications on ibm db2/cs

relational database system: Methodology and experience. Research report, IBM
Almaden Research Center.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-

ceedings of the 20th International Conference on Very Large Data Bases, pages
487{499, Santiago, Chile, September 1994.

4. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Proceedings of 9th Annual ACM Symposium on the Theory

of Computing, pages 77{90.
5. S. Chaudhuri and K. Shim. Including group-by in query optimization. In Pro-

ceedings of the 20st International Conference on Very Large Data Bases, pages
354{366, Santiago, Chile, September 1994.

6. S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. In Proceed-

ings of the 5th International Conference on Extending Database Technology, pages
167{182, Avignon, France, March 1996.

7. H. Houtsma and A. Swami. Set-oriented mining of association rules. In Proceedings
of International Conference on Data Engineering, pages 25{33, Taipei, Taiwan,
March 1995.

8. S. Nestorov and S. Tsur. E�cient implementation of query ocks. Technical report,
Research and Development Lab, Hitachi America, Ltd., Santa Clara, California,
September 1998.

9. R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 13{24, Seattle, Washing-
ton, June 1998.

10. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. In Proceedings of

ACM SIGMOD International Conference on Management of Data, pages 343{354,
Seattle, Washington, June 1998.

11. S. Tsur, J. Ullman, C. Clifton, S. Abiteboul, R. Motwani, S. Nestorov, and
A. Rosenthal. Query ocks: a generalization of association-rule mining. In Proceed-
ings of ACM SIGMOD International Conference on Management of Data, pages
1{12, Seattle, Washington, June 1998.

12. J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes I,II.
Computer Science Press, Rockville, Maryland, 1989.

13. W. Yan and P. Larson. Eager aggregation and lazy aggregation. In Proceedings

of the 21st International Conference on Very Large Data Bases, pages 345{357,
Zurich, Switzerland, September 1995.

