
Query Flocks: A Generalization of Association-Rule Mining�

Dick Tsur, Hitachi Corp.

Je�rey D. Ullman, Stanford University

Serge Abiteboul, Stanford University and INRIA

Chris Clifton, MITRE Corp.

Rajeev Motwani, Stanford University

Svetlozar Nestorov, Stanford University

Arnon Rosenthal, MITRE Corp.

October 29, 1997

Abstract

Association-rule mining has proved a highly successful technique for extracting useful informa-

tion from very large databases. This success is attributed not only to the appropriateness of the

objectives, but to the fact that a number of new query-optimization ideas, such as the \a-priori"

trick, make association-rule mining run much faster than might be expected. In this paper we

see that the same tricks can be extended to a much more general context, allowing e�cient

mining of very large databases for many di�erent kinds of patterns. The general idea, called

\query
ocks," is a generate-and-test model for data-mining problems. We show how the idea

can be used either in a general-purpose mining system or in a next generation of conventional

query optimizers.

1 Introduction

We shall begin our discussion by reviewing the basics of market-basket analysis and the a-priori
algorithm for �nding items that tend to appear together in market baskets. We then see how to
generalize the market-basket problem to \query
ocks," that is, parametrized queries with a �lter
condition to eliminate values of the parameters that are \uninteresting." By expressing the query

ock in Datalog, we �nd a well-known condition (query safety) that lets us enumerate the queries
that are candidates for use in a query optimization technique that generalizes a-priori. Interestingly,
the same technique, while applicable to SQL queries directly, is more apparent if we express queries
in Datalog.

We then consider the pragmatics of implementing the generalized a-priori technique in a \query-

ocks processor" or in a conventional SQL query optimizer. One approach is to see generalized
a-priori as a cost-based optimization, principally involving join order and selection of some useful
subqueries. Another approach is to view the technique as one that is applied dynamically, with
the decision to perform an extra �ltering step (analogous to the a-priori technique of eliminating
low-support items) done only when we see the sizes of some intermediate relations during the
query-
ock execution process.

�This work was partially supported by the Community Management Sta�'s Massive Digital Data Systems Program,
NSF grant IRI{96{31952, ARO grant DAAH04{95{1{0192, and grants of IBM and Hitachi Corp.

1

1.1 Review of Market-Basket Mining

The market-basket problem represents an attempt by a retail store to learn what items its customers
frequently purchase together. The goal is an understanding of the behavior of typical customers
as they navigate the aisles of the store. For instance, if we learn that customers frequently buy
hamburgers and ketchup together, then we might suppose that many customers will walk from one
to the other. If the store owner puts high-pro�t items tempting to such customers, e.g., relish,
between, then they might induce more impulse buying and thus increase pro�ts.

In the query problem, we are given a database containing information about \market baskets."
That is, each time a customer appears at the cash register, the set of items they bought is entered
in the database. We shall assume for simplicity that the database is a relation baskets(BID,Item),
giving pairs consisting of a basket \ID" and an item that appeared in that basket. The goal of
market basket analysis is to �nd sets of items that are \associated," and the fact of their association
is often called an association rule. Intuitively, associated items appear together frequently. Three
more precise measures of association that have been used are:

1. Support : The items must appear in many baskets.

2. Con�dence: The probability of one item given that the others are in the basket must be high.

3. Interest : That probability must be signi�cantly higher or lower than the expected probability
if items were purchased at random.

For example, an oft-repeated observation is that people who buy diapers often buy beer. The
statement that the set fbeer; diapersg has high support means that many people buy both beer and
diapers. That fact alone might be useful to a marketer. The statement that the rule beer! diapers

has high con�dence means that a lot of people who buy beer also buy diapers. That rule might be
even more useful, although it begs the question whether people who buy beer are especially likely
to buy diapers, or whether they buy diapers just because everybody buys diapers. Finally, saying
that the rule beer ! diapers has high interest means that if you buy beer, then you are much more
(or much less) likely to buy diapers than the general population.

1.2 The A-Priori Optimization

There is an important trick for speeding up the search for high-support sets of items, known as
a-priori ([AIS93], [AS94]). It uses the fact that if a set of items S appears in c baskets, then any
subset of S appears in at least c baskets. For example, if we are looking for pairs of items that
appear in at least c baskets, then we can start by �nding those items that by themselves appear in
at least c baskets. If c is high enough, we can eliminate most of the tuples in the baskets relation
before we do the hard part: joining baskets with itself to count the occurrences of pairs of items.
This transformation of the market-basket problem has been shown in the papers cited above to
make a great di�erence in the time taken to �nd the answer to a question like \�nd all the pairs of
items that appear in at least c market baskets."

1.3 The Problem With SQL as a Mining Language

In principle, we can express a query about pairs of items that appear in a large number of baskets
in conventional SQL. This approach was examined by [HS95], for instance. The problem is that the
right optimizations are beyond the state of the art in commercial database systems. For example,
Fig. 1 shows how to express the query \�nd all pairs of items that appear together in at least 20

2

market baskets."1 There, we join baskets with itself, with the condition that the basket ID's be
the same, and the name of the �rst item be lexicographically less than the name of the second item
(to avoid repeating pairs in both possible orders). We group the joined relation by the pair of items
involved and check in the HAVING clause that the group has at least 20 baskets.

SELECT i1.Item, i2.Item

FROM baskets i1, baskets i2

WHERE i1.Item < i2.Item AND

i1.BID = i2.BID

GROUP BY i1.Item, i2.Item

HAVING 20 <= COUNT(i1.BID)

Figure 1: Searching for association rules using SQL

The problem with this formulation is that the a-priori trick will not be implemented by con-
ventional optimizers. For example, using a popular DBMS, we found that by rewriting the query
of Fig. 1 to �rst �nd those items that appeared in at least 20 baskets (the data was actually word
occurrences in newspaper articles, so the threshold of 20 occurrences made more sense than it
would for retail-store data) and then joining the set of these items with the baskets relation before
performing the query as written in Fig. 1, resulted in a 20-fold speedup.

In principle, the necessary code optimizations could be implemented in SQL systems. The
idea is roughly \pushing grouping down the expression tree," and as such has been studied in the
abstract by [GHQ95]. However, until the advent of market-basket mining, there has been little
motivation for database vendors to invest a lot of time and e�ort in building these transformations
into their systems. In this paper we argue the following:

� There are many data-mining problems besides market-basket analysis that could pro�t from
building the a-priori form of code optimization into existing systems.

� There are a number of approaches to optimization of the a-priori type, including at least one
that is signi�cantly di�erent from existing optimization techniques.

� The formalism of \query
ocks," including their expression in Datalog, is an important tool
for building improved optimizers.

1.4 Can We Mine in SQL?

It was pointed out in several early papers cited above that SQL systems are unable to compete
with ad-hoc �le processing algorithms such as a-priori and its variants. However, in this paper we
assume that the data is stored in a conventional relational system and that mining occurs by issuing
a sequence of SQL queries to the database. We cannot dispute the demonstrated fact that ad-hoc
�le processing algorithms can outperform, often signi�cantly, DBMS-based algorithms. However,
this fact does not negate the importance of the approach we are taking for two reasons:

1. The algorithms for mining and the optimizations we develop can be carried over to a �le-based,
rather than DBMS-based setting, with corresponding speedup.

1In practice market basket analysis is done with a much higher
oor than 20 baskets, typically 1% of all baskets.
We have used 20 throughout this paper as an example of a lower bound on support.

3

2. If mining of large-scale databases is ever to become a routine matter, where mining queries
can be issued quickly to whatever data is appropriate, then DBMS's, probably SQL databases,
must play an important role in this process. Even if it is found more appropriate to move
the data out of a conventional DBMS into a special-purpose system designed for mining,
then the algorithms we suggest, or improvements thereof, will have to be a component of the
special-purpose system.

1.5 Outline of Paper

In Section 2 we introduce our model of a query
ock and the running examples that we shall use
to explicate the concepts. We select as our
ocks language unions of conjunctive queries with
arithmetic comparisons and negations allowed.

Section 3 discusses the ways in which the a-priori technique can be generalized to the setting
of query
ocks with �lters based on minimum support. We show how the old concept of \safe
conjunctive queries" guides the application of this technique in the general setting.

Then, in Section 4 we introduce a notation for query plans. The search for optimal plans
is complicated by the fact that, unlike conventional optimization problems, there is not even an
exponential space of possible plans to which we can restrict our search. We therefore suggest some
reasonable heuristics for limiting the search to an exponential set of plans, including a \dynamic"
technique where we select a join order in advance, but choose whether or not to apply a �lter
operation only after seeing an intermediate result.

2 Query Flocks

Intuitively, a query
ock is a generate-and-test system, in which a family of queries that are identical
except for the values of one or more \parameters" are asked simultaneously. The answers to these
queries are �ltered and those that pass the �lter test enable their parameters to become part of the
answer to the query
ock. The setting for a query
ock system is:

� A language in which we can express queries that are parametrized by one or more parameters.

� A language in which to express �lter conditions about the results of a query.

Given these two languages, we can specify a particular query
ock by designating:

1. One or more predicates that represent data stored as relations.

2. A set of parameters, which we shall always denote with names beginning with $.

3. A query expressed in our query language, using the parameters in roles normally reserved for
constants.

4. A �lter that speci�es a condition that the result of the query must satisfy in order for a given
assignment of values to the parameters to be acceptable.

The meaning of such a query
ock is a set of tuples that represent the \acceptable" assignments
of values for the parameters. We determine the acceptable parameter assignments by, in principle,
trying all such assignments in the query, evaluating the query, and seeing whether the result passes
the �lter test. Of course there are often more e�cient ways to compute the meaning of a query

ock, and these optimizations are the subject of the balance of this paper.

� Remember: a query
ock is a query about its parameters. The result of the
ock is not the
result of the parametrized query that is used to help specify the
ock.

4

2.1 Our Languages for Flocks

The idea of expressing both a query form and a �lter condition has been proposed before. For
example, Mannila ([Man97]) talks about a logic in which both can be expressed. However, Mannila's
formulation puts more in the �lter, e.g., \one of the items in a market basket must be beer," while
for us the role of the �lter is limited to a condition about the result of the query. We would simply
eliminate one of the parameters and mention beer explicitly in the query
ock, should we require
one of the items to be beer.

We shall use as our query language \conjunctive queries" [CM77], augmented with arithmetic
(introduced in Section 2.4 and with union, as introduced in Section 3.4. In the following and
subsequent examples, we shall use Datalog ([Ull88]) notation, rather than SQL, to express our
queries. Datalog gives us two capabilities whose utility will become clear in Section 3:

1. The notion of \safe query" for Datalog �gures into potential optimizations.

2. The set of options for adapting the a-priori trick to arbitrary
ocks is most easily expressed
in Datalog.

However, each of the advantages mentioned above can be translated to SQL terms.
For the �lter language, we use SQL conditions, as might appear in a HAVING clause. The �lter

language turns out to be less important, since our principal results concern
ocks for which the
�lter is a support condition, and such a condition is essentially a single constant, the minimum
threshold for support.

2.2 Market Basket Analysis as a Query Flock

As our �rst example, we shall consider the simplest market-basket problem as a query
ock. We
are given a relation baskets(BID,Item) as underlying data, and we want to �nd those pairs of
items $1 and $2 that appear in at least c baskets. This query
ock easily generalizes to �nding sets
of k items that appear together for any �xed k.2

QUERY:

answer(B) :-

baskets(B,$1) AND

baskets(B,$2)

FILTER:

COUNT(answer.B) >= 20

Figure 2: Market basket association rules as a query
ock

Example 2.1 : The query
ock for �nding pairs of items that appear in at least 20 baskets is seen
in Fig. 2. For any values of $1 and $2, the query asks for the set of baskets B in which items $1
and $2 both appear. The answer relation for this pair of items is the set of such baskets. Then, the

2However, �nding something more complex, like the set of maximal sets of items that appear in at least c baskets
(regardless of the cardinality of the set of items), is more awkward and would be expressed as a sequence of query

ocks for increasing cardinalities, with each
ock depending on the result of the previous
ock.

5

�lter condition requires that the set of such baskets number at least 20. The result of the query

ock is thus the set of pairs of items ($1, $2) such that there are at least 20 baskets containing
both items $1 and $2. 2

2.3 Representing Con�dence in Query Flocks

The most natural query
ocks, and indeed the
ocks for which we have the most promising op-
timization techniques, involve support as the �lter condition; Example 2.1 is such a
ock. It is
possible to represent con�dence, interest, and other conditions as �lters, using SQL-like conditions
involving aggregation. However, it is necessary to allow the query portion of a
ock to produce
several relations as a result.

QUERY:

answer1(B) :-

baskets(B,$1) AND

baskets(B,$2)

answer2(B) :-

baskets(B,$1)

FILTER:

2 * COUNT(answer2.B) >= COUNT(answer1.B)

Figure 3: A
ock that asks for high con�dence

Example 2.2 : Suppose we want to �nd pairs of items $1 and $2 such that the con�dence of $2
given $1 is at least 50%. The
ock can be written as in Fig. 3. Here, there are two answer relations,
which we call answer1 and answer2. The �rst counts the number of baskets containing both items,
while the second counts the number of baskets containing the �rst item. The condition asks that
the ratio of these counts be at least 1/2. 2

2.4 Adding Arithmetic and Negation to Our Query-Flocks Language

The market-basket problem corresponds to a very simple query
ock. The query is a conjunc-
tive query whose only subgoals are positive, relational subgoals. In principle, any query language
whatsoever could be used as the query
ock language. However, in order to apply the query opti-
mization techniques we propose, there are some limitations on the query language. The extensions
to conjunctive queries that we shall allow are:

1. Negated subgoals.

2. Arithmetic subgoals, e.g., X < Y , where X and Y are variables or parameters.

We shall refer to this broader class of conjunctive queries as extended conjunctive queries. In
addition, we shall allow a query that is the union of these extended CQ's, which we discuss in
Section 3.4. However, as with the original CQ's, we assume that extended CQ's follow the conven-
tional set semantics rather than bag semantics, where duplicate tuples are allowed. Some of our
claims would not hold for bag semantics.

6

As a simple example of where arithmetic subgoals are useful, the original query
ock for market
baskets, Example 2.1, produces each successful pair of items in two orders. We can restrict the
result to have each pair of items appear only in lexicographic order if we add an arithmetic condition
to the query, as:

answer(B) :- baskets(B,$1) AND baskets(B,$2) AND $1 < $2

The other two extensions (negation and union) are also quite useful. We introduce them in the
following two examples, which we use throughout the rest of the paper to illustrate our ideas.

Example 2.3 : The following is an example of a query
ock that searches for unexplained side-
e�ects. That is, we want to �nd symptoms $s and medicines $m such that there are many patients
(and as before, we take 20 to be the threshold of \many") that exhibit the symptom and are taking
the medicine, yet the patient's disease does not explain the symptom. The underlying data with
which we work consists of the following relations:

1. diagnoses(Patient, Disease): The patient has been diagnosed as having the disease.

2. exhibits(Patient, Symptom): The patient exhibits the symptom.

3. treatments(Patient, Medicine): The medicine has been prescribed for the patient.

4. causes(Disease, Symptom): The disease is known to cause the symptom.

The query
ock for the problem described above is shown in Fig. 4. In order for this query to
make sense, we assume that each patient has one disease only. To include patients with several
diseases simultaneously, we would have to extend our query-
ocks language to allow intermediate
predicates (in particular, a predicate relating patients to the set of symptoms from all their diseases).
That extension is feasible but we shall concentrate on the simpler cases in order to explore their
query-optimization opportunities.

QUERY:

answer(P) :-

exhibits(P,$s) AND

treatments(P,$m) AND

diagnoses(P,D) AND

NOT causes(D,$s)

FILTER:

COUNT(answer.P) >= 20

Figure 4: Mining for side-e�ects in a medical database

In the
ock of Fig. 4, the parametrized query asks for the set of patients P that exhibit a
symptom $s, are receiving medicine $m, have disease D, and yet the disease D doesn't explain the
symptom $s. The �lter requires that there be at least 20 patients taking medicine $m and exhibiting
unexplained symptom $s. 2

7

Example 2.4 : In our next example, we are looking for words that are strongly related in a
collection of HTML documents. While there are many notions of \strong connection" that could
be explored, we shall �x on one, in which we count

1. The number of times the words appear together in a title, and

2. The number of times one word appears in an anchor and the other appears in the title of the
document the anchor points to.

The query
ock that searches for such pairs of words is based on the following predicates or relations:

1. inTitle(D,W): Word W is in the title of document D.

2. inAnchor(A,W): Word W appears in the anchor text of anchor A.

3. link(A,D1,D2): Anchor A links document D1 to document D2.

QUERY:

answer(D) :-

inTitle(D,$1) AND

inTitle(D,$2) AND

$1 < $2

answer(A) :-

link(A,D1,D2) AND

inAnchor(A,$1) AND

inTitle(D2,$2) AND

$1 < $2

answer(A) :-

link(A,D1,D2) AND

inAnchor(A,$2) AND

inTitle(D2,$1) AND

$1 < $2

FILTER:

COUNT(answer(*)) >= 20

Figure 5: A query
ock de�ning strongly connected words

Figure 5 shows the query
ock that �nds pairs of words in the two desired relationships: together
in title, or one in anchor and the other in target title. To prevent pairs of words from being generated
twice, we have elected to require that the �rst word, $1 lexically precede the second word, $2. As a
result, we are forced to use three rules, since we must distinguish the case where the lexically �rst
word is in the anchor from the case where the second word is in the anchor.

Again we have taken 20 occurrences as the threshold of signi�cance. Notice that the count in
the �lter is counting answers, which may be either anchor ID's or document ID's. We assume that
there are no values in common between these two types of ID's, or the count could be too low. 2

8

3 Generalizing the A Priori Technique

The essence of the a-priori trick applied to query
ocks is that we optimize by �rst evaluating a
less expensive query whose answer allows us to upper bound the size of the answer that would be
obtained with certain parameters. If that bound is less than the threshold in the �lter condition,
we can eliminate certain values of a parameter or parameters without further consideration. But
where do these less expensive queries come from?

3.1 Containment for Conjunctive Queries

When the queries involved are conjunctive ([CM77], [Ull89], [AHV95]), there is a straightforward
answer to the question. The simplest way for a query Q1 to put an upper bound on the size of the
result of a query Q2 is for it to be provable that for any database, the result of Q2 is a subset of the
result of Q1, a condition which we normally write Q2 � Q1. However, for conjunctive queries, this
containment is decidable, using the technique of containment mappings ([CM77]). A consequence
of the containment-mapping theorem is that the only way Q2 � Q1 can hold is if Q1 is constructed
from Q2 by

1. Taking a subset of the subgoals of Q2, and

2. Splitting zero or more variables into several variables.

Splitting variables can neither decrease the number of solutions to the query nor make the query
simpler. Thus, we shall limit our search to subsets of the subgoals of Q2, with no variable splitting
allowed. Picking a proper subset of the subgoals also does not decrease the size of the solution, but
it can make the query simpler, and that simpli�cation is the essence of the a-priori trick. Using a
subset of the subgoals can also eliminate from consideration some of the parameters of the query

ock, another important aspect of \a-priori."

3.2 Safe Queries

However, not every subset of the subgoals of a conjunctive query makes sense as an intermediate
step in the evaluation of the query
ock. In particular, if the variables that appear in the head of
the query do not also appear in the body, then the query de�nes an in�nite set of tuples for the
head predicate, and therefore could not provide a useful upper bound on the size of the result for
the full query. This condition has been studied before ([Ull88]) as a way to restrict Datalog queries
to be equivalent to relational algebra; it is called safety, and CQ's (without negation or arithmetic)
that satisfy the condition

Each variable that appears in the head also appears in the body

are called safe queries.

Example 3.1 : Consider the market-basket query
ock from Example 2.1, which we reproduce
here:

answer(B) :-

baskets(B,$1) AND

baskets(B,$2)

There are only two nontrivial subqueries formed by taking a nonempty, proper subset of the sub-
goals,

9

answer(B) :- baskets(B,$1)

and

answer(B) :- baskets(B,$2)

Either can be used to prune values of one of the parameters. For instance, if we use the �rst, then
we can ask for what values of $1 does the query answer(B) :- baskets(B,$1) produce a number
of values of B that is over the threshold given in the �lter. Any other value of $1 can be eliminated
from consideration as a member of a pair of items meeting the �lter condition.

By symmetry, the set of $1's that survive a test based on the �rst subquery is exactly the same
as the set of $2's that will survive a test based on the second subquery. In fact, the a-priori trick
(at least for the case of item pairs) can be seen as the combination of the use of one of these two
subqueries and the exploitation of their equivalence. 2

We may summarize the generalization of a-priori for CQ's without negation or arithmetic, as follows:

Optimization Principle for Conjunctive Queries: To optimize a query
ock de-
scribed as a conjunctive query Q and a �lter that puts a lower bound s on support,
consider evaluating only those safe subqueries formed by deleting one or more subgoals
from Q. Exploit such a query by eliminating values of the parameters that do not meet
the support threshold s when that subquery is evaluated.

3.3 Safe Queries with Negation and Arithmetic

When we expand our horizon beyond conjunctive queries to the Datalog queries with negation and
arithmetic that we have been using, matters get more complex in several ways. First, the discovery
of containing queries is not as easy. There are decision procedures | [Klu82] or [ZO93] for Datalog
with arithmetic, and [LS93] for Datalog with negation, including arithmetic. However, there are
some cases where the containing query cannot be characterized as a subset of the subgoals of the
contained query.

Since these cases are unusual, we propose to continue our restriction that we look only at subsets
of the subgoals of the query that de�nes the query
ock. We then have only to augment our search
with the generalized notion of what a safe query is. There are now three conditions that must be
satis�ed ([UW97]):

1. Every variable that appears in the head must appear in a nonnegated, nonarithmetic subgoal
of the body.

2. Every variable that appears in a negated subgoal of the body must appear in a nonnegated,
nonarithmetic subgoal of the body.

3. Every variable that appears in an arithmetic subgoal of the body must appear in a nonnegated,
nonarithmetic subgoal of the body.

However, parameters are variables, not constants, as far as the above safety conditions are con-
cerned. Since they cannot appear in the head, they are not a�ected by rule (1). However, the last
two rules apply to parameters as well as to explicit variables.

Example 3.2 : Let us consider the
ock of Example 2.3, which includes a negated subgoal; we
repeat it here:

10

answer(P) :-

exhibits(P,$s) AND

treatments(P,$m) AND

diagnoses(P,D) AND

NOT causes(D,$s)

Which of the 14 nontrivial subsets of the subgoals are safe? First, to satisfy condition (1), one of the
subgoals must include the head variable P . That condition rules out only one possible subquery:

answer(P) :- NOT causes(D,$s)

Notice that this query makes no sense, since it is trying to count a number of patients, but the
only information we have to go on says that some disease D does not cause the symptom $s.

We also must assure condition (2), which says that if we pick the subgoal NOT causes(D,$s),
then since variable D and parameter $s appear in this subgoal, we must also pick a positive subgoal
that has D in it and a positive subgoal that has $s in it. That is, if we pick NOT causes(D,$s),
then we must also pick both diagnoses(P,D) and exhibits(P,$s), the only positive subgoals
with D and $s, respectively. Thus, condition (2) again rules out the subquery above that has only
NOT causes(D,$s) in its body and also rules out the other �ve subqueries that have this subgoal
but do not have both of exhibits(P,$s) and diagnoses(P,D).

The remaining eight subqueries are candidates for use in an optimization where we use the
subquery to eliminate values for $s, $m, or perhaps ($s, $m) pairs, before we evaluate the entire
query
ock. Before considering the optimization problem in general, let us consider some likely
candidates. In their interpretation, recall that the �lter condition for the original query
ock is
that there must be at least 20 patients receiving the medicine $m and exhibiting the unexplained
symptom $s.

1. answer(P) :- exhibits(P,$s). At least 20 patients exhibit the symptom.

2. answer(P) :- treatments(P,$m). At least 20 patients must have been given the medicine.

3. answer(P) :- diagnoses(P,D) AND exhibits(P,$s) AND NOT causes(D,$s). There are
at least 20 patients with a disease that does not cause a symptom they exhibit.

4. answer(P) :- exhibits(P,$s) AND treatments(P,$m). There are at least 20 patients tak-
ing the medicine and exhibiting the symptom.

We cannot pick a strategy without knowing something about sizes of the relations and numbers
of patients, diseases, etc. However, there are some intuitive observations we can make.

� Either (1) or (3) could be used as a preliminary �lter for $s values, or both could be used,
with (1) used before (3). Which of these three options, or none, makes sense depends on the
statistics of the situation. For example, (1) is attractive only if there are many exhibits tuples
for rare symptoms. Subquery (3), which is almost the entire query except for the introduction
of medicines, is attractive if the number of di�erent medicines administered for a disease is
small; then a symptom that quali�es under (3) is very likely to be associated with a single
medicine that will meet the threshold of 20 patients.

� (1) and (2) may both be useful subqueries. Subquery (1) can be used to eliminate rare symp-
toms from consideration, and (2) can be used to eliminate rarely used medicines. However,
whether it is worth basing a preliminary step on (1) and/or (2) depends on the density of rare
symptoms and medicines. For example, if threshold 20 patients were such that only 1/10 of

11

the symptom reports were for symptoms that appeared in 20 or more patients, then we could
get signi�cant advantage if we eliminated from relation exhibits all those tuples with rare
symptoms. Conversely, if almost all symptom reports were for symptoms appearing in at least
20 (or whatever the support threshold were) patients, then subquery (1) would not be worth
the extra e�ort.

� Even though subquery (4) involves both $s and $m, it might be a useful preliminary step.
It might be easier to join the two relations exhibits and treatments than to join all four
relations that appear in the full query. It is then likely that there are lots of symptom-medicine
pairs that do not appear in 20 patients, and these can be eliminated from consideration before
we join in symptoms and causes to determine which of the frequently occurring symptom-
medicine pairs are explained by the fact that the medicine is used to treat a disease that causes
the symptom.

2

3.4 Extension to Unions of Datalog Queries

Suppose a query
ock consists of a union of Datalog queries of the type that we have been con-
sidering. We can construct a query that provides an upper bound on the result of the union if we
take the union of queries that provide an upper bound on each query individually. Thus, we must
look for a subquery for each query in the union. Each query must be safe, in the sense described
in Section 3.2. If so, then the size of the result of the union of the subqueries will be a bound on
the size of the result for the original query. We may thus use the union of subqueries to eliminate
values of a parameter or parameters that cannot possibly appear in the result of the query
ock.

Optimization Principle for Unions of Conjunctive Queries: To optimize a query

ock described as a union of conjunctive queries Q1; Q2; : : : ; Qn and a �lter that puts
a lower bound s on support, consider evaluating only those unions of safe subqueries
P1; P2; : : : ; Pn such that Pi is formed by deleting one or more subgoals from Qi, for
i = 1; 2; : : : ; n. Exploit such a union of queries by eliminating values of the parameters
that do not meet the support threshold s when that subquery is evaluated.

Example 3.3 : Let us consider the union in Example 2.4, and suppose we want to �nd a subquery
that involves only word $1. Because of the safety condition, there is essentially only one choice for
each of the three queries in the union, and these subqueries are:

answer(D) :- inTitle(D,$1)

answer(A) :- inAnchor(A,$1)

answer(A) :- link(A,D1,D2) AND inTitle(D2,$1)

That is, a word cannot be a candidate for $1 (or for $2 for that matter) unless we get to at least
20 when we sum the:

1. Number of times it appears in a title,

2. Number of times it appears in an anchor, and

3. Number of anchors that point to titles in which it appears.

2

12

4 Search for Optimal Query-Flock Evaluators

We have limited our search for evaluation strategies to the selection of some subqueries that we use
to restrict the values of one or more parameters. In this section we introduce a formal notation for
the use of such subqueries and use them to represent query plans.

4.1 Filter Steps

Let us use the expression

R(P) := FILTER(P,Q,C)

where

1. P is a set of parameters,

2. Q is a query involving the parameters P ,

3. R is a relation whose tuples are values of the parameters P , and

4. C is a condition on the result of the query Q

to mean:

Create relation R to consist of one tuple for each assignment of values for the parameters
P such that with those parameter values the result of query Q meets the condition C.

A query plan is a sequence of �lter steps. Each step can use in subgoals any of the relations
that hold the data of the problem and any of the relations about the parameters that were created
by previous steps.

Example 4.1 : Let us continue Example 3.2. Suppose that, using some estimate for the expected
sizes of relations and joins, we conclude that the best strategy for �nding unexpected side-e�ects
is to �lter the symptoms using subquery 1 (at least 20 patients exhibit the symptom) and also to
�lter medicines using subquery 2 (at least 20 patients are taking the medicine, but not to �lter
symptoms by subquery 3 or �lter symptom-medicine pairs by subquery 4. Then our query plan
consists of three steps, as shown in Fig. 6:

1. Create a unary relation okS consisting of all those symptoms that appear in at least 20 patients.

2. Create a unary relation okM consisting of all those medicines that are given to at least 20
patients.

3. Evaluate the entire query, using the original four subgoals plus additional subgoals that are
the okS and okM relations.

In the �rst step of Fig. 6 we de�ne the relation okS. The set of parameters is $s alone. The
query for the FILTER step is the subquery that we suggested in Example 3.2 would be useful for
�ltering out rarely occurring symptoms. The �lter condition in this step, as in all three steps, is
the condition that the result of the query contain at least 20 patients. The second step is a similar
and creates the set okM of medicines that are used on at least 20 patients.

Then, the third step repeats the original query of Example 3.2, but now there are two additional
subgoals, okS($s) and okM($m). One might ask: have we not made things harder? In addition to
the �rst two FILTER steps, which take some time, we �nish the query plan with a step that is the
original query
ock plus two extra subgoals.

13

okS($s) := FILTER($s,

answer(P) :- exhibits(P,$s),

COUNT(answer.P) >= 20

);

okM($m) := FILTER($m,

answer(P) :- treatments(P,$m),

COUNT(answer.P) >= 20

);

ok($s,$m) := FILTER({$s,$m},

answer(P) :-

okS($s) AND

okM($m) AND

diagnoses(P,D) AND

exhibits(P,$s) AND

treatments(P,$m) AND

NOT causes(D,$s),

COUNT(answer.P) >= 20

);

Figure 6: A query plan for the medical mining problem

However, the third step should be easier, not harder, to answer than the original query. The
intuitive reason is that the subgoals okS($s) and okM($m) can be joined with other subgoals |
exhibits(P,$s) and treatments(P,$m) in particular | relatively quickly. Moreover, the results
of these joins will be smaller relations, thus making subsequent join steps take less time than they
would in the original query
ock. 2

4.2 Legal Query Plans

One can argue intuitively that the query plan expressed in Example 4.1 meets its most basic
requirement | the result of the sequence of �lter steps is equivalent to the original query
ock,
which expressed as a single �lter step is:

ok($s,$m) := FILTER({$s,$m},

answer(P) :-

diagnoses(P,D) AND

exhibits(P,$s) AND

treatments(P,$m) AND

NOT causes(D,$s),

COUNT(answer.P) >= 20

);

One could ask under what conditions the plan of Fig. 6 is an improvement on the original, and if
so, what join order should be used for the �nal step. We cannot give a de�nitive answer to such

14

questions without estimates for sizes of join results, but the matter has been studied extensively,
and the general theory of cost-based optimization ([G*79], e.g.) applies here.

However, there is a more fundamental question that must be settled: under what circumstances
is a query plan equivalent to a given query
ock? We propose the following as a natural consequence
of the ideas presented so far. First, we treat only �lters that involve support; i.e., the �lter condition
is a lower bound on the size of the query result. Handling other �lters remains open. Possibly there
are more general rules that could be proposed, even for support-type �lters, but we believe that the
space of options implied by the following rule will omit the best option only in pathological cases.

Rule for Generating Query Plans for Conjunctive Query Flocks with Support-

Type Filter Conditions: Consider only sequences of FILTER steps that meet all of the
following conditions:

1. Each step uses the same �lter condition as the original query
ock.

2. Each step de�nes a uniquely named relation.

3. Each step is derived from the given query
ock by the following steps:

(a) Start with the original query
ock.

(b) Add in zero or more subgoals that are copies of the left side of the assignment
(:=) in some previous �lter step.

(c) Delete zero or more subgoals but, following the optimization principle for con-
junctive queries, make sure that the resulting query is safe.

4. The �nal step must not delete any subgoals of the original query; it may have addi-
tional subgoals derived from previous steps, of course.

Example 4.2 : In Fig. 6, each of the three steps use the same �lter condition as the original query

ock. The �rst two steps do not add any additional subgoals to the query, but they delete all but
one of the original subgoals. The result is a safe query in each case. The last step retains all four
subgoals of the original query
ock, and adds to it the left sides of the �rst two steps. Notice that
these left sides must be copied literally, using the same relation name as the predicate and the same
parameters as arguments. 2

4.3 An Exponential Search for Query Plans

There is ample precedent for making exponential searches to �nd the best query plan, for instance
[G*79]. Because queries tend to be small, exponential searches are often computationally feasible.
However, the space of query plans entailed by the rule in Section 4.2 is not bounded by an ex-
ponential in the size of the query de�ning the original query
ock. Although the number of safe
subsets of the subgoals of the original query is no more than exponential, there is also the option
of adding subgoals that are the left sides of prior queries. Thus, each time we add a step to our
query plan, we double the number of options for the next step.

Moreover, there is some reason to believe that a long sequence of steps, in which each uses
the result of the previous step, is at least a candidate for being best-possible. The following is an
example that illustrates the point.

Example 4.3 : Suppose our query
ock is based on an underlying relation arc that represents arcs
of a directed graph. This query appears in Fig. 7. Intuitively, the query
ock asks about a node
$1 whether it has at least 20 successors from which there is a path of length n extending.

15

QUERY:

answer(X) :- arc($1,X) AND arc(X,Y1) AND arc(Y1,Y2) AND ... AND arc(Yn�1,Yn)

FILTER:

COUNT(answer.X) >= 20

Figure 7: A pathological query
ock

The �rst step of a query plan might use only the �rst subgoal, i.e., restrict ourselves to nodes $1
that have at least 20 successors, regardless of what paths extend from these. A second step might
examine the nodes that past the �rst test and, with the �rst two subgoals of the original query
restrict to nodes that have at least 20 successors that themselves have successors. We can proceed
in this fashion, winding up with an n + 1-step query plan, any step of which might make a useful
simpli�cation of the query. The pattern of this query plan is suggested by Fig. 8. 2

ok0($1) := FILTER($1,

answer(X) :- arc($1,X),

COUNT(answer.X) >= 20

);

ok1($1) := FILTER($1,

answer(X) :- ok0($1) AND arc($1,X) AND arc(X,Y1),

COUNT(answer.X) >= 20

);

...

okn($1) := FILTER($1,

answer(X) :- ok[n-1]($1) AND arc($1,X) AND

arc(X,Y1) AND ... AND arc(Y[n-1],Yn),

COUNT(answer.X) >= 20

);

Figure 8: A query plan with n+ 1 steps

There are many reasonable ways that we could restrict the search for a query plan to an expo-
nential number of possibilities. Here are two that can be said to generalize the a-priori technique:

1. Select some sets of parameters. For each selected set S, select a subset of the subgoals of the
original query that is safe and includes exactly the parameters of S. Use this subquery to
de�ne a relation RS that restricts the parameters S. Finally, at the last step, use the original
query together with all the subgoals formed from the relations RS for each selected set of

16

parameters S. This approach generalizes a-priori for the case of two-item sets, and it is also
followed by the query plan of Fig. 6, for instance.

2. Select a list of subsets of the subgoals of the original query that form safe queries. Turn each
subquery Q into a FILTER step, �rst adding to Q any subgoals that can be formed from the
result of a prior step that restricts parameters that appear in Q. This approach would yield
the a-priori method for sets of more than two items. In that case, we compute candidate sets
of k items by restricting to those itemsets such that each subset of k� 1 items previously has
met the support test.3

4.4 Dynamic Selection of Filter Steps

While the above strategies for limiting search to an exponential number of possible query plans
are unremarkable, there is another strategy that has no analog in conventional query optimization.
Instead of deciding on subqueries in advance, we let the sizes of intermediate relations after we

compute them determine whether or not to apply a �lter step. Intuitively, if the size of an interme-
diate relation is such that the average number of tuples per assignment of values to the parameters
is signi�cantly lower than it was at any previous step that computed a relation with the same set
of parameters, then there is a good chance that many value-assignments for the parameters will be
eliminated on this step, even though they were not eliminated previously.

There is one important special case: when the set of parameters for a relation has not previously
been encountered. This case includes expressions consisting of a single subgoal, i.e., one of the
relations upon which the query
ock is based, provided that subgoal has one or more parameters
among its arguments. For this special case, where there has been no previous �ltering, we should
ask whether the number of tuples per value-assignment for the parameters is low or high compared
with the support threshold.

� If low, then we expect a lot of value-assignments to be eliminated, and it is likely to be useful
to �lter.

� If high, then few value-assignments are likely to be eliminated, and even if they are, their
elimination will not reduce the size of the underlying relation signi�cantly, so we should not
�lter at this point.

An example should help clarify the technique.

Example 4.4 : Let us again consider the query
ock of Example 3.2, which searches for unexplained
side-e�ects. We start by choosing a join order for the four subgoals. Any of a number of models
and approaches to selecting this join order may be used; our idea is independent of how the join
order is actually chosen. We shall suppose for argument that the ordering of Fig. 9 is chosen.

We start with the leaves of the tree of Fig. 9. Before we use leaf exhibits(P,$s), we have
the option to apply a FILTER step on $s that is equivalent to the computation of relation okS in
Fig. 6. Whether we should do so depends on how the number of patients mentioned in exhibits

compares with the number of symptoms mentioned there. Assuming this ratio is somewhat below
20 (our usual assumed threshold of support), then we shall elect to perform the �ltering step. Note
that because we eliminate the rare symptoms, we would normally want the ratio to be signi�cantly
less than 20 in order for this step to, say, reduce the size of the relation by half. However, since the
actual distribution of the sizes of the groups for each symptom a�ects our expected reduction in

3The a-priori method takes advantage of symmetry among the parameters that represent items, making this
process simpler than it would be in the general case.

17

treatments(P,$m)

diagnoses(P,D)

NOT causes(D,$s)

exhibits(P,$s)

Figure 9: A join order for the medical-mining example

the relation size, we may want to do substantial gathering of statistics to support the �lter/don't
�lter decision.

We also consider the leaf treatments(P,$m). Assuming that there are more than 20 patients
per medicine, we may decide that �ltering $m at this time is likely to be unproductive. We cannot
�lter the leaf diagnoses(P,D), because there are no parameters present. We also cannot �lter leaf
NOT causes(D,$s), because the query with just this subgoal is not safe.

Now, consider the lowest interior node of the tree in Fig. 9. It represents the join

exhibits(P,$s) ./ treatments(P,$m)

and therefore involves both parameters. We have not seen a lower node involving both parameters,
so we again are in the special case where we must decide whether the number of ($s; $m) pairs
eliminated is worth the cost of �ltering. That is, we divide the size of the intermediate relation
computed at that node by the product of the number of symptoms and medicines and compare
this number with 20. Let us suppose that the ratio is low enough that we decide �ltering is a good
idea.

We then move to the node above, where diagnoses(P,D) is joined in. Assuming that patients
appearing in exhibits and treatments also appear in diagnoses, the result of the second join
cannot be smaller than the �rst, so there will not be any advantage to another FILTER step.
However, we do not have to make this decision until after we join.

The �nal step is the join with NOT causes(D,$s) that completes the query. We must �lter
at the root, simply because that �ltering is necessary to �nd the answer to the query
ock. The
resulting query plan looks a little di�erent from the pure FILTER programs we have discussed
previously, since the joins are performed explicitly. The plan appears in Fig. 10. 2

5 Conclusions

We have presented a notation, called \query
ocks," for describing large-scale data-mining opera-
tions. A
ock consists of a parametrized query and a �lter that selects certain assignments of values
for the parameters by applying a condition to the result of the query for that value assignment.
We have explored the case where the query is described by a union of one or more conjunctive
queries with optional arithmetic and negation, and the �lter is a lower bound on the number of
tuples returned by the query.

We generalized the well-known a-priori technique for market-basket analysis to apply to any
query
ock in our class. By using the concept of query safety, we described the possible subqueries

18

temp1($s) := FILTER($s,

answer(P) :- exhibits(P.$s),

COUNT(answer.X) >= 20

)

temp2(P,$s,$m) := (temp1($s) JOIN exhibits(P,$s)) JOIN treatments(P,$m)

temp3($s,$m) := FILTER({$s,$m},

answer(P) :- temp2($s,$m).,

COUNT(answer.X) >= 20

)

temp4(P,D,$s,$m) := ((temp3($s,$m) JOIN temp2(P,$s,$m))

JOIN diagnoses(P,D)) JOIN (NOT causes(D,$s)

sideEffect($s,$m) := FILTER({$s,$m},

answer(P) :- temp4(P,D,$s,$m),

COUNT(answer.X) >= 20

)

Figure 10: A possible query plan resulting from dynamic evaluation

that could be used to exploit the a-priori idea, and we then suggested several techniques for further
limiting the search for query plans. These techniques are either static heuristics, where we enumer-
ate a class of plans and estimate the cost of each, based on available size estimates for relations, or
dynamic, where we see the size of intermediate results before deciding whether or not to apply a
�ltering step.

Future Work

We can express many interesting patterns in the query
ock framework described in this paper.
There are, however, many more interesting, albeit more complex, patterns that cannot be ex-
pressed directly. Currently, we are investigating several di�erent ways of extending the query
ock
framework in order to handle more complex patterns.

Extension to Datalog Programs: In this paper we considered query
ocks consisting of a single
CQ or a union of CQs. The next natural extension is to consider some restricted form of
Datalog programs. As a �rst step we can allow auxiliary predicates de�ned as CQ over the
base relations. Then we can use these predicates in the query
ock.

Monotone Filter Conditions: The techniques described in this paper apply directly to any
monotone �lter condition. By monotone we mean that if the condition is true for a given
set then it must also be true for any superset of the original set. Examples include certain
COUNT, MIN, MAX, SUM (in the case of non-negative numbers) conditions. As a simple
example, we can extend the traditional market basket problem, whose
ock appeared in Fig. 2
to a weighted market basket, where the baskets B have weightsW associated through a relation
importance(B,W). For example, in conventional market-basket mining, the importance of a

19

basket might be the total value of all items purchased, or in test mining, the baskets could
be documents, the items could be words, and the importance of a document is the number of
web hits it gets. In any event, we can modify the original market-basket
ock to evaluate an
answer by summing the weights of the baskets returned in the answer, as in Fig. 11.

QUERY:

answer(B,W) :-

baskets(B,$1) AND

baskets(B,$2) AND

importance(B,W)

FILTER:

SUM(answer.W) >= 20

Figure 11: Weighted market basket, an example of a monotone
ock

Extending Filter Conditions: There are also many nonmonotone �lter conditions that are of
interest, including those that involve looking for high degrees of correlations, con�dence, or
other statistical properties. Another problem occurs when the �lter condition does not rule
out infrequently occurring values. For example, in text mining, we are often interested in
medium numbers of occurrences of word pairs, since very common words are uninteresting,
but a very few co-ocurrences of a word pair might be statistically insigni�cant. The methods
proposed so far do not work well when the threshold of occurrences is not a fairly strong lower
bound. Are there new methods that can work for these and other nonmonotone �lters?

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Read-
ing, Mass., 1995.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami, \Mining association rules between sets of items
in large databases," Proc. ACM SIGMOD Conf., pp. 207{216, 1993.

[AS94] R. Agrawal and R. Srikant, \Fast algorithms for mining association rules," Proc. 20th

VLDB Conf., 1994.

[CM77] A. K. Chandra and P. M. Merlin, \Optimal implementation of conjunctive queries in re-
lational databases," Proc. Ninth Annual ACM Symposium on the Theory of Computing,

pp. 77{90.

[G*79] P. P. Gri�ths (Selinger), M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price [1979]. \Access path selection in a relational database management system," ACM
SIGMOD International Conf. on Management of Data, pp. 23{34., 1979.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass, Generalized projections, a powerful approach
to aggregation, Proc. 21st VLDB Conf., 1995.

[HS95] M. Houtsma and A. Swami, \Set-oriented mining of association rules," Proc. Intl. Conf.
on Data Engineering, pp. 25{34.

[Klu82] A. Klug, \Equivalence of relational algebra and relational calculus query languages having
aggregate functions," J. ACM 29:3, pp. 699{717.

20

[LS93] A. Y. Levy and Y. Sagiv, \Queries independent of update," Proc. International Confer-

ence on Very Large Data Bases, pp. 171{181, 1993.

[Man97] H. Mannila, \Methods and problems in data mining," Proc. Intl. Conf. on Database

Theory, 1997, pp. 41{55, Springer-Verlag.

[Ull88] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume I|
Fundamental Concepts, Computer Science Press, New York., 1988.

[Ull89] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume II|The New
Technologies, Computer Science Press, New York., 1989.

[UW97] J. D. Ullman and J. Widom, A First Course in Database Systems, Addison-Wesley,
Reading, Mass., 1997.

[ZO93] X. Zhang and M. Z. Ozsoyoglu [1993]. \On e�cient reasoning with implication con-
straints," Proc. Third DOOD Conference, pp. 236{252, 1993.

21

