
Extracting Schema from Semistructured Data

SVETLOZAR NESTOROV�

Stanford University
evtimov@db.stanford.edu

SERGE ABITEBOULy

INRIA-Rocquencourt
Serge.Abiteboul@inria.fr

RAJEEV MOTWANIz

Stanford University
rajeev@cs.stanford.edu

Abstract

Semistructured data is characterized by the lack of any fixed and

rigid schema, although typically the data has some implicit structure.

While the lack of fixed schema makesextracting semistructured data

fairly easy and an attractive goal, presenting and querying such data

is greatly impaired. Thus, a critical problem is the discovery of

the structure implicit in semistructured data and, subsequently, the

recasting of the raw data in terms of this structure. In this paper,

we consider a very general form of semistructured data based on

labeled, directed graphs. We show that such data can be typed using

the greatest fixpoint semantics of monadic datalog programs. We

present an algorithm for approximate typing of semistructured data.

We establish that the general problem of finding an optimal such

typing is NP-hard, but present some heuristics and techniques based

on clustering that allow efficient and near-optimal treatment of the

problem. We also present some preliminary experimental results.

1 Introduction

Data found over the network is generally fairly irregular. For
instance, the home-pages of members of a group may contain
some similar information (e.g., name, email, address, photo)
but some of these may be missing in particular pages, and ex-

�Supported by the Community ManagementStaff’s Massive Digital Data
Systems Program, NSF grant IRI–96–31952, ARO grant DAAH04–95–1–
0192, and grants of IBM and Hitachi Corp.

yWork performed in part while the author was visiting Stanford CS
department.

zSupported by an Alfred P. Sloan Research Fellowship, an IBM Fac-
ulty Partnership Award, an ARO MURI Grant DAAH04-96-1-0007, and
NSF Young Investigator Award CCR-9357849, with matching funds from
IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox
Corporation.

tra information may be present in others. For another exam-
ple, consider cartographic data servers. These typically have
thousands of records with hundreds of properties, most of
which are null for any given object. Indeed, irregularities are
often the norm in data found over the network. Furthermore,
they arise naturally when one integrates data originatingfrom
several distinct (structured) sources that provide information
about a common set of entities but represent these entities
differently. Recently, the term semistructured data [1, 6] has
emerged to describe data that has some structure but which
is neither regular, nor known a-priori to the system. It is pre-
cisely for this reason that most semistructured data models
are self-describing. We will employ a fairly standard model
for semistructured data that is based on a labeled directed
graph [16, 8].

Database systems come equipped with nice graphical in-
terfaces and efficient access methods. Both features are based
primarily on the existence of some regularity in the data, i.e.,
on a typing of the data. Query formulation is facilitated by
QBE-style [19] interfaces that, by using existing structure,
allow users and application programs to learn about the data
set and access data more conveniently. Also, performance is
greatly improved by taking advantage of the existing struc-
ture, e.g., via indexes [18]. Thus, although we often have to
deal with data sets found on the network that have no explicit
structure and are fairly irregular, we would very much pre-
fer to work with regular, structured data. This is the prime
motivation of the present work on the extraction of implicit
structure in semistructured data.

Clearly, the implicit structure in a particular data set may
be of varying regularity. Indeed, we should not expect in
general to be able to perfectly type a data set. The size of a
perfect typing (a notion that we will study) may be quite large,
e.g., be roughly of the order of the size of the data set, which
would prohibit its use for query optimization and render it
impractical for graphical query interfaces. Thus, we consider
approximate typings, i.e., an object does not have to fit its
type definition precisely. We study the trade-off between the
quality of a typing and its compactness. More precisely, the

1

typingproblem and its trade-off can be formulated as follows.
Suppose we have selected a type description language and a
measure for type sizes, as well as a distance function over data
sets. The problem then is: given a data set I, find a typing �
and a data set J of typing � , such that the size of � is smaller
than a certain threshold and the distance between I and J is
minimized. In other words, we want to find � which is small
enough and such that I presents as few defects as possible
with respect to � . (The dual problem is the minimization of
the size of � for a given threshold on the distance between I
and J .)

The first key issue is the choice of a description language
for types. Our typing is inspired by the typing found in
object databases [9] although it is more general since we
allow objects to live in many incomparable classes, i.e., have
multiple roles [3]. This aspect is also a clear departure from
previously proposed typings for semistructured data [10, 15,
7, 17]. We believe (and some early experiments support
this belief) that multiple roles are essential when the data is
fairly irregular. We define a typing in terms of a monadic
datalog program. The intensional relations correspond to
object classes and the rules describe the inner structure of
objects in classes. The greatest fixpoint semantics of the
program defines the class extents.

We first consider the issue of computing perfect typings.
We start with an obvious perfect typing that consists of having
one class for each distinct object. This yields a first monadic
data program. A run of this program on the data set will
naturally group similar objects and thus provide a (possibly
much) coarser classification of objects that yields a (possibly
much) more compact perfect typing. In fact, this typing is
the coarsest possible if we insist on exact fit.

This perfect typing may still be much too large unless the
data is extremely regular. Therefore, we present a technique
for computing an approximate typing of an appropriate size.
This means that the data set is now allowed to be imperfect
with respect to the typing. It may present extra information
(edges that should not be present) or lack some information
(missing edges). We will see that extra edges are easily
handled with a greatest fixpoint approach, whereas missing
edges are much more difficult to deal with. The crux of
our technique is to merge similar classes so as to decrease
the size of the typing. To this end, we employ a clustering
algorithm [12, 11] on the classes. Intuitively, until the typing
is of acceptable size (for some application dependent notion
of “acceptable size”), we perform class merges that introduce

a minimal error. We consider various optimization strategies
to compute this approximation and issues such as the choice
of the distance function.

For a concrete example, Figure 1 shows the approximate
typing produced by our method for the DBG dataset consist-
ing of various information about the members of Data Base
group at Stanford. The exact notation will be explained later
in the paper. For this example, it suffices to say that each
label with an arrow and superscript correspond to a link to or
from a type. This typing has only 6 types and provides very
good summary of the actual contents of the DBG dataset.
In contrast, the perfect typing for this dataset consists of 53
different types. Note that we have also given the intuitive
meaning before each of the 6 types.

In contrast to our work, previous proposals on typing
semistructured data [10, 15, 7] have focused on perfect typ-
ing and implicitlyassumed that each object has a unique role.
We have already mentioned some motivation for approximate
typing and will later discuss further motivations for multiple
roles.

We also present some experimental results. The focus of
our experiments is the quality of the typing results rather than
the time performance.

The rest of this paper is organized as follows. Section 2
introduces our notation and provides the intuition for choos-
ing the specific form of typing. Section 3 gives a summary of
our method for extracting the typing from the data. Section 4
deals with perfect typing and Section 5 with the issue of com-
puting an approximate typing. Section 6 addresses recasting
the original data within the approximate typing. Section 7
provides some experimental results. Finally, we present our
conclusions in Section 8.

2 The Typing

In this section, we present the model of semistructured data
and the types that are used in the present paper. We assume
some familiarity with relational databases and more particu-
larly with the datalog query language [18, 2].

We model semistructured data in the style of [8, 16] as
a labeled directed graph. The nodes in the graph represent
objects and the labels on the edges convey semantic infor-
mation about the relationships between objects. The sink
nodes (nodes without outgoing edges) in the graph represent
atomic objects and have values associated with them. The

2

project : �1 =
 �

Project
3

;
 �

Project
4

;
 �

Project
5

;
�!

Project Member
3

;
�!

Project Member
4

;
�!

Name
0

;
�!

HomeP age
0

publication : �2 =
 �

Publication
3

;
 �

Publication
5

;
�!

Author
3

;
�!

Name
0

;
�!

Conference
0

;
�!

Postscript
0

db-person : �3 =
 �

Project Member
1

;
 �

Group Member
5

;
�!

Project
1

;
�!

Birthday
5

;
�!

Degree
6

;
�!

Y ears At Stanford
0

;
�!

Email
0

;
�!

Home Page
0

;
�!

T itle
0

;
�!

Name
0

;
�!

Original Home
0

;
�!

Personal Interest
0

;
�!

Research Interest
0

student : �4 =
 �

Project Member
1

;
 �

Student
4

;
 �

Group Member
5

;
�!

Project
1

;
�!

Advisor
4

;
�!

Email
0

;
�!

T itle
0

;
�!

Home Page
0

;
�!

Name
0

;
�!

Nickname
0

birthday : �5 =
 �

Birthday
3

;
�!

Namex
0

;
�!

Month
0

;
�!

Day
0

;
�!

Y ear
0

degree : �6 =
 �

Degree
3

;
�!

Major
0

;
�!

School
0

;
�!

Name
0

;
�!

Y ear
0

Figure 1: Optimal typing program for DBG data set

other nodes represent complex objects. In a standard manner,
we represent the graph using two (base) relations defined as
follows:

link(FromObj, ToObj, Label): Relation link contains all
the edge information. Precisely, link(o1; o2; `) corre-
sponds to an edge labeled ` from object o1 to o2. Note
that there may be more that one edge from o1 to o2, but,
in our model, for a particular `, there is at most one such
edge labeled `.

atomic(Obj,Value): This relation contains all the value in-
formation. The fact atomic(o; v) corresponds to object
o being atomic and having value v.

We also require that (i) each atomic object has exactly one
value, i.e. Obj is a key in relation atomic, and (ii) each
atomic object has no outgoing edges, i.e., the first projections
of link and atomic are disjoint.

In the following, we consider that the data comes in as an
instance over link and atomic satisfying these two restrictions.
We use the term database here for such a data set. An example
of a database is given in Figure 2. Note that this data happens
to be very regular.

In this paper, we consider that a typing is specified by a
datalog program of a specific form (to be described shortly).
The only two extensional relations (EDB’s) of the typingpro-
gram are link and atomic. The intensional relations (IDB’s)
are all monadic and correspond to the various types defined
by the program. For instance, we can consider the following

link FromObj ToObj Label
g m is-manager-of
j a is-manager-of
m g is-managed-by
a j is-managed-by
g gn name
j jn name
m mn name
a an name

atomic Obj Value
gn "Gates"
jn "Jobs"
mn "Microsoft"
an "Apple"

Figure 2: Data and Types

3

typing program P0 for the database of Figure 2:

person(X) :- link(X;Y; is-manager-of) &
firm(Y) & link(X;Y 0; name) &
atomic(Y 0; Z)

firm(X) :- link(X;Y; is-managed-by) &
person(Y) & link(X;Y 0; name) &
atomic(Y 0; Z)

The intuition is that g; j are persons, m; a are companies and
the other objects are atomic.

Syntax Typing programs are more precisely defined as fol-
lows. The EDB’s are link and atomic. All IDB’s are monadic.
Furthermore, each IDB is defined by a single rule of the form:

c(X) :- A1 & ::: & Ap

for some p, where the Ai, called the typed links, are defined
as follows. Each typed link has one of the following forms:

1. link(Y;X; `) & c0(Y)

2. link(X;Y; `) & c0(Y)

3. link(X;Y; `) & atomic(Y; Z)

where ` is some constant (a label), X is the variable in the
head of the rule and Y; Z are variables not occurring in any
other typed link of the rule. We will discuss some limitations
introduced by this typing further on.

Notation Suppose that the types (IDB’s) of the program
are type1; :::; typen. All atomic objects belong to type0.
The following notation for typed links greatly simplifies our
presentation and will be used throughout the paper:

� link(Y;X; c) & typej (Y) is denoted by

c
j
.

� link(X;Y; c) & typej (Y) is denoted by
!

c
j
.

� link(X;Y; c) & atomic(Y; Z) is denoted by
!

c
0
.

The direction of the arrow over the label denotes whether the
edge is incoming (left) or outgoing (right). The superscript
denotes the type of the object at the other end of the edge.

Semantics The semantics of a datalog program P of the
form described above for a database D is defined as the
greatest fixpoint of P for D. (See, e.g., [4].) More precisely,
let M be an instance over the schema of P such that M
coincides with D on flink; atomicg. Then M is a fixpoint
of P for D, if for each IDB c, P(M)(c) = M (c). It is the
greatest fixpoint, if it contains any other fixpoint of P for D.

Note that this definition is correct because for a given
database D and a datalog program P, there is unique great-
est fixpoint of P for D [4]. For the data of Figure 2,
and for the program P0, the greatest fixpoint consists of
fperson(g); person(j); firm(a); firm(m)g, which is as
expected. Note that for this program, a least fixpoint seman-
tics would fail to classify any object. The intuition behind
the choice of the greatest fixpoint semantics is that we want
to classify consistently as many objects as possible. The
fact that it is a fixpoint indicates that the type of an object is
justified by the types of objects connected to it.

Justifications of the above definition are also as follows.
First, consider some relational data represented with link

and atomic in the natural way: the entries of the tables are
represented by atomic objects, the tuples by complex objects,
and the labels are the attributes of relations. Consider the
typingprogram corresponding to this schema also in a natural
manner: one type is used for each relation. Then the previous
typing would correctly classify the tuples. (This is assuming
that no two relations have the same set of attributes for, in that
case, their tuples would become indistinguishable.) Observe
that for relational data, (i) the typing program is not recursive
and thus the greatest fixpoint and the least fixpoint coincide
and (ii) the data graph is bipartite in the sense that edges only
go from complex objects to atomic ones.

For a second justification, consider some ODMG data [9]
(ignoring collections such as lists or bags that are beyond our
framework). For the natural representation of this data with
link and atomic, the natural typing program would correctly
classify the objects.

Observe that the typed links allow to describe locally the
structure of the objects in a class c. With typed links, one
can state that there is some edge labeled ` going to (coming
from) an object in some other class c0 or going to an atomic
object. Note also that the language is quite restricted. For in-
stance, it is straightforward to see that the typing rules can be
expressed in first-order logic with 2 variables (FO2) which
is a very restricted subset of first-order logic. For instance,
the rule for person can be rewritten equivalently as:
person(X) , 9 Y (link(X;Y; is-manager-of) ^

firm(Y))^9Y (link(X;Y; name) ^9X(atomic(Y;X)))

that uses only two distinct variables. The fact that we limit
ourselves to a framework such as the FO2 logic may be an
asset since that logic features nice properties [5], e.g., satis-
faction is decidable forFO2. On the other hand, observe that
there are natural “typing” informations that fall outside our

4

scope. For instance, one cannot express in FO2, so with our
rules, some simple restrictions on the cardinality of certain
kinds of links,e.g., that companies have a unique name. Also,
observe that even some rules that use only two variables are
not allowed in our typing programs, e.g., the rule

person(X) :- link(X;Y; is-manager-of) & firm(Y)

& link(Y;X; is-managed-by) &
link(X;Y 0; name) & atomic(Y 0; Z)

can be expressed using two variables only but is outside our
framework.

Clearly, one could consider richer typing languages, and
in particular, unrestricted monadic datalog programs. In the
present paper, we focus on the previously defined simple
types based on typed links.

Remark 2.1 In the present paper, we ignore the value of
the atomic objects and assign all of them to the same type.
In practice, however, it is often easy to separate the atomic

values into different sorts, e.g., integer, string, gif, sound, etc.
Indeed, one can also apply (application specific) analysis
techniques to enrich the world of atomic types with domains
such as names, dates or addresses. It is straightforward to

extend the framework to handle multiple atomic types.

A more intense extension to our framework would be to
consider some a priori knowledge of the typing. This may
often occur in practice for instance if we attempt to integrate

data with a known structure to semistructured data discov-
ered on the net.

Finally, one may want to use in the typing, specific atomic

values or ranges of atomic values. This would for instance
allow to classify differently objects with values "Male" or
"Female" in a sex subobject. These are interesting exten-
sions that should be considered in future work.

Defect: Excess and Deficit In the case of relational and
object data that are very regular and with the proper typing
program, we obtain a perfect classification of the objects. In
general, one should not expect this to happen. Suppose we
have a program P that proposes a typing for a database D.
We need a measure of how well P types D.

A first measure is the number of ground facts in D that
are not used to validate the type of any object. We call this
measure the excess since it captures the number of facts that
are in excess. More precisely, let M be the greatest fixpoint
of P for D. A ground fact link(o; o0; `) in D is in excess if

there exist no class c; c0, such that o is in M (c), o0 in M (c0)

and the definition of c or c0 stipulates that there is an `-link
from c to c0. The number of such ground facts forms the
excess.

Excess is rather easy to capture with our datalog programs
and the greatest fixpoint semantics. The deficit, i.e., some
information that may be missing, is much less so. To define
the deficit, we need also to be given a typing assignment � in
addition to a program P and a database D, that associates a
set of objects to each type. The deficit of � is the minimum
number of ground facts that must be added toD (invented) in
order to make all type derivations in � possible. (A subtlety is
that � does not have to be a typing since the addition of these
facts may bring some objects to more classes than specified
by � .)

3O O4

b bd dc

O1

2O

a

b d

Figure 3: Example database

Example 2.2 Suppose we are given the database shown on
Figure 3 and the following typing program:

type1 =
!

a
2

type2 =

a
1
;
!

b
0
;
!

c
0

type3 =
!

b
0
;
!

d
0

Consider two type assignments, �1 and �2, that both map oi
to typei, for i = 1; 2; 3. They differ in that �1 maps o4 to

type2 and �2 maps o4 to type3 . Then the defect of �1 with
respect to the given database and program is 2 because we
have to “invent” one base fact, namely link(o1; o4; a) and

have to disregard link(o4; o0; d). Thus, the excess is 1 and
the deficit is 1 adding up to a defect of 2. For �2, we have
only excess of 1 because we have to disregard link(o4; o0; c).
Thus, the defect is 1.

To conclude this section, note that the greatest fixpoint
semantics may lead to excess but cannot yield deficit. Intu-
itively, deficit is more related to negation and hypothetical
reasoning.

5

3 Method Summary

The goal of this work is to be able to approximately type
a large collection of semistructured data efficiently. We are
therefore led to making simplifying assumptions and intro-
ducing heuristics to be able to process this large collection
in an effective way. In this section, we present the technique
in rather general terms. The various steps are detailed in the
following sections.

Our method for the approximate typing of semistructured
data consists of three stages. As we shall see, there are several
alternatives to be considered at each of the three stages. In
order to decide which choices are most appropriate for a given
database, we need some information about the data. It should
be stressed that these choices remain primarily empirical and
that the general process should entail using user feedback and
adapting the technique to the particular application domain.

The gist of the first stage is to assign every object to a single
home type. We use the minimal number of home types such
that every object fits its home type perfectly (with no defect).
The process of partitioning objects into a collection of home
types is similar in spirit to bisimulation[13]. (However, some
of the possible variations for this stage yield collections that
differ significantly. For example, we could decide to have
’selected’ objects with multiple home types.)

In the second stage, we address the optimization problem
of reducing the number of types, and thus having objects
that fit their home types with some defect, while incurring
the lowest cumulative defect. This stage is the hardest both
computationally and conceptually. We show that the general
optimization problem is NP-hard even for a simple class
of semistructured data corresponding to bipartite graphs.
There are, however, techniques and heuristics adapted from
k-clustering [12, 11] that allow efficient and near-optimal
treatment of the problem. We also discuss the sensitivity of
the solution with respect to the final number of types.

The third and final stage of our method is about recasting
the original data within the chosen types. Ideally, the greatest
fixpoint semantics of the typing program (consisting of the
chosen types) should be employed. However, some of the
techniques described in the second stage do not mix well
with the fixpoint semantics. For example, some objects may
be assigned to more than one particular home type, i.e., the
objects don’t have all typed links required by their home
types. We present ways of resolving the incompatibilities
and discuss some additional variations.

4 Stage 1: Minimal perfect typing

In this section, we present an algorithm for deriving a perfect
(with no defect) typing program from semistructured data. In
this program, every complex object has a type that is based
on its local picture. The resulting object partitioning of the
minimal perfect typing program is related to the partition
obtained through bisimulation. We discuss this relationship
towards the end of this section

4.1 Assuming a unique role

In this section, we assume that each object lives in a unique
class. We will remove this restriction later.

Given some database D, the minimal perfect typing pro-
gram PD is constructed as follows:

1. First construct a programQD as follows. Let o1; :::; oN

be the complex objects. For each complex objects ok,
assign a unique type predicate typek. The rule for typek

will contain

`
i

iff there is an edge labeled ` from oi to

ok, and
!

`
i

if there is an edge labeled ` from ok to oi.

And the rule for typek will contain
!

`
0

iff there is an
edge labeled ` from oi to some atomic object.

2. Compute the greatest fixpoint M of QD for D. Let
� be the equivalence relation on the types ftypek j

k 2 [1::N]g defined by typei � typej if M (typei) =

M (typej). The types of PD will be the equivalence
classes of �, say �1; :::; �n.

3. The new program PD is obtained by choosing for each
�i, a type typek in �i and replacing, in the rule r for
typek, each type typej by its equivalence class [typej]

according to �. The home type of ok becomes [typek].

Remark 4.1 The following property is useful in finding the
equivalence classes of types (Step 2 above):
typei � typej iff oj 2M (typei) ^ oi 2M (typej)

The followingexample illustrates the algorithm for finding
the minimal perfect typing program.

Example 4.2 Consider the simple database D in Figure 4.
The program QD constructed in (1) of the algorithm is:

type1 =
!

a
2
;
!

a
3
;
!

a
4

type2 =

a
1
;
!

b
0

type3 =

a
1
;
!

b
0

type4 =

a
1
;
!

b
0
;
!

c
0

6

o1

b b

o o6

o3o2

a a
a

b c

o

o4

5 7

Figure 4: Simple database

The greatest fixpoint M for QD obtained in (2) is:
M (type1) = fo1g;M (type2) = M (type3) = fo2; o3; o4g;

M (type4) = fo4g: Let [type1] = �1, [type2] = [type3] = �2

and [type4] = �3. The program PD is:

�1 =
!

a
3
;
!

a
2

�2 =

a
1
;
!

b
0

�3 =

a
1
;
!

b
0
;
!

c
0

Thus, �1 is the home type for o1, �2 is the home type for o2

and o3, and �3 is the home type for o4.

Computational Efficiency There is a straightforward
method for computing the greatest fixpoint for a program
P. First, assign every type to every object and call this
database Mall. Then compute P(Mall [link [atomic).
Keep applying P to the result of the last application until
no change occurs. The algorithm outlined above for finding
the natural perfect typing program is not very efficient if im-
plemented in the obvious way. There are several stages that
must be handled carefully.

Computing the greatest fixpoint (Step 2 above) can po-
tentially take double-quadratic time with respect to the size
of the database (number of objects). One possible improve-
ment is to notice that in the case when P is not recursive
the greatest fixpoint coincides with the least fixpoint. There
are many other possible improvements in the general case to
the computation of the greatest fixpoint notably by using the
fact that our programs are monadic, and also by using some
differentiation techniques [18].

Also, it would be interesting to compare this cost to that
of running a “bisimulation” style computation [8, 17, 13].
(Indeed, more generally, it would be interesting to con-
sider in more depth the connection to approaches based on
bisimulation.) Intuitively, two nodes are bisimilar if after
the (possibly infinite) unfolding from each vertex and after

duplicate elimination for subtrees, the two resulting (possi-
bly infinite) regular trees are identical. A subtlety is that we
do consider here both incoming and outgoing edges, which
leads to also introducing edges corresponding to incoming
edges when unfolding a vertex. Bisimulation turns out to be
relatively easy to compute – the “relative” refers to the com-
plexity of the definition. First, we consider that all objects
are in a unique class c0. At some stage, suppose that the
objects are separated in a partition �1; :::; �m. If for some
classes �i; �j and some label `, there are objects in �i that
have ` edge going to objects in �j and some that do not, one
can split �i in two. (Similarly, if some objects in �i have
incoming ` edges from �j and some that do not.) This yields
a more refined partition. Ultimately, this provides a partition
of the set of objects and a type based on this partition.

4.2 Multiple roles

As the result of the minimal perfect typing so far, each object
has its home type based on the object’s local picture. Note
however that the types defined by the minimal perfect typing
program may still overlap. The reason is that the program
does not contain negation. Thus, objects that have more typed
links than required for a given type will also be assigned to it
even though it is not their home type. This is in the style of
ODMG inheritance but somewhat richer since our description
of the locality of an object includes its outgoing edges (as in
ODMG) but its incoming edges as well.

In the context of semistructured data, it seems often com-
pulsory to remove the home type assumption that states that,
for each object, there is a type that fully describes it. Objects
may have multiple roles and each role may come equipped
with a set of possibly overlapping attributes. For example a
person may be an employee, a soccer player, a foreigner, a
friend, etc., and each of its possible roles may come equipped
with a pattern of incoming and outgoing edges. We want to
avoid the combinatorial explosion of introducing employee-
soccer-player-foreigner, employee-foreigner-friend, etc. In-
deed, forcing each object to be in a single type would artifi-
cially increase the number of types or the error of the typing.

At this stage, we can identify complex types that can be
expressed as a conjunction of several simpler types. By
simpler we mean having less typed links in their definition.
The home objects for the complex types can then be assigned
to each of the simpler types that cover the complex one. Thus,
at the end of this operation we will have an overlapping
collection of types. The following example illustrates the

7

main idea behind this.

Country

France
BleuCantona

Country

Scholes

England

Name

Man Utd

Team

Team Name

Le Bonheur...

Movie

Country

Binoche Damage

Name

Movie Movie

O 2 O 31O

Figure 5: Soccer and movie stars

Example 4.3 Consider the database in Figure 5. Its natural
perfect typing program is:

type1 =
�!

Name
0

;
�!

Country
0

;
�!

Team
0

type2 =
�!

Name
0

;
�!

Country
0

;
�!

Team
0

;
�!

Movie
0

type3 =
�!

Name
0

;
�!

Country
0

;
�!

Movie
0

In the greatest fixpoint type1 contains o1 and o2; type2 con-
tains o2; type3 contains o2 and o3. Thus, even if we delete

type2 every object will still be assigned to at least one type.
In that case, o2 will loose its original home type but will be
assigned two home types, namely type1 and type3 .

Remark 4.4 Because of the special form of the type predi-

cates it can be shown that eliminating types corresponding
to multiple role objects is not very hard. It can be done in
at most O(n2) where n is the number of types. Of course,

there is still the problem of choosing a particular set of types
for the cover. However, we expect that in real situations the
choice will be obvious.

It should be observed that although the introduction of new

very general types may sometimes be useful, overdoing it may
lead to some “atomization” of the information. Intuitively,
one would like to avoid describing a person as some object
that is in a class has-name and in a class has-address and in

a class has-spouse.

5 Stage 2: Clustering

In most cases, the minimal perfect typing program will have
too many types to be useful as a summary of the data set.
There will be many ’similar’ types that intuitively can be
collapsed into one thus dramatically reducing the size and
complexity of the typing program. In this section, we outline
how to transform the typing program to reduce the number
of types while keeping the defect (excess + deficit) low.

5.1 The general problem

The optimization problem that we consider in this stage is
similar to k-clustering [11]. Every home type along with
its weight (the number of objects having this type as their
home type) is a point on a hypercube. The dimensions of the
hypercube are the different typed links found in the minimal
program from Stage 1. The general form of the problem,
however, is more complex than k-clustering because decid-
ing to coalesce several types has the effect of projecting all
pointson the hypercube on several of it diagonals and thereby
reducing the dimensions. Consider the following example.

Example 5.1 Consider the following four types:

�1 :-
!

a
0
;
!

b
3

�2 :-
!

a
0
;
!

b
4

�3 :-
!

a
0
;

b
1

�4 :-
!

a
0
;

b
2

Initially, all 4 types are different. However, if we coalesce

either �1 and �2 or �3 and �4, the remaining two types become
identical. Of course, in this case, it doesn’t matter which
pair is chosen first. However, there are situations where the

order of coalescing has a significant effect on the quality of
the result.

5.2 Distance function between types

There are many ways to define the distance between two
types. We argue that while the fine tuning of the parameters
of a specific function is very domain specific, the general
properties of the distance function are universal.

Consider two types �1 and �2 and their definitions. The
simplest and most natural distance function seems to be the
Manhattan path between the two type points on the binary
hypercube defined by the typed links in their definitions. In
simpler terms, the distance is the number of typed links in
the symmetric difference between the bodies of their rule
definitions. We denote this distance, that is the basis of more
complex functions considered later, by d(�1; �2).

Example 5.2 Consider the following three types:

�1 :-
!

a
0
;
!

b
2

�2 :-
!

a
0
;

b
1

�3 :-
!

b
2
;

b
1
;

b
3

For �1; �2, the symmetric difference consists of f
!

b
2
;

b
1
g, so

d(�1; �2) = 2. For �1; �3, the symmetric difference consists

of f
!

a
0
;

b
1
;

b
3
g, so d(�1; �3) = 3. And d(�2; �3) is also 3.

8

Although this simple distance function appears to be very
natural, it does not take into account the weight of the types
(the number of objects having the type as their home type).
We need to use a more complex weighted distance � that
should be a function of the Manhattan distance d, and the
weights of the two types w1 and w2. We need to assume
that the distance is not symmetric. Intuitively, this is because
�(w1; w2) measures the cost of moving type objects of type
�2 to �1. It seems desirable to have the following properties
for such a distance:

increasing in d This property is based on the intuition that it
is better to collapse ’similar’ types, i.e., such that there
are very few typed links in one and not in the other.

decreasing in w1 This is based on the intuition that the ex-
pected noise around some class of object should be pro-
portional to the number of objects in the class. In other
words, if the class has a very large extent, we may ex-
pect a lot of objects that almost fit in it but not quite and
should be willing to correct them.

increasing in w2 The intuition behind this last property is
that large collections of similar objects are likely to form
types and thus should not be moved to other types (un-
less the other type is much bigger and thus the previous
property kicks in).

These three properties are clearly related to the overall goal
of minimizing the defect.

There are several possible functions that seem reasonable
choices even though some of them don’t satisfy all three
properties listed above:

�1(w1; w2; d) = Ld=(w1 � w2) �2(w1; w2; d) = d �w2

�3(w1; w2; d) = (w1 �w2)1=d �4(w1; w2; d) = Ld �w2

�5(w1; w2; d) = (w2=w1)
1=d

where L is the total number of different typed links in the
typing program obtained at the end of Stage 1. Clearly,
the choice of a distance function seriously affects the results
of the typing. The following example shows that deciding
on the particular parameters for a given function is domain
specific.

Example 5.3 Suppose at the end of Stage 1 there are only
three types.

� 100000 objects of type �1 =
!

a
0!
b

0

� 1000 objects of type �2 =
!

a
0!
b

0
!

c
0

� 100 objects of type �3 =
!

a
0!
b

0!
`1

0

: : :
!

`k
0

Suppose that we want to end up with only two types at the

end of Stage 2. We implicitly assume that one extra type will
be the empty set allowingus to chose not to type some objects
by assigning them to the empty set type. For k = 1, the best

solution will be to move �3 to �1. Similarly, for a big k, e.g.,
k > 15, the best solution is to move �2 to �1. In between,
there is a range for k such that the best solution is to move
�3 to the empty set type, i.e, to not classify those 100 objects

with a home type �3. The two cut-off points depend on the
distance function that is chosen and are clearly application
dependent.

Note that the distance function �2 resembles our definition
of defect introduced in Section 2. While it measure the defect
exactly for a single coalescing when we have a series of type
coalescing it only provides an upper bound on the defect of
the final program.

Clustering algorithm Since finding the optimal k types is
NP-hard we have to employ heuristics in order to solve the
problem. In our experiments we used a greedy algorithm
because of its lower time complexity and implementation
ease. Furthermore, under certain assumptions, the greedy al-
gorithmgives anO(logn)-approximationof the best solution
[11].

To conclude this section, we consider a special case that
is somewhat easier and an alternative to the clustering in
general.

Bipartite graphs An important special case is when all
typed links point to atomic objects which happens when the
graph is bipartite. This is the case for relational data or
when the data comes from a file of records. Then each type
is defined by the set of labels on the outgoing links, i.e. the
attributes in the relational case. The problem is much simpler.
However, even in this simple case, one can show that finding
the best typing with k types (for some fixed k), where “best”
is defined by minimizing the defect, is still NP-hard.

Variation to k-clustering A different approach is to first
consider the types after Stage 1 without their weights. Us-
ing some measure of the relative importance of an attribute
within a set of attributes (e.g. the jump function [14]) we
can find the best k clusters of the types and only use the

9

weights within a cluster to determine its type definition cor-
responding to its center. However, this approach may run
into problems if there are many outliers and the hypercube is
densely populated.

6 Stage 3: Recasting

In the third stage we allow objects to be in types other than
their home type(s) if they satisfy the appropriate type predi-
cates. At this stage however we do not account for the excess
or deficit. Thus, at the end of the third stage we have typed
approximately all objects with k types at some defect cost.
Note that the first stage is independent of the choice of k.
Thus, we can support a sliding scale mechanism where the
scale is k and the result is the best k types and the corre-
sponding defect. Infact, our experiments suggest that using
this approach yields better results and provides additional in-
sight into the data. We present more detailed discussion of
this approach in Section 7.

When we allow objects to be assigned to types other than
there home type(s) we actually have several options depend-
ing on whether we only classify objects based on their actual
typed links or the ones suggested by their home type assigned
at the end of Stage 2.

The typing rules for objects that have not been used to de-
rive the typing program are rather simple. First we assign the
new objects to all types that it satisfies completely. If the ob-
ject cannot be assigned any type precisely, then we assigned
it to the closest type to it, in terms of the simple distance func-
tion d. Of course, if we have many new objects we may wish
to reconsider the the current typing program. Deciding how
many new objects is too many and recomputing efficiently
the typing program are open problems.

7 Experimental results

In this section we present some preliminary experimental re-
sults. While performance (in terms of time) is an important
consideration in our work, the main focus of the experiments
was the quality of the results. Indeed, understanding when
and how the various options in our algorithm work best and
how is a prerequisite for designing efficient data structures
and optimization. In this performance study we used ex-
tensively synthetic data. We also show some results on a
operational data set. Note the using synthetic data is attrac-

tive for the purpose of evaluating the quality of the typing
in several ways. First, we are able to compare the types
produced by our algorithm with the intended type in the data
specification. Second, we are able to measure the effects of
various perturbation of the data on the the typing results.

7.1 Generating Synthetic Data

The main idea behind the synthetic data is to use type defi-
nition with probability attached to their typed links and then
produce random instances according to those probabilities.
The following example illustrates the data generation pro-
cess.

Example 7.1 Consider the following simple type specifica-
tion with attached probabilities. There are two types in addi-
tion to the standard atomic type. Objects of the first type have
a link labeled ’a’ to an atomic object with probability 0.9 and

’b’ link to atomic with probability 0.5. Objects of the second
type have a link labeled ’c’ to an object of the first type with
probability 0.8 and ’b’ link to atomic with probability 0.9.

The results of running our typing algorithm for several
synthetic data sets are captured in Table 1. The distance
function used in the clustering stage is the weighted Manhat-
tan distance. The clustering is done by a greedy algorithm.

We run experiments on 4 different synthetic datasets (DB
Nos. 1,3,5,7). For each dataset we denote whether its corre-
sponding graph is bipartite and whether the intended types are
overlapping, i.e, have typed links in common. We also con-
sider a slight perturbation of each dataset (DB Nos. 2,4,6,8)
where we delete randomly a few links in the graph and then
add some randomly labeled links.

The main observation from the results is that slight per-
turbation of the dataset results in a dramatic increase of the
number of perfect types while the effect on the optimal ap-
proximate typing is relatively small. Another observation is
that datasets with bipartite graphs are much easier to handle
compared to regular graphs.

7.2 Sensitivity Analysis

There is clearly a trade-off between the defect and the simplic-
ity of the typing program. For example, the minimal perfect
typing program has no defect but has too many types. On the
other side of the scale, if we choose to have only one type

10

Synthetic Data Typing

DB Bipartite Overlap Perturb Intended Objects Links Perfect Optimal Defect
No ? ? ? Types Types Types

1 Y N N 10 1500 2909 30 10 225

2 Y N Y 10 1500 2958 52 10 307

3 Y Y N 6 950 2409 19 6 239

4 Y Y Y 6 950 2442 35 6 283

5 N N N 5 400 726 317 5 181

6 N N Y 5 400 749 341 5 310

7 N Y N 5 400 775 375 5 291

8 N Y Y 5 400 795 381 5 333

Table 1: Synthetic Data Results

the defect will be huge unless we are dealing with very reg-
ular data. We conjecture that for non-random semistructured
data there is usually an optimal number (or a small range) of
types. Figure 6 show the defect and the total distance used
in the algorithm as a function of the number of types in the
approximate typing. The distance function is the weighted
Manhattan distance between the types. As expected, there
is a small range of types (6-10) the yields optimal tradeoff
between number of types and defect. The optimal typing
with 6 types is shown in Figure 1

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

T
ot

al
 D

is
ta

nc
e/

D
ef

ec
t

Number of types

defect
distance

Figure 6: Sensitivity graph for DBG data set

The existence of optimal range of number of types suggests
that an interactive approach to typing semistructured data
will work best. Instead of deciding in advance on a fixed
number of types in the approximate typing it is better to
explore several different values ranging from as many as in
the minimal perfect typing to perhaps just 1. Note that the

algorithm can be adapted such that the we find sequentially
the best fit with k types starting from the number of types in
the perfect typing. Thus, the algorithm can find the optimal
tradeoff point and suggest a ’natural’ typing (or a small set).
If the results are unsatisfying because of too much defect or
too many types. The algorithm can keep reducing the number
of types or revert to a typing with more types but less defect.
However, we feel that having hard limits on the number of
types or the defect, without having knowledge of the data is
unreasonable.

8 Conclusions

In this paper, we presented a method for extracting schema
from semistructured data. The schema is in the form of
a monadic datalog program with each intensional predicate
defining a separate type. We asserted that in the context of
semistructured data it is imperative to allow for some defect
when objects are typed. This assertions was supported by
the preliminary experimental results on both operational and
synthetic data. The perfect typing (with no defect) was shown
to be much bigger than the approximate typing produced by
our method. Indeed, in some cases the perfect typing was of
roughly the same size as the data which precludes its practical
use. In contrast, the size of approximate typing can always
be reduced to a desired range. Our experiments suggested
that even better results can be obtained by considering the
defect as a function of the number of types in approximate
typing and choosing an optimal range.

Acknowledgments We would like to thank Jeff Ullman,
Peter Buneman, Victor Vianu, for discussions on this topic.

11

References

[1] S. Abiteboul. Querying semi-structured data. In Pro-
ceedings of ICDT, pages 1–18, Delphi, Greece, January
1997.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, Reading,Massachusetts,
1995.

[3] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An
object data model with roles. In Proceedings of VLDB,
pages 39–51, Taipei, Taiwan, 1993.

[4] K.R. Apt. Logic Programming, Handbook of Theo-
retical Computer Science. J. Van Leeuwen, Elsevier,
1991.

[5] E. Borger, E. Graedel, and Y. Gurevich. The classical
decision problem. Speinger-Verlag, Berlin Heidelberg,
1997.

[6] P. Buneman. Semistructured data: a tutorial. In Pro-
ceedings of PODS, Tucson, Arizona, May 1997.

[7] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Addind structure to unstructured data. In Proceedings
of ICDT, pages 336–350,Delphi, Greece, January 1997.

[8] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for un-
structured data. In Proceedings of the ACM SIGMOD

International Conference, pages 505–516, Montreal,
Canada, June 1996.

[9] R.G.G. Cattell. The Object Database Standard:

ODMG-93. Morgan Kaufmann, San Mateo, Califor-
nia, 1994.

[10] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In Proceedings of the Twenty-Third Interna-
tional Conference on Very Large Data Bases, Athens,
Greece, August 1997.

[11] D.S. Hochbaum. Heuristics for the fixed cost median
problem. Mathematical Programming, 22:148–162,
1982.

[12] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman. Anal-
ysis of a local search heuristic for facility location prob-
lems. In Proceedings of the Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, San Francisco, Cal-
ifornia, January 1998.

[13] Robin Milner. Communication and concurrency. Pren-
tice Hall, 1989.

[14] S. Nestorov, S. Abiteboul, and R. Motwani. Infer-
ring structure in semistructured data. In Proceedings of
the Workshop on Management of Semistructured Data,
Tucson, Arizona, May 1997.

[15] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative objects: Concise representations of
semistructured, hierarchical data. In Proceedings of
ICDE, pages 79–90, Birmingham, U.K., April 1997.

[16] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,
and J. Widom. Querying semistructured heteroge-
neous information. In Deductive and Object-Oriented
Databases (DOOD), pages 319–344, Singapore, De-
cember 1995.

[17] D. Suciu. Query decomposition and view maintenance
for query languages for unstructured data. In Proceed-

ings of VLDB, pages 227–238, 1996.

[18] J.D. Ullman. Principles of Database and Knowledge-
Base Systems, Volumes I,II. Computer Science Press,
Rockville, Maryland, 1989.

[19] M. Zloof. Query-by-example: A data base language.
IBM Systems Journal, 16:324–343, 1977.

12

