Extracting Schema from Semistructured Data

SVETLOZAR NESTOROV*
Stanford University
evtimov@db.stanford.edu

Abstract

Semistructured data is characterized by the lack of any fixed and
rigid schema, although typically the datahassomeimplicit structure.
Whilethelack of fixed schemamakesextracting semistructured data
fairly easy and an attractive goal, presenting and querying such data
is greatly impaired. Thus, a critical problem is the discovery of
the structure implicit in semistructured data and, subsequently, the
recasting of the raw data in terms of this structure. In this paper,
we consider a very general form of semistructured data based on
labeled, directed graphs. We show that such data can be typed using
the greatest fixpoint semantics of monadic datalog programs. We
present an algorithm for approximatetyping of semistructured data.
We establish that the general problem of finding an optimal such
typing isNP-hard, but present some heuristics and techniquesbased
on clustering that allow efficient and near-optimal treatment of the
problem. We also present some preliminary experimental results.

1 Introduction

Datafound over the network isgenerally fairly irregular. For
instance, the home-pages of members of agroup may contain
some similar information (e.g., name, email, address, photo)
but some of these may be missing in particul ar pages, and ex-

* Supported by the Community Management Staff's MassiveDigital Data
Systems Program, NSF grant IRI-96-31952, ARO grant DAAH04—95-1—
0192, and grants of IBM and Hitachi Corp.

tWork performed in part while the author was visiting Stanford CS
department.

*Supported by an Alfred P Sloan Research Fellowship, an IBM Fac-
ulty Partnership Award, an ARO MURI Grant DAAH04-96-1-0007, and
NSF Young Investigator Award CCR-9357849, with matching funds from
IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and Xerox
Corporation.

SERGE ABITEBOUL
INRIA-Rocquencourt
Serge.Abiteboul @inria.fr

RAJEEV MOTWANI
Stanford University
rajeev@cs.stanford.edu

trainformation may be present in others. For another exam-
ple, consider cartographic data servers. Thesetypically have
thousands of records with hundreds of properties, most of
which arenull for any given object. Indeed, irregularitiesare
oftenthe norm in data found over the network. Furthermore,
they arise naturally when oneintegratesdataoriginatingfrom
several distinct (structured) sources that provideinformation
about a common set of entities but represent these entities
differently. Recently, the term semistructured data[1, 6] has
emerged to describe data that has some structure but which
isneither regular, nor known apriori to the system. Itispre-
cisaly for this reason that most semistructured data models
are self-describing. We will employ afairly standard model
for semistructured data that is based on a labeled directed
graph [16, 8].

Database systems come equipped with nice graphical in-
terfacesand efficient accessmethods. Both featuresare based
primarily on the existence of someregularity inthedata, i.e.,
on atyping of the data. Query formulation is facilitated by
QBE-style [19] interfaces that, by using existing structure,
allow users and application programs to learn about the data
set and access data more conveniently. Also, performanceis
grestly improved by taking advantage of the existing struc-
ture, eg., viaindexes[18]. Thus, although we often have to
deal with datasets found on the network that have no explicit
structure and are fairly irregular, we would very much pre-
fer to work with regular, structured data. Thisis the prime
motivation of the present work on the extraction of implicit
structurein semistructured data.

Clearly, the implicit structure in a particular data set may
be of varying regularity. Indeed, we should not expect in
general to be able to perfectly type adata set. The size of a
perfect typing (anotion that wewill study) may bequitelarge,
e.g., be roughly of the order of the size of the data set, which
would prohibit its use for query optimization and render it
impractical for graphical query interfaces. Thus, we consider
approximate typings, i.e., an object does not have to fit its
type definition precisely. We study the trade-off between the
quality of atyping and its compactness. More precisaly, the

typing problem and itstrade-off can beformulated asfollows.
Suppose we have selected atype description language and a
measurefor typesizes, aswell asadistancefunction over data
sets. The problemthenis: givenadataset I, find atyping 7

and adataset J of typing 7, such that the size of ~ issmaller

than a certain threshold and the distance between I and J is
minimized. In other words, we want to find = which is small

enough and such that I presents as few defects as possible
with respect to 7. (The dual problem isthe minimization of

the size of for agiven threshold on the distance between I

and J.)

Thefirst key issue is the choice of a description language
for types. Our typing is inspired by the typing found in
object databases [9] although it is more genera since we
allow objectsto livein many incomparable classes, i.e., have
multipleroles[3]. This aspect is aso aclear departure from
previously proposed typingsfor semistructured data [10, 15,
7, 17]. We believe (and some early experiments support
this belief) that multiple roles are essential when the datais
fairly irregular. We define a typing in terms of a monadic
datalog program. The intensiond relations correspond to
object classes and the rules describe the inner structure of
objects in classes. The greatest fixpoint semantics of the
program defines the class extents.

We first consider the issue of computing perfect typings.
Westart with an obvious perfect typing that consists of having
one classfor each distinct object. Thisyieldsafirst monadic
data program. A run of this program on the data set will
naturally group similar objects and thus provide a (possibly
much) coarser classification of objectsthat yieldsa(possibly
much) more compact perfect typing. In fact, thistyping is
the coarsest possibleif we insist on exact fit.

This perfect typing may still be much too large unless the
dataisextremely regular. Therefore, we present atechnique
for computing an approximate typing of an appropriate size.
This means that the data set is now alowed to be imperfect
with respect to the typing. It may present extrainformation
(edges that should not be present) or lack some information
(missing edges). We will see that extra edges are easily
handled with a greatest fixpoint approach, whereas missing
edges are much more difficult to deal with. The crux of
our technique is to merge similar classes so as to decrease
the size of the typing. To this end, we employ a clustering
algorithm[12, 11] on the classes. Intuitively, until thetyping
is of acceptable size (for some application dependent notion
of “acceptable size™), we perform classmergesthat introduce

aminimal error. We consider various optimization strategies
to compute this approximation and issues such as the choice
of the distance function.

For a concrete example, Figure 1 shows the approximate
typing produced by our method for the DBG dataset consist-
ing of various information about the members of Data Base
group at Stanford. The exact notation will be explained later
in the paper. For this example, it suffices to say that each
label with an arrow and superscript correspond to alink to or
from atype. Thistyping has only 6 types and provides very
good summary of the actua contents of the DBG dataset.
In contrast, the perfect typing for this dataset consists of 53
different types. Note that we have aso given the intuitive
meaning before each of the 6 types.

In contrast to our work, previous proposas on typing
semistructured data [10, 15, 7] have focused on perfect typ-
ing and implicitly assumed that each object hasauniquerole.
We have already mentioned some motivationfor approximate
typing and will later discuss further motivationsfor multiple
roles.

We aso present some experimental results. The focus of
our experimentsisthequality of thetypingresultsrather than
the time performance.

The rest of this paper is organized as follows. Section 2
introduces our notation and provides the intuition for choos-
ing the specific form of typing. Section 3 givesasummary of
our method for extracting thetyping from thedata. Section 4
dealswith perfect typing and Section 5 with theissue of com-
puting an approximate typing. Section 6 addresses recasting
the original data within the approximate typing. Section 7
provides some experimenta results. Finally, we present our
conclusionsin Section 8.

2 TheTyping

In this section, we present the model of semistructured data
and the types that are used in the present paper. We assume
some familiarity with relational databases and more particu-
larly with the datal og query language[18, 2].

We moded semistructured data in the style of [8, 16] as
alabeled directed graph. The nodes in the graph represent
objects and the labels on the edges convey semantic infor-
mation about the relationships between objects. The sink
nodes (nodes without outgoing edges) in the graph represent
atomic objects and have vaues associated with them. The

3 — 4 — 5

3 — 4

project . T = Proy_'ect , Project , Project , Project_Member , Project_Member ,
— —_ 0
Name , Homepage
— 3 — 5 -—- 3 — 0 — 0 — 0
publication . 1, = Publication , Publication , Author , Name ,Conference , Postscript
— 1 — 5 -— 1 — 5 -—— 6
db-person . T3 = Project_Member G’rou,p Member , Project , Birthday , Degree ,
-— 0 — 0 -0
Years_ At Stanford Emazl , Home_Page , thle ,
—— — — — 0
Name Orzgznal Home Personal Interest , Research_Interest
5 1 - 4
student : 74 = Project_ Member Student , Group_ Member Proyect Advisor

-——- 0 50 — 0 — 0 —

Email thle , Home_Page , Name Nzckname

0 ——>0__>0 __>0

birthday: 15 = Bzrthday ,Namez: Month ,Day ,Year

— ——>0__>0_—>0——>0

degree : 6 = Degree Major ,School ,Name ,Year

Figure 1. Optimal typing program for DBG data set

other nodes represent complex objects. In astandard manner,
we represent the graph using two (base) relations defined as
follows:

link(FromObj, ToObj, Label): Relation link contains all
the edge information. Precisely, link(o1, 02, £) corre-
spondsto an edge labeled £ from object o1 to 0,. Note

that there may be more that one edge from oy to o5, but, link | FromObj ToObj Labd
inour model, for aparticular £, thereis at most one such g m is-manager-of
edge labeled £. j a is-manager-of
m g is-managed-by
atomic(Obj,Value): Thisrelation contains all the vauein- a j is-managed-by
formation. Thefact atomic(o, v) corresponds to object g gn name
o being atomic and having value v. j jin name
m mn name
We also require that (i) each atomic object has exactly one a an name
vaue, i.e. Obj isakey in relation atomic, and (ii) each
atomic object has no outgoing edges, i .e., thefirst projections atomic | Obj Value
of link and atomic are digoint. gn "Gates'
In the following, we consider that the data comes in as an jn "Jobs’
instanceover linkand atomi c satisfying thesetwo restrictions. mn - "Microsoft”
Weusetheterm databaseherefor suchadataset. Anexample an "Apple’

of adatabaseisgiveninFigure2. Notethat thisdata happens
to be very regular.

In this paper, we consider that a typing is specified by a
datalog program of a specific form (to be described shortly).
The only two extensiond relations (EDB’s) of thetyping pro-
gram are link and atomic. The intensional relations (IDB’s)
are al monadic and correspond to the various types defined
by the program. For instance, we can consider the following

Figure 2: Dataand Types

typing program P for the database of Figure 2:

person(X) :- link(X,Y,is-manager-of) &
firm(Y) & link(X,Y’, name) &
atomic(Y', Z)

firm(X) - link(X,Y, is-managed-by) &
person(Y) & link(X,Y’, name) &
atomic(Y', Z)

Theintuitionisthat g, 7 are persons, m, a are companies and
the other objects are atomic.

Syntax Typing programs are more precisely defined asfol-
lows. TheEDB’sarelinkand atomic. All IDB’saremonadic.
Furthermore, each IDB isdefined by asingleruleof theform:

o(X) - A1&..& A,

for some p, where the 4;, called the typed links, are defined
as follows. Each typed link has one of the following forms:

1 link(Y, X,£) & (YY)
2. link(X,Y,0) & ()
3. link(X,Y,£) & atomic(Y, Z)

where £ is some constant (alabel), X isthe variablein the
head of therule and Y, Z are variables not occurring in any
other typed link of the rule. We will discuss some limitations
introduced by thistyping further on.

Notation Suppose that the types (IDB’s) of the program
are typey, ..., type,. All atomic objects belong to typeo.
The following notation for typed links greatly simplifies our
presentation and will be used throughout the paper:

o link(Y, X, c) & type; (¥) isdenoted by = .
o link(X,Y,c) & type;(Y) isdenoted by <.
o link(X,Y,c) & atomic(Y, Z) isdenoted by 2’

The direction of thearrow over the label denotes whether the
edge is incoming (left) or outgoing (right). The superscript
denotes the type of the object at the other end of the edge.

Semantics The semantics of a datalog program P of the
form described above for a database D is defined as the
greatest fixpoint of P for D. (See, e.g., [4].) More precisaly,
let M be an instance over the schema of P such that M
coincides with D on {link, atomic}. Then M isafixpoint
of P for D, if for each IDB ¢, P(M)(c) = M(c). Itisthe
greatest fixpoint, if it containsany other fixpoint of P for D.

Note that this definition is correct because for a given
database D and a datalog program P, there is unique great-
est fixpoint of P for D [4]. For the data of Figure 2,
and for the program Py, the greatest fixpoint consists of
{person(g), person(j), firm(a), firm(m)}, which is as
expected. Notethat for this program, aleast fixpoint seman-
tics would fail to classify any object. The intuition behind
the choice of the greatest fixpoint semantics is that we want
to classify consistently as many objects as possible. The
fact that it is afixpoint indicates that the type of an object is
justified by the types of objects connected to it.

Justifications of the above definition are also as follows.
First, consider some relationa data represented with link
and atomic in the natural way: the entries of the tables are
represented by atomic objects, thetuples by complex objects,
and the labels are the attributes of relations. Consider the
typing program correspondingto thisschemaalsoinanatural
manner: onetypeisused for each relation. Then theprevious
typing would correctly classify the tuples. (Thisisassuming
that no two rel ationshave the same set of attributesfor, inthat
case, their tupleswould become indistinguishable.) Observe
that for relational data, (i) thetyping programisnot recursive
and thus the greatest fixpoint and the least fixpoint coincide
and (ii) thedatagraph isbipartitein the sense that edges only
go from complex objectsto atomic ones.

For a second justification, consider some ODMG data [9]
(ignoring collectionssuch aslistsor bagsthat are beyond our
framework). For the natural representation of this datawith
link and atomic, thenatural typing program would correctly
classify the objects.

Observe that the typed links alow to describe localy the
structure of the objects in a class ¢. With typed links, one
can state that there is some edge labeled ¢ going to (coming
from) an object in some other class ¢’ or going to an atomic
object. Notealso that thelanguageisquiterestricted. For in-
stance, it isstraightforward to see that the typing rules can be
expressed in first-order logic with 2 variables (FO?) which
isavery restricted subset of first-order logic. For instance,
therulefor person can be rewritten equivalently as:
person(X) < 3 Y(link(X,Y,is-manager-of) A
firm(Y)) AJY (link(X,Y, name) A IX (atomic(Y, X)))
that uses only two distinct variables. The fact that we limit
ourselves to a framework such as the FO? logic may be an
asset since that logic features nice properties[5], eg., satis
factionisdecidablefor FO?. Ontheother hand, observe that
there are natura “typing” informationsthat fall outside our

scope. For instance, one cannot expressin 02, so with our
rules, some simple restrictions on the cardinality of certain
kindsof links, e.g., that companieshaveauniquename. Also,
observe that even some rulesthat use only two variables are
not alowed in our typing programs, e.g., therule

person(X) :- link(X,Y, is-manager-of) & firm(Y')
& link(Y, X, is-managed-by) &
link(X,Y’, name) & atomic(Y’', Z)

can be expressed using two variables only but is outside our
framework.

Clearly, one could consider richer typing languages, and
in particular, unrestricted monadic datalog programs. In the
present paper, we focus on the previously defined simple
types based on typed links.

Remark 2.1 In the present paper, we ignore the value of
the atomic objects and assign all of them to the same type.
In practice, however, it is often easy to separate the atomic
valuesinto different sorts, e.qg., integer, string, gif, sound, etc.
Indeed, one can also apply (application specific) analysis
techniques to enrich the world of atomic types with domains
such as names, dates or addresses. It is straightforward to
extend the framework to handle multiple atomic types.

A more intense extension to our framework would be to
consider some a priori knowledge of the typing. This may
often occur in practice for instance if we attempt to integrate
data with a known structure to semistructured data discov-
ered onthe net.

Finally, one may want to usein the typing, specific atomic
values or ranges of atomic values. This would for instance
allow to classify differently objects with values "Male" or
"Female’ in a sez subobject. These are interesting exten-
sionsthat should be considered in future work.

Defect: Excess and Deficit In the case of relationa and
object data that are very regular and with the proper typing
program, we obtain a perfect classification of the objects. In
general, one should not expect thisto happen. Suppose we
have a program P that proposes a typing for a database D.
We need a measure of how well P types D.

A first measure is the number of ground facts in D that
are not used to validate the type of any object. We call this
measure the excess since it captures the number of facts that
arein excess. More precisely, let M be the greatest fixpoint
of P for D. A ground fact link(o, o', £) in D isin excess if

thereexist no class ¢, ¢, such that o isin M(c), o' in M (¢')
and the definition of ¢ or ¢’ stipulates that there is an £-link
from ¢ to ¢’. The number of such ground facts forms the
EXCESS.

Excessisrather easy to capture with our datalog programs
and the greatest fixpoint semantics. The deficit, i.e., some
information that may be missing, is much less so. To define
the deficit, we need also to be given atyping assignment 7 in
addition to a program P and a database D, that associates a
set of objectsto each type. The deficit of 7 isthe minimum
number of ground factsthat must beadded to D (invented) in
order tomake all typederivationsin possible. (A subtletyis
that — does not have to be atyping since the addition of these
facts may bring some objects to more classes than specified

by 7.)

o N
Qw@of% @%

Figure 3: Example database

Example2.2 Suppose we are given the database shown on
Figure 3 and the following typing program:

-2
typer = a
typez = a , b , C
-0 -0
types = b ,d

Consider two type assignments, 7, and 7», that both map o;
to type;, for i« = 1,2,3. They differ in that = maps o4 to
typey and T, Maps o4 to types. Then the defect of m; with
respect to the given database and programis 2 because we
have to “invent” one base fact, namely link(o1, 04, a) and
have to disregard link (o4, 0o, d). Thus, the excess is 1 and
the deficit is 1 adding up to a defect of 2. For 7>, we have
only excess of 1 because we haveto disregard link(oa, 0o, c).
Thus, the defect is 1.

To conclude this section, note that the greatest fixpoint
semantics may lead to excess but cannot yield deficit. Intu-
itively, deficit is more related to negation and hypothetical
reasoning.

3 Method Summary

The goa of this work is to be able to approximately type
alarge collection of semistructured data efficiently. We are
therefore led to making simplifying assumptions and intro-
ducing heuristics to be able to process this large collection
in an effective way. Inthis section, we present the technique
inrather general terms. The various steps are detailed in the
following sections.

Our method for the approximate typing of semistructured
dataconsistsof threestages. Asweshall see, therearesevera
aternatives to be considered at each of the three stages. In
order to decidewhich choicesaremost appropriatefor agiven
database, we need some information about thedata. 1t should
be stressed that these choices remain primarily empirical and
that thegeneral process should entail using user feedback and
adapting the technique to the particul ar application domain.

Thegist of thefirst stageistoassign every object toasingle
home type. We use the minimal number of home types such
that every object fitsits home type perfectly (with no defect).
The process of partitioning objects into a collection of home
typesissimilarinspiritto bisimulation[13]. (However, some
of the possible variationsfor this stage yield collections that
differ significantly. For example, we could decide to have
'selected’ objects with multiple home types.)

In the second stage, we address the optimization problem
of reducing the number of types, and thus having objects
that fit their home types with some defect, while incurring
the lowest cumulative defect. This stage is the hardest both
computationally and conceptually. We show that the genera
optimization problem is NP-hard even for a smple class
of semistructured data corresponding to bipartite graphs.
There are, however, techniques and heuristics adapted from
k-clustering [12, 11] that allow efficient and near-optimal
trestment of the problem. We also discuss the sensitivity of
the solution with respect to the final number of types.

The third and final stage of our method is about recasting
the original datawithinthe chosentypes. Idedly, thegreatest
fixpoint semantics of the typing program (consisting of the
chosen types) should be employed. However, some of the
techniques described in the second stage do not mix well
with the fixpoint semantics. For example, some objects may
be assigned to more than one particular home type, i.e., the
objects don't have al typed links required by their home
types. We present ways of resolving the incompatibilities
and discuss some additiond variations.

4 Stage 1. Minimal perfect typing

In this section, we present an algorithmfor deriving a perfect
(withno defect) typing program from semistructured data. In
this program, every complex object has a type that is based
on itslocal picture. The resulting object partitioning of the
minimal perfect typing program is related to the partition
obtained through bisimulation. We discuss this relationship
towardsthe end of thissection

4.1 Assumingauniquerole

In this section, we assume that each object livesin aunique
class. Wewill remove thisrestriction later.

Given some database D, the minimal perfect typing pro-
gram Pp isconstructed as follows:

1. First construct aprogram Qp asfollows. Let o, ..., on
be the complex objects. For each complex objects o,
assign auniquetypepredicatetypey.. Therulefor typey

will contain ¢ iff there is an edge labeled £ from o; to
o, and Z if there is an edge labeled £ from oy, to o;.

=0
And the rule for typex will contain ¢ iff there isan
edge labeled £ from o; to some atomic object.

2. Compute the greatest fixpoint M of Qp for D. Let
= be the equivalence relation on the types {type |
k € [1..N]} defined by type;, = type; if M(type;) =
M (type;). The types of Pp will be the equivalence
classesof =, say 1, ..., Tn-

3. The new program Pp is obtained by choosing for each
Ti, atypetyper in ; and replacing, in the rule » for
typey, each typetype; by its equivalence class [type;]
according to =. The hometype of o5 becomes [type].

Remark 4.1 The following property is useful in finding the
equivalence classes of types (Step 2 above):
type; = type; iff o; € M(type;) A o; € M(type;)

Thefollowingexampleillustratesthea gorithmfor finding
the minimal perfect typing program.

Example4.2 Consider the simple database D in Figure 4.
The program @ p constructed in (1) of the algorithmis:

typen. = a ,a ,a type; = a,b
~1 =0 <1 =0 _,0
types = a ,b typea = a ,b ,c

/
(o) (o) (o)

Figure4: Simple database

The greatest fixpoint M for Qp obtained in (2) is
M (type1) = {o1}, M (type2) = M (types) = {02, 03, 04},
M (types) = {oa}. Let [types] = 1, [typez] = [types] = 7>
and [types] = m3. The programPp is:

1 = a,a T2 = a,b
3 = a,b,cC

Thus, 71 isthe home type for o1, 72 is the home type for o,
and oz, and 73 is the home type for og.

Computational Efficiency There is a sraightforward
method for computing the greatest fixpoint for a program
P. Firdt, assign every type to every object and cal this
database M. Then compute P(M* U link U atomic).
Keep applying P to the result of the last application until
no change occurs. The agorithm outlined above for finding
the natural perfect typing program isnot very efficient if im-
plemented in the obviousway. There are severd stages that
must be handled carefully.

Computing the greatest fixpoint (Step 2 above) can po-
tentially take double-quadratic time with respect to the size
of the database (number of objects). One possible improve-
ment is to notice that in the case when P is not recursive
the greatest fixpoint coincides with the least fixpoint. There
are many other possibleimprovementsin the genera case to
the computation of the greatest fixpoint notably by using the
fact that our programs are monadic, and also by using some
differentiation techniques[18].

Also, it would be interesting to compare this cost to that
of running a “bisimulation” style computation [8, 17, 13].
(Indeed, more generaly, it would be interesting to con-
sider in more depth the connection to approaches based on
bisimulation.) Intuitively, two nodes are bisimilar if after
the (possibly infinite) unfolding from each vertex and after

duplicate elimination for subtrees, the two resulting (possi-
bly infinite) regular trees are identical. A subtlety isthat we
do consider here both incoming and outgoing edges, which
leads to also introducing edges corresponding to incoming
edges when unfolding a vertex. Bisimulation turnsout to be
relatively easy to compute —the“relative’ refers to the com-
plexity of the definition. First, we consider that all objects
are in a unique class cg. At some stage, suppose that the
objects are separated in a partition «y, ..., m,,. |f for some
classes 7;, 7; and some label £, there are objects in 7; that
have £ edge going to objectsin «; and some that do not, one
can split 7; in two. (Similarly, if some objects in 7; have
incoming £ edges from 7; and some that do not.) Thisyields
amore refined partition. Ultimately, thisprovides a partition
of the set of objects and atype based on this partition.

4.2 Multipleroles

Astheresult of the minimal perfect typing so far, each object
has its home type based on the object’s local picture. Note
however that the types defined by the minimal perfect typing
program may <till overlap. The reason is that the program
doesnot contain negation. Thus, objectsthat have moretyped
linksthan required for agiven typewill also beassigned to it
even though it is not their home type. Thisisin the style of
ODMG inheritance but somewhat richer since our description
of thelocality of an object includes its outgoing edges (asin
ODMG) but itsincoming edges as well.

In the context of semistructured data, it seems often com-
pul sory to remove the home type assumption that states that,
for each object, thereisatypethat fully describesit. Objects
may have multiple roles and each role may come equipped
with a set of possibly overlapping attributes. For example a
person may be an employee, a soccer player, aforeigner, a
friend, etc., and each of itspossibleroles may come equipped
with a pattern of incoming and outgoing edges. We want to
avoid the combinatorial explosion of introducing employee-
soccer-player-foreigner, employee-foreigner-friend, etc. In-
deed, forcing each object to be in a single type would artifi-
cially increase the number of types or the error of the typing.

At this stage, we can identify complex types that can be
expressed as a conjunction of several simpler types. By
simpler we mean having less typed linksin their definition.
The home objectsfor the complex types can then be assigned
to each of thesimpler typesthat cover thecomplex one. Thus,
a the end of this operation we will have an overlapping
collection of types. The following example illustrates the

main idea behind this.

Team
Couigtry
Country \ Team M vie Movie
M vie Na

Engl and Cantona France Bley

Schol es Man Utd Le Bonheur Bi noche Damage

Figure5: Soccer and movie stars

Example 4.3 Consider thedatabasein Figure5. Itsnatural
perfect typing programis:

- 0 — 0o _, 0
types, = Name ,Country ,Team
— 0 - 0 - 0 — O
type, = Name ,Country ,Team , Movie
0 0 — 0
types = Name Country , Movie

In the greatest fixpoint type; containso; and oy; type, con-
tains oy; types contains o, and o3z. Thus, even if we delete
type, every object will till be assigned to at least one type.
In that case, o, will looseits original home type but will be
assigned two home types, namely type; and types.

Remark 4.4 Because of the special form of the type predi-
cates it can be shown that eliminating types corresponding
to multiple role objects is not very hard. It can be donein
at most O(n?) where n is the number of types. Of course,
thereis till the problem of choosing a particular set of types
for the cover. However, we expect that in real situationsthe
choice will be obvious.

It should be observed that althoughtheintroduction of new
very general types may someti mes be useful, overdoing it may
lead to some “ atomization” of the information. Intuitively,
one would like to avoid describing a person as some object
thatisin a class has-name and in a class has-address and in
a class has-spouse.

5 Stage2: Clustering

In most cases, the minimal perfect typing program will have
too many types to be useful as a summary of the data set.
There will be many 'similar’ types that intuitively can be
collapsed into one thus dramatically reducing the size and
complexity of thetyping program. Inthissection, we outline
how to transform the typing program to reduce the number
of types while keeping the defect (excess + deficit) low.

5.1 Thegeneral problem

The optimization problem that we consider in this stage is
similar to k-clustering [11]. Every home type aong with
its weight (the number of objects having this type as their
hometype) isa point on ahypercube. The dimensionsof the
hypercube are the different typed links found in the minimal
program from Stage 1. The general form of the problem,
however, is more complex than k-clustering because decid-
ing to coal esce several types has the effect of projecting all
pointson the hypercube on several of it diagonal sand thereby
reducing the dimensions. Consider the following example.

Example5.1 Consider the following four types:

il - a , b T2 - a , b
T3 = G ,b T4 = G, b

Initially, all 4 types are different. However, if we coalesce
either m, and , or 73 and 74, the remai ning two types become
identical. Of course, in this case, it doesn't matter which
pair is chosen first. However, there are situationswhere the
order of coalescing has a significant effect on the quality of
the result.

5.2 Digtancefunction between types

There are many ways to define the distance between two
types. We argue that while the fine tuning of the parameters
of a specific function is very domain specific, the general
properties of the distance function are universal.

Consider two types 7, and 7> and their definitions. The
simplest and most natural distance function seems to be the
Manhattan path between the two type points on the binary
hypercube defined by the typed linksin their definitions. In
simpler terms, the distance is the number of typed links in
the symmetric difference between the bodies of their rule
definitions. We denote thisdistance, that isthe basis of more
complex functions considered |ater, by d(71, 72).

Example5.2 Consider the following three types:

T = G ,b T2 = G ,b
52 <1 .3
3 - b,b,b

-2 <1
For 71, 72, the symmetric difference consistsof {4 , 5 }, s0
d(71,) = 2. For 1, 73, the symmetric difference consists

,0 «1 3
of{a ,b,b },S)d(T]_,Tg) =3 Andd(Tz,Tg,) isalso 3.

Although this simple distance function appears to be very
natural, it does not take into account the weight of the types
(the number of objects having the type as their home type).
We need to use a more complex weighted distance é that
should be a function of the Manhattan distance d, and the
weights of the two types w; and w,. We need to assume
that the distanceisnot symmetric. Intuitively, thisisbecause
6(w1, w2) measures the cost of moving type objects of type
T2 10 71. It Seems desirable to have the following properties
for such adistance:

increasing in & Thisproperty isbased ontheintuitionthat it
is better to collapse 'similar’ types, i.e., such that there
are very few typed linksin one and not in the other.

decreasing in wy Thisis based on theintuition that the ex-
pected noise around some class of object should be pro-
portional to the number of objectsin the class. In other
words, if the class has a very large extent, we may ex-
pect alot of objectsthat almost fit init but not quite and
should be willing to correct them.

increasing in w, The intuition behind this last property is
that large collectionsof similar objectsarelikely toform
types and thus should not be moved to other types (un-
less the other type is much bigger and thusthe previous
property kicksin).

These three properties are clearly related to the overall god
of minimizing the defect.

There are severa possible functions that seem reasonable
choices even though some of them don't satisfy al three
propertieslisted above:

51(11)1, wo, d) = Ld/(wl * wz) 52(11)1, wo, d) =d=x* wo

1/d

53(11)1, wo, d) = (w]_ * wz) 54(11)1, wo, d) = Ld * Wo

6s(w1, wo, d) = (wp/w1)Y/?

where L is the total number of different typed linksin the
typing program obtained at the end of Stage 1. Clearly,
the choice of a distance function serioudly affects the results
of the typing. The following example shows that deciding
on the particular parameters for a given function is domain
specific.

Example5.3 Suppose at the end of Stage 1 there are only
three types.

e 100000 objectsof typem, =a b

e 1000 objectsof typem>s =a b ¢

_,0-0-0 -0
e 1000bjectsoftypers =a b €1 ... %4

Suppose that we want to end up with only two types at the
end of Stage 2. Weimplicitly assume that one extra type will
bethe empty set allowingusto chose not to type some objects
by assigning them to the empty set type. For & = 1, the best
solutionwill be to move 75 to 7. Smilarly, for abig &, eg.,
k > 15, the best solution isto move > to 74. In between,
thereis a range for & such that the best solutionis to move
73 t0 the empty set type, i.e, to not classify those 100 objects
with a home type 3. The two cut-off points depend on the
distance function that is chosen and are clearly application
dependent.

Note that the distance function é, resembles our definition
of defect introducedin Section 2. Whileit measure the defect
exactly for asingle coalescing when we have a series of type
coalescing it only provides an upper bound on the defect of
thefinal program.

Clustering algorithm Since finding the optimal & typesis
NP-hard we have to employ heuristics in order to solve the
problem. In our experiments we used a greedy algorithm
because of its lower time complexity and implementation
ease. Furthermore, under certain assumptions, the greedy al-
gorithmgivesan O(logn)-approximationof the best solution
[11].

To conclude this section, we consider a specid case that
is somewhat easier and an alternative to the clustering in
general.

Bipartite graphs An important special case is when dl
typed links point to atomic objects which happens when the
graph is bipartite. This is the case for relational data or
when the data comes from afile of records. Then each type
is defined by the set of 1abels on the outgoing links, i.e. the
attributesintherel ational case. Theproblemismuch simpler.
However, even in thissimple case, one can show that finding
the best typing with & types (for some fixed k), where “best”
is defined by minimizing the defect, is still NP-hard.

Variation to k-clustering A different approach isto first
consider the types after Stage 1 without their weights. Us-
ing some measure of the relative importance of an attribute
within a set of attributes (e.g. the jump function [14]) we
can find the best & clusters of the types and only use the

weights within a cluster to determine its type definition cor-
responding to its center. However, this approach may run
into problemsif there are many outliersand the hypercubeis
densely popul ated.

6 Stage 3: Recasting

In the third stage we allow objects to be in types other than
their home type(s) if they satisfy the appropriate type predi-
cates. At thisstage however we do not account for the excess
or deficit. Thus, at the end of the third stage we have typed
approximately all objects with & types at some defect cost.
Note that the first stage is independent of the choice of k.
Thus, we can support a sliding scale mechanism where the
scale is k and the result is the best & types and the corre-
sponding defect. Infact, our experiments suggest that using
thisapproach yields better results and providesadditional in-
sight into the data. We present more detailed discussion of
thisapproach in Section 7.

When we alow objects to be assigned to types other than
there home type(s) we actually have severa optionsdepend-
ing on whether we only classify objects based on their actual
typed linksor the ones suggested by their hometype assigned
at the end of Stage 2.

Thetyping rulesfor objectsthat have not been used to de-
rivethetyping program are rather simple. First weassign the
new objectsto all typesthat it satisfies completely. If the ob-
ject cannot be assigned any type precisely, then we assigned
ittotheclosest typetoit, interms of the simpledistancefunc-
tiond. Of course, if we have many new objectswe may wish
to reconsider the the current typing program. Deciding how
many new objects is too many and recomputing efficiently
the typing program are open problems.

7 Experimental results

In this section we present some preliminary experimental re-
sults. While performance (in terms of time) is an important
consideration in our work, the main focus of the experiments
was the quality of the results. Indeed, understanding when
and how the various optionsin our algorithm work best and
how is a prerequisite for designing efficient data structures
and optimization. In this performance study we used ex-
tensively synthetic data. We also show some results on a
operationa data set. Note the using synthetic datais attrac-

10

tive for the purpose of evaluating the quality of the typing
in several ways. First, we are able to compare the types
produced by our algorithm with the intended type in the data
specification. Second, we are able to measure the effects of
various perturbation of the data on the the typing results.

7.1 Generating Synthetic Data

The main idea behind the synthetic data is to use type defi-
nition with probability attached to their typed links and then
produce random instances according to those probabilities.
The following example illustrates the data generation pro-
Cess.

Example 7.1 Consider the following simple type specifica-
tionwith attached probabilities. There are two typesin addi-
tionto the standard atomictype. Objects of thefirst type have
alinklabeled’a’ toan atomic object with probability 0.9 and
"B’ link to atomic with probability 0.5. Objects of the second
typehave a link labeled ' ¢’ to an object of thefirst type with
probability 0.8 and b’ link to atomic with probability 0.9.

The results of running our typing agorithm for several
synthetic data sets are captured in Table 1. The distance
functionused in the clustering stage is the weighted M anhat-
tan distance. The clustering is done by a greedy agorithm.

We run experiments on 4 different synthetic datasets (DB
Nos. 1,3,5,7). For each dataset we denote whether its corre-
sponding graph ishipartite and whether theintended typesare
overlapping, i.e, havetyped linksin common. We aso con-
sider adlight perturbation of each dataset (DB Nos. 2,4,6,8)
where we delete randomly afew linksin the graph and then
add some randomly labeled links.

The main observation from the results is that sight per-
turbation of the dataset results in a dramatic increase of the
number of perfect types while the effect on the optimal ap-
proximate typing is relatively small. Another observationis
that datasets with bipartite graphs are much easier to handle
compared to regular graphs.

7.2 Sensitivity Analysis

Thereisclearly atrade-off betweenthedefect and thesimplic-
ity of the typing program. For example, the minimal perfect
typing program has no defect but hastoo many types. Onthe
other side of the scale, if we choose to have only one type

Synthetic Data Typing
DB | Bipartite | Overlap | Perturb | Intended | Objects | Links | Perfect | Optimal | Defect
No ? ? ? Types Types Types
1 Y N N 10 1500 | 2909 30 10 225
2 Y N Y 10 1500 | 2958 52 10 307
3 Y Y N 6 950 2409 19 6 239
4 Y Y Y 6 950 2442 35 6 283
5 N N N 5 400 726 317 5 181
6 N N Y 5 400 749 341 5 310
7 N Y N 5 400 775 375 5 291
8 N Y Y 5 400 795 381 5 333

Table 1: Synthetic Data Results

the defect will be huge unless we are dealing with very reg-
ular data. We conjecture that for non-random semistructured
datathereisusually an optimal number (or a small range) of
types. Figure 6 show the defect and the total distance used
in the algorithm as a function of the number of typesin the
approximate typing. The distance function is the weighted
Manhattan distance between the types. As expected, there
isasmall range of types (6-10) the yields optimal tradeoff
between number of types and defect. The optimal typing
with 6 typesis shown in Figure 1

1600

_defect —
distance -+ 1

1400 i
1200 |!
1000 1
800 |,

600 || °

Total Distance/Defect

400 |

200 r

0

20 30 40
Number of types

0 10
Figure6: Senditivity graph for DBG data set

Theexistenceof optimal range of number of typessuggests
that an interactive approach to typing semistructured data
will work best. Instead of deciding in advance on a fixed
number of types in the approximate typing it is better to
explore several different values ranging from as many asin
the minimal perfect typing to perhaps just 1. Note that the

11

algorithm can be adapted such that the we find sequentially
the best fit with & types starting from the number of typesin
the perfect typing. Thus, the agorithm can find the optimal
tradeoff point and suggest a’ natural’ typing (or asmall set).
If the results are unsatisfying because of too much defect or
too many types. Thealgorithm can keep reducing the number
of typesor revert to atyping with more types but less defect.
However, we fed that having hard limits on the number of
types or the defect, without having knowledge of the dataiis
unreasonable.

8 Conclusions

In this paper, we presented a method for extracting schema
from semistructured data. The schema is in the form of
a monadic datalog program with each intensional predicate
defining a separate type. We asserted that in the context of
semistructured dataiit is imperative to alow for some defect
when objects are typed. This assertions was supported by
the preliminary experimental results on both operational and
syntheticdata. The perfect typing (with no defect) wasshown
to be much bigger than the approximate typing produced by
our method. Indeed, in some cases the perfect typing was of
roughly the same size asthe datawhi ch precludesits practical
use. In contrast, the size of approximate typing can aways
be reduced to a desired range. Our experiments suggested
that even better results can be obtained by considering the
defect as a function of the number of types in approximate
typing and choosing an optimal range.

Acknowledgments We would like to thank Jeff Ullman,
Peter Buneman, Victor Vianu, for discussions on thistopic.

References

[1]

(2]

(3]

[4]

(5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

S. Abiteboul. Querying semi-structured data. In Pro-
ceedings of ICDT, pages 1-18, Del phi, Greece, January
1997.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, Reading,Massachusetts,
1995,

A. Albano, R. Bergamini, G. Ghdlli, and R. Orsini. An
object data model with roles. In Proceedings of VLDB,
pages 39-51, Taipel, Taiwan, 1993.

K.R. Apt. Logic Programming, Handbook of Theo-
retical Computer Science. J. Van Leeuwen, Elsevier,
1991.

E. Borger, E. Graeddl, and Y. Gurevich. The classical
decision problem. Speinger-Verlag, Berlin Heidelberg,
1997.

P. Buneman. Semistructured data: atutorial. In Pro-
ceedings of PODS, Tucson, Arizona, May 1997.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Addind structure to unstructured data. In Proceedings
of ICDT, pages 336—350, Del phi, Greece, January 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for un-
structured data. In Proceedings of the ACM SGMOD
International Conference, pages 505-516, Montreal,
Canada, June 1996.

R.G.G. Cattell. The Object Database Sandard:
ODMG-93. Morgan Kaufmann, San Mateo, Califor-
nia, 1994.

R. Goldman and J. Widom. Dataguides: Enabling
guery formulation and optimization in semistructured
databases. In Proceedings of the Twenty-Third Interna-
tional Conference on \ery Large Data Bases, Athens,
Greece, August 1997.

D.S. Hochbaum. Heuristics for the fixed cost median
problem. Mathematical Programming, 22:148-162,
1982.

M.R. Korupolu, C.G. Plaxton, and R. Rgjaraman. Anal-
ysisof aloca search heuristicfor facility location prob-
lems. In Proceedings of the Ninth Annual ACM-SIAM

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Symposiumon Discrete Algorithms, San Francisco, Cal-
ifornia, January 1998.

Robin Milner. Communication and concurrency. Pren-
tice Hall, 1989.

S. Nestorov, S. Abiteboul, and R. Motwani. Infer-
ring structurein semistructured data. In Proceedings of
the Workshop on Management of Semistructured Data,
Tucson, Arizona, May 1997.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative objects: Concise representations of
semistructured, hierarchical data. In Proceedings of
ICDE, pages 79-90, Birmingham, U.K., April 1997.

D. Quass, A. Rgaaman, Y. Sagiv, J. Ullman,
and J. Widom. Querying semistructured heteroge-
neous information. In Deductive and Object-Oriented
Databases (DOOD), pages 319-344, Singapore, De-
cember 1995.

D. Suciu. Query decomposition and view maintenance
for query languages for unstructured data. 1n Proceed-
ings of VLDB, pages 227-238, 1996.

JD. Ullman. Principles of Database and Knowledge-
Base Systems, Wlumes I,11. Computer Science Press,
Rockville, Maryland, 1989.

M. Zloof. Query-by-example: A data base language.
IBM Systems Journal, 16:324-343, 1977.

