
Query-Flood DoS Attacks in Gnutella ∗

Neil Daswani and Hector Garcia-Molina
Computer Science Department

Stanford University
Stanford, CA 94305-9045

{daswani,hector}@db.stanford.edu

ABSTRACT
We describe a simple but effective traffic model that can
be used to understand the effects of denial-of-service
(DoS) attacks based on query floods in Gnutella net-
works. We run simulations based on the model to ana-
lyze how different choices of network topology and ap-
plication level load balancing policies can minimize the
effect of these types of DoS attacks. In addition, we also
study how damage caused by query floods is distributed
throughout the network, and how application-level poli-
cies can localize the damage.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: Gen-
eral—Security and protection; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Distributed
systems, Information networks; I.6.3 [Simulation and
Modeling]: Applications

General Terms
Security, Algorithms, Measurement, Experimentation

Keywords
peer-to-peer, security, denial-of-service

1. INTRODUCTION
In this paper we study application-layer, flooding-based

denial-of-service (DoS) attacks in peer-to-peer (P2P) sys-
tems, and propose simple techniques to cope with such

∗This work was partially supported by NSF Grant CCR-
0208683.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CCS’02, November 18–22, 2002, Washington, DC, USA.
Copyright 2002 ACM 1-58113-612-9/02/0011 ...$5.00.

attacks. Since there has been significant recent inter-
est in DoS attacks, it is important to place our work in
context.
First, we are addressing application-layer DoS attacks,

as opposed to network-layer attacks. Most techniques
that have been developed to date to deal with denial-
of-service focus on network-layer attacks [3, 16, 33, 34,
22, 32, 7, 29, 8, 1, 19, 9, 18, 2, 38, 20]. Yet, public
systems are also very vulnerable to application-layer at-
tacks, even if they are immune to network-layer attacks.
In a flooding-based application-layer attack, large num-
bers of application requests or messages (e.g., deliver
email, open account, find page), or malicious applica-
tion messages, can deny service to clients. These at-
tacks can be more damaging, relative to the effort that
the malicious party needs to expend, than network-layer
attacks since each small message can cause a server to
waste significant resources. Fortunately, since requests
require the server to expend a significant amount of CPU
and/or disk I/O resources, the server can afford to spend
some time deciding which requests to honor. In con-
trast, routers processing network packets cannot afford
to spend as much time making such decisions, else the
overhead will be too high. Indeed, in this paper we
propose some “policies” that may be too expensive for
network-layer attacks, relatively speaking.
Second, the application we are considering is P2P

systems, as opposed to other applications such as web
search or e-commerce. For concreteness, it is important
to focus on one particular type of system, and we chose
Gnutella P2P systems (with supernodes) [30], because
they are very vulnerable to attack and very popular. In
Gnutella (as well as in Morpheus [17] and KaZAA [10]),
a client submits a query (e.g., looking for a file) to a
supernode (server). That node performs a local search,
and also broadcasts the query to its neighboring nodes,
asking them to also process the query. Thus, queries
from a malicious client or server can exponentially mul-
tiply throughout the system, consuming resources that
other clients cannot use. If we can manage DoS at-
tacks in Gnutella, then we will surely be able to man-
age DoS attacks in other P2P systems that are less vul-
nerable than Gnutella, such as CAN [24], Chord [35],
Tapestry [39], etc. And clearly, Gnutella systems are of

interest because they are the most prevalent P2P sys-
tems today, with over 25 million client downloads, and
300,000 concurrent users during peak periods.
Third, in this paper we advocate application-layer “load

balancing” techniques that attempt to give clients a “fair
share” of available resources, thus making it harder for
malicious clients to deny service. Most DoS work to
date does not fall in this category: current techniques
tend to be either reactive, where in-progress attacks are
detected, and services are denied to offending clients,
or proactive, where security mechanisms prevent clients
from gaining access to resources [11]. Instead, we do
not require servers to distinguish attack queries from
bonafide ones, and indeed, malicious clients will be able
to receive some service. However, the load balancing
policies try to make sure that offending clients do not
receive an inordinate amount of service. Of course, in a
Gnutella P2P system the challenge is to maintain a fair
load distribution in spite of the multiplicative effect of
query broadcast.
Clearly, load balancing policies do not eliminate the

need for proactive and reactive techniques. We believe
that all three types will be needed for protection against
DoS attacks. In this paper, we simply focus on the load
balancing techniques because they are also important
and we feel they have not been studied adequately in
this context. Because we are studying load balancing
techniques, in our evaluations we focus on flooding-type
DoS attacks, as opposed to attacks that are better dealt
with by other techniques. (For example, if a single ma-
licious query can crash a node, then we clearly need to
ensure, using a proactive approach, that such a query is
never executed.)
We also note that the load balancing techniques we ad-

vocate are not new. These types of techniques have been
used for many years in network management, processor
scheduling, and many other applications. Here we are
simply applying these techniques to a P2P environment,
and extending them to handle requests originating via
flooding from a malicious node possibly multiple hops
away.
However, one area where we have had to go beyond

the current state of the art is in the evaluation of DoS
load balancing techniques. In particular, we needed and
developed techniques for modeling and quantifying the
“usefulness” of load balancing DoS techniques. With our
model and metrics we can compute how much “damage”
a malicious node may cause, which network topologies
may be more vulnerable to attacks (allowing greater
damage), which nodes within a network are the most
vulnerable, and which load balancing techniques may
be most effective. We believe that such an evaluation is
essential in order to get a handle on flooding-based DoS
attacks.
Our main contributions in this paper are as follows:

• We define a simple but effective traffic model for
query flow in Gnutella networks, and outline policies
that nodes may use to manage query flow. We de-
fine expected behaviors for “good” and “malicious”

nodes, and metrics that we use to evaulate the im-
pact that malicious nodes have by flooding the net-
work. (Sections 2, 3, and 4)

• We evaluate how network topology affects the abil-
ity of a malicious node to flood the network. In our
evaluations, we study the vulnerability of complete,
cycle, wheel, line, star, grid, and power-law topolo-
gies under various flow management policies. (Sec-
tions 5.1, 5.2, and 5.3)

• We evaulate how different combinations of flow man-
agement policies can be used to manage the distribu-
tion of damage across the nodes in a network. (Sec-
tion 5.4)

2. GNUTELLA TRAFFIC MODEL
In this section we briefly describe a natural traffic

model for a Gnutella P2P system that focuses on query
flow and query load at nodes in the network. The model
that we present is an intentionally coarse-grained and
relatively simple model whose goal is to capture the im-
portant features of query traffic. We do not expect
the model to predict actual query loads (as might be
observed in a real network), but we do expect it to tell
us about relative query loads at nodes of the network by
using different application-layer policies.
The system is modeled as a graph with a set of supern-

odes V , and a connection topology, i.e., a set of point-to-
point, bidirectional communication links, E. Our model
divides time into a number of discrete time intervals,
and explicitly models each supernode in the network.
Supernodes typically have more processing power and
disk I/O bandwidth than regular nodes. Supernodes are
responsible for propagating queries throughout the net-
work. Regular nodes connect to supernodes, and send
their queries to supernodes to have them serviced. Reg-
ular nodes are not explicitly modeled.
Each supernode conducts three actions during each

unit of time. At a given time t, each supernode 1) ac-
cepts and processes queries from adjacent supernodes,
2) accepts and processes queries it receives from regular
nodes connected to it, and 3) forwards some combina-
tion of queries received from regular nodes and adjacent
supernodes to adjacent supernodes. The time intervals
are denoted by non-negative integers t = 0, 1, 2, ..., K.
Our model can be used to approximate the continuous
behavior of a P2P system as the physical time between
intervals decreases.
Since our model mainly focuses on actions at the su-

pernodes, the term node will be used to refer to a supern-
ode in the remainder of the paper, unless we explicitly
state otherwise. In addition, we will often refer to the
regular nodes that are connected to a particular supern-
ode j as j’s local peers, and other supernodes that j is
connected to as its remote peers. A local query is a query
generated by a local peer, and a remote query is a query
sent by a remote peer.
In this paper, we only model queries, and we do not

model other messages (ping & pong, query-hit, and push),
since query processing dominates the workload of a node.

Let Oj,k(t) be the multi-set of queries that node j
sends to node k at time t. If (j, k) /∈ E, j does not have
a connection to k and Oj,k(t) = 0, ∀t. Also, Oj,j(t) =
0, ∀t. We use multi-sets (bags) instead of sets because
there may be duplicate queries (e.g., queries with the
same search criteria).
Let Gj(t) be the multi-set of queries that node j re-

ceives from local peers at time t. When queries are
generated by local peers, they are assigned a time to
live (TTL) that specifies the maximum number of nodes
(regular or super) that the query may traverse in the
network. Each node checks the TTL for each query, and
does not forward any queries for which TTL=0. Nodes
decrement the TTL for a query before forwarding it to
other nodes. We assume that all peers in the network
generate queries with the same TTL, τ .
Nodes have a limited processing capacity. As a result,

a node j may not be able to process all of the queries it
receives. At time t, j may have to choose some subset
of the queries in the set

⋃

iεV Oi,j(t− 1) ∪Gj(t− 1) for
processing.
Let Ii,j(t) be the multi-set of queries that node j

actually processes from node i at time t. (Ii,j(t) ⊆
Oi,j(t − 1).) If (i, j) /∈ E, i does not have a connection
to j and Ii,j(t) = 0, ∀t. Also, Ii,i(t) = 0, ∀t. Similarly,
let Pj(t) be the multi-set of local queries that j actually
processes. (Pj(t) ⊆ Gj(t− 1).)
To illustrate, consider a system with two nodes, V =
{1, 2} with topology E = {(1, 2)}. Assume that G1(0) =
{q1, q2, q3}. That is, node 1 receives 3 queries at time
t = 0 from its local peers. At time t = 1, node 1 pro-
cesses only two of the queries, so that P1(1) = {q1, q2}.
Assume that node 1 sends the two queries to node 2, so
that O1,2(1) = {q1, q2}. At time t = 2, node 2 receives
O1,2(1), but it does not have to process all the queries.
Depending on node 2’s policy, it may decide to take say
only the first query, so that I1,2(2) = {q1}.
A node j examines the incoming queries contained in

Oi,j(t − 1), ∀i, as well as in Gj(t − 1). In our poli-
cies, we will consider the case in which node j may not
have enough processing capacity (or does not care to)
to examine all these queries (in which case it simply ac-
cepts them on a first-come-first-serve basis), as well as
the case in which it has enough processing capacity to
at least examine all these queries and then choose some
subset of them for processing.
The time required to process a query may involve

searching for a keyword in an inverted index, hash ta-
ble, or some other main memory data structure. How-
ever, keyword search for content has its limitations, and
over time more sophisticated search mechanisms will be
employed. We have already started to see metadata
search deployed in the LimeWire Gnutella client [13]
and on FastTrack-based networks. As the search mecha-
nisms become more complex, query processing will dom-
inate the time required to service incoming queries. In
turn, the time to examine all incoming queries will be-
come negligible compared to the time required to process
queries that are chosen to be serviced. Hence, while we
examine both cases, we believe it will become impor-

tant to make a good decision about which subset of the
incoming queries to process.
During each time step, a node selects at most cj queries

for actual processing. A node never selects queries that
it has seen before for processing. (This may occur due
to cycles in the topology of length less than τ .) Thus,
cj represents the processing capacity of node j.
Our capacity constraint can be stated as follows:

∑

∀i

|Ii,j(t)| + |Pj(t)| ≤ cj .
Once a maximum of cj queries have been accepted and

processed, node j then broadcasts all of these queries to
its adjacent nodes such that they too can determine if
they have answers to the queries.

3. POLICIES
Given this framework, we are interested in under-

standing how nodes may manage DoS query traffic in
a Gnutella network. There are a number of choices that
each node has with regards to deciding what queries to
accept and process.
If nodes make bad decisions, they may end up only

accepting many “useless” queries that are generated by
malicious nodes, wasting their processing capacity on
these queries, and then forwarding these queries to ad-
jacent nodes that will do the same. If a node makes good
decisions, then it can minimize the effect of a flooding-
based DoS attack. We assume that it is hard to dis-
tinguish a high load of legitimate queries from attack
queries. As such, nodes must exercise some discretion
in how to “fairly” allocate their processing capacity to
servicing queries so as not to spend too much effort on
queries that may be bogus.
In this section, we introduce some policies that nodes

may use as options to manage query load. Once we have
introduced these policies (and defined some metrics), we
will present simulation results that determine which of
these policies do best in minimizing the impact of mali-
cious query floods in small networks.

3.1 Reservation Ratio (ρ)
Nodes must provide some level of fairness between ser-

vicing local and remote queries. If supernodes only ser-
vice local queries, then local peers will not benefit from
query results that could be obtained from other supern-
odes in the network. If supernodes service only remote
queries, then local peers will be neglected.
To allow a supernode to decide how to split its pro-

cessing capacity we define ρ to be the fixed fraction of
query bandwidth that a supernode reserves to service
local queries (0 ≤ ρ ≤ 1). A supernode j uses ρ to
determine how many queries to accept from local peers
and how many queries to accept from remote peers when
the total number of queries sent to it exceeds cj . (If the
total number of queries sent to it does not exceed cj , the
supernode simply processes all the queries sent to it.)
More formally, if |Gj(t − 1)| ≤ ρcj , then Pj(t) ←

Gj(t−1). Otherwise, we select ρcj queries fromGj(t−1).
Queries that are not selected from Gj(t−1) for process-
ing at time t can be queued for future time steps (or
even discarded). The remaining capacity, cj − |Pj(t)| is

now allocated among the queries arriving from remote
peers. We will refer to ρcj as node j’s local query band-
width (LQB), and (1 − ρ)cj as node j’s remote query
bandwidth (RQB).
There are several combinations of policies that we

shall consider for allocating the RQB amongst queries
arriving from remote peers. There are two questions
that these policies answer:
1) how many queries should be accepted from each

remote peer?, and
2) if there are more queries arriving from a remote

peer than we decide to accept, which ones should we
accept?
The policy used to answer the first question is the in-

coming allocation strategy, and the policy used to answer
the second question is the drop strategy.

3.2 Incoming Allocation Strategy
There are two key incoming allocation strategies (IASs)

that we cover in this paper: Weighted and Fractional.
We describe how each of these strategies select which ad-
jacent nodes to process queries from in this section. In
our descriptions, queries are represented as two-tuples
q = (o, t) where o is the node at which the query origi-
nated 1, and t is the query’s current TTL. We refer to
the components of the tuple using a dot notation such
that q.o refers to the origin node (at which the query
was first generated) and q.t refers to the TTL. Many
distinct queries can have the same origin and TTL, and
we will refer to η distinct queries with the same origin
and TTL as ηq.
We will describe options for IASs and illustrate them

using examples. In our examples, assume a graph with
three nodes V = {1, 2, 3} and E = {(1, 2), (1, 3)}. Also,
for each of the nodes j, cj = 100, 1 ≤ j ≤ 3, and
each node has ρ = 0.2. In each of the examples, we
present how node 1 decides how many and which queries
to accept from nodes 2 and 3.

Weighted IAS. Weighted IAS is intended to model a
“naive” Gnutella node in which the likelihood that a
query from a particular incoming link will be accepted
is proportional to the number of queries arriving on that
link.

We assume that queries arriving at node j from remote
peers are equally likely to be accepted. Thus, the more
queries a neighbor sends, the more will get accepted.

If a total of less than (1−ρ)cj queries are sent by remote
peers, then all queries that are sent are accepted for
processing. If more than (1 − ρ)cj queries are sent by
remote peers, then the number of queries accepted from
each remote peer is weighted by the fraction of the total
queries sent. If a node has κ remote peers that send it
α1, α2, ...ακ queries, it will accept up to

αλ
Σ∀iαi

(1− ρ)cj

queries2 from the λth remote peer, 1 ≤ λ ≤ κ.

1Current Gnutella networks do not stamp queries with
the nodes at which they originated, but this feature
could be added to support load balancing.
2To keep our explanation of policies conceptually clear,
we will not add floors and ceilings to quantities. In our

For instance, let |O2,1(t−1)| = 100 and |O3,1(t−1)| = 20
with (1 − ρ)c1=80 and the LQB fully utilized. The
Weighted IAS divides the RQB such that |I2,1(t)| =
100
120
(1−0.2)100 = 67 and |I3,1(t)| =

20
120
(1−0.2)100 = 13.

Fractional IAS. Fractional IAS is geared at giving each
of a node’s incoming links an equal fraction of query
bandwidth. If a node has κ remote peers, a Fractional
IAS allocates up to 1/κ of its query bandwidth for han-
dling the queries from each of its remote peers. Any
extra query bandwidth that is unused by a remote peer
is allocated to remote peers. Also, if the LQB is not
completely utilized by local peers, any leftover LQB is
allocated to servicing queries from remote peers.

For example, let |O2,1(t− 1)| = 100 and |O3,1(t− 1)| =
20, and node 1’s RQB is 80, as before. Assume also,
as before, that the LQB is completely utilized. If

node 1 uses a Fractional IAS, (1−ρ)c1
2

= (1−0.2)100
2

=40
queries are allocated to each remote peer, but the extra
20 queries per unit time that are not used by node 3 are
allocated to node 2. As a result, |I2,1(t)| = 40 + (40 −
|O3,1(t− 1)|) = 40 + 20 = 60 and |I3,1(t)| = 20.

Other policies. There exist many other possible IAS
policies (i.e., least queries first, preferred neighbors first,
etc.). For the remainder of this paper, we only consider
Fractional and Weighted IASs. However, other IASs
may warrant examination in future study.

3.3 Drop Strategy (DS)
This section describes drop strategies (DSs). When

the IAS used for node j determines that no more than
m queries may be accepted from a remote peer i, and i
sends |Oi,j(t−1)| = m+∆ queries (where ∆ > 0), node
j uses a DS to determine specifically which ∆ queries to
drop. In our examples below, node j receives Oi,j(t −
1) = {2q1, 2q2, 6q3} where q1 = (a, 5), q2 = (a, 4), and
q3 = (b, 4).
The Proportional and Equal strategies described be-

low make decisions about which queries to drop by con-
sidering the nodes at which the queries in Oi,j(t − 1)
originated as well as their TTL.

Proportional. Let node j receive Oi,j(t − 1) = { η1q1,
η2q2, ... ηnqn}. If j uses a Proportional DS, it will accept
up to

ηχ
Σnχ=1ηχ

queries of type qχ, 1 ≤ χ ≤ n.

In our example, if m = 5, then Proportional DS chooses
Ii,j(t) = {q1, q2, 3q3}.

Equal. The Equal DS chooses queries uniformly based
on the origin of the query. If queries arrive at j from β
different sources (not necessarily neighboring nodes), the
Equal DS will attempt to choose m

β
queries from each

source. If some sources sent fewer than m
β
queries, then

the extra query bandwidth will be shared equally across
queries from sources that sent more than m

β
queries.

For instance, if m = 3, then the Equal DS chooses
Ii,j(t) = {q1, q2, q3}.

simulations, floors are taken for most calculated quan-
tites, and policies are run in multiple “rounds” to ensure
that all available query bandwidth is used up.

PreferHighTTL / PreferLowTTL. These strategies are
used to drop either those queries with the lowest or high-
est TTLs, regardless of the nodes at which they origi-
nated.

Ifm = 1, PreferLowTTL gives either {q2} or {q3}. (Ties
are broken arbitrarily.) Alternatively, for m = 1, Prefer-
HighTTL gives {q1}.

4. METRICS
To evaluate whether or not (and how well or how

badly) the policies above may help us manage queries
distributed by malicious nodes, we define a work metric,
the concept of a service guarantee, and a damage metric
that allow us to quantitatively determine the service loss
a malicious node may be able to inflict on a network. In
addition, we will describe how we model “good” nodes
(that use our policies) and how we model “malicious”
nodes (that attempt to flood the network, possibly ig-
noring reasonable policies).

4.1 Work
Our definitons for work broadly measure the number

of queries processed by one or more nodes in the net-
work. More specifically, for a particular node j, Wj(t)
is the work or cumulative number of queries processed
at node j from time 0 to time t. Furthermore, we dis-
tinguish local work from remote work. The local work,
Lj(t) is the cumulative number of queries that node j
receives from its local peers and processes from time 0 to
time t. Similarly, remote work, Rj(t) is the cumulative
number of queries that node j receives and processes
from its remote peers from time 0 to time t. Of course,
Wj(t) = Lj(t) +Rj(t).
To understand how local and remote work changes

with ρ, let us consider what happens if we start with
ρ = 0 and slowly increase it.
If ρ = 0 for all nodes, then each of the nodes allo-

cates all of its query bandwidth to queries arriving from
remote peers. Unfortunately, nodes send out ρcj = 0
queries during each time step. While each node is “all
ears,” no node is sending out any work. As a result, the
total local work and total remote work are both 0.
As ρ increases, more and more queries are accepted

from local peers, and more and more queries will be
processed by the network. Both the local and remote
work will increase. However, at some point, each node
will be processing the maximum number of queries pos-
sible (as specified by its capacity, cj). After this point,
if ρ increases any further, nodes will have to start drop-
ping remote queries, and the amount of remote work
will start decreasing. However, since we make the as-
sumption that local peers always generate ρcj queries,
the amount of local work will continue increasing as ρ
increases.
Once ρ = 1, then each of the nodes allocates all of its

query bandwidth to queries arriving from local peers,
and do not service any queries from each other. The
total local work will be maximum and the total remote
work will be 0.

While the query bandwidth of each of the nodes may
be fully utilized when ρ = 1, users do not receive the
benefit of having their queries processed at other nodes.
To maximize the number of queries processed at remote
nodes, we can set ρ to maximize the remote work. In
the following section, we show how to set ρ to do this.

4.2 “Good” nodes
In our model, “good” nodes have two important char-

acteristics. Firstly, we make the simplifying assumption
that the processing capacity cj is the same for all nodes
in the graph. In particular, ∀jεV, cj = C, where C is
some constant. Secondly, good nodes are compelled to
find a setting for ρ that maximizes the remote work 3.

Definition 4.1. Optimal Rho, ρ̂. Let ρ̂ be the setting
for ρ that maximizes ΣjεVRj(t).
We may analytically solve for ρ̂ for simple network

topologies, as we will demonstrate shortly, and we may
approximate or experimentally determine ρ̂ for more
complex topologies.
Also, it is the case that for certain topologies the opti-

mal value for ρmay be different for different nodes in the
network. However, for simplicity, we will assume that we
would like to have a common setting for ρ for all nodes.
We will have to sacrifice some remote work to have a
common ρ, but doing so will simplify the implementa-
tion of our load balancing policies in a real network.
Consider the network topology K3 = (V = {1, 2, 3},

E = {(1, 2),(1, 3),(2, 3)}) in which we have a network of
three nodes with three edges completely connecting the
nodes, cj = 100, 1 ≤ j ≤ 3, and τ = 1. For K3, the
reader can verify that the setting at which ρ maximizes
the remote work is 1

3
. (At this setting, the amount of

new work generated and sent to any given node is exactly
equal to the amount of work that it can accept.)
While the appropriate setting for ρ might be obvious

in our small example, it is important for good nodes in
our network to be able to compute or approximate ρ̂ for
arbitrary networks. We provide a formula for computing
ρ̂ for “symmetric” networks (such as complete, cycle, or
hypercube networks) below, following some elementary
definitions.

Definition 4.2. Distance, d(j, k). Let d(j, k) be the
length of the shortest path between nodes j and k. Note
that d(j, j) = 0.

Definition 4.3. Radial Node Set, δ(j, h). Let δ(j, h)
= { v | d(j, v) = h }. That is, δ(j, h) is the set of nodes v
such that the shortest distance between j and v is exactly
h.

Definition 4.4. Arial Node Set, D(j, h). Let D(j, h)

=
⋃h

i=1 δ(j, i). That is, D(j, h) is the set of nodes v such
that the distance between j and v is greater than or equal
to 1 but less than or equal to h. Note that j /∈ D(j, h).
Informally, D(j, h) is the set of nodes that are within h
hops of j, not including j itself.

3Alternatively, we can maximize the total work, but
maximizing the remote work has the benefit that it gives
us the smallest possible setting for ρ for which the total
work is maximized and the minimum number of remote
queries are dropped. A more detailed discussion appears
in [23].

Theorem 4.1. Optimal Rho (ρ̂) for Symmetric Net-
works. Suppose that for all nodes j ∈ V have cj = C for
some constant C > 0, |D(j, τ)| = D for some constant
D > 0, and all nodes have ρ set to the same value, then
ρ̂ = 1/(D + 1).
We provide the proof of this theorem in Appendix A.
For more complex networks, such as those studied in

our evaluations in Section 5, we experimentally deter-
mined ρ̂. In future work, we plan to study how to calcu-
late good approximations for ρ̂ for arbitrary networks.
In summary, good nodes in our model set cj = C,

and ρ = ρ̂ to maximize the remote work done by the
network.

4.3 Malicious Nodes
We are interested in studying flooding-based attacks,

and we model a malicious node such that it generates
as many queries as it is capable of. However, there exist
many other behaviors that a malicious node may engage
in to cause harm to other nodes in the network. While
there are many such options available to the adversary,
we focus specifically on query floods in this paper.
To construct a query flood attack, a malicious node

dedicates all of its processing capacity to generating
“useless” queries. Malicious nodes may be able to gen-
erate more than C queries. However, since a good node
knows that other good nodes can send at most C queries,
it only examines the first C queries from each incoming
link during a given time step, and ignores the rest. While
a malicious node can generate more than C queries,
the effect will be the same as if it generates exactly C
queries. Hence, we set cm = C, where m is a malicious
node.
After generating queries in a given time step, a mali-

cious node has no processing capacity left over. In addi-
tion, it does not have any incentive to process or forward
queries that are sent to it by remote peers. To model a
flood generated by a malicious node, we have the mali-
cious node set ρ to 1, whereas good nodes typically set
ρ to a significantly lower value.

4.4 Service
A key metric that we can use to understand the effects

of a malicious node in the network will be “service.” The
service, Si,j(t), is the number of queries that originate at
node i and are processed at node j at time t. The service
Si,j(t) tells node i how many of its queries are processed
by node j at time t. For example, if node 2 processes 5
of node 1’s queries at time t = 3, then S1,2(3) = 5.
We now more formally define the notion of service,

and two variations of it, radial and arial service, that we
use in our evaluations.

Definition 4.5. Service, Si,j(t). Let

Si,j(t) = σq.o=i(
⋃

vεV

Iv,j(t))

Note that we use σ to be selection over multi-sets, as
defined in bag-relational algebra.

Definition 4.6. Radial Service, Rj(h, t). Let Rj(h, t) =
Σvεδ(j,h)Sj,v(t). Rj(h, t) denotes the total service that

node j receives from all of the nodes whose shortest dis-
tance from j is exactly h. (Informally, Rj(h, t) is the
total service that j receives from all nodes that are ex-
actly h hops away from j in the network.)

Definition 4.7. Arial Service, Sj(h, t). Let Sj(h, t) =
ΣvεD(j,h)Sj,v(t). Sj(h, t) denotes the total service that
node j receives from all of the nodes within h hops.

4.5 Worst-case Scenario
In the evaluations described in Section 5, we consider a

“worst-case” scenario in which there is a single malicious
node in a small network of “fully-loaded” nodes.
In our “worst-case” scenario, we assume that all good

nodes in the network are broadcasting ρ̂C queries. In
other words, ∀j, t Gj(t) = ∞ where j is a good node,
and the reservation ratio that the good nodes choose is
ρ = ρ̂. The malicious node, as before, has its reservation
ratio set to ρ = 1. The worst-case might be said to model
a real network at 4pm in the afternoon when it is at its
peak load.

4.6 Victim Nodes
In some of our evaluations, we will study the effect of

the malicious node on the network from the point of view
of a “victim” node. In particular, we will be interested in
understanding what is the reduction in service that the
victim node receives if there is a malicious node present
in the network.
As mentioned above, a malicious node in our evalua-

tion is one that sets ρ = 1 in an attempt to flood the
network with “useless” work. The malicious node does
not carry out any behavior that explicitly attacks the
node that we will call the victim. Nevertheless, we will
still use the term victim for the node from whose point of
view we are studying the impact of the malicious node’s
behavior. More specifically, we study the degradation in
service that the victim node experiences due to the pres-
ence of the malicious node. It is most likely the case that
other nodes suffer degradation in the service they receive
from other nodes as well. However, by studying service
degradations for different victim nodes in the network,
we build an understanding of how much impact a ma-
licious node has on various relative placements of the
malicious and victim nodes in a particular topology.
We define the service that the victim node receives

from the network in a worst-case scenario as a service
guarantee.

Definition 4.8. Service Guarantee, Sj(t). Let Sj(t) =
Sj(τ, t). Sj(t) denotes the total service that node j re-
ceives from all of the nodes within τ (TTL) hops.

4.7 Damage
With all of this machinery in place, we are now ready

to quantify the degradation in service that might be
brought about by a malicious node. We call this degra-
dation in service damage.
In the following definitions, Sj(t) refers to the service

guarantee that j receives from the network when there
is no malicious node present in the network, and Sj(t)
refers to the same quantity when there does exist a ma-
licious node in the network.

Damage with respect to a victim node j, Dj(t), is
defined as follows:

Definition 4.9. Damage for Victim Node j

Dj(t) =
Sj(t)− Sj(t)

Sj(t)

If Sj(t) = Sj(t), then the malicious node is not able
to affect the service guarantee that j receives from the
network at time t, and the corresponding damage is 0.
On the other hand, if Sj(t) = 0, then the malicious node
is able to prevent j from receiving any service at all at
time t, and the corresponding damage is 1.
We define cumulative network damage as the sum of

the loss in service incurred by every node in the network
from time 0 to time t.

Definition 4.10. Cumulative Network Damage

D(t) =
Σti=0ΣjεV (Sj(i)− Sj(i))

Σti=0ΣjεV Sj(i)

Similarly, the damage is 0 if the malicious node is not
able to have an effect on the network, while the damage
is 1 is the malicious node is able to prevent all remote
work from taking place in the network.
Finally, we define cumulative radial damage as the

reduction in service that a node j experiences at nodes
h hops away due to the presence of a malicious node.

Definition 4.11. Cumulative Radial Damage. Dj(h, t)

=
Σti=0Σjεδ(j,h)(Rj(h,i)−Rj(h,i))

Σt
i=0Σjεδ(j,h)Rj(h,i)

. Dj(h, t) denotes the dam-

age, or reduction in service that node j receives from all
of the nodes whose shortest distance from j is exactly h.

5. RESULTS
In this section, we present the results of evaluations

run using a simulator that we developed called Fargo.4

Fargo implements the traffic model described in Sec-
tion 2, allows us to choose any of the policies described
in Section 3 for a given network topology, and measures
the metrics defined in Section 4.
We chose to evaluate small network topologies and

a single malicious node to build a fundamental under-
standing of the issues and trade-offs that a system ar-
chitect would need to keep in mind when designing a
flood-tolerant system.
All of our evaluations were run on small networks of

either 14 nodes (for complete, cycle, wheel, line, and star
topologies) or 16 nodes (for grid and power-law topolo-
gies5) with a single malicious node in the graph, and all
queries were constructed with a TTL (τ) of 7. In the
simulations, each node is given a maximum processing

4Our simulator is named after a city in North Dakota
that is frequently flooded by the Red River of the
North that runs through it. More information about
Fargo, North Dakota and the Red River is available at
http://www.ndsu.nodak.edu/fargoflood.
5For the results shown in this paper, we used a partic-
ular instance of a power-law topology as described in
[23]. We are in the process of extending our simulator
to randomly generate a number of power-law topologies,
and average the results over the generated topologies.

capacity of C = 10000 queries per time step, and ρ̂ was
experimentally determined to within 0.01 of the actual
value. Each of the evaluations was run for t = 100 time
steps which was sufficient to attain steady state in all
cases.
Table 1 shows the cumulative damage incurred for dif-

ferent network topologies for the strategies outlined in
Section 3. The results shown in this table assumed a
worst-case scenario as defined in Section 4.
The first column of the table lists the topology used for

a particular simulation. For topologies for which it made
sense, simulations were done in which the malicious node
was placed in different positions in the network, and the
position of the malicious node is indicated in parenthesis.
For example, for a star topology, the malicious node

could either be in the center of the star, or at one of the
spokes. As might be expected, when the malicious node
is in the center of a star topology, nodes at the spokes
are unable to answer each other’s queries at all and the
resulting damage is 1.
The results in Table 1 help us answer the following

questions in the indicated sections:

• Which IAS and DS strategies minimize damage the
best? (and which strategies are the worst at mini-
mizing damage?) Does the best IAS / DS strategy
depend upon the topology? Or do different IAS/DS
strategies work better for different topologies? (Sec-
tion 5.1)

• For a given topology, how much can the damage be
minimized by using the best IAS/DS compared to
other strategies? (Section 5.2)

• For a fixed IAS/DS strategy, how does topology af-
fect damage? Are there certain topologies that are
less prone to damage than others? Are some nodes
particularly susceptible to attack? (Section 5.3)

• How is damage distributed across the network? How
do different combinations of policies affect the distri-
bution of damage? (Section 5.4)

5.1 IAS/DS Policies and Damage
Fractional IAS can be used with Equal or PreferHigh-

TTL DSs to minimize damage independent of network
topology. Weighted IAS and PreferLowTTL DS maxi-
mize damage independent of network topology.
From Table 1, we can see that the combination of

the Fractional IAS together with either the Equal or
PreferHighTTL DSs minimize damage independent of
topology and the location of the malicious node. The
Fractional IAS limits the maximum number of queries
that arrive from a particular link in the face of an over-
abundance of queries. All nodes that are adjacent to a
malicious node will accept only some fraction of the ma-
licious node’s queries, and all nodes that are two hops
away from the malicious node will only accept some frac-
tion of that fraction. As such, the number of malicious
queries that are received by a node drops off quickly
with the node’s distance away from the malicious node.
Of those queries that are received from adjacent nodes,
the Equal DS fairly distributes available query band-

Fractional Weighted
Topology (Location) Prop Equal PfHighTTL PfLowTTL Prop Equal PfHighTTL PfLowTTL

Complete 0.143 0.143 0.143 0.143 0.545 0.545 0.545 0.545
Cycle 0.388 0.314 0.312 0.533 0.527 0.459 0.387 0.695

Grid (Center) 0.273 0.227 0.274 0.292 0.454 0.363 0.422 0.569
Grid (Corner) 0.225 0.170 0.187 0.286 0.371 0.270 0.247 0.570
Grid (Edge) 0.282 0.191 0.208 0.378 0.412 0.306 0.294 0.553
Line (Center) 0.324 0.248 0.330 0.515 0.428 0.306 0.398 0.609
Line (End) 0.175 0.148 0.143 0.275 0.219 0.184 0.165 0.346

Power-Law (High) 0.272 0.262 0.284 0.324 0.539 0.505 0.484 0.612
Power-Law (Low) 0.201 0.169 0.193 0.267 0.443 0.367 0.386 0.534
Star (Center) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Star (Edge) 0.142 0.143 0.142 0.143 0.526 0.506 0.542 0.545
Wheel (Center) 0.386 0.386 0.386 0.386 0.726 0.751 0.717 0.751
Wheel (Edge) 0.335 0.337 0.354 0.388 0.505 0.444 0.510 0.573

Table 1: Total Cumulative Network Damage as a function of topology, IAS, and DS

width based on the origin of the queries, so the malicious
node’s queries are given the same weight as queries from
other nodes, even if the malicious nodes sends many,
many more of them. The PreferHighTTL DS performs
well also because malicious queries stay localized– they
are given lower and lower preference as they travel away
from the malicious node.
The Equal and PreferHighTTL DSs perform compa-

rably in many cases, although the Equal strategy per-
forms better in general in most topologies we consid-
ered. In the few cases that PreferHighTTL performed
better, the difference was marginal. However, Equal DS
requires queries to be “stamped” with the node at which
they originated, whereas PreferHighTTL does not re-
quire this extra information. Currently deployed Gnutella
networks do not stamp queries, and the PreferHighTTL
DS is a good substitute as it achieves comparable per-
formance without stamping.
Weighted IAS always incurs more damage indepen-

dent of DS and topology. We can expect that most
Gnutella nodes deployed today can be modeled as using
a Weighted IAS as they arbitrarily accept queries from
other nodes without enforcing any traffic management
policy. The Weighted IAS allows queries that are part
of a flood to have a significantly higher chance of being
chosen for processing relative to legitimate queries.
In general, when nodes use the Weighted IAS, dam-

age increases as the average connectivity of the nodes
increases. On the other hand, when nodes use the Frac-
tional IAS, damage decreases as the average connectivity
of the nodes increases.
The PreferLowTTL DS never reduces damage, and

often results in significantly more damage as compared
to the other DSs. One potential reason to use Prefer-
LowTTL might be to attempt to increase the “reach” of
a query, and to attempt to obtain as many search results
from nodes a great distance (but less than TTL hops)
away from the originator of the query. Unfortunately,
when the malicious node is the originator of a query,
PreferLowTTL allows its queries to be spread as far as
possible and incur a large amount of damage.

5.2 Damage Reduction
Damage reductions of 1.4 to 3.8 times can be achieved

with Fractional/Equal IAS/DS, depending upon topology
(see Table 2).
Table 2 shows the damage reduction factors that can

be achieved by switching from a Weighted/Proportial
IAS/DS to a Fractional/Equal IAS/DS for all of the
topologies considered with the malicious node in the
most threatening position. For example, employing Frac-
tional/Equal IAS/DS for the power-law topology results
in reducing damage by about a factor of two as compared
to Weighted/Proportional IAS/DS when the malicious
node is highly connected.
To put this damage reduction factor in perspective, it

is worthwhile to remember that we measure damage in a
worst-case scenario, when the network is “fully-loaded”
as defined in Section 4.5. At a time at which the network
is not heavily loaded (and has no malicious node), a node
is able to have many of its queries serviced; the number
of queries that it has serviced by other nodes is greater
than its service guarantee. When the network is at its
busiest (4pm in the afternoon on a weekday), again with
no malicious node, a node receives an amount of service
that is exactly equal to its service guarantee. A node
might have, for instance, 200 of its queries processed at
other nodes. Our damage metric (as shown in Table 1)
tells us how many queries a malicious node is able to
rob the good node of at this busiest time. If the damage
is 0.5, then the malicious node is able to rob the good
node of 100 queries. By using a better IAS and DS
policy, we might be able to reduce the damage. If the
new damage using the better policies is 0.25, then we
are able to recover 50 queries for the victim node; that
is, other nodes will service 50 additional queries for the
victim by using better policies when the malicious node
is present. The damage reduction factor in this case is
0.5
0.25

= 2.
The damage reduction factors for various topologies

and policies are shown in Table 2.

Topology (Location) F/E W/P Dmg Red Ftr
Complete 0.143 0.545 3.8
Cycle 0.314 0.527 1.7
Grid (Center) 0.227 0.454 2.0
Line (Center) 0.248 0.428 1.7
Power-Law (High) 0.262 0.539 2.1
Star (Center) 1.000 1.000 1.0
Wheel (Center) 0.386 0.726 1.9

Table 2: Damage Reduction Factor using
Frac/Equal IAS/DS

5.3 Damage vs. Topology
The complete topology under the Fractional IAS is the

least prone to damage, and is insensitive to the position
of the malicious node.
Figure 1 shows how damage varies with topology and

placement of the malicious node. Figure 1 graphically
depicts theWeighted/Proportional and Fractional/Equal
columns of Table 1. The results corresponding to the
star topology with the malicious node in the center have
been excluded as the damage is always 1, and the exclu-
sion allows the reader to see other the results with better
resolution. Also, the names of the graph topologies have
been abbreviated (K=Complete, C=Cycle, W=Wheel,
L=Line, S=Star, P=Power-Law, G=Grid).
From Figure 1, we can see that if the malicious node

can take on any position in the network, then the com-
plete topology minimizes damage. Of course, the use of
Fractional IAS plays a significant role in the complete
topology’s ability to minimize damage. The more links
that a node using Fractional IAS has, the less negative
of an impact can be caused by a single malicious node
connected to it. In Table 1, it is interesting to note that
due to the symmetry of the actions taking place at each
node, all of the drop strategies that we consider perform
equivalently in a complete network.
From Table 1, we also learn that topology alone can-

not significantly reduce damage if bad policies are used.
If a Weighted/PreferLowTTL IAS/DS is used, a ma-
licious node can cause a damage of at least 0.5 for all
topologies in the most threatening position. By contrast,
if Fractional/Equal IAS/DS is used, then the worst pos-
sible damage is 0.386. Hence, it is important to use good
policies regardless of the topology of the network.
In all topologies, we find that damage increases as the

connectivity of the malicious node increases. In addi-
tion, we find that the closer the malicious node is to the
“center” of the network, the more damage it can cause.
Therefore, when new “untrusted” nodes join a network,
they should be confined to the “edges” of the network.
Over time, nodes that persist in offering service can be
moved towards the center. In today’s Gnutella networks,
nodes can join at any random location and no explicit
mechanism exists to incrementally move nodes towards
the center of the network based on a node’s “history.”
Of course, a malicious node can “act” good until it

finds itself in a central position in the network, and can
start flooding at that time. Hence, while good poli-
cies can minimize the damage, it will be important to

develop techniques that can detect and disconnect mali-
cious nodes. Since good nodes in our model should gen-
erate no more than ρ̂cj new queries per time step when
there is high load, it might be worthwhile to disconnect
any node that is sending more than ρ̂cj queries under a
high load condition. However, in a real network, mali-
cious nodes can easily forge source IP addresses, and can
make it appear as if they are “good nodes” that are just
forwarding queries that were generated elsewhere. Nev-
ertheless, while the idea of moving “trusted” nodes to
the center does not prevent bad nodes from masquerad-
ing as good ones, it does “raise the bar” for an attacker
to move into a more threatening position.

5.4 Damage Distribution
Fractional/Equal IAS/DS minimizes flood damage dis-

tributed in a cycle topology.
In this section, we measure how damage due to a single

malicious node is distributed across the network. Due to
space limitations, we only discuss damage distribution
for the cycle topology here.
Damage distribution is measured with respect to “vic-

tim” nodes in the network. We examine the relation
between IAS/DS policies and damage distribution.
Figure 2 shows the damage incurred at the victim

node when the victim and malicious nodes are separated
by 1, 3, 5, and 7 hops in a cycle topology. In general,
damage decreases as the distance between the victim
and malicious node increases.
Since damage decreases as distance from a malicious

node increases, good nodes should attempt to make new
connections in a way that distances them from malicious
nodes. One method by which nodes can attempt to dis-
tance themselves from malicious nodes is by connecting
to nodes that they “trust.” That is, if a node i is rea-
sonably sure that another node j is not malicious, then
i should connect to j. Node j may be run by a friend
of node i, or, in an enterprise setting, node j may have
a business relationship with i. In either case, if node i
connects to a “trusted” node j, then i can be reasonably
sure that it has inserted at least one hop between itself
and some malicious node that is part of the topology.
Node j benefits from the same.
In the case that a node does not have any “friends,”

but can use a Fractional IAS, it should make many con-
nections to shield itself from a potential flooding attack.
If it makes m connections, then it accepts a maximum
of 1

m
useless queries from a malicious node. However, if

a “friend-less” node is only capable of using a Weighted
IAS, then it should connect to just a few nodes. The
more nodes that it connects to, the higher the probabil-
ity that it will connect to a malicious node.
In addition, nodes should attempt to connect to other

nodes that are either themselves highly connected and
using a Fractional IAS, or lowly connected and using a
Weighted IAS. The less “exposed” that a node’s neigh-
bors are to flooding, the less exposed the node itself will
be to flooding.
Figures 3 and 4 show how the damage incurred by

the victim node in Figure 2 is distributed from 1 to τ
hops away. Lines are plotted for different configurations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K C W (Edge) W (Ctr) L (End) L (Ctr) S (Edge) P (Low) P (High) G (Corner) G (Edge) G (Center)

C
um

ul
at

iv
e

N
et

w
or

k
D

am
ag

e

Topology (Location of Malicious Node)

Frac/Equal
Wght/Prop

Figure 1: Damage vs. Topology for Fractional/Equal and Weighted/Proportional IAS/DS

of the victim and malicious node in which the distance
(d) between them are 1, 3, 5, and 7 hops. Each (x,y)
point on a line shows the reduction in service (y) that
the victim receives x hops away.
In our following discussion, we will use the terms “up-

stream” and “downstream.” Upstream refers to the di-
rection closer to the malicious node, and downstream
refers to the direction farther away from the malicious
node.
Similar to the bar chart in Figure 2, Figures 3 and 4

show that more damage is incurred at upstream nodes
that are closer to the malicious node (and further from
the victim).
However, they also show how the damage is distributed

at various distances away from the victim node. The
damage (y) in Figure 3 incurred by the victim is av-
eraged over both nodes that are x hops away from the
victim in the cycle. When the distance (d) between the
victim and the malicious node is 1, the damage is al-
ways greater than the damage when the distance be-
tween them is 7, as can be seen by the fact that the
d = 1 line is always higher than the d = 7 line.
What we could not see in Figure 2 is that the ex-

tent of the damage one hop away from the victim is
much more significant when the malicious node is one
hop away than when the malicious node is seven hops
away. When the malicious node is one hop away, the
victim can only receive service from the good node that
is one hop away, so the damage is at least 0.5. In addi-
tion, the victim is forwarding the flood queries from the
malicious node to the good node that is one hop away.
In Figure 3, the good node is using the Proportional DS,
and, as a result, drops some of the victim’s queries while
attempting to process the flood of queries that arrives.
The damage one hop away is therefore more than 0.5
in the d = 1 case; it is 0.61 in Figure 3. The damage
two hops away is even more (0.68). Firstly, the victim’s
queries are never able to reach the upstream node two
hops away because the malicious node never forwards
them (contributing 0.5 to the damage). Secondly, since

the downstream node one hop away does not accept all
of the victim’s queries, it does not forward all of the vic-
tim’s queries to the downstream node two hops away. Of
those queries that are forwarded, the downstream node
two hops away accepts only a proportion of the victim’s
queries (incuring an additional 0.18 damage).

0

0.2

0.4

0.6

0.8

1

1 3 5 7

D
am

ag
e

fo
r

V
ic

tim
 N

od
e

Distance Between Victim and Malicious Node

Fractional/Equal
Weighted/Proportional

Figure 2: Damage vs. Distance from Malicious
Node in a Cycle Topology

In summary, there are two types of damage that are
caused by the malicious node. Structural damage is
caused because a malicious node does not process or
forward queries itself. When the malicious node is one
hop away from the victim, the structural damage is 0.5
one hop away since the malicious node does not process
any of the victim’s queries. A second type of damage,
flood damage, is caused by the traffic that the malicious
node creates. When the malicious node is one hop away,
and we are using a Proportional DS, there is flood dam-
age that occurs at the good node that is one hop away.
Due to the malicious query traffic that is forwarded to
the good node, the good node cannot process all of the
victim’s queries. The flood damage in this case is 0.11.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

R
ad

ia
l D

am
ag

e

Number of hops from victim node (h)

d = 1
d = 3
d = 5
d = 7

Figure 3: Damage Distribution for a Cycle with
Weighted/Proportional IAS/DS

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

R
ad

ia
l D

am
ag

e

Number of hops from victim node (h)

d = 1
d = 3
d = 5
d = 7

Figure 4: Damage Distribution for a Cycle with
Fractional/Equal IAS/DS

Looking at Figure 4, we can see that by switching from
a Weighted/Proportional IAS/DS to a Fractional/Equal
IAS/DS, we are able to avoid flood damage, and we are
only left with structural damage. In particular, when the
Equal DS policy is used, the good node that is one hop
away processes one of the victim’s queries for each of the
malicious node’s queries before it uses all its remaining
query bandwidth to service additional queries from the
malicious node. Therefore, all of the victim’s queries are
processed at the good node, and the only damage that
the victim suffers one hop away is structural.
By analyzing damage distribution, we are able to see

that good policies (in particular, the Fractional/Equal
IAS/DS) are able to contain flood damage. However,
other mechanisms need to be developed to contain struc-
tural damage. Malicious nodes need to be detected and
disconnected to deal with structural damage.

6. RELATED WORK
Most denial-of-service research to date has focused on

network-layer attacks [16, 33, 34, 22, 32, 7, 29, 8, 1, 19,
9, 18, 2, 38, 20]. There have been mutliple proposals
to build IP Traceback mechanisms to manage network-
layer DoS attacks including [33] and [31].
Osokine [21] proposes a Q-algorithm intended for solv-

ing traffic management problems in Gnutella, but the
algorithm could also be used to address DoS attacks.
Rohrs [27] proposes a simplified version of Osokine’s
work that has been implemented in the LimeWire Gnutella
client. No evaluation has been published on either pro-
posal.
Some of the policies we propose to use to manage

query floods are similar to those that have been used
in link scheduling for years [40]. Algorithms such as
weighted fair queuing (WFQ) have been shown to opti-
mally allocate a fair share of link bandwidth with respect
to weights. We could use WFQ to manage query flow in
Gnutella nodes, but we would still need to decide on how
to choose weights to minimize the damage from DoS at-
tacks. The IASs that we use in our work can be viewed
as choosing different weights for incoming query flows.
A lot of security-related research that has taken place

in the P2P area has focused on providing anonymity to
users [26, 6, 14] and ensuring fair resource allocation
via micropayments or reputation schemes [15, 12, 25].
Other research in the area of P2P systems has focused
on efficient search, routing, and indexing [35, 24, 28,
39, 5, 4, 36, 37].

7. CONCLUSION
Gnutella networks are highly susceptible to application-

layer, flooding-based DoS attacks if good load balancing
policies are not employed by nodes on the network. In
this paper, we have taken a first step towards defining
a model and metrics to measure the damage that a ma-
licious node can cause with query flooding. Through
simulations on small representative networks, we deter-
mined how damage can be minimized with load balanc-
ing policies, how damage varies as a function of network
topology, and how damage is distributed.

8. REFERENCES
[1] Cert advisory ca-2000-01 denial-of-service
developments. http://www.cert.org/ advisories/
CA-2000-01.html, January 2000.

[2] Edward Amoroso. A policy model for denial of service.
In Proc. Computer Security Foundations Workshop
III, pages 110–114, Franconia, NH USA, June 1990.
IEEE Computer Society Press.

[3] Icmp traceback messages. http://www. silicondefense.
com/ research/ itrex/ archive/ tracing-papers/
draft-bellovin-itrace-00.txt.

[4] Arturo Crespo and Hector Garcia-Molina. Routing
indexes for peer-to-peer systems. Technical report,
Stanford Univ., CS Dept., 2001.

[5] David Ratajczak, Dahlia Malkhi, Moni Naor. Viceroy:
A scalable and dynamic lookup network. Proc. ACM
PODC ’02, August 2002.

[6] R. Dingledine, M. Freedman, and D. Molnar. The free
haven project: distributed anonymous storage service.

Proc. of the Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, CA, USA. Springer:
New York (2001)., 2001.

[7] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ ip
source address spoofing. In IETF RFC 2267, 1998.

[8] Lee Garber. Denial-of-service attacks rip the internet.
Computer, pages 12-17, April 2000.

[9] E.A. Hyden. Operating system support for quality of
service. Ph.D. Thesis, University of Cambridge, 1994.

[10] Kazaa home page. http://www.kazaa.com/.

[11] Angelos D. Keromytis, Vishal Misra, and Dan
Rubenstein. Secure overlay services. In Proc. of the
ACM SIGCOMM Conference, August 2002.

[12] R. Lethin. Reputation. In Peer-to-peer: Harnessing the
power of disruptive technologies. ed. Andy Oram,
O’Reilly and Associates, March 2001.

[13] Limewire home page. http://www.limewire.com/.

[14] Aviel D. Rubin, Marc Waldman, and Lorrie Faith
Cranor. Publius: A robust, tamper-evident,
censorship-resistant, web publishing system. In Proc.
9th USENIX Security, August 2000.

[15] Mojo nation technical overview home page.
http://www.mojonation.net/ docs/
technical overview.shtml.

[16] D. Moore, G. Voelker, and S. Savage. Inferring internet
denial of service activity. In Proc. 2001 USENIX
Security, Washington D.C., August 2001.

[17] Morpheus home page. http://www.musiccity.com.
[18] R. M. Needham. Denial of service. In Proc. 1st ACM

CCS, pg 151–153, Fairfax, Virginia, November 1993.
[19] Roger M. Needham. Denial of service: an example.

Comm. of the ACM, 37(11):42–46, 1994.
[20] Peter G. Neumann. Inside risks: denial-of-service

attacks. Comm. of the ACM, 43(4):136–136, 2000.
[21] Flow control algorithm for distributed

’broadcast-route’ networks with reliable transport
links. http://www.grouter.net/ gnutella/ flowcntl.htm.

[22] T. Ptacek and T. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection.
Technical report, Secure Networks, Inc., January 1998.

[23] N. Daswani and H. Garcia-Molina. Query-flood DoS
Attacks in Gnutella Networks (Extended Version).
Technical Report, Stanford Univ. CS Dept.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network.
ACM SIGCOMM, 2001.

[25] Reputation technologies home page.
http://reputation.com.

[26] R. Dingledine. The free haven project: Design and
deployment of an anonymous secure data haven. MIT
Masters Thesis May 2000.

[27] Sachrifc: Simple flow control for gnutella.
http://www.limewire.com/ developer/ sachrifc.html.

[28] A. Rowstron, P. Druschel. Pastry: Scalable distributed
object location and routing for largescale peer-to-peer
systems. In Proc. IFIP/ACM Middleware, Heidelberg,
Germany, November 2001.

[29] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford,
A. Sundaram, and D. Zamboni. Analysis of a denial of
service attack on TCP. In Proc. 1997 IEEE
Symposium on Security and Privacy, pages 208–223.
IEEE Computer Society Press, May 1997.

[30] Ultrapeers: Another step towards gnutella scalability.
http://groups.yahoo.com/ group/ the gdf/ files/
Proposals/ Ultrapeer/ Ultrapeers.html.

[31] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E.
Jones, F. Tchakountio, S. T. Kent, and W. T. Strayer.

Hash-based ip traceback. In Proc. of the ACM
SIGCOMM 2001 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, August 2001., 2001.

[32] O. Spatscheck and L. L. Peterson. Defending against
denial of service attacks in scout. In Operating Systems
Design and Implementation, pages 59–72, 1999.

[33] A. Karlin, S. Savage, D. Wetherall, and T. Anderson.
Network support for ip traceback. In ACM/IEEE
Transactions on Networking, 9(3), June 2001.

[34] A. Karlin, S. Savage, D. Wetherall and T. Anderson.
Practical network support for ip traceback. In Proc.
2000 ACM SIGCOMM Conference, Stockholm,
Sweden, August 2000.

[35] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. Technical
Report TR-819, MIT, March 2001.

[36] B. Yang and H. Garcia-Molina. Designing a super-peer
network. Submitted for publication.

[37] Beverly Yang and Hector Garcia-Molina. Efficient
search in peer-to-peer networks. Technical report,
Stanford Univ., CS Dept., 2001.

[38] C. Yu and V. Gligor. A formal specification and
verification method for the prevention of denial of
service. In Proc. 1988 IEEE Symposium on Security
and Privacy, pages 187–202, Oakland, CA. IEEE
Computer Society Press. 117, 1988.

[39] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and
routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

[40] L. Peterson and B. Davie. Computer Networks: A
Systems Approach. Morgan Kaufman: SF (2000).

APPENDIX

A. OPTIMAL RHO PROOF
Theorem A.1. Optimal Rho (ρ̂) for Symmetric Net-

works. Suppose that for all nodes j ∈ V have cj = C for
some constant C > 0, |D(j, τ)| = D for some constant
D > 0, and all nodes have ρ set to the same value, then
ρ̂ = 1/(D + 1).

Proof. Let ρ̂ be the setting of ρ that maximizes the
total remote work. We assume that the local work pro-
cessed at a node is exactly (and no less than) ρC. The
maximum possible amount of remote work that can be
processed at that node is (1− ρ)C. In the steady state,
each node j is sent at most |δ(j, i)|ρC queries that were
generated i time steps ago at a node that is i hops
away, 1 ≤ i ≤ τ . Hence, the maximum total amount
of work that may arrive at a node is Στi=1|δ(j, i)|ρC =
|D(j, τ)|ρC = DρC.
We say that a node is saturated if the amount of re-

mote work it receives exceeds (1− ρ)C. A node receives
less than DρC remote work if some of the nodes that it
receives work from are saturated.
No node can be saturated until the point when the

maximum possible load DρC is greater than (1 − ρ)C,
i.e. until ρ > 1/(D+1). Thus, if ρ < 1/(D+1), all nodes
actually receive the maximum possible load, and they all
become saturated at ρ = 1/(D+1). For ρ > 1/(D+1),
the remote work is limited by (1−ρ)C, so ρ = 1/(D+1)
is the optimal value.

