
A parallel index for semistructured data

Brian F. Cooper
�

Dept. of Computer Science
Stanford University

Stanford, CA 94305 USA

cooperb@stanford.edu

Neal Sample
y

Dept. of Computer Science
Stanford University

Stanford, CA 94305 USA

nsample@stanford.edu

Moshe Shadmon
RightOrder Inc.
3850 N. First St.

San Jose, CA 95134 USA

moshes@rightorder.com

ABSTRACT
Database systems are increasingly being used to manage
semistructured data, which may not have a �xed structure
or set of relationships between data items. Indexes which
use tree structures to manage semistructured data become
unbalanced and diÆcult to parallelize due to the complex
nature of the data. We propose a mechanism by which
an unbalanced vertical tree is managed in a balanced way
by additional layers of horizontal index. Then, the verti-
cal tree can be partitioned among parallel computing nodes
in a balanced fashion. We discuss how to construct, search
and update such a horizontal structure using the example
of a Patricia trie index. We also present simulation results
that demonstrate the speedup o�ered by such parallelism;
for example, with three-way parallelism, our techniques can
provide almost a factor of three speedup.

1. INTRODUCTION
Data is rarely
at. Instead, a database can contain many

relationships between individual data elements, and these
relationships can be as important as the data itself. Increas-
ingly, organizations must deal with data that is semistruc-
tured : neither the structure of data elements nor the set
of relationships between them is �xed in advance. Thus, a
database must allow users to eÆciently access data despite
irregularities in the structure. One solution is to represent
relationships between data items in a hierarchical manner,
using a tree structure. This tree can allow users to �nd ob-
jects, as well as objects related to them. Instead of having to
join together separate datasets, we can conduct a top down
traversal of the tree. Subordinate objects are stored in a
subtree, such that all the leaves of the subtree represent all
of the related, subordinate items.
We could partition portions of such a relationship tree

between parallel computing nodes so that the index is dis-

�Work done while author was at RightOrder Inc.
yWork done while author was at RightOrder Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

(a) (b)

Figure 1: Partitioning a relationship tree.

tributed and can answer many queries simultaneously. For
example, Figure 1(a) shows a relationship tree, where each
vertex represents an object and each edge represents a rela-
tionship. As with any tree, the upper layers near the root
(labeled � in the �gure) are likely to be small compared
to the lower layers near the leaves (labeled �). Therefore,
we can adopt the partitioning scheme shown in Figure 1(b),
where the upper layers are replicated to every computing
node and the lower layers are partitioned between nodes.
In this con�guration, a user can submit a query to any

node i. The i node will traverse the copy of the upper layers
(�) of the index that it holds locally until it reaches the lower
layers (�1; �2:::�n). Then, i will forward the query to node j
that holds the lower layer partition (�j) necessary to answer
the query. If i = j, then no forwarding will be necessary
and i will answer the query directly. This approach is called
the forwarding strategy. Alternatively, we can submit the
query simultaneously to all nodes (1; 2:::n). Each node will
traverse � to determine if it locally holds the correct �j .
If so, that node will answer the query. If not, that node
will simply discard the query. This approach is called the
parallel issue strategy.
Once we have achieved an even partitioning of the tree, we

can use traditional techniques to manage parallelism. For
example, we can utilize replication and voting schemes to
ensure consistency after updates, and provide failover and
availability (e.g. [3, 11, 7]). The bene�ts of partitioning go
beyond the speedup o�ered by parallelizing computation.
In addition, the partitioning allows us to construct large
indexes while keeping the resource requirements for any one
computing node small; for example, we can build a terabyte-
sized index from a collection of commodity parts such as 50
gigabyte disks distributed among 20 o�-the-shelf computers.
Unfortunately, with semistructured data the relationship

tree structure can become unbalanced. Data elements with
many complex relationships cause portions of the tree to
become deep and branchy, while elements with simpler rela-
tionships reside in shallower, more linear portions of the tree.

Figure 2: A layered index tree.

This makes it diÆcult to partition the tree evenly among
parallel computing nodes to support parallel execution of
queries. As a result, nodes assigned to complex portions of
the tree become heavily loaded, while nodes with simpler
subtrees are lightly loaded and underutilized.

1.1 Balancing an unbalanced index
To achieve parallelism, we require an algorithm to intro-

duce properties of balance into an unbalanced data set. We
have created an indexing mechanism, the Index Fabric struc-
ture, that deals with the problem of balancing an uneven
structure to allow for partitioning among parallel nodes.
The Index Fabric structure is an instance of a layered in-
dex : the tree is divided into equally sized blocks, and then
extra levels of index are used to address these blocks. These
extra levels are horizontal levels in contrast with the ver-
tical structure of the normal relationship tree, as shown in
Figure 2. Searches proceed along the horizontal structure to
a localized portion of the vertical tree. The leftmost levels
(e.g. level 1, 2 ...) act as indexes over the blocks in level 0,
and even if the number of level 0 blocks is large the leftmost
levels will be relatively small. Thus, we can replicate the
leftmost levels to every computing node while partitioning
the rightmost level, much as we did with the � and � in
Figure 1. A query can be submitted to any node, which
navigates the leftmost levels to �nd the correct level 0 par-
tition, and then forwards the query to be answered by a
single node in the parallel network. Similarly, queries can
be issued to every node, and the node with the correct �j
will answer the query.
The challenge in constructing such an index is to build

a balanced horizontal structure, and this is the issue we
confront in this paper. As a concrete example, we will dis-
cuss how to partition a Patricia trie [13], a compact but po-
tentially unbalanced tree structure for indexing string data.
The Patricia trie allows us to represent relationships be-
tween data items by concatenating strings. For example,
to indicate that item1 is related to item2, we insert the
key item1item2 into the trie. The result is that all items
item2; item3:::itemn related to item1 form a subtrie within
the Patricia trie. More details of this representation can
be found elsewhere, in [5]. This relationship structure is
a natural �t for semistructured data, which often contains
complex relationships between data items. Querying paths
in semistructured data, such as XML, requires traversal of
this relationship structure, and this traversal is supported

by our index.

1.2 Contributions and overview
We have implemented the Index Fabric, and have used

it to answer queries over semistructured data, particularly
XML. The encoding and query processing strategies are dis-
cussed elsewhere [9]. Here, we focus on the balancing, par-
titioning and parallelization of the index, and present ex-
perimental results that examine the speedup o�ered by our
techniques.
Speci�cally, we make the following contributions:

� We present a balancing strategy for an unbalanced in-
dex over semistructured data.

� We examine a partitioning strategy whereby some lev-
els of the balanced tree are replicated to all parallel
nodes, and some are partitioned among nodes.

� We present simulation results that illustrate the speedup
available under di�erent parallelization strategies. For
example, our techniques can provide a factor of three
speedup for a three-way parallel system.

This paper is organized as follows. In Section 2 we de-
scribe how an essentially unbalanced structure (such as a Pa-
tricia trie) can be balanced using a layered index. Then, in
Section 3 we examine searching this layered index structure.
Section 4 discusses updating the index, and in Section 5 we
examine simulation results. In Section 6 we examine related
work and Section 7 summarizes our conclusions.

2. BALANCING AND PARTITIONING TRIES
USING LAYERED INDEXES

Tries are data structures for storing string data. A vertex
in the tree corresponds to a position in a stored string, and
edges emanating from the vertex are assigned to the possible
characters in that position in the string. Tries are searched
by comparing the appropriate character in the search key
with the outgoing edges at each vertex, and following the
proper edge to the next vertex until a leaf containing a
pointer to a data record are found. Patricia tries are a
compressed form of tries, and contain only the vertices that
have two or more children. In this way, di�erences between
inserted keys are represented instead of the whole keys. An
example is shown in Figure 3(b), which is a Patricia version
of the full trie in Figure 3(a). The numbers in the vertices
(the depth of the vertex) indicate the character position in
the string to compare to the labels on the outgoing edges.
For example, if we are searching for the string key, when we
reach the vertex labeled \2," the character at key [2] should
be compared to the outgoing edges. A Patricia achieves
compression at the cost of no longer storing the complete
keys.
We can divide a Patricia trie into roughly equally sized

subtries, and store each subtrie in its own block. For ex-
ample, we can take the index in Figure 4(a) and divide it.
Thus, in Figure 4(b), the original index still exists (at level
0), but has been split into two blocks. The block boundaries
are indicated by dotted lines . The vertex at level 1 now
acts as an index over the blocks in level 0; speci�cally, the
trie in level 1 indexes the common pre�xes of each subtrie
stored in the blocks in level 0. The common pre�x is the
pre�x of all vertices in the subtrie of a particular block, and

...at

...car ...cat

r t

a

a c

t

...car ...cat

r t
2

...at

0
a c

(a) (b)

Figure 3: Tries.

...car ...cat

r t
2

...at

0
a c

...car ...cat

r t
2

...at

0
a c

0

c

Level 0Level 1

(a) (b)

Figure 4: Partitioning tries.

is the portion of the string represented by the root vertex
in the block. In Figure 4(b), the upper block has a common
pre�x that is empty, while the lower block has a common
pre�x that is \ca". For the rest of this paper, we will refer to
the leftmost horizontal layers (e.g. layers 1, 2 ...) as \upper
levels" and the rightmost layer (e.g. the basic partitioned
index structure in level 0) as the \lower level."
An upper level index refers to the lower level in two dif-

ferent ways. The �rst way is called a far link, and is shown
Figure 4(b) as a regular arrow . This link is the same
as an edge between a parent and a child in a normal trie,
except that the parent is in level i + 1 and the child is in
level i. Thus, a far link has a label; in the �gure, the label is
\c". In contrast, the other type of link, called a direct link,
has no label. This kind of link is represented as a dashed
arrow in Figure 4(b). Direct links connect vertices that
represent the same key pre�x but are in di�erent levels. In
the �gure, the pre�x represented by both vertices labeled
\0" is the empty pre�x (although any pre�x can be repre-
sented.) Direct and far links are necessary for searching the
layered index trie structure as described below. We can refer
to \normal" edges between a parent and a child within the
same block, as near links. Edges that cross block boundaries
within the same level are called split links.
Tries can have more than two levels. In fact, this structure

can be generalized to as many levels as needed. Each level
i contains a complete trie divided into blocks. Level i is
indexed by level i+1 such that the trie in level i+1 indexes
the common pre�xes of level i. In Figures 4 we illustrate
increasing levels i; i + 1:::n from right to left. The leftmost
or \highest" level contains the root of the horizontal index,

and has only one block. This root block contains a complete
Patricia trie and therefore may contain several trie vertices
in order to index several blocks at the next level.
In practice, the number of horizontal levels in the tree re-

mains small, even as the number of indexed keys becomes
very large. The Patricia requires very little space per in-
dexed key, leaving a great deal of room in a block for point-
ers. Consequently, the horizontal tree has a very high branch-
ing factor and a correspondingly low height. For illustration,
we can make simple assumptions about the sizes of blocks
and pointers (e.g. 8 Kb blocks and 32 bit pointers) and store
1,000 pointers per block. The root block (level n) can then
index 1,000 blocks at level n � 1, and each n� 1 block can
index 1,000 blocks at level n � 2, and so on. Thus, a three
level tree can index a billion items. The uppermost levels
(level n > 0) are very small compared to the leaf blocks
(level 0). In fact, the upper two levels of a three level tree
occupy less than 10 Mb of space, and can easily be stored
in main memory. As a result, the upper levels can be repli-
cated at all computing nodes, and only the blocks in the
lower layers must be partitioned among nodes.
The number of blocks in the lowest layer of the index is

determined by the size of the trie and the assigned block size.
We could make blocks large, so that each computing node is
assigned a single block. Another possibility is to make blocks
small, and assign multiple blocks to each node. This latter
approach has the bene�t that adding or removing computing
nodes to the parallel network requires transferring a few
small blocks as opposed to repartitioning the entire index
with a di�erent block size.

address SEARCH(key x, starting block B) f
while B is not a pointer to data do

B =SEARCH BLOCK(x;B);
if B = NULL then
return NULL;

if B is a pointer to a block not cached locally then
Invoke SEARCH(x,B) at node i holding B;
Return marker indicating node i will answer query;

if key(B) = x then
return B;

else
return NULL;

g

Figure 5: Procedure SEARCH.

address SEARCH BLOCK(key x, block B) f
n =root vertex of B;
i = depth(n); /* The depth of the vertex */
B0 = NULL; /* This will be the block in the next level */

while B0 = NULL and i < length(x) and
a near or far edge n! n0 labeled x[i] exists f
if n! n0 is a far link then f

/* n0 is in the next lower level */
B0=address of block pointed to by edge n! n0;

g else f /* n! n0 is a near link */
n = n0;
i = depth(n);

g
g

if B0 = NULL and there exists a direct edge n! n0 then
B0 =address of block pointed to by direct edge n! n0;

/*at this point, B0 may be a pointer to another block,
a pointer to data, or NULL */
return B0;

g

Figure 6: Procedure SEARCH BLOCK.

3. SEARCHING A LAYERED INDEX
The search procedure for the layered index index closely

parallels the search process for a simple trie. Figure 5 shows
procedure SEARCH, which returns the disk address of the
data matching the search key, or NULL if no such data ex-
ists. When a query is issued, the starting block argument
B is set to the root block of the layered index trie (e.g.,
the block in the leftmost horizontal level). Basically, the
search starts at the top level and proceeds both vertically
(within the same level) and horizontally (between levels). A
search at level i proceeds until it is appropriate to follow a
far or direct link to the next level (level i � 1). Then the
search resumes at the trie in level i�1. For all levels except
the leaf level (i = 0), procedure SEARCH calls procedure
SEARCH BLOCK (Figure 6) to search within a particular
block. The result of SEARCH BLOCK is either a pointer
to another block, a pointer to data, or NULL.
We can illustrate the search algorithm using Figure 4(b).

Imagine that we are searching for the key \cat." Proce-
dure SEARCH begins by �nding the root block, which is
the block in level 1, and searching this block with proce-

dure SEARCH BLOCK. The root vertex in the block is
examined, and has a depth of \0." Thus, key[0], or \c,"
is compared to the outgoing edges. The far link from the
root vertex has the label \c", and the search then proceeds
to the block pointed to by the far link. This block is the
level 0 block in Figure 4(b) containing a trie rooted at a
vertex of depth \2." Procedure SEARCH therefore invokes
SEARCH BLOCK again. This procedure begins by exam-
ining key[2], or \t," and follows the near link labeled \t."
This takes the search to its goal, the vertex which points
directly to the data with key \cat."
The e�ect is that the search starts in the high horizontal

levels, and then proceeds directly to a localized portion of
the vertical trie (in level 0) that contains the desired data.
Every search accesses the same number of levels; moreover,
it is only necessary to enter a single block per level. As a
result, any node containing a replicate of the upper levels
can perform the �rst portion of the search. However, once
it becomes appropriate to enter the lowest layer, the query
must be answered by the speci�c computing node assigned
to that block. This computing node can answer the query
completely, since a single block is needed in level 0. (See
Section 3.1.)
Note that because of the compression achieved by the Pa-

tricia trie, procedure SEARCH may return data for a key
that does not actually exist in the index. For example, in
the index in Figure 4, the key \cut" does not exist. However,
if \cut" is speci�ed as a search key to procedure SEARCH,
then the return value will be the address of the data with key
\cat." This is an unavoidable consequence of the fact that
Patricia does not store full keys. Therefore, the found data
should be checked to verify that the search key matches the
data key; this is done at the bottom of procedure SEARCH.
There are other complications introduced by the compres-
sion that we do not address here due to space limitations,
see [5].

3.1 Searching a parallel layered index
There are two strategies for searching a layered index in

parallel. In the forwarding strategy, procedure SEARCH is
executed at any compute node holding a cached copy of the
upper levels of the layered index trie. Queries can be is-
sued to nodes in any reasonable way, e.g. randomly or in
round-robin order. The node i receiving the query traverses
as much of the layered trie as it can until it reaches the
partitioned lower layers. The i node checks to see if the re-
quired block is available locally. If so, the i node answers the
query. If not, the query is forwarded to the compute node
j that does have the block. The j node executes procedure
SEARCH, but starts at the appropriate lower layer block
instead of the root. The j node can then answer the query.
In the parallel issue strategy, queries are issued to all

nodes simultaneously. All nodes traverse the upper layers
of the layered trie until they reach block BL in the leaf
layer. One node has been assigned the partition containing
BL; this node continues the traversal in BL until it answers
the query. All other nodes simply discard the query.

4. INSERTING DATA
Keys are inserted into the layered index trie using a three

step process. First, a search is performed to locate the level
0 block that must be updated. Next, the key is inserted
in this block using the normal Patricia insertion algorithm.

...catcashfar

c
0

2
s t

2

f

r
s

...fast

...catcashfar

0

f

Level 1 Level 0

c
0

2
s t

2

f

r
s

...fast

(a) (b)

Figure 7: Splitting a block.

This may involve creating one or more vertices in an ex-
isting block. Third, if after creating new vertices there are
now too many vertices to �t in the block, the block must
be split. Most insertions will not require a split and can
be wholly handled by the computing node assigned to the
a�ected block. It is only when a split occurs are the upper
levels a�ected and all nodes must be noti�ed.
Every block in the index contains a connected subtrie.

The splitting operation must preserve this property. There-
fore, in order to split we must select a split edge, such that
splitting the block's subtrie on this edge produces two con-
nected subtries. One subtrie remains in the existing block,
while the new subtrie must be placed in a newly created
block. Both subtries resulting from the split should be of
approximately equal size to maintain good space utilization
of the disk blocks. It is often impossible to select a split
edge that produces two subtries of exactly equal size. In
this case, a split should be selected which is closest to this
ideal. Figure 7 illustrates the splitting process. Figure 7(a)
shows a trie, with the split edge marked. After the split,
this trie occupies two blocks, as shown in Figure 7(b).
After the split is completed, a pointer to the new block

must be added to the level 1 trie. We take the split vertex,
which is the parent vertex on the split edge, and copy it to
the level 1 trie. This vertex retains its depth. The copy of
the split vertex in level 1 is given a far pointer, with the
same label as the split edge, pointing to the new block. The
copy of the split vertex is also given a direct (unlabeled)
pointer referring to the old block. The result is shown in
Figure 7(b), where the shaded vertex, labeled \0," has been
copied to level 1. Finally, the newly copied split vertex must
be connected to any existing vertices in the level 1 block
to preserve the property that each block has a connected
subtrie. This may involve converting a far link to a near
link and copying additional nodes from level 0 to level 1.
The complete process is described in [5].
If copying the vertices to level 1 causes a level 1 block to

over
ow, that block must be split as well. This is done in
the same way as the split at level 0, and this process can
contine at higher levels in the index. Eventually, it may be
necessary to split the block at the root level (level n). If so,
then a new level (level n + 1) is created. This is how the
layered index grows horizontally.

5. PERFORMANCE RESULTS
We have examined the performance of our partitioned in-

dex by running simulation experiments. We took a block
trace from an implemented, single-node version of the Index

Fabric, and fed the trace to a simulated parallelized ver-
sion of the index. In this way, we can examine the e�ect of
partitioning and parallelization on a real workload.

5.1 Experimental setup
The Index Fabric was used to index XML documents from

the DBLP, the popular computer science bibliography [1].
Each XML document corresponds to a single publication.
The database contained over 180,000 documents, totaling 72
Mb of data, grouped into eight classes (journal article, book,
etc.) The documents were stored in a popular commercial
relational database system, and the Index Fabric was used
instead of the database system's native query processor. We
ran a series of 10,000 queries over this database; each query
required one index key lookup. The details of the indexing
strategy, as well as performance numbers in the non-parallel
case, can be found in [9]. Here, it is suÆcient to note that the
Index Fabric provided up to an order of magnitude speedup
versus the database system's native query processor.
From these experiments, we collected a block trace which

indicated the order of index block requests, and whether
those blocks corresponded to leftmost levels (e.g. � in Fig-
ure 2) or the rightmost level (e.g. � in the same �gure).
This block trace was fed to a simulator. The simulator con-
structed a scenario where the index was partitioned among
multiple nodes, and reported results about the number of
queries that could be answered by each node that was is-
sued a query. The partitioning was performed by randomly
assigning blocks to nodes. In this way, we could compare
the bene�t of the forwarding (with queries issued in round-
robin fashion) and parallel issue parallelization strategies
(see Section 1). We compared against the base case of no
parallelization (e.g., one node).
We assumed the following parameters in our simulation:

� The time to process the � layer (in memory) for a
query is 1 unit.

� The network cost to forward a query to another node
is 4 units.

� The time to read a � block from disk to answer the
query was 10 units.

� If the � block was in cache, then it could be processed
in memory without a disk read, and thus the cost was
1 unit.

These costs re
ect standard assumptions about latencies,
e.g. network latencies are about 4 times memory latency,
and disks are about an order of magnitude slower than mem-
ory.

Figure 8: Performance for parallel index with no

cache, 3 nodes.

5.2 Results
The �rst experiment we ran examined the impact due to

partitioning the index among parallel nodes. In this experi-
ment, cache sizes were set to zero to eliminate cache e�ects.
We compared the forwarding and parallel issue strategies
against the base case of no parallelism. In the forwarding
strategy, a node must be chosen to receive each query; we
issued queries to nodes in round-robin fashion. The results
are shown in Figure 8 for the case of 3 nodes. This �gure
illustrates two metrics. Speedup is the ratio of the time to
answer queries for the parallel index versus the time for the
non-parallel index. E�ort is the ratio of the total units of
work done by the parallel index to the total units of work
done by the non-parallel index. Speedup thus represents the
increase in the throughput due to parallelism, while e�ort
re
ects cycles \wasted." In the forwarding strategy, cycles
are wasted by the forwarding of queries, and in the parallel
issue strategy, cycles are wasted by nodes that are issued a
query but discard it because they do not hold the correct
�j . An e�ort value of 1 indicates the parallel index did as
much work as the non-parallel index, while any value over 1
indicates the proportion of wasted work.
Figure 8 illustrates that both strategies o�er more than

2� speedup. However, it is clear that the parallel issue
strategy o�ers the best throughput. The e�ort \wasted" by
a node that examines a query but does not answer it is less
than the e�ort \wasted" by forwarding queries. This makes
sense, given that the cost of a forward is 4 units, but the
cost for two nodes to examine their local � copy is only two
units.
Next, we examined the speedup and e�ort as the num-

ber of parallel nodes changed. Figure 9 shows the results,
with the number of nodes along the horizontal axis. This
�gure shows the speedup and e�ort for both the forward-
ing and parallel issue strategy. As the number of nodes in-
creases, the speedup under the forwarding strategy increases
linearly, while the speedup under the parallel issue strategy
increases less quickly. In fact, when there are four nodes,
both strategies are equally fast, but beyond four nodes, the
forwarding strategy is best. Recall that in our cost model,
the cost to forward a query is 4 units, while the cost to pro-
cess an � layer in memory is 1 unit. Under forwarding, the
only \wasted e�ort" is work done to forward a query, while
under parallel issue, the wasted e�ort is done when nodes

Figure 9: Performance for parallel index with no

cache versus number of parallel nodes.

Figure 10: Performance for parallel index with

caching, 3 nodes.

process the � layer but then discard the query. Thus, at
four nodes, both strategies are doing roughly equal amounts
of \wasted" work, while at more than four nodes, forward-
ing does less wasted work than parallel issue. The result
is better use of computing resources under the forwarding
strategy, and thus more speedup versus parallel issue, when
there are more than four nodes. This result depends on the
ratio R of the cost to forward a query versus the cost to
process an � layer. However, the general result remains the
same: forwarding provides more speedup when there are at
least R nodes.
Another bene�t of parallelism is the ability to construct

systems that have a large amount of resources from smaller,
cheaper components. In this context we can construct a sys-
tem that has a large amount of aggregate cache from compo-
nents that themselves have a small cache. To examine this
e�ect, we ran another experiment, where we assumed that
an individual node could devote enough memory to cache
one percent of the total index size. The results for three
nodes are shown in Figure 10. This �gure demonstrates that
the ability to build a larger aggregate cache from multiple
individual small caches improves performance signi�cantly.
Both strategies have at least 2:5� speedup; in fact, the par-
allel issue strategy approaches 3� speedup, the theoretical
maximum for three-way parallelism. (The actual speedup is

2:99.) This is because the cost of accessing the disk dom-
inates the cost to process queries, and caching can reduce
this dominant cost. By partitioning the index among three
nodes, we have e�ectively tripled the aggregate cache size.
In fact, our experiments indicate that the average hit rate
in each node's cache is the same (39 percent) as if there was
a single-node index with three times as much cache. Even
though each node has a small individual cache (only one per-
cent of the index size), the aggregate e�ect is that of a large
global cache, because each node need only cache blocks from
its local partition of the � layer. The increase in e�ective
caching reduces number of disk reads, and this bene�t com-
pensates for the \wasted" cycles needed to conduct queries
in parallel. The end result is that the system can approach
3� speedup.
We ran another experiment where we varied the number of

nodes in a situation where nodes had caches, and measured
the speedup and e�ort. The results (not shown) are similar
to those of Figure 9. Speci�cally, forwarding provides better
speedup (up to 8.3 times speedup for ten nodes) than par-
allel issue when there are more than four nodes. The best
speedup observed for parallel issue was 5.9 times speedup
for ten nodes.

6. RELATED WORK
Many investigators have examined the problem of dis-

tributing and replicating databases to provide load balanc-
ing while protecting database consistency [7, 14]. Tradi-
tionally, the problem is con�ned to managing structured
data that can be easily partitioned. Semistructured data
has received much attention recently [6, 10, 2], although the
authors know of no work focused on parallelizing and dis-
tributing semistructured indexes.
The most common indexing technology is the B-tree and

its variants [4]. The size of B-trees is sensitive to the length
of keys as well as the number of keys inserted. As a result,
B-trees tend to have many levels, reducing the search eÆ-
ciency. Another type of index is the hash table, which com-
putes a hash function over keys to place keys in separate
buckets [13]. Although the hash table can be support eÆ-
cient querying, it requires some knowledge about the nature
of the indexed data so that an appropriate hash function
can be selected. Both B-trees and hash tables index homo-
geneous sets of keys. The Index Fabric operates the same
way regardless of the nature of the data. Moreover, a hash
table does not support range queries, while the Index Fab-
ric can. Other researchers have examined more
exible tree
indexes (e.g. generalized search trees [12]) and further work
needs to be done to see if our techniques can be applied to
such indexes.
Other researchers have investigated partitioning unbal-

anced trees. For example, Diwan et al [8] examine a way
to cluster vertices of a tree into blocks to minimize external
access time. The Index Fabric is similar to these previous
e�orts in the attempt to achieve balance through tree par-
titioning. However, our approach is more directly focused
on partitioning the tree for use with the parallel mechanism
shown in Figure 1.

7. CONCLUSION
We have described how to transform an unbalanced tree

into a balanced, partitionable structure. The layered index

structure allows a query processor to proceed directly to the
relevant portion of the tree, allowing the query to be an-
swered independent of other nodes. This structure allows
us to exploit parallel computing to answer multiple queries
and to build large indexes by distributing them over com-
modity hardware. The ability to build and parallelize such
a tree structure gives us the ability to represent and search
semistructured data relationships e�ectively.
We have implemented a partitionable, layered index, and

conducted experiments that measured the speedup o�ered
by parallelism. For example, our results indicate that three
parallel nodes can achieve a factor of 2.5 speedup simply by
partitioning the index, and almost a factor of 3 speedup if
each node has even a small local cache. Clearly, the Index
Fabric is a natural structure for parallel execution of queries
over semistructured data.

8. REFERENCES
[1] DBLP computer science bibliography.

http://www.informatik.uni-trier.de/~ley/db/.

[2] Serge Abiteboul. Querying semi-structured data. In
Proc. ICDT, 1997.

[3] Barbara T. Blaustein and Charles W. Kaufman.
Updating replicated data during communications
failures. In Proc. VLDB, pages 49{58, 1985.

[4] D. Comer. The ubiquitous b-tree. Computing Surveys,
11(2):121{137, 1979.

[5] Brian Cooper and Moshe Shadmon. The Index Fabric:
A mechanism for indexing and querying the same data
in many di�erent ways, 2000. RightOrder
Incorporated Technical Report.

[6] Alin Deutsch, Mary Fernandez, and Dan Suciu.
Storing semistructured data with STORED. In Proc.
SIGMOD, 1999.

[7] David J. DeWitt and Jim Gray. Parallel database
systems: The future of high performance database
systems. CACM, 35(6):85{98, 1992.

[8] A. A. Diwan, Sanjeeva Rane, S. Seshadri, and
S. Sudarshan. Clustering techniques for minimizing
external path length. In Proc. VLDB, pages 342{353,
1996.

[9] Brian Cooper et al. A fast index for semistructured
data. In Proc. VLDB, September 2001.

[10] Jason McHugh et al. Lore: A database management
system for semistructured data. SIGMOD Record,
26(3):54{66, September 1997.

[11] D. Gi�ord. Weighted voting for replicated data. In
Proc. SOSP, pages 49{58, 1979.

[12] Joseph M. Hellerstein, Je�rey F. Naughton, and Avi
Pfe�er. Generalized search trees for database systems.
In Proc. VLDB, pages 562{573, September 1995.

[13] Donald Knuth. The Art of Computer Programming,
Vol. III, Sorting and Searching, Third Edition.
Addison Wesley, Reading, MA, 1998.

[14] M. Tamer Ozsu and Patrick Valduriez. Principles of
Distributed Database Systems (Second Edition).
Prentice Hall, Upper Saddle River, New Jersey, 1999.

