
Bidding for storage space in a peer-to-peer data preservation system

Brian F. Cooper and Hector Garcia-Molina

Department of Computer Science
Stanford University

fcooperb,hectorg@db.stanford.edu

Abstract

Digital archives protect important data collections from
failures by making multiple copies at other archives, so that
there are always several good copies of a collection. In
a cooperative replication network, sites “trade” space, so
that each site contributes storage resources to the system
and uses storage resources at other sites. Here, we examine
bid trading: a mechanism where sites conduct auctions to
determine who to trade with. A local site wishing to make
a copy of a collection announces how much remote space is
needed, and accepts bids for how much of its own space the
local site must “pay” to acquire that remote space. We ex-
amine the best policies for determining when to call auctions
and how much to bid, as well as the effects of “maverick”
sites that attempt to subvert the bidding system. Simulations
of auction and trading sessions indicate that bid trading can
allow sites to achieve higher reliability than the alternative:
a system where sites trade equal amounts of space without
bidding.

1. Introduction

Digital archives are sites charged with preserving impor-
tant data over the long term. Making a few local backup
copies of this information is not sufficient, since backup
tapes break, compact discs decay and publishers go out of
business (in addition to a host of other causes of data loss).
Instead, archives need to replicate digital collections to other
archives, so that there are always several good copies and
a failure at one site does not mean that information is lost
forever.

However, archives operate under two main constraints:
the resources (such as storage space) they have are limited,
and individualarchives want to preserve their own autonomy
and decision making. For example, a government agency
may want to build a digital archive to preserve vital records.

This material is based upon work supported by the National Science
Foundation under Award 9811992.

This agency may have a limited budget, and will not be
willing to spend a lot of money buying and maintaining
storage. Moreover, the agency is likely to be selective about
the remote sites it will entrust with its collections, in order to
protect private or sensitive information. Therefore, it is not
possible to have a central decision maker allocating space in
the most efficient way, since this reduces the autonomy of
the local site.

We have developed a framework, called data trading, for
replicating collections to achieve reliability, while allowing
sites to decide where to replicate their collections and how
many resources to contribute to the system. In data trading,
two sites agree to “swap” collections, so that each site’s data
is replicated [6]. A series of such agreements between pairs
of sites builds up a peer-to-peer trading network. Although
each site is making local decisions for local benefit, the result
is a global network dedicated to preservation.

In this paper, we focus on the negotiation of an agreement
between sites. For example, site A may want to replicate a
collection that is 100 GB large. Site A can contact site B
and ask for a trade, and site B may respond that it is willing
to trade if it receives 150 GB of site A’s space in return. If
site A contacts multiple sites asking for trades, then site A
will receive multiple such “bids,” and can pick the lowest
bid. Thus, an agreement may be concluded between site A
and some other site C, where site C gives site A 100 GB, and
in return site A gives site C 85 GB. This auctioning process
gives sites the freedom to set their bids using any strategy
that improves their ability to safeguard their data.

Our work draws upon concepts developed in related data
replication systems. Figure 1 shows a schematic classifi-
cation of data management schemes, including our work
and some other sample systems. This classification divides
schemes based on the amount of autonomy given to par-
ticipating sites (horizontal axis) and whether the system is
optimized for query and update performance, or for long
term preservation (vertical axis). Our work is focused on
the upper right box in the figure; that is, our main goal is
to ensure reliability while preserving site autonomy. Such a
community-based replication system necessarily makes dif-



Replicated
DBMS

LOCKSS

SAV

Replicated
filesystems

O
pt

im
iz

ed
 f

or
qu

er
y 

an
d

up
da

te
 p

ow
er

lo
ng

 te
rm

pr
es

er
va

tio
n

O
pt

im
iz

ed
 f

or

Archival
Intermemory

Offsite
backup

Trading
Data

Autonomy

Freenet

Gnutella

RAID

Figure 1. Classification of data management
schemes.

ferent decisions than a system that can centralize control
in one place, or that places data close to users in order to
improve efficiency. Several systems, including SAV [5] and
LOCKSS [20], can be classified as community-based repli-
cation systems. This paper discusses how such systems can
trade data to find the most reliable replication.

The concepts behind auctions, bidding and market ori-
ented systems have been well studied by economists and
computer scientists. In auction theory, our mechanism
would be classified as a first-price, sealed bid auction [17]:
each bidder submits a bid but does not know the other bids,
and the winner pays the “first-price,” which is the amount
the winner bid. Ferguson et al note that in order to apply
auction theory to a specific problem, several design ques-
tions must be addressed, including how to determine the
value of resources to participants and how to conduct the
auction as a distributed protocol [11]. These are some of the
questions we address for the specific domain of reliable data
replication in this paper.

Other distributed computing systems [22, 18, 10, 23] have
used market-oriented principles (such as auctions) in order
to allocate resources. Our work differs from these previous
systems in several ways. First, most systems have a concept
of “money” distinct from the resources that are being bought
and sold. In our system, there is no concept of “money,” and
resources are traded directly. This is because the location of
the resource (e.g., at a remote site), rather than the resource
itself, is the source of value. A barter system is simpler and
more appropriate for an autonomous, peer-to-peer network
than a system that requires some central entity to control the
money supply.

Second, many market-oriented systems assume a clear
distinctionbetween producers and consumers, such that pro-
ducers have different incentives and follow different policies
than consumers. In our peer-to-peer system, every site is
both a producer and a consumer in every transaction, and
thus must follow a policy that reflects this hybrid role.

Third, market-based data storage and management sys-
tems are usually designed to maximize a metric of access
efficiency, or to tune the system for the read/update ratio of
data items. “Profit” is made when a decision is made that
increases the system efficiency. In our system, the economic
incentive system must be structured to maximize reliability,
rather than access performance. Related work is discussed
further in Section 7.

In this paper, we examine how bid trading works, and
evaluate policies that sites can use to construct bids. Specif-
ically, we make the following contributions:

� We describe a mechanism by which archive sites can
participate in auctions for the purpose of replicating their
collections. This scheme is called bid trading.

� We examine different policies that sites can use for de-
ciding when to call auctions, and how to bid when an
auction is called.

� We present simulation results that show sites can increase
the number of copies they make of their collections (thus
improving their reliability) through bid trading. We also
present results that show which policies are best under
bid trading.

� We examine the effects of increased freedom on the
reliability of the system.

This paper is organized as follows. In Section 2, we
describe the bidding process, including our model and the
auction and bidding algorithms. Next, in Sections 3-5 we
discuss policies for calling auctions and bidding, and ways
in which maverick sites can deviate from “normal behav-
iors” for their own benefit. Section 6 presents the results of
simulation experiments where we study the various policies
and maverick behaviors. In Section 7 we examine related
work, and in Section 8 we present our conclusions.

2. Bid trading

An archive site is an autonomous provider of an archival
storage service. The archive site takes responsibility for
replicating digital collections deposited at the site by clients.
A collection is a set of related digital material, such as is-
sues of a digital journal, scientific measurements, or digital
photos of newsworthy events. Sites replicate collections as
a whole unit to simplify indexing and access, and to address
archivists’ concerns that collections be kept contiguous (to
simplify issues such as provenance). Here we treat all collec-
tions as equally worthy of preservation and equally difficult
to preserve.

A site (the “local site”) with an important collection of
size S will propose a trade to a remote site, requesting S
bytes of space. If the remote site agrees, the two sites swap
deeds, where a deed is the right of one site to use space at
another site. Thus, the local site reserves some amount B



�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������(collection)

Site A

80 GB

Site C

Site D

Site E

(65 GB)

(100 GB)

(85 GB)

(80 GB)

(80 GB)

(80 GB)

(a)

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

Site A

80 GB
trade

Site C

Site D

Site E

80 GB65 GB

(for site D)

(for site A)

(b)

Figure 2. Bid trading example.

of its space for use by the remote site, and the remote site
reserves S bytes of its space for use by the local site. The
local site can then use its deed for the remote site’s space
to make a copy of its collection at the remote site. Note
that each site is agreeing to provide perpetual, online access
to stored data, which means maintaining server machines,
providing network connectivity, and so on, in addition to
providing disk space. The remote site can hold on to its
deed for the local site, or can use it to replicate a collection
of its own. The local site will continue asking for trades until
it has made G copies, where G is the site’s replication goal.
A series of such binary, peer-to-peer trades between archives
creates a trading network among many sites. Although this
network is built up from individual decisions made at local
sites, it serves a global purpose of preserving data through
replication.

The trading negotiation must determine a “price” B for
a trade: the amount of space that the local site must give
to the remote site. In fixed-price trading, S = B, and the
sites exchange equally sized deeds. A more general scheme
is one in which B may be more or less than S, depending
on the needs of the remote site. We can call this general
scheme bid trading. An example is shown in Figure 2. Site
A wishes to replicate a collection of size 80 GB. It calls an
auction, announcing the auction size of S = 80 GB to the
remote sites (Figure 2a). Each site responds with a bid Bi
(italic values in Figure 2a); this bid is the amount of space
site A will have to give to make a trade. Site A chooses the
winner as site D, which submitted the lowest bid BD = 65

GB (although other criteria, such as the reliability of the
site, may also be considered). Next a trade is conducted
(Figure 2b), with sites A and D exchanging deeds. Now,

site A can use its deed for site D to make a copy of its
collection.

In this paper we examine how increasing the amount of
freedom in the bidding system affects the resulting reliabil-
ity. We can think of a “spectrum of freedom,” illustrated
by the following scenarios, ranging from the most restric-
tive (top of the list) to the least restrictive (bottom of list).
(There are many other scenarios besides the ones we illus-
trated here.)

� Fixed-Price Bids. All sites follow the same fixed-price
policy discussed above: A bid B must be the same as
the amount of space requested, S.

� Adaptive Bids. All sites follow the same policy, but the
policy takes into account local conditions. For example,
the bidB may be determined by a function f(R;S) that
takes into account the available free space R at the site
(and the requested space S).

� Multiple Policies. Sites are partitioned into classes, de-
pending on factors such as their free space. For example,
there would be a family of bidding functions f1; f2; :::,
and all sites in a class use the same function.

� Maverick Site. We again have multiple classes, but now
there is a single “maverick” site that follows its own
policy to try to improve its own reliability even at the
expense of the overall reliability. For example, one site
may choose a different bidding function than that used
by other sites in its class.

� Free Market. Each sites may use its own policy in an
attempt to maximize its own benefit.

� Malevolent Sites. Some sites break the basic trading
rules and try to subvert the system. For example, a site
may promise to store a collection, and then delete it. Or a
site could carry out a denial of service attack, generating
so many message that other sites cannot trade.

In this paper we confine our attention to scenarios at
the “restrictive” end of the spectrum, specifically the Fixed-
Price, Adaptive, Multiple, and Maverick scenarios. The
“permissive” scenarios have so many degrees of freedom
that it is very hard to study them without first gaining an un-
derstanding of the more controlled scenarios. Furthermore,
archival sites will almost certainly want to trade with known
entities they trust, and could reasonably agree to a common
price structure, as long as their autonomy is preserved. Since
we are assuming trusted archival sites, we do not study in
this paper mechanisms that enforce the selected policies or
rules, or that detect violations.

2.1. Reliability

Our goal is to provide the most reliable storage for collec-
tions. Sites may fail (and lose data) with some probability,
and we can measure the reliability with which a collection



Site A Site B Site C

1 2 33 13 2

Figure 3. Reliability example.

is stored by calculating the probability that the object is not
lost despite site failures. For each site, we can calculate the
local mean time to failure (MTTF), which is the expected
time before one of that site’s collections is lost. Our goal
here is to find which policies guiding the decision making
of a local site maximize the local data MTTF for that site.

For example, Figure 3 shows three sites, A, B and C,
storing copies of collections 1, 2 and 3. The figure indicates
(with a double box) that site A owns collection 1, site B owns
collection 2, and site C owns collection 3. Each of the three
sites (A, B and C) could fail independently. For example, we
can assume that over the course of some interval (say, one
year), that a site has a ten percent chance of failure. Then
the site reliabilityRi, or probability that site si will fail each
year, is 0.1. This value reflects not only the reliability of
the hardware that stores data, but also other factors such as
bankruptcy, viruses, hackers, users who accidentally delete
data, and so on.

From the site reliabilitiesRA; RB:::, and the assignment
of copies to sites (shown in Figure 3), we can calculate
the local data MTTF. First, we calculate the probability Pi
that all copies of any collection owned by site si are lost
in one year. The probability that collection 1 is lost is the
probabilityof both sites A and C failing, or 0:1�0:1 = 0:01.
Because this is the only collection owned by site A, PA =

0:01. Next, we calculate the expected number of years Mi

before any of site si’s collections are lost. For site A, with
PA = 0:01, the MTTF MA is 100 years. Similarly, the MB

of site B is 100 years, since collection 2 will be lost only if
both site B and site C fail. However, MC is 1000 years. For
collection 3 to be lost, all three sites must fail, and this event
has a probability of PC = 0:13 = 0:001.

2.2. Trading process

When a site wishes to replicate a collection, it must either
acquire a new deed for a remote site, or use an existing deed.
In order to acquire a new deed, the local site calls an auction,
inviting remote sites to submit bids. The decision of when
to call an auction is determined by the auction calling policy
(see Section 3). An example of the steps that the auctioning
site can take is shown in Figure 4. Other algorithms are
possible; for example, the auctioning site could broadcast
the auction announcement and receive bids in parallel.

The auction procedure finds all the remote sites that do
not already have a copy of collection C, and solicits bids

CallAuction(Collection C) f
/* The size of the collection */
S := C.size();

/* The number of bids we receive */
BidCount := 0;

for each i := 0::n such that site si does not
have a copy of C f

Di := Size of any deeds held by local
site for site si’s space;

Bi := si.GetBid(S �Di);
if Bi != NULL then BidCount++;
/* E.g., site i has refused to bid */ g

if (BidCount = 0) then return;
/* No sites have bid */

W := PickWinner(B0 ::Bn);
if (W = NULL) then return;
/* All bids are too high. */

get a deed of size S from site W;
give a deed of size BW to site W; g

PickWinner(Bids B0::Bn) f
L := LocalAvailableSpace();
select lowest non-NULL bid Bi;
if Bi > L then return NULL;
return i; g

GetBid(Size S) f
L := LocalAvailableSpace();
if S > L then return NULL;
B := BidPolicy();
return B; g

Figure 4. Auction and bidding algorithms.

(via the GetBid() message) from these sites. Note that, for a
site si, the auction site only needs S�Di GB of space, since
it already holds deeds for Di GB of si’s space (Di � 0).
It is possible that some (or all) of these sites will not bid
(submitting a bid of NULL), either because they do not
have at least S space, or simply because they do not want to
trade at this time. If no sites bid (or if all remote sites already
have a copy of C), then the auction terminates without any
trading.

If at least one bid is submitted, then the auctioning site
must pick a winner. Figure 4 shows a simple PickWinner()
procedure that selects the site that submitted the lowest bid.
In this scheme, the bidding site can bid less to have a better
chance of winning the auction, but will get a smaller deed
for space at the auctioning site in return. The auctioning
site may extend PickWinner() to favor the most reliable
bidding site, sites that have been dealt with before, or some
combination of these and other factors. Here, we assume
that the auctioning site simply picks the lowest bid. If the
auctioning site does not have enough space to satisfy the
lowest bid, there is no winner and the auction will terminate.

Figure 4 shows that the auctioning site calculates a value
L, which is the local storage available for public use. The
space management policy determines how L is calculated,



for example to reserve some space for future use. For a
detailed discussion of space management, see [6].

Once a winner is chosen, then the sites trade. The auc-
tioning site acquires a deed of size S, and must give the
winning site a deed of size BW (the winning site’s bid).
BW may be more, less or the same as S. At this point,
the auctioning site can use its new deed to store a copy of
collection C.

When a local site is asked to bid in an auction, it runs a
local version of GetBid() to choose a bid and send it to the
auctioning site. The bidding site can choose a bid based on
many factors, such as how urgently it needs to replicate its
own collections, how scarce its local storage space it, how
desirable it is to trade with the auctioning site, and so on.
The policy that guides the construction of an appropriate bid
is called the bidding policy. Bidding policies are described
in Section 3. (Note that if S = B, fixed-price trading
occurs.) A basic version of GetBid() that uses a bidding
policy, encapsulated in the function BidPolicy(), is shown in
Figure 4.

3. Adaptive Bids scenario

In the Adaptive Bids scenario, all sites use the same global
auction calling policy and the same global bid policy.

The auction calling policy is a set of rules for automati-
cally deciding when to call an auction and for what collec-
tion. Here, we assume that sites call auctions when they need
to make copies of their collections. If a site calls an auction
and no remote sites bid (e.g. because the remote sites do not
have enough storage space), it waits until the global state
changes (e.g. another site joins or an existing site adds more
storage) before calling another auction. We assume there is
some mechanism for detecting this state change.

Once a site decides to call one or more auctions, it must
decide which collections to replicate. The collections that
must be most urgently replicated are those collections that
are rarest (have the fewest copies). Thus, a site can call
multiple auctions, one per collection, starting with the rarest
collection. However, a site must decide how many collec-
tions to try and replicate during each round of auctions. It
has two choices:

� CallForAll: call auctions for all of the collections. This
policy tries to use the “call auction” mechanism to make
as many copies as possible of each collection.

� CallForRare: call auctions only for the rarest collec-
tions. For example, a site may be trying to make G

copies of every collection; G is a goal locally defined
by the site administrator. We can define the “rare” col-
lections as those that have less than G=2 copies, and the
“abundant” collections as those that have at least G=2
copies. Rare collections are replicated when the local

site calls an auction for them. Abundant collections can
also be replicated, but only as a result of the local site
bidding in an auction called by a remote site.

The bid policy is a set of rules for automatically calcu-
lating the bid for each auction. There is a huge space of
possible bid policies. We cannot attempt to study them all,
so we will restrict our examination to a subset of the possible
policies. Specifically, we will examine a family of policies
defined by two parameters: I, the interval of potential bids,
and P(), the policy function that determines how bids vary
along the interval I. 0 � P () � 1. We can call the bid
policies described by these parameters I-P policies.

The policy functionP () reflects the local site’s valuation
of its own space resources versus resources at a site the local
site wants to trade with in a particular auction. The interval
I reflects the maximum and minimum bids the local site
will make in any auction. As an example, consider a policy
where a site bids between 0:5� S and 1:5� S (where S is
the amount of space the auctioning site is asking for). Then,
the interval I is 0:5�S:::1:5�S. The bid policy may dictate
that sites bid low when their local storage space is abundant,
and bid high when their storage space is more scarce. In
this case, P () / U , where U is the fraction of local storage
space that has been used up.

More generally, a site can calculate its bid B as

B = S � (I � P () + (1� I=2)) (1)

This equation produces a symmetric bid policy: the midpoint
of the interval I is at S. If the interval I is S:::S, fixed-price
trading results.

Here, we examine bid policies with different values of I
and P (). We have studied four different policy functions
P (), which give us four different bid policies: FreeSpace,
UsedSpace, AbundantCollection and RareCollection. Re-
call that under the Adaptive Bid scenario we are studying
here, all sites would agree to use one of the following op-
tions:

FreeSpace: A site bids more when it has more free space.
In this case, P () = K=T , where K is the amount of free
local space, and T is the total amount of local space (used
and free). Under the FreeSpace policy, a site tends to win
auctions when its space is scarce, because then the site bids
low. This may be the best policy since space scarcity makes
trading more difficult, and thus sites should try to win as
many auctions as possible.

UsedSpace: A site bids more when more of its space is
used. P () = (T �K)=T . Under this policy, sites tend to
bid low and win auctions when their space is abundant, but
bid high (and lose more auctions) when their space is scarce.
This policy may be preferred to allow sites to hoard local
space when that space is scarce.

AbundantCollection: A site bids more when its collec-
tions are abundant. IfC is the number of copies of the rarest



collection (the collection with the fewest copies), and G is
a “goal” number of copies to make of each collection, then
P () = C=G. In other words, when there are very few copies
of the rarest collection, then the site bids low, wins auctions,
and replicates its rare collections. When there are many
copies of its rarest collection (and thus many copies of every
collection), the site bids higher, and wins few auctions. This
policy may be preferred because it allows sites to make more
trades when their collections are rare. In order to keep P ()
between 0 and 1, we treat C=G > 1 as 1.

RareCollection: A site bids more when its collections are
rare. In this case, P () = (G� C)=G. In order to keep P ()
between 0 and 1, we treat G� C < 0 as 0. Although a site
will bid high and win fewer auctions when its collections
are rare, each time it wins an auction the site will acquire a
large amount of space at the auctioning site. This will allow
sites to replicate many collections when they win auctions.

In previous work [6], we have examined the Fixed-Price
Bids scenario. This scheme is even more restrictive than
the Adaptive Bids scenario, since sites cannot bid at all. In
Section 6, we compare the reliability achievable under bid
trading to those achievable under fixed-price bidding.

4. Multiple Policies scenario

Different sites have different resources and resource re-
quirements, and it may be that there is no one policy that
is good for all sites. In the Multiple Policies scenario, we
partition the sites into distinct classes, and allow each class
to use a different policy. For example, we may create a class
of sites that have an initially large amount of storage space,
and another class of sites that have less storage space. The
sites in the high capacity class could use a policy that best
utilizes their abundant resources, while the low capacity sites
would use a policy that best manages their scarce resources.
For the Multiple Policies scenario, we can study the same
alternatives outlined in Section 3. In other words, once we
define the classes of sites, we can determine the auction call
policy and bid policy that provides the best reliability for
each class.

5. Maverick Site scenario

The data trading network is founded on a principle of
collective benefit from individual action. Sites seek to help
themselves, and in doing so, help other sites. However, it is
possible that individual sites may pursue policies that benefit
only themselves while causing a reduction in reliability for
other sites. In the Maverick Site scenario, most sites use the
policies that are best for their class,but one site deviates from
these policies. Due to space limitations, maverick behaviors
are examined in the extended version [7]. Experimental
results for maverick sites are summarized in 6.4.

Variable Description Base values

S Number of sites 10 to 15
F Site storage factor 2 to 6
P Site reliability 0.9
CperSMIN ; Min/max CperSMIN = 4;

CperSMAX collections per site CperSMAX = 25

CsizeMIN ; Min/max CsizeMIN = 50GB;
CsizeMAX collection size CsizeMAX = 1000GB
CtotMIN ; Min/max total CtotMIN = 200GB;
CtotMAX data per site CtotMAX = 10;000GB
GM Minimum replication goal 3 copies
GI Ideal replication goal 6 copies

Table 1. Simulation variables.

6. Results

We have conducted a series of experiments to study the
tradeoffs involved in bid trading. In these experiments, we
conducted simulated trading sessions between archive sites,
comparing various bid and auction calling policies under
the Adaptive Bids, Multiple Policies and Maverick Sites
scenarios. In this section, we discuss our simulator, and
present the results of our experiments.

6.1. The bid trading simulator

Our simulator conducts a series of simulated auctions
and trades, and the resulting local data reliabilities are then
calculated. Table 1 lists the key variables in the simulation
and the values we used; these variables are described below.

The simulator generates a trading scenario, which con-
tains a set of sites, each of which has a quantity of
archival storage space. The number of collections “owned”
by the site is randomly chosen between CperSMIN and
CperSMAX . Each scenario has 10 � S � 15 sites�.
Collections “appear” in globally random order; this mod-
els collections being created and archived over time. A site
is “born” when the first of its collections is archived, and
no site has advance knowledge about the creation of other
sites or collections. Collections all have different, randomly
chosen sizes between CsizeMIN and CsizeMAX . The
sum of the sizes of all of the collections assigned to a site
ranges from CtotMIN to CtotMAX . The values we chose
for these variables represent a highly diverse trading net-
work with small and large collections and sites with small or
large amounts of data. The archival storage space assigned
to the site is the storage factor F of the site multiplied by
the Ctot at the site. This models a situation where a site
administrator chooses to install F times as much disk space
as needed to store the locally owned collections. The space
left after storing collections is public space used to store

�Our experiments indicate that although much larger networks are fea-
sible, a larger number of sites is not necessary to achieve high reliability.



copies of collections owned by other sites. In each scenario,
some sites may have a large F (e.g. 6) while others may
have a small F (e.g. 2). Sites call auctions as dictated by
their auction call policies (see Section 3). Site failures are
modeled with Ri = 0:1, as described in Section 2.1.

In the following sections, we examine the improvement
or detriment due to using one policy versus another. For
example, if a site achieves a MTTF of 100 years using pol-
icy X, and a MTTF of 300 years using policy Y , we would
report a 200 percent improvement for using policy Y versus
a baseline of policy X. For each experiment, we ran 1200
simulations, and used the standard deviation of our measure-
ments to calculate 95 percent confidence intervals. In our
experiments, these intervals were �50 or less except where
noted. For example, the average percent MTTF improve-
ment for policyY (versus policyX) might be 200�50 (with
95 percent confidence).

6.2. Adaptive Bids scenario

First, we examined which policies resulted in the highest
reliability under the Adaptive Bids scenario, where all sites
use the same policy. We studied both the auction policy and
the bid policy.

6.2.1 Auction policies

The auction policy dictates when a site will call an auction,
and for which collection. With the CallForAll policy, a local
site repeatedly calls auctions for each of its collections, in
rarest first order, as long as the local site is receiving bids
from remote sites. The CallForRare policy is the same,
except that the local site does not call auctions for collections
with at least GM = 3 copies.

We ran a set of experiments where we compared the ef-
fects of the auction calling policy. We ran five different ex-
periments, one for each bid policy (including the FixedPrice
policy). Our results (not shown) indicates that the Call-
ForRare policy is always better, providing up to 850� 100

percent improvement in MTTF over the CallForAll policy
(when F = 5:8). The results for other bid policies are
similar: CallForRare is better than CallForAll regardless of
which bid policy is used. These results suggest that it is
detrimental to reliability if a site calls too many auctions.
Although the CallForAll policy causes the site to actively
try to replicate collections by calling auctions, sites call too
many auctions too soon, using up their local storage, and
too few copies are made of collections deposited later in the
trading session. Instead, sites should try to strike a balance
between calling auctions themselves (to ensure that collec-
tions are replicated a few times), and bidding in auctions
called by other sites (to replicate the collections further).
This is what happens with the CallForRare policy.

-50

0

50

100

150

200

250

300

350

2 2.5 3 3.5 4 4.5 5 5.5 6

M
T

T
F

 d
iff

er
en

ce
 v

s.
 F

ix
ed

P
ric

e 
(p

er
ce

nt
)

Local storage factor (F)

FreeSpace
UsedSpace

AbundantCollection
RareCollection

FixedPrice

Figure 5. Bid policies in the Adaptive Bids
scenario.

6.2.2 Bid policies

Next, we examined different bid policies. The bid policies
described in Section 3 were implemented by calculating B
using Equation 1. If multiple sites submitted identical min-
imum bids, the local site chose the site with which it had
traded the most in the past. If this did not break the tie,
the local site chose randomly among the tied sites. (Choos-
ing previous partners first produces higher reliability than
making random the first tiebreaker; see [6].)

In our experiment, I = 1 and P () was either FreeSpace,
UsedSpace, AbundantCollection, or RareCollection for all
sites; we also tested FixedPrice (e.g., I = 0). Comparing
against the FixedPrice policy allows us to determine whether
bid trading is beneficial versus a non-bidding data trading
network. The results are shown in Figure 5, which shows the
percent MTTF change for each bid policy versus a baseline
of the FixedPrice policy. The horizontal axis in this figure is
F : the ratio of the total storage space at a site to the amount
of locally owned data at that site. The figure shows that no
one policy is best. For high capacity sites (with F � 4:4),
either the UsedSpace policy or FreeSpace policy is best. For
these policies, the 95 percent confidence interval is �50 for
F < 5:6 and �100 for F � 5:6; thus for high capacity sites
the confidence intervals for the UsedSpace and FreeSpace
policies overlap and neither is statistically “better” than the
other. (Also, the dips in peaks for UsedSpace and FreeSpace
for F > 4:4 are noise within the confidence interval.) For
mid capacity sites (3:2 � F < 4:4) all policies are roughly
the same, since all are within the confidence interval of�50.
For low capacity sites (F < 3:2), all policies are the same
(within the confidence interval) as the FixedPrice baseline,
except FreeSpace, which provides up to 140 percent im-
provement over FixedPrice.



The results for the FreeSpace policy are due to two com-
peting effects: sites bid low and win many auctions, or bid
high and win big in a few auctions. Low capacity sites
(F < 2:6), which often cannot bid at all, benefit from
FreeSpace. When low capacity sites do bid, they tend to
have little free space and thus bid aggressively, winning fre-
quently. In the range 2:6 � F < 4:4, sites still cannot bid
in very many auctions, but now tend to lose the ones they
do bid in since they are bidding comparatively higher (since
they have more free space). For F � 4:4, the “winning
big” effect dominates, since high capacity sites can bid in
many auctions and have a higher chance of participating in
an auction they can win with a high bid.

Under the UsedSpace policy, sites bid more when they
have little free space. In this case, high capacity sites (which
usually have lots of free space) bid low and win auctions.
Although these sites are not getting much remote storage per
auction (because they bid low) they are winning many auc-
tions, and get a large amount of remote space in aggregate.
Low capacity sites win fewer auctions under UsedSpace be-
cause they are bidding higher. As noted above, low capacity
sites only benefit by bidding aggressively, which they cannot
do under UsedSpace.

This experiment suggests that may be better if high capac-
ity sites and low capacity sites use different policies. This is
the Multiple Policies scenario, which we study next.

6.3. Multiple Policies scenario

In the Multiple Policies scenario different sites use differ-
ent polices based on some partition of the sites. The results
in Section 6.2.1 suggest that all sites benefit from the Call-
ForRare policy, so we did not study the case where different
classes used different auction policies. However, Figure 5
suggests that for bid policies, the storage factor F is a good
way to partitionsites into classes. Therefore, we constructed
three classes: high capacity sites (F � 4:4), mid capacity
sites (3:2 � F < 4:4) and low capacity sites (F < 3:2).

We ran simulations in which all of the sites in one class
used the same bid policy, while different classes may have
used different policies. We can summarize the results as
follows:

� The best class division is actually two classes, with low
capacity F � 3:4 and high capacity F > 3:4, rather
than three classes. Recall that sites are trying to make at
least GM = 3 copies. This means a site with F > 3:4

has enough space to make 3 copies, and intuitively has
a high storage capacity relative to the storage needed to
make trades. A site with F � 3:4 has trouble making 3
copies, and intuitively has low storage capacity relative
to the needed storage.

� High capacity sites (F > 3:4) should use the UsedSpace
policy with any I > 0. UsedSpace allows high capacity

0

100

200

300

400

500

600

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8

M
T

T
F

 d
iff

er
en

ce
 v

s.
 F

ix
ed

P
ric

e 
(p

er
ce

nt
)

Local storage factor (F)

FreeSpace
UsedSpace

AbundantCollection
RareCollection

FixedPrice

Figure 6. Best bid policy for high capacity
sites.

sites to bid low and win many auctions, so the sites can
make as many copies as possible of their collections.

� Low capacity sites (F � 3:4) should use the FreeSpace
policy with I = 2. FreeSpace allows low capacity sites
to bid low and win many of the auctions they participate
in, so the sites can aggressively try to make at least 3
copies of their collections.

� Bid trading as a mechanism is useful, since it allows sites
to improve their reliability over fixed-price trading.

In order to determine these results, we tested every combi-
nation of a possible bid policy for low, mid and high capacity
sites; since there are five different policies and three storage
classes there are 125 combinations. To start with, I = 1

in each case except FixedPrice. We analyzed the results
by plotting the effect of bid policies on the reliability for a
particular class for each combination of policies used by the
other two classes.

For example, we plotted the effect on high capacity sites
(where F � 4:4) of the bid policy used by those sites, in
the scenario where mid capacity sites used the UsedSpace
policy and low capacity sites used the AbundantCollection
policy. The results are shown in Figure 6. As the figure
shows, the UsedSpace policy is significantly better for high
capacity sites than other policies. This general result, and
the shape of the plotted curves, remains the same regardless
of the bid policies used by mid and low capacity sites. Recall
that under UsedSpace, sites bid low and win auctions when
they have lots of free space. Even though high capacity
sites make lots of trades, they tend to still have a lot of free
space, and thus continue to win auctions and make copies
of their collections. In other words, the high capacity sites
have enough space so that they can afford to continually bid
low. In this figure, the 95 percent confidence interval is�50



0

100

200

300

400

500

600

1.8 2 2.2 2.4 2.6 2.8 3 3.2

M
T

T
F

 d
iff

er
en

ce
 v

s.
 I=

0 
(p

er
ce

nt
)

Local storage factor (F)

I=0.5
I=1

I=1.5
I=2

Figure 7. Best bid span for the FreeSpace pol-
icy and low capacity sites.

except in the range F > 4:8, where the confidence interval
is �100. The dips and peaks in the UsedSpace curve are
noise within these confidence intervals.

The results for other combinations of policies used by
low and mid capacity sites are the same: UsedSpace is best
for high capacity sites regardless of the policy used by other
classes of sites.

For mid capacity sites (results not shown), UsedSpace
is clearly the best policy for F > 3:4, but in the interval
3:2 � F � 3:4 there is no clearly best policy. This suggests
that F > 3:4 is a better definition of high capacity sites
than F > 4:4. Further experiments confirm that two classes
are appropriate: high capacity sites (F > 3:4) do best with
UsedSpace and low capacity sites (F � 3:4) do best with
FreeSpace, for the same reasons discussed in Section 6.2.2.

In order to examine the impact of I on reliability, we ran
an experiment where I varied between 0 and 2 for high ca-
pacity (F > 3:4) sites using UsedSpace, while low capacity
sites (F � 3:4) used FreeSpace (with I = 1). The results
(not shown) for high capacity sites indicates that the MTTF
does not change significantly as I changes. Although sites
achieve better reliability with I > 0, with up to 100 percent
improvement in MTTF versus I = 0, the actual value of I
does not matter.

We also ran an experiment where I varied between 0 and
2 for low capacity sites using FreeSpace, while high capacity
sites use UsedSpace with I = 1. The results for are shown
in Figure 7, which shows the percent difference in MTTF
achieved by sites for each value of I versus a baseline of
I = 0. As the figure shows, low capacity sites achieve
the highest reliability with I = 2, with up to a 420 percent
improvement over I = 0. By increasing the bid span, low
capacity sites magnify the benefits of the free space policy:
they win even more auctions, by bidding lower more often.

6.4. Maverick Site scenario

Some sites may decide not to follow the best policy for
their storage class as a whole. Instead, they may behave
differently, in the hope of achieving benefit for themselves.
This situation is the Maverick Site scenario. We have ex-
amined the behaviors outlined in Section 5 to see if such
behaviors help the maverick site and hurt the other sites
in the network. Due to space limitations, complete results
are presented in the extended version [7]. In summary, our
experiments show:

� A maverick high capacity site can sometimes benefit by
always bidding high to try and extract a high price, but
does not harm other sites doing so.

� A maverick high capacity site can also benefit by never
calling auctions (instead only bidding in other auctions)
and in doing so may harm other sites.

� Other behaviors do not benefit the maverick site, some-
times sharply reducing the maverick’s reliability. Simi-
larly, other behaviors do not hurt system reliability.

7. Related work

Previous investigators have studied distributed replica-
tion systems. Examples include traditional data manage-
ment schemes, such as replicated DBMS’s [3, 12], repli-
cated filesystems [16, 13] and RAID disk arrays [19]. Such
schemes utilize replication to protect against failures in the
short term. However, they do not provide a high level of au-
tonomy to the nodes participating in the replication network,
relying instead on a central controller to determine data
placement or manage free-space tables. Also, traditional
solutions are concerned with load distribution, query time
and update performance, in addition to reliability [9, 21, 25].
Thus, traditional replicated databases tend to trade some re-
liability for increased performance [15]. Here, we are pri-
marily concerned about preservation (given the constraint of
preserving site autonomy).

Systems such as the Archival Intermemory [4] and
OceanStore [14] are very good at preserving digital objects.
These systems could use the techniques we describe here
to determine where data will be replicated. Our work is
also related to existing peer to peer trading systems such
as FreeHaven [8] or Gnutella [1]. Systems like Gnutella
provide searching but do not guarantee preservation. A
search facility could be built on the system we describe
here. FreeHaven guarantees preservation but also focuses
on anonymity, which requires different constraints and tech-
niques than in our domain.

Auction theory has been extensively developed in both
economics and computer science. Many auction theory re-
sults are theorems about optimal allocation in abstract mod-



els, and work is needed to apply theoretical mechanisms to
real systems (as pointed out in [11]). Moreover, auction
theorists usually make assumptions that are not applicable
here, such as the existence of a currency different from the
resources themselves, a distinction between producers and
consumers, and global pricing [24]. Others have looked at
“efficient clearing”: the best way to assign resources to bid-
ders so as to maximize utility across the system, assuming
all resources and bids are known at the same time [2]. In our
system, resources and bids appear over time, and archives,
which make copies as soon as possible to avoid failures,
cannot wait until all resources and bids are known.

Several systems have attempted to apply market-oriented
programming, and specifically auction techniques, to re-
source allocation problems. Schwartz and Kraus [22] sur-
vey methods for using auctions to distribute data collections.
They assume that there is a common currency, that there is
one copy of each collection, and that the performance met-
ric is access time. Some or all of these assumptions are
shared by computational economies such as the Blue-Skies
digital library [18], the Mariposa transaction processing sys-
tem [23], and Ferguson, Nikolaou and Yemini’s replicated
data processing economy [10]. Our unique application,
replication to achieve reliability, means that we can draw
from this previous work but must also develop new tech-
niques and policies.

8. Conclusion

We have described bid trading: a mechanism for allow-
ing sites to conduct peer-to-peer data trading to achieve high
reliability. Bid trading allows a local site to determine how
much space at the remote site to ask for in return for giv-
ing a deed of a certain size to the remote site. We have
described how the auction and bidding process works, and
examined policies for deciding when to call an auction and
how much to bid. Using a trading simulator, we have de-
termined which policies provide the highest reliability: the
UsedSpace policy for sites with a lot of storage capacity, and
the FreeSpace policy for lesser capacity sites. Moreover, our
experiments show that most malicious behaviors do not sig-
nificantly harm the system. Our results suggest that bid
trading is an effective, general model for peer-to-peer data
trading and preservation.

References

[1] Gnutella. http://gnutella.wego.com, 2002.
[2] A. Andersson, M. Tenhunen, and F. Ygge. Integer program-

ming for combinatorial auction winner determination. In
Proc. Int. Conf. on Multi-Agent Systems, July 2000.

[3] F. B. Bastani and I.-L. Yen. A fault tolerant replicated storage
system. In Proc. ICDE, May 1987.

[4] Y. Chen et al. A prototype implementation of archival in-
termemory. In Proc. ACM Int’l Conf. on Digital Libraries,
1999.

[5] B. Cooper, A. Crespo, and H. Garcia-Molina. Implementing
a reliable digital object archive. In Proc. European Conf. on
Digital Libraries (ECDL), Sept. 2000.

[6] B. Cooper and H. Garcia-Molina. Peer-to-peer data trading
to preserve information. ACM Transactions on Information
Systems, 20(2), Apr. 2002.

[7] B. F. Cooper and H. Garcia-Molina. Bidding for stor-
age space in a peer-to-peer data preservation system (ex-
tended version). http://dbpubs.stanford.edu/pub/2002-22,
2002. Technical report.

[8] R. Dingledine, M. Freedman, and D. Molnar. The Free-
Haven Project: Distributed anonymous storage service. In
Proc. of the Workshop on Design Issues in Anonymity and
Unobservability, July 2000.

[9] X. Du and F. Maryanski. Data allocation in a dynamically
reconfigurable environment. In Proc. ICDE, Feb. 1988.

[10] D. Ferguson, C. Nikolaou, and Y. Yemini. An economy for
managing replicated data in autonomous decentralized sys-
tems. In Proc. Int. Conf. Symp. on Autonomous Decentralized
Sys., Mar. 1993.

[11] D. Ferguson et al. Economic models for allocating resources
in computer systems. Market-Based Control: A Paradigm
for Distributed Resource Allocation, 1996.

[12] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The dangers
of replication and a solution. In Proc. SIGMOD, June 1996.

[13] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. ACM TOCS, 10(1):3–25, Feb. 1992.

[14] J. Kubiatowicz et al. OceanStore: An architecture for global-
scale persistent storage. In Proc. ASPLOS, Nov. 2000.

[15] E. Lee and C. Thekkath. Petal: Distributed virtual disks. In
Proc. 7th ASPLOS, Oct. 1996.

[16] B. Liskov et al. Replication in the Harp file system. In Proc.
13th SOSP, Oct. 1991.

[17] P. Milgrom. Auctions and bidding: A primer. Journal of
Economic Perspectives, 3(3):3–22, Summer 1989.

[18] T. Mullen and M. Wellman. A simple computational market
for network information services. In Proc. Int. Conference
on Multi-Agent Systems, June 1995.

[19] D. Patterson, G. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). SIGMOD Record,
17(3):109–116, Sept. 1988.

[20] D. S. H. Rosenthal and V. Reich. Permanent web publishing.
In Proc. 2000 USENIX Annual Technical Conference, June
2000.

[21] H. Sandhu and S. Zhou. Cluster-based file replication in
large-scale distributed systems. In Proc. SIGMETRICS, June
1992.

[22] R. Schwartz and S. Kraus. Bidding mechanisms for data al-
location in multi-agent environments. In Proc. Int. Workshop
on Agent Theories, Architectures and Languages, July 1997.

[23] M. Stonebraker et al. An economic paradigm for query pro-
cessing and data migration in Mariposa. In Proc. Int. Conf.
on Parallel and Distributed Information Sys., Sep. 1994.

[24] W. Walsh et al. Auction protocols for decentralized schedul-
ing. In Proc. ICDCS, May 1998.

[25] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ACM TODS, 2(2):255–314, June 1997.


