Distributed Architecture Definition Language DADL

Ron Burback

October, 1997

Areas of Focus

Control	plan repair, re-planning, process changes, plan optimization, chronic problem management,
Measure	number of faults both reported and fixed, lines of code, closeness to plan, resource utilization, performance,
Strategies	methodologies, architecture , paradigms, mission, risk analysis, scheduling, priority setting, resource utilization, decision making, life cycle management,
Tools	compilers, debuggers, environments, quality assurance, CASE, version control, databases, operating systems, networks, file systems, GUI builders, composition,
People	group interactions, skill development, group dynamics, communications, goal setting,

Basic Client/Server

Three Tiered Client/Server

Client/Server Network Placement

SMTP based Electronic Email

email from gio@db to ron@cs

HTTP based Web Example of Client/Server

get http://cs/~ron

Defining Characteristics

- Distribution
- Concurrent
- No Global State
- No Global Clock
- Partial Failures
- Asynchronous
 Communication
- Distributed Control

- ♦ Heterogeneous Systems
- ◆ Local Autonomy
- ◆ Evolution Programming Paradigm
- ◆ Constant Change
- ◆ Many Transparencies
- ◆ Openness
- ◆ Interdependence
- ◆ Security

What is the Problem?

- Architectures are defined with a few drawings, hand waving arguments, and English based document
- Not precisely defined
- Traditional programming languages concentrate on algorithms and data structures

The Solution?

- We need a language that can describe distributed architectures.
- Extension to existing programming languages.
- DALD (Distributed Architecture Definition Language)

Architecture Definition

- The components and their interfaces, communication, and contractional behavior.
- Traditional programming languages concentrate on algorithms and data structures which define the components but do very little at defining interfaces, communication, and contractional behavior.

Consider this simple program which adds two integers.

- void main () { int results = plus(2,1); }
- int plus (int n, int m) { return n+m; }

What is the architecture?

There is an implicit architecture, so implicit that it is seldom mentioned. The two components communicate using a shared address space and a call stack frame. The communication is assumed error free and both components are flawless.

Comparison of Architectures

Traditional

- Not Distribution
- Not Concurrent
- Global State
- Global Clock
- No Failures
- Synchronous Communication
- Centralized Control

Distributed

- Distribution
- Concurrent
- No Global State
- No Global Clock
- Partial Failures
- Asynchronous Communication
- Distributed Control

Comparison of Architectures

Traditional

- Homogeneous Systems
- REvolution Programming Paradigm
- Fragile
- Only one Transparencies
- Closed
- No Security

_

- Local Autonomy
- Interdependence

Distributed

- Heterogeneous Systems
- Evolution Programming Paradigm
- Constant Change
- Many Transparencies
- Openness
- Security

_

- Local Autonomy
- Interdependence

Some DADL Concepts

- dagents are the components
- a *contract* determines the *resources* and *performance* demands of a dagent
- terms and sentences build a conversation over connections which determines the behavior

Example: Plus

shared ram

```
<=>
connection
c1
1-to-1
ordered FIFO
guaranteed
delivery
```

```
alphabet (byte);
term t1 (int n);
term t2 (int m);
sentence s1 (t1, t2) from c1 to c2;
term t3 (int plus (int, int) highly available;
sentence s2 (t3) from c2 to c1;
behavior (s1;s2);
volatile;
open data;
unmarshaled;
unauthenticated;
unauthorized;
```


A DADL Environment

Environmental Services such as authentication, authorization, data privacy, data integrity, marshaling, persistence management, replication, transaction processing, distributed lock management, databases, and GUI systems.

DADL Development

DADL
Program

DADL
Compile

Conversation Service

Dagent Stub
+ programmer supplied code
+ library

Conversation Service

Link
Conversation Application