
STREAM: The Stanford Stream Data Manager

User Guide and Design Document

1

Contents

1 Introduction 3

2 Functionality 3

2.1 Output . 3
2.2 CQL Restrictions . 4
2.3 Named Queries (Views) . 5

3 Installation 6

3.1 Building the system . 6
3.2 Testing the system . 6

4 Using STREAM 7

4.1 gen client . 7
4.2 STREAM library . 7
4.3 Configuring the STREAM server . 8
4.4 Script files . 8

4.4.1 Examples . 8
4.4.2 Input Streams and Relations . 8
4.4.3 Source files . 9
4.4.4 Queries . 9

5 Interface 11

5.1 Server class . 11
5.2 TableSource class . 14

5.2.1 Input Tuple Encoding . 15
5.3 QueryOutput class . 16

6 STREAM Architecture 18

6.1 Planning Subsystem . 18
6.1.1 Parser . 18
6.1.2 Semantic Interpreter . 18
6.1.3 Logical Plan Generator . 19
6.1.4 Physical Plan Generator . 19
6.1.5 Plan Manager . 20
6.1.6 Table Manager . 20
6.1.7 Query Manager . 20

6.2 Execution Subsystem . 21
6.2.1 Data . 21
6.2.2 Low-Level Operational Units . 23
6.2.3 High-Level Operational Units . 23
6.2.4 Global Operational Units . 27

2

1 Introduction

This document describes the architecture and design of a general purpose prototype Data Stream Management
System (DSMS) called STREAM, for STanford stReam datA Manager. A more comprehensive introduction to
DSMSes and the motivation for building one can be found in [MW+03].

2 Functionality

STREAM supports declarative continuous queries over two types of inputs: streams and relations. A continuous
query is simply a long-running query, which produces output in a continuous fashion as the input arrives. The
queries are expressed in a language called CQL, which is described in [ABW03]. The input types—streams and
relations—are defined using some ordered time domain, which may or may not be related to wall-clock time.

Definition 2.1 (Stream) A stream is a sequence of timestamped tuples. There could be more than one tuple
with the same timestamp. The tuples of an input stream are required to arrive at the system in the order
of increasing timestamps. A stream has an associated schema consisting of a set of named attributes, and all
tuples of the stream conform to the schema. �

Definition 2.2 (Relation) A relation is time-varying bag of tuples. Here “time” refers to an instant in the
time domain. Input relations are presented to the system as a sequence of timestamped updates which capture
how the relation changes over time. An update is either a tuple insertion or a tuple deletion. The updates
are required to arrive at the system in the order of increasing timestamps. Like streams, relations have a fixed
schema to which all tuples conform. �

Note that the timestamp ordering requirement is specific to one stream or a relation. For example, tuples of
different streams could be arbitrarily interleaved.

2.1 Output

The output of a CQL query is a stream or relation depending on the query. The output is produced in a
continuous fashion as described below:

• If the output is a stream, the tuples of the stream are produced in the order of increasing timestamps.
The tuples with timestamp τ are produced once all the input stream tuples and relation updates with
timestamps ≤ τ have arrived.

• If the output is a relation, the relation is represented as a sequence of timestamped updates (just like
the input relations). The updates are produced in the order of increasing timestamps, and updates with
timestamp τ are produced once all input stream tuples and relation updates with timestamps ≤ τ have
arrived.

Some additional clarifications:

1. Note that the system can infer that all the tuples of a stream (resp. updates of a relation) with timestamps
≤ τ have arrived only when the first tuple (resp. first update) with timestamp > τ arrives. So the output
tuples with timestamp τ are produced only when at least one tuple or update with timestamp > τ has
arrived on every input stream and relation.

3

2. Currently there is no way of providing information (called heartbeats in [ABW03, SW04, TMSF03]) to
the system about the progress of time in input streams and relations. This could cause problems for
applications with an input stream that is mostly “silent”.

3. The representation of a relation as a sequence of timestamped updates is not unique, since tuple insertions
and tuple deletions with the same timestamp and the same tuple value cancel each other. The system
does not specify which of the several possible representations of a relation is produced.

2.2 CQL Restrictions

STREAM currently does not support all the features of CQL specified in [ABW03]. In this section, we mention
the important features omitted in the current implementation of STREAM. In the next section, we describe
how queries which require these features can be specified in an alternate fashion using named intermediate
queries (or views). The important omissions are:

1. Subqueries are not allowed in the Where clause. For example the following query is not supported:

Select *

From S

Where S.A in (Select R.A

From R)

2. The Having clause is not supported, but Group By clause is supported. For example, the following query
is not supported:

Select A, SUM(B)

From S

Group By A

Having MAX(B) > 50

3. Expressions in the Project clause involving aggregations are not supported. For example, the query:

Select A, (MAX(B) + MIN(B))/2

From S

Group By A

is not supported. However, non-aggregated attributes can participate in arbitrary arithmetic expressions
in the project clause and the where clause. For example, the following query is supported:

Select (A + B)/2

From S

Where (A - B) * (A - B) > 25

4. Attributes can have one of four types: Integer, Float, Char(n), and Byte. Variable length strings
(Varchar(n)) are not supported. We do not currently support any casting from one type to another.

5. Windows with the slide parameter are not supported.

6. The binary operations Union and Except is supported, but Intersect is not.

4

2.3 Named Queries (Views)

A CQL query can be assigned a name and a schema to allow its result to be referenced by other queries.
This feature allows us to express some of the esoteric, omitted features of CQL mentioned in Section 2.2. The
following query is an example of a CQL view (it produces a relation):

AggS (A, Sum_B, Max_B):

Select A, SUM(B), MAX(B)

From S

Group By A

It can be used in a different query just like an input relation:

Select A, Sum_B

From AggS

Where Max_B > 50

Note that the combination of these two queries produces the same output as the query with a Having clause
that we mentioned in Section 2.2 (item # 2).

5

3 Installation

The latest version of the code can be downloaded from http://www-db.stanford.edu/stream/code/. The
code has been packaged using the standard GNU tools, so the usual technique for installing such packages
works. We assume, for illustration, that the code will be extracted, built, and installed in the following set of
directories:

• Directory where the code is extracted: /home/user/stream-0.5.0

• Directory where the binaries are installed: /home/user/stream/bin

• Directory where the libraries are installed: /home/user/stream/lib

• Directory where the headers are installed: /home/user/stream/include

3.1 Building the system

1. cd /home/user/stream-0.5.0/

2. ./configure --bindir=/home/user/stream/bin/ --libdir=/home/user/stream/lib/ \

--includedir=/home/user/stream/include

3. make

4. make install

These four steps generate a command-line client gen client at /home/user/stream/bin, the stream library at
/home/user/stream/lib and the header files for use with the library at /home/user/stream/include. Details
of using the command-line interface and the library are provided in Section 4.

3.2 Testing the system

We have provided a collection of test scripts to check if the system has been built properly. To run the tests:

1. cd home/user/stream-0.5.0/test

2. ./test.sh

To remove the temporary files produced while testing:

1. cd home/user/stream-0.5.0/test

2. ./cleanup.sh

6

4 Using STREAM

Currently, there are two ways of using STREAM:

1. Using the command-line client gen client.

2. Linking the STREAM library directly into your C++ application.

In the next release, we are planning to include a standalone server that talks to clients over the network and a
GUI client.

4.1 gen client

gen client dynamically loads the STREAM library, so LD LIBRARY PATH should be set to include the path to
the STREAM library as follows:

export LD_LIBRARY_PATH=/home/user/stream/lib/:\$LD_LIBRARY_PATH

The usage syntax of the gen client program is:

gen_client -l [log-file] -c [config-file] [script-file]

[log-file] is the output file where the execution log of the program is written. [config-file] is an input file
which specifies values of various server configuration parameters (e.g., available memory, duration of execution).
Finally [script-file] is an input file which contains the queries to be executed and the streams and relations
involved in the queries. All three arguments [log-file], [config-file], and [script-file] are necessary.

We have include examples of script files and configuration files in /home/user/stream-0.5.0/examples.
You can run the example script files as follows:

1. export PATH=$PATH:/home/user/stream/bin/

2. cd /home/user/stream-0.5.0

3. gen client -l log -c examples/config examples/scripts/script1

(The example scripts assume that the gen client program is being run from /home/user/stream-0.5.0 di-
rectory; running the program from a different location will cause an error.) Details of writing script files and
configuration files can be found in Section 4.4 and Section 4.3 respectively.

4.2 STREAM library

The reader can look at the source of gen client (/home/user/stream-0.5.0/gen client/generic client.cc),
which is less than 150 lines of code, for an illustration of using the STREAM library. Briefly, the steps involved
in using the STREAM as an embedded library are within an application are:

1. Create a new Server object.

2. Configure the server by providing a configuration file.

3. Register the input streams and relations.

7

4. Register the queries (named or unnamed).

5. Generate a query plan.

6. Start the server.

The details of the Server interface that accomplish these tasks is discussed in Section 5. In order to input a
stream or a relation, the application passes an object implementing the TableSource interface
(<interface/table source.h>) to the server at the time of registering the stream or a relation. Similarly,
in order to get the output of a query, the application passes an object implementing the QueryOutput interface
(<interface/query output.h>) at the time of registering the query.

4.3 Configuring the STREAM server

See /home/user/stream-0.5.0/examples/config for an example configuration file. The file also explains the
meaning of all the configuration parameters, and provides reasonable default values. If you are unsure about
what configuration parameters to use, you can use an empty (!) configuration file, and the system will configure
itself with default values. But note that the default value of memory size is 32MB.

4.4 Script files

This section describes the details of writing script files input to the gen client program. The script file is used
to specify:

1. The input streams and relations and their file locations, and

2. One or more queries over the streams and relations.

White spaces can be freely added anywhere in a script file. Also lines starting with # are comment-lines
and are not interpreted by the gen client program.

4.4.1 Examples

Example script files can be found in /home/user/stream-0.5.0/examples/scripts/ and
/home/user/stream-0.5.0/test/scripts/. These scripts are probably more useful than the (semi-) formal
descriptions below.

4.4.2 Input Streams and Relations

An input stream and a relation (generically called a table) is specified using two lines. The first line specifies
the schema and the second the source file. The following two lines specify that S is a stream with 4 attributes
A, B, C, and D of types integer, byte, float and char(n), respectively, and that the source of the stream is
the file S.dat.

table : register stream S (A integer, B byte, C float, C char(4));

source : /home/user/stream-0.5.0/examples/data/S.dat

(Note the semi-colon at the end of the first line.) Example of a specifying a relation:

8

table : register relation R (A integer, B byte, C float, C char(4));

source : /home/arvind/stream/examples/data/R.dat

The two lines that specify a table (stream or relation) should appear consecutively in the script file after ignoring
empty lines and comment lines.

4.4.3 Source files

See /home/user/stream-0.5.0/examples/data/*.dat for examples of source files. The first line of the source
file contains the augmented schema of the stream or relation. For a stream, the first attribute in the augmented
schema is the timestamp (integer) attribute. The remaining attributes are the data attributes that are specified
in the register stream ... script-line. For example, the schema line for the stream S above looks like:

i,i,b,f,c4

Here ’i’ stands for integer, ’b’ for byte, ’f’ for float, and ’c4’ for char(4). Note that there are two ’i’s.
The first ’i’ corresponds to the timestamp attribute, and the second to the data attribute A of S.

For a relation, the first attribute in the augmented schema is again a timestamp (integer). The second
attribute is a ’sign’ (byte) attribute. For example, the schema line for the relation R looks like;

i,b,i,b,f,c4

All the remaining lines of the source files encode data tuples, one per line. The attribute values of a tuple are
comma separated. For streams, the first attribute is the timestamp attribute, and this has to be non-decreasing.
For relation, the first attribute is the non-decreasing timestamp, and the second is the sign attribute. The sign
takes only two values ’+’ and ’-’. A ’+’ indicates that the tuple was inserted into the relation at the specified
timestamp and a ’-’ indicates that the tuple was deleted from the relation at the specified timestamp. For
example, the line 1,+,1,1.1,a,abc indicates that the tuple 〈1, 1.1, a, abc〉 was inserted into relation at time 1.
A ’-’ tuple should correspond to some preceding ’+’ tuple.

4.4.4 Queries

As described in Section 2, queries are specified in CQL. Example CQL queries can be found in
/home/user/stream-0.5.0/examples/cql-queries.

Recall from Section 2 that queries can be named or unnamed. An unnamed query produces an external
output, while a named query produces an internal output that can be referenced by other queries. The two
lines:

query : select * from S;

dest : outfile

specify an unnamed query whose output is written to file outfile. The query refers to a stream S, which could
be an input stream or the output of a named query. The following two lines illustrate named queries:

vquery : select A, B from S Where A = 5;

vtable : register stream FilteredS (A integer, B byte);

9

This query filters stream S on attribute A and projects out attributes A and B. The second line assigns names
to this query and its attributes. FilteredS can be referenced in other named/unnamed queries. Example:

query : select * from FilteredS;

dest : ...

All names should be ”registered” before they are referenced. For example, the register stream FilteredS

... line should occur before the select * from FilteredS line. Also, currently, it is an error to specify a
named query that is not used by any other query.

10

5 Interface

This section describes the three classes:

1. Server

2. TableSource

3. QueryOutput

which constitute the external interface to STREAM.

5.1 Server class

Synopsis

#include <stream/interface/server.h>

class Server {

public:

static Server *newServer (std::ostream &);

int setConfigFile (...);

int beginAppSpecification();

int registerBaseTable(...);

int registerQuery(...);

int registerView(...);

int endAppSpecification();

int beginExecution();

};

Description

The STREAM server interface. It contains methods to configure the server, register new streams and relations,
register new continuous queries, and run the continuous queries. The server operates in two phases: in the first
phase all the registering (of CQ, streams, and relations) is done, and in the second phase the continuous queries
registered in the first phase are executed. The reason for separating out these two phases is performance: this
design lets us perform some optimizations across queries before generating the final plan.

Member functions

1. static Server* newServer(std::ostream &log)

Construct and return a new STREAM server.

Parameters

log: The log parameter specifies the output stream to which the server log entries are written.

2. int setConfigFile (const char *configFile)

Specify the location of the configuration file. Section 4.3 gives details of configuration files. This method
should be called before any of the other methods of Server class.

11

Parameters

configFile: The location of the configuration file.

Returns

zero on success, non-zero on error.

3. int beginAppSpecification()

This method is called before the actual specification of an application (which is done using the
registerQuery() and registerTable() methods).

Returns

zero on success, non-zero on error.

4. int registerBaseTable (const char *tableInfo,

unsigned int tableInfoLen,

Interface::TableSource *input)

Register an input stream or a relation (generically called a table) with the server by specifying (1) the
name-related information about the table and (2) the TableSource object that provides the input tuples.
The name-related information consists of the table type (stream or a relation), the table name and the
names of the attributes of the table. An input table should be registered before it is referenced in any
query.

Parameters

tableInfo: String encoding the name-related information about the table. For example, the string
“register stream S (A integer, B char(4))” is used to register a stream S with two attributes A and
B. Similarly, the string “register relation R (A integer, C float)” is used to register a relation R

with two attributes A and C.

tableInfoLen: The length of tableInfo parameter.

input: The TableSource object that provides the input data tuples of the stream or relation.

Returns

zero on success, non-zero on error.

5. int registerQuery(const char *querySpec,

unsigned int querySpecLen,

Interface::QueryOutput *output,

unsigned int &queryId)

Register a query (named or unnamed) with the server. If the output of the query is desired, then the
application should pass an implementation of QueryOutput interface. Note that the output of the query
may not always be required externally—a query could be registered with the sole purpose of providing
input to other queries. In this case, the query is a named query (see Section 2.3), and the naming
information of the query output should be specified using the registerView method.

The method returns a queryId parameter which is used to reference this query in the registerView

method.

Parameters

12

querySpec: The specification of the query in CQL.

querySpecLen: Length of the query specification.

output: An object that implements the QueryOutput interface if the output of the query is required by
the application, or 0 if the output is not required.

queryId: Output parameter set by the method on termination.

Returns

zero on success, non-zero on error.

6. int registerView(unsigned int queryId,

const char *tableInfo,

unsigned int tableInfoLen)

Register a name to the output of a previously registered query so that the output can be referenced in
other future queries. The name-relation information consists of the table type (stream or a relation), the
table name and the names of the attributes of the table (just like in the registerBaseTableMethod).

Parameters

queryId: The identifier for the query whose output is being named. The identifier is the value returned
by the registerQuery method when the query was registered.

tableInfo: String encoding the name-related information of the query output. Same syntax as tableInfo
parameter of registerBaseTable method.

tableInfoLen: The length of the tableInfo parameter.

Returns

zero on success, non-zero on error.

7. int endAppSpecification()

This method is called after all the queries and inputs have been registered, and after this method call no
future queries and inputs can be registered.

8. int beginExecution()

Begin the execution of the continuous queries registered earlier. The duration of execution is specified
within the configuration file.

13

5.2 TableSource class

Synopsis

#include <stream/interface/table_source.h>

class TableSource {

public:

int start();

int getNext(...);

int end();

};

Description

The interface that the server uses to get input stream or relation tuples. The application should provide an
object that implements this interface along with each input stream and relation (see Server::registerQuery()
method). Different inputs could have different implementations, e.g., one reading from a file, and the other from
a network.

The main method is getNext(), which the server uses to pull the next tuple of the stream or relation
whenever it desires. Before consuming any input tuples, the server invokes the start() method, which can be
used to perform various kinds of initializations. Similarly, the end() method is called when the server is not
going to invoke any more getNext()s.

Member functions

1. int start()

This method is invoked by the server (exactly) once before any getNext() calls are invoked.

2. int getNext(char *& tuple, unsigned int& len)

This method is invoked by the server to input the next tuple of the stream or relation that the TableSource
object handles. If the next tuple is available, on return the parameter tuple should point to the encoding
of the next tuple. Otherwise, the parameter tuple should point to null (0). The memory for the location
pointed to by tuple (if it is non-null) is allocated and owned by the TableSource object, which means
that the server does not deallocate the memory. The TableSource object should ensure that the contents
of this memory location is unchanged until the next getNext() call.

Setting the tuple parameter to null only indicates that there is no input tuple availabe currently. In
particular, it does not signify the end of the stream. An input tuple might be available later, and the
server keeps polling periodically.

Details of encoding the input tuples are described in Section 5.2.1.

Parameters

tuple: On returning points to the encoding of the input tuple if the next input tuple is available; 0
otherwise.

len: Set by the function to the length of the tuple encoding.

Returns

14

zero on success, non-zero on error.

3. int end()

Called by the server to indicate that it is not going to invoke any more getNext() calls. Currently, never
invoked.

5.2.1 Input Tuple Encoding

A stream tuple consists of a timestamp and the values for the data attributes. A relation tuple consists of a
timestamp, a sign, and values for the data attributes, which represents a timestamped update to the relation
as indicated in Definition 2.2. The sign is either a +, which indicates an insertion, or a -, which indicates a
deletion.

The encoding of a stream tuple contains the encoding of the timestamp followed by the encoding of the
attribute values. Attribute values are encoded in the order in which they are declared in the stream schema.
Timestamps are encoded as unsigned ints, integer attributes as ints, floating point values as floats, byte
values as chars, and char(n) values as a sequences of n chars. For example,

unsigned int timestamp;

int a_val;

float b_val;

// Get attribute values

// ...

// Encode a tuple of stream S (A integer, B float, ...)

memcpy (tupleBuf, ×tamp, sizeof(unsigned int));

memcpy (tupleBuf + sizeof(unsigned int), &a_val, sizeof(int));

memcpy (tupleBuf + sizeof(unsigned int) + sizeof(int), &b_val, sizeof(float));

// ...

// Set tuple to point to tupleBuf

tuple = tupleBuf;

The encoding of a relation tuple contains the encoding of the timestamp followed by the encoding of the sign
followed by the encoding of the attribute values (in the order in which they appear in the schema). Timestamps
and attribute values are exactly as in the case of stream tuples. The sign is encoded using a single char.

15

5.3 QueryOutput class

Synopsis

#include <stream/interface/query_output.h>

class QueryOutput {

public:

int setNumAttrs(...);

int setAttrInfo(...);

int start();

int putNext(...);

int end();

};

Description

Interface that the server uses to produce query output. An application should provide an object that implements
this interface for each query whose output it desires (see Server::registerQuery()method). Different queries
could have different implementations, e.g., the output of one could go to a file, the other to a remote location
on the network.

The main method is the putNext() method which is used by the server to push out the next output tuple
of the query. Before pushing any tuples to the output, the server first indicates the schema of the output
tuples using setNumAttrs() and setAttrInfo() method calls. The method start() is called before the first
putNext() call: this can be used by the object to perform various initializations, resources allocation etc.

Member functions

1. int setNumAttrs(unsigned int numAttrs);

Set the number of attributes in the output schema of the query. This method is called (exactly once) by
the server before any other method.

Parameters

numAttrs: the number of attributes in the output schema of the query.

Returns

zero on success, non-zero on error.

2. virtual int setAttrInfo(unsigned int attrPos,

Type attrType,

unsigned int attrLen)

The server calls this method to specify the type information of a particular attribute in the output schema
of the query. The server calls this method (once for each attribute in the schema) after the setNumAttrs()
method and before the start() method.

Parameters

attrPos: The position of the attribute for which the type info is being specified. This is a value between
0 and numAttrs − 1, where numAttrs is the number of attributes in the output schema of the query.

16

attrType: The type of the attribute. Type is an enum defined in <stream/common/types.h>.

enum Type {

INT, // integer

FLOAT, // floating point

BYTE, // 1 byte characters

CHAR // fixed length strings.

};

attrLen:

3. virtual int start()

Called by the server to signal that it is ready to invoke the putNext() calls. The object can use this
method to perform various initializations.

4. int putNext(const char *tuple, unsigned int len)

Called by the server to push the next output tuple of the query.

Parameters

tuple: Encoding of the next output tuple. The memory of the location pointed by tuple is allocated
and owned by the server. The encoding is almost identical to the encoding of input tuples as described in
Section 5.2.1. The only difference is that there exists a “sign” column irrespective of whether the output
of the query is a stream or a relation. The sign column is always + if the output of the query is a stream
while it could be + or - if the output of the query is a relation.

Returns

zero on success, non-zero on error.

5. int end()

Called by the server to indicate that it is not going to invoke any more putNext() calls. Currently, never
invoked.

17

6 STREAM Architecture

This section briefly describes the architecture of the STREAM DSMS prototype. The STREAM architecture
is made up of two broad components:

1. Planning subsystem, which stores metadata and generates query plans, and

2. Execution engine, which executes the continuous queries.

6.1 Planning Subsystem

Figure 6.1 shows the main components of the planning subsystem. The components shown with double-bordered
rectangles are stateful—they contain the system metadata. The other components are stateless, functional units,
which are used to transform a query to its final plan. The solid arrows indicate the path of a query along these
components.

Parser
Semantic
Interpreter PlanGen

Logical
PlanGen
Physical

Manager
Query Table

Manager Manager
Plan

Query
Tree
Parse

Internal

Plan
Logical

Plan
Physical

Query
Rep

Figure 1: The planning component

6.1.1 Parser

• Functionality: Transform the query string to a parse tree representation of the query. (The parser is also
used to parse the schema of a registered stream or relation.)

• Relevant Code:

– dsms/include/parser/*

– dsms/src/parser/*

6.1.2 Semantic Interpreter

• Functionality: Transform the parse tree to an internal representation of the query. The representation is
still block-based (declarative?) and not an operator-tree. As part of this transformation, the semantic
interpreter:

– Resolves attribute references

18

– Implements CQL defaults (e.g., adding an Unbounded window; see [ABW03].)

– Other misc. syntactic transformations like expanding the “*” in Select *

– Converts external string-based identifiers for relations, streams, and attributes to internal integer-
based ones. The mapping from string identifiers to integers identifiers is maintained by TableManager.

• Relevant Code:

– dsms/include/querygen/query.h

– dsms/include/querygen/sem interp.h

– dsms/src/querygen/sem interp.cc

6.1.3 Logical Plan Generator

• Functionality: Transform the internal representation of a query to a logical plan for the query. The logical
plan is constructed from logical operators. The logical operators closely resemble the relational algebra
operators (e.g., select, project, join), but some are CQL-specific (e.g., window operators and relation-to-
stream operators). The logical operators are not necessarily related to the actual operators present in
the execution subsystem. The logical plan generator also applies various transformations that (usually)
improve the performance:

– Push selections below cross-products (joins).

– Eliminate redundant Istream operators (an Istream over a stream is redundant).

– Eliminate redundant project operators (e.g., a project operator in a Select * query is usually re-
dundant).

– Apply Rstream-Now window based transformations.

• Relevant Code:

– dsms/include/querygen/log*.h

– dsms/src/querygen/log*.cc

6.1.4 Physical Plan Generator

• Funcionality: Transform a logical plan for a query to a physical plan. The operators in a physical plan are
exactly those that are available in the execution subsystem (unlike those in the logical plan). (We have
a separate logical plan stage in query generation because it is easier to apply transformations to logical
plans than to physical plans. Logical operators are more abstract and easier to deal with than physical
operators which have all sorts of associated low level details.)

The physical plan generator is actually part of the plan manager (although this is not suggested by
Figure 6.1), and the generated physical plan for a query is linked to the physical plans for previously
registered queries. In particular, the physical plans for views that are referenced by the query now directly
feed into the physical plan for the query.

• Relevant Code:

– dsms/include/metadata/phy op.h

– dsms/src/metadata/gen phy plan.cc

19

6.1.5 Plan Manager

• Functionality: The plan Manager stores the combined “mega” physical plan corresponding to all the
registered queries. The plan manager also contains the routines that:

– Flesh out a basic physical plan containing operators with all the subsidiary execution structures like
synopses, stores, storage allocators, indexes, and queues.

– Instantiate the physical plan before starting execution.

• Relevant Code:

– dsms/include/metadata/plan mgr.h

– dsms/include/metadata/plan mgr impl.h

– dsms/src/metadata/plan mgr.cc

– dsms/src/metadata/plan mgr impl.cc

– dsms/src/metadata/inst *.cc

– dsms/src/plan inst.cc

– dsms/src/plan store.cc

– dsms/src/plan syn.cc

– dsms/src/plan trans.cc

– dsms/src/static tuple alloc.cc

– dsms/src/tuple layout.cc

6.1.6 Table Manager

• Functionality: The table Manager stores the names and schema of all the registered streams and relation.
The streams and relations could be either input (base) stream and relations or intermediate streams and
relations produced by named queries. The table manager also assigns integer identifiers for streams and
relations which are used in the rest of the planning subsystem.

• Relevant Code:

– dsms/include/metadata/table mgr.h

– dsms/src/metadata/table mgr.cc

6.1.7 Query Manager

• Functionality: The query manager stores the text of all the registered queries. Currently does not serve a
very important role, but might be used in later versions for better error reporting.

• Relevant Code:

– dsms/include/metadata/query mgr.h

– dsms/src/metadata/query mgr.cc

20

6.2 Execution Subsystem

Figure 6.2 shows the main components of the STREAM execution engine and their interactions. Table 6.2 lists
the different types of entities that exist in the execution engine, roughly classified based on their role and at the
granularity that they function.

Op

Op

Op

Op

Op

Syn

Syn

Store

Syn
Store

Manager
Memory Scheduler

IndexIndex

Query Output

Alloc

Alloc

TableSource

Outside World

Server

Server

Outside World

Figure 2: Architecture of STREAM Execution Subsystem. Op denotes operators, Syn denotes synopses, Alloc
denotes storage allocators.

6.2.1 Data

• Tuple: A tuple is the basic unit of data. It is logically a collection of attribute values (as expected). In
the implementation, a tuple is simply a pointer to a memory location (char*) where the attribute values
are encoded. All the information required to consistently enter and extract attribute values from this
memory location are present in the units that operate over the tuple (e.g., operators).

Relevant Code: dsms/include/execution/internals/tuple.h

21

Data Operational Units

• Low-level

– Tuple

– Element

– Heartbeat

• High-level

– Stream

– Relation

• Low-level

– Arithmetic Evaluators

– Boolean Evaluators

– Hash Evaluators

• High-level

– Operators

– Queues

– Synopses

– Indexes

– Stores

– Storaga Allocators

• Global

– Memory Manager

– Scheduler

Table 1: Components of STREAM execution subsystem

• Element: An element is a tuple with a timestamp and a sign. Sign is either a + or a −. The interpretation
of a sign should become clear from the description of a relation below.

Relevant Code: dsms/include/execution/queues/element.h

• Heartbeat: A heartbeat is a special kind of element with just a timestamp and no tuple or sign associated.
Heartbeats are used to communicate progress of time among operators; see [SW04] for technical details.

Relevant Code: dsms/include/execution/queues/element.h

• Relation: A relation is a sequence of elements ordered by timestamps. Logically, such a sequence
represents a time-varying bag of tuples, which is consistent with Definition 2.2. The bag of tuples in the
relation at timestamp τ is obtained by inserting into the bag the tuples of all the elements with timestamp
≤ τ having a + sign and deleting from the bag the tuples of all the elements with timestamp ≤ τ having
a − sign. Note that the representation of a relation is not unique.

Relation produced by the STREAM operators (discussed in Section 6.2.3) satisfy the following property:
for every − element in a relation sequence there exists a + element that occurs earlier in the sequence
such that the − element and + element have identical tuples. By identical tuples, we mean tuples that
point to the same memory location, and not tuples with identical attribute values. But two − elements
cannot be mapped to the same + element in the above sense.

• Stream: A stream is a sequence of elements with a + sign, ordered by timestamps. Under this represen-
tation, a stream is a special kind of a relation with no − elements in its sequence.

22

6.2.2 Low-Level Operational Units

All direct operations over tuples are performed by objects known as evaluators. Each evaluator conceptually
evaluates a fixed function or procedure over an input set of tuples. Different sets of input tuples can be “bound”
to the evaluator before different evaluations. The evaluation can have “side-effects”: the contents of one of the
input tuples can be updated as a result of the evaluation. There are three types of evaluators:

• Arithmetic evaluator: Arithmetic evaluators evaluate simple arithmetic functions defined over the
attributes of the input tuples. The result of the arithmetic functions is used to update the contents of
one or more of the input tuples. For example, an arithmetic evaluator can take two input tuples, and
set the attribute #1 of the second tuple to be the sum of attribute #1 and attribute #2 of the first
tuple. Arithmetic evaluators can be used directly by operators (e.g., project operator) or within boolean
evaluators to evaluate predicates involving arithmetic.

Relevant Code:

– dsms/include/internals/aeval.h

– dsms/include/internals/eval context.h

– dsms/src/internals/aeval.cc

• Boolean evaluator: Boolean evaluators evaluate simple boolean predicates over the attributes of the
input tuples. The boolean predicates can be conjunctions of comparisons, and the comparisons can involve
arithmetic. The result of the evaluation (true/false) is returned as the output. For example, a boolean
evaluator can take two tuples and return true if the attribute #1 of the first tuple is equal to attribute
#2 of the second tuple.

Relevant Code:

– dsms/include/internals/beval.h

– dsms/include/internals/eval context.h

– dsms/src/internals/beval.cc

• Hash Evaluator: Hash evaluators compute a hash function over a subset of the attributes of the at-
tributes of the input tuples, and return a (currently 32 bit) hash value as output. Hash evaluators are
currently used only within hash-based indexes.

Relevant Code:

– dsms/include/internals/heval.h

– dsms/include/internals/eval context.h

– dsms/src/internals/heval.cc

6.2.3 High-Level Operational Units

• Operators: Operators are the basic processing units that operate over streams and relations: an operator
takes one or more streams and produces a stream or a relation as output. Table 2 list the set of operators
currently available in STREAM. Semantics of these operators are described in [ABW03].

Each operator operates in a continuous fashion. Once an operator sees all its input elements with times-
tamp upto τ , it produces all its output elements with timestamp upto τ . Each operator produces its

23

Operator Signature Code

Binary Join Relation × Relation → Relation bin join.cc

Binary Stream Join Stream × Relation → Stream bin str join.cc

Distinct (duplicate elimination) Relation → Relation distinct.cc

Dstream Relation → Stream dstream.cc

Except Relation × Relation → Relation except.cc

Group By Aggregation Relation → Relation group aggr.cc

Istream Relation → Stream istream.cc

Partition Window Stream → Relation partn win.cc

Projection Relation → Relation project.cc

Range Window Stream → Relation range win.cc

Row Window Stream → Relation row win.cc

Rstream Relation → Stream rstream.cc

Selection Relation → Relation select.cc

Union Relation × Relation → Relation union.cc

Table 2: List of data operators in STREAM. This list does not include the input and output operators which talk to
the outside world. All the files in the Code column are in the directory dsms/src/execution/operators/

output elements in the order of increasing timestamps. Once an operator has produced all its output
upto τ − 1, it has the option of asserting that it will not generate any output element with timestamp
< τ by generating a heartbeat with timestamp τ . This is useful especially if the output of an operator is
sparse—e.g., a selection operator with a highly selective filter—to convey time-related information to the
upstream operators.

Many operators need to maintain state. For example, the binary join operator needs to maintain the
“current” bag of tuples in both its inner and outer relation. In STREAM, all the operator state that is
not statically bounded in size is maintained in objects known as synopses. Synopses are discussed in more
detail below.

Operators are connected to each other using intermediate element buffers called queues. Queues serve
to (at least partially) decouple the running of one operator from another. An operator reads each of its
inputs from one queue and writes its output to another queue.

A global scheduler schedules the operators of the system using some scheduling strategy. When scheduled,
an operator runs for an amount of time specified by the scheduler, and then returns control back to the
scheduler, which picks a different operator to run, and so on. An operator could stall while it is running
if its output queue gets filled up. (Stalling occurs because all the queues currently have a fixed amount of
memory.) A stalled operator maintains its current state to enable it to resume processing at a later time,
and returns control back to the scheduler.

Relevant Code:

– dsms/include/execution/operators/*.h

– dsms/src/execution/operators/*.cc

• Queues: Conceptually, queues are FIFO buffers for elements. Elements are always inserted and read off
from the queue in timestamp order. (This property is guaranteed by the operators using the queues.)
The simplest queue has one operator that writes to it and one operator that dequeues from it. Sometimes

24

Op Op Op Op

Op

Shared Queue Writer

Shared Queue Readers

Figure 3: Configuration of a shared queue

the output of one operator is consumed by several (say n > 1) operators. In such cases the operators
are interconnected by a shared queue. Such a shared queue is realized by using a collection of objects: 1
shared queue writer and n shared queue readers as shown in Figure 3. The shared queue readers contain
operator specific state, while the shared queue writer serves a common store for all the currently active
elements (all the elements which have been written by the source operator but not yet read by at least
one sink operator). The operators themselves are oblivious to sharing.

Relevant Code:

– dsms/include/execution/queues/*.h

– dsms/src/execution/queues/*.cc

• Synopses: Synopses are objects that contain operator state. Each synopsis is owned by exactly one
operator. Currently all the synopses contain bags of tuples. Also, all the tuples in a synopsis have the
same schema, and as we will see, are allocated by the same storage allocator.

There are four types of synopses, listed in Table 3, and they differ primarily in the interfaces that they
export. The relation synopsis interface allows the owning operator to insert a tuple, delete an existing
tuple, and scan the current bag of tuples based on some predicate. The window synopsis interface allows
the owning operator to insert a tuple and delete/read the oldest tuple. The partition window synopsis is
identical to the window synopsis, except that it allows the deletion/reading of the oldest tuple within a
partition defined using certain tuple attributes. Finally, lineage synopsis is similar to relation synopsis,
except that it allows the operator to specify a “lineage” along with each inserted tuple. The operator can
later use the lineage to access the tuple.

Relevant Code:

– dsms/include/execution/synopses/*.h

25

Synopsis Type Interface Methods

Relation Synopsis
insertTuple(Tuple)

deleteTuple(Tuple)

scan()

Window Synopsis
insertTuple(Tuple)

deleteOldestTuple()

getOldestTuple(Tuple&)

Partition Window Synopsis
insertTuple(Tuple)

deleteOldestTuple(Tuple t, Tuple partition)

getOldestTuple(Tuple &t, Tuple partition)

Lineage Synopsis

insertTuple(Tuple, Tuple* lineage)

deleteTuple(Tuple)

scan()

getTuple(Tuple&, Tuple *lineage)

Table 3: Different Types of Synopses in STREAM

– dsms/src/execution/synopses/*.cc

• Indexes: Synopses can internally contain an index to speed up scans. The existence of the index is
oblivious to the operator that owns the synopsis. Currently the system only supports hash-based equality
indexes.

Relevant Code:

– dsms/include/execution/indexes/*.h

– dsms/src/execution/indexes/*.cc

• Storage Allocators: All tuples in the system are allocated by objects called storage allocators. Each
storage allocator is owned by one operator, and is used to allocate tuples of the output elements of the
operator. Not all operators own a storage allocator; for example, the select operator simply forwards its
input tuples to its output and does not allocate new tuples. Storage allocators also keep track of tuple
usage and reclaim the space of unused tuples.

Relevant Code:

– dsms/include/execution/stores/store alloc.h

• Stores: The description of storage allocators and synopses above was focused mainly on the interface
that they presented to the operators. Most of the actual logic of storage allocators and synopses are
implemented within stores. (In fact, a storage allocator is a pure interface which is implemented by the
store objects.) This level of indirection in the implementation was introduced to enable sharing of space
and computation across synopses. More details about sharing can be found in [ABW03].

Each store supports one storage allocator and a set of synopses. Each synopsis is associated with one
store, and all the tuples of the synopsis are allocated by the store. Table 4 lists the types of stores and
the synopses that they support. The set of synopses associated with a store are required to satisfy certain
properties as mentioned in Table 4.

26

Store Supported Synopses Requirement

Simple Store - -

Relation Store > 1 Relation Synopses All synopses should have the same insert-delete
sequence.

Window Store
> 1 Window Synopses All synopses should have the same insert sequence.
> 1 Relation Synopses Sequence of deletes should be identical to the sequence

of inserts.

Partition Window Store
1 Partition Window Synopsis All synopses should have the same insert-delete

> 1 Relation Synopses sequence.

Lineage Store
1 Lineage Synopsis All synopses should have the same insert-delete

> 1 Relation Synopses sequence.

Table 4: Stores and the synopses that they support

Relevant Code:

– dsms/include/execution/stores/*.h

– dsms/src/execution/stores/*.cc

6.2.4 Global Operational Units

• Memory Manager: The memory manager manages a common pool of memory and allocates memory
at a page granularity to stores, indexes, and queues on demand.

Relevant Code:

– dsms/include/execution/memory/memory mgr.h

– dsms/include/execution/memory/memory mgr.cc

• Scheduler: The scheduler schedules the operators in the system as described earlier. Currently, the
scheduler uses a simple, round-robin scheduling strategy.

Relevant Code:

– dsms/include/execution/scheduler/*.h

– dsms/include/execution/scheduler/*.cc

27

References

[ABW03] A. Arasu, S. Babu, and J. Widom. The cql continuous query language: Semantic foundations and
query execution. Technical report, Stanford University Database Group, Oct. 2003. Available at:
http://dbpubs.stanford.edu/pub/2003-67.

[MW+03] R. Motwani, J. Widom, et al. Query processing, approximation, and resource management in a data
stream management system. In Proc. of the 1st Conf. on Innovative Data Systems Research, pages
245–256, Jan. 2003.

[SW04] U. Srivastava and J. Widom. Flexible time management in data stream systems. In Proc. of the
23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 263–274,
June 2004.

[TMSF03] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in continuous
data streams. IEEE Trans. on Knowledge and Data Engg., 15(3):555–568, 2003.

28

