
404

This file is c© 1977 by McGraw-Hill and c© 1980, 2001 by Gio Wiederhold.

This page intentionally left blank.

(page 405)

Chapter 8

Schemas

The best laid schemes o’ mice and men

Gang aft a-gley

Robert Burns

To a Mouse, 1787

The previous chapter described models of databases. The structure of the database
was modeled by relations and connections. The relations were defined by their
relation-schemas. In order to translate a model into an operational system, the
model has to be described in a form which lends itself to implementation.

Such a description is called a schema, and the language used to describe it will
be called the schema language. The schemas will have to include some practical
detail which could be ignored in the models. Using the model concepts of domains,
relations, and connections, the schema language has to be able to specify the types
of the data elements, their organization into files, and the manner in which files are
related.

A schema defines initially the structure of the database and makes the descrip-
tion available to the users of the database. If a database management system is
used to manage the database, the schema will be used to automatically control the
execution of the transaction programs which operate on the database.

405

406 Schemas

An objective of a database system is to systematize the access to data elements.
File systems have provided the means to fetch specific records according to defined
keys or according to sequentiality. In order to fetch individual data elements the
names of the data attributes, as known by the schema, are used to locate the data
elements within the records. The data type information stored in the schema can
be used by the processing transactions to direct the computation. Queries can use
the connection specifications in the schema to locate successor data.

Predecessors of schemas are called data dictionaries and database directories.
These systems collect information about the data and perhaps the database model,
but do not make it directly available to a database management system.

In this chapter we present the construction and use of schemas to describe
data elements and their relationships. Section 8-1 will look at the data elements to
be described; Sec. 8-2 presents the schema for single files and gives some examples.
The description of connecting structures is given in Sec. 8-3. In contrast with Chap.
7 we will present the material using mostly examples from available database man-
agement systems. This approach enhances the realism, but reduces the consistency
of the material.

There is no universal schema language today. To apply the earlier concepts we
have to use a variety of schema languages. Schema languages in the examples have
been selected for specific features or because of widespread use. We do not go into
detail to the extent that this chapter can replace system manuals, but relating the
concepts developed here to actual examples should help greatly in the use of system
documentation. For actual database specification a manual of the chosen language
will be needed.

8-1 DEFINING THE ELEMENTS FOR A DATABASE

We need a description of the view requirements if we wish to design a database
system. If an operational database is available, perhaps using a conventional file
system, then we can begin by reviewing the usage of the file system by the programs
that operate on the data to be integrated. A set of files used together may already
contain multiple views, but if no conflicts have been experienced, the analysis can
begin treating the existing database as a unit.

8-1-1 Analysis of Existing Data

Database problems are generally not recognizable until a certain volume of data has
been collected. When a database system is to be installed, there are often already
many programs which operate on the data to be incorporated in the database. The
schema definition begins then with the collection of the information used to gen-
erate the processing programs that deal with the database. Information about the
domains of the data elements and their dependencies can be used for the modeling
processes described in Chap. 7.

Since the transactions will also be included in the eventual design, the pro-
cessing steps applied to the information are also documented. For instance, results
and intermediate derived data are defined in terms of their source variables. Many

Sec. 8-1 Defining the Elements for a Database 407

existing procedures must be studied in order to obtain a composite picture of the
actions that are carried out. Documentation of data sources and destinations is
collected. The frequency of use, the desired response time, and even the accuracy
requirements are captured if feasible.

Similar information is obtained for new procedures and the data elements re-
quired for their operation. Here estimates may be needed, but documentation of
assumptions made is at least as important to the design process as the documenta-
tion of established processes.

Figure 8-1 sketches an example of a very simple data flow. In practice, tabular
descriptions for each variable are more convenient than a flowchart. The equivalent
flow would be described as as follows:

Example 8-1 Table of Data Elements

Variable Source Destination

hours worked time recorder payroll program
employee salary supervisor personnel file
employee department personnel office personnel file
employee salary item personnel file payroll program
employee dept item personnel file payroll program
...

Elements may, of course, also have multiple destinations.
The analysis of current procedures has to be carried out with due regard to the

actual information flow. The fact that certain reports produced contain a specific
data element is not necessarily an indication that the element is being used, or if it

408 Schemas

is used, that it is the best means of presenting the desired information. On the other
hand, there often are informal methods of data distribution which are not obvious
during a system analysis which depends wholly on existing documents. Talking is
an important, unformalized, and flexible form of communication.

For example, the fact that an engineering department manager warns an inventory
clerk that he expects new employees so that necessary tools will be available when they
arrive is an information function easily overlooked when automating a personnel system.

8-1-2 Characteristics of Data

We begin by describing the characteristics of data elements. The most important
description of a data element are its name and its domain. These are familiar
concepts to any programmer.

Programming languages have always provided facilities to name and characterize data
elements. The domain of a data element, needed for computation, is mostly given as the
type and perhaps the length. Some modern languages permit further specifications.

Other characteristics, for instance, the largest and smallest value expected, are de-
fined implicitly or in the program documentation. For the database complete and explicit
descriptions are advantageous.

We will present the quantitative characteristics of data elements – type or
domain, length, conditionals, count – in this subsection. Qualitative specifications
of data element characteristics are presented in Sec. 8-1-3. The number of attributes
used to describe each type of data element is sufficiently large that we may keep
the schema itself as a relation.

Name Names have been used throughout to define attributes in records and rela-
tions. The name given to a data element by a programming language is restricted by
fairly simple rules. These rules generally allow a short, variable–
length string of alphabetic and numeric characters; the first character has to be
alphabetic. This string is easily parsed or separated from other elements that make
up the statements accepted by the schema language. Compatibility between the
programming language and the schema language is desirable. If multiple languages
are used, the sum of compatibilities can restrict names unduly.

Names used in files and databases are global; i.e., they are bound to their
meaning over all programs while the files or database is open. The schema will be
used by many programs over a long time. In programming languages a name can
have a different definition as the process changes scope. In a database the scope of
a name of a data element is affected only by structural scope, the name is defined
within the database or relation that contains the data element.

To locate the values, the position or byte number within the record is kept
associated with the names in the schema. If the field allocation is flexible, an
approach as seen in a pile file may be used. A coded name is kept with each element
in the record. The schema keeps the codes with the names to allow translation from
name to code and vice versa.

Most schema language translators will assign positions only according to their
own data allocation methods. Some languages permit the users to specify the
position explicitly so that the schema can be applied to previously existing files.

Sec. 8-1 Defining the Elements for a Database 409

Type It is common to associate a specific data type with each data element name.
The type specification has several functions:

1 It limits the values to be associated with the data element names to a
specific domain.

2 It simplifies processing by implying the category of legal operations to
be used in the transformation of the data.

3 It provides specifications for encoding of the data values. (Encoding
methods and associated semantics are summarized in Chap. 14.)

Most programming languages provide a small number of data types. Schema
languages should handle at least the types that are used in the programmed trans-
actions:

CHARACTER: variable or fixed-length string of arbitrary characters;
DECIMAL: fixed-length string of decimal digits;
BINARY INTEGER: fixed-length string of binary digits;
DECIMAL FIXED POINT: scaled decimal number;
BINARY FIXED POINT: scaled binary number;
FLOATING POINT: approximation to a real number;

and REFERENCE.

The types defining computational values need little elaboration. Decimal fixed point
is often scaled by two to represent dollars and cents. Binary fixed point is mainly
used for representing real-time sensor acquired data in the range {0.00.. . . . 1.00..}.

A reference variable in a program language, for instance, a record pointer in
PASCAL or a base variable in PL/1, is however quite distinct from a reference in a
database. One difference is their lifetime. References in databases have lifetimes
that greatly exceed the execution time of a program. The other difference is the
action taken when the referenced object is moved or deleted. Garbage collection
methods are used in programs to retrieve or change invalid pointers; this approach
is not feasible in a large database.

A database reference is a data element that refers to some object in the data-
base. Three types of references are employed in database systems: pointers, sym-
bolic references, and indirect pointers, as sketched in Fig. 8-2.

A pointer reference has the value of an address in the database space. If
the number and location of all references to an object are known, specific pointers
affected by the move of an object can be changed. In the general case pointers
cannot be changed if the referenced data element is moved or deleted without a
database reorganization. Until that time the old object spaces are marked with
tombstones.

A symbolic reference contains the key of the referenced object. A procedure
using key-based fetching has to be invoked in order to locate the referenced object
in the database. The objects can be moved freely, as long as the access structures
(indexes, etc.) are maintained. A symbolic reference will simply fail to find an
object which has been deleted.

An indirect reference attempts to combine the benefits of symbolic references
with the speed of pointer references. Here simple keys, perhaps organized as shown
in Sec. 4-1, are used to access a table of pointer references. Now, when the object
is moved, only the pointer value in the table has to be changed, and this takes

410 Schemas

care of all instances where this record has been referenced. If an object is deleted,
the entry in the pointer table is set to a universal entry indicating DELETED. The
look-up table is organized to be faster than a fetch using the symbolic reference key.
If sufficient memory is available, the look-up may not require a file access.

Domain The type of a variable has a strong connotation of its representation. We
prefer to define a set of permissible values; this is closer to the concept of a domain
as used in the database model. Statements to define a data domain are available

in some modern programming languages as an adjunct to type declarations.
A DEFINE statement describes a new data type by associating a type name

with a domain specification. The use of data elements outside of the domain
during processing is detected and reported in a manner similar to the type conflicts
occurring when, for instance, numbers and character strings are mixed up. Domain
definitions are available in the language PASCAL. Example 8-2 shows such statements
using a PL/1 style syntax.

Example 8-2 Data Domain Definitions

DEFINE color AS("Red","Blue","Green","Mauve");
DEFINE year AS(FROM 1961 BY 1 TO 1976);

A declaration is used to create data elements of the type defined.
DECLARE (model) year;

DECLARE (body,fender,hood) color;

These elements can be used in statements for processing:
IF body = fender THEN CALL assemble body;

ELSE GO TO get next fender;
The above statements will prevent the assembly of
multicolored cars.
Such a rigorous type of definition will allow detection of erroneous
statements such as:

body = "CHEVROLET";
body = model;

since in the context defined, body can only be set to
a value of type color.

Sec. 8-1 Defining the Elements for a Database 411

Domain definitions and their use to restrict assignment can play an important
role in keeping improper elements out of a database. Furthermore, since the set of
values is limited, an efficient encoding can be derived to cover the domain. We will
try to incorporate such facilities in the schema languages for our database element
definition even where the programming languages do not have such provisions.

Length The length of a data element can be fixed or variable. If the length
is fixed, it can be specified as a number of bits or characters with the element
description. If the element length is variable, the marking method which is used
to determine the length for a given instance of the element can be indicated. The
available methods are those discussed for marking records (see Sec. 2-2-4).

The use of variable length data elements leads to a need for variable-length
records. An example of a variable-length record specified in PL/1 is shown in Ex-
ample 8-3. The variable (address) could also be decomposed into multiple lower–
level elements.

Example 8-3 Variable-Length Record

DECLARE 1 employer record, 2 name CHAR VARYING(40),
2 sex CHAR(6),
2 birthdate INTEGER,
2 address CHAR VARYING(80);

As we have indicated earlier, the record written on the file is a direct image of the
declared specification. The fact that the character strings are specified to be VARY-
ING is ignored by most compilers, and the maximum specified is always allocated
when the employer record is written to a file. This practice leads to a considerable
waste of space if long records occur infrequently. The record cannot be processed
without the associated declaration.

The stored record can be composed as shown in Fig. 8-3.

Conditional Data Elements When a relation and its subrelations are imple-
mented in one file we may have alternate data elements in different record subtypes.
Some programming languages support this concept.

Records in PASCAL allow variants in their structure; a record can have alternate
elements. Given a variable with two choices,

sex = (male,female);

then the record of Example 8-3 can be expanded as shown in Example 8-4.

412 Schemas

Example 8-4 Conditional Data Elements

RECORD name : PACKED ARRAY(1..†40) OF CHAR;
sex : (Male,Female);
day : 1..31;
month : 1..12;
year : 1800..2000;
address : PACKED ARRAY(1..80) OF CHAR;
CASE sex OF
Male : (years military: 0..50);
Female : (pregnancies, children: 0..20)
END;

†PASCAL uses .. to indicate TO in the sense of up-to-and-including.

Here the record has two possible variants, and we should know the value of sex
before processing the conditional elements of the record.

Count Within a single record it may be desirable to repeat a data element to
account for multiple instances of one subsidiary item. This option enables us to
implement simple nest concepts from the model within one record. An example
was the list of children of an employee and their ages in Fig. 7-3. Identifying keys
were used to distinguish the elements. To determine the number of elements in a
specific record, mark techniques can also be used. If the count and size of such
repeating elements is large, the manipulation of these records may become difficult.
The general solution to this problem is the creation of a nest file for these elements.
Nest structures are widely supported within database management systems and are
described in Sec. 8-3.

8-1-3 Data Element Descriptions

In Sec. 8-1-2 we listed traditional and essential characteristics of the attributes de-
scribing the data elements. Schema entries which complement these essential but
programming–
oriented characteristics will be listed in this section. These schema entries provide
information beyond the programs’ needs. Recording the characteristics shown here
can greatly improve the automatic and manual aspects of the database interface
presented to the users.

Title A descriptive sentence or title may be desired which allows a more de-
tailed identification of the data elements than the program language name permits.
Sometimes the title can also include abbreviations, synonyms, antonyms, or aliases.
Specialist in a subject area often use abbreviations unique to their field of discourse
when specifying a data element for entry or retrieval. When data are shared among
a larger audience, a full identification or title is required.

For example, the variable bp dst will have the title:

"Diastolic bloodpressure, measured with patient sitting"

Sec. 8-1 Defining the Elements for a Database 413

Unit Specification A code or identification of the units of measurement for
numeric data elements is often important. It might be essential to know whether
a pressure is stated in pounds force per square inch, atmospheric fractions, mil-
libars, millimeters or inches of mercury, kilograms per square centimeter, pascals,
or football players per quarterback. The unit specification might be used only for
reporting or verification of domain matching when files are joined, but could also
be used to convert values automatically if the system has the necessary conversion
factors available.

Essential Data An indication of whether this data element is essential or optional
in the record may have to be maintained. We may wish to prevent the creation of
records which have critical elements missing. An employee file needs to have a social
security number and a departmental assignment for every employee. Other fields,
such as a spouse name or a health certification, may be optional.

Undefined Values If data can be missing or left undefined, it becomes necessary
that programs which operate on the database recognize this fact. Undefined values
are due to several causes.

Missing data Some data values may not have been available or known when
the remainder of the record was entered.

Not applicable Some attributes may not be relevant in some records, espe-
cially when subrelations are combined into a file.

Not collected Some past data may be unavailable in areas where the scope
of the database has expanded over time. In the design of a new system or the change
of an existing one there is an opportunity to add new capabilities. This means that
new data elements have to be described and their structural relationships charted.
The new database will then have attributes for which no past values are available.

To manage these cases of undefined a notation in the database is needed. The
schema must assign a value representation which does not conflict with legal values
in the domain of the attribute. It is not clear if distinct values are needed for the
three cases above, although the difference between “not applicable” and “missing”
can lead to different actions.
‡‡‡‡‡‡‡ Very few programming systems make appropriate provisions to handle any kind
of undefined values in a manner distinct from zero values. The programmers are then
forced to use codes as -1, -0, 999999, 'undefined', and the like. These codes invari-
ably find their way into computations and lead to major errors. Some statistical systems
have provisions for missing data, and the database can provide the required input format
automatically. For programming systems which do not handle undefined values the data-
bases system should trigger an exception procedure when an undefined value is accessed,
so that the processing programs will not compute nonsense.

Nonsense can be created for instance if a join operation creates result tuples for null
= null. This type of problem can be avoided by never equating a null value with another
null value, i.e., by treating each null value as distinct. In counting operations null values
should be ignored, so that they do not distort computed averages or deviations. Not all
problems are solved by these rules, and more sophisticated schemes have been proposed
but have never been used in practice. ‡‡‡‡‡‡‡

414 Schemas

Transformations There may be a need to transform data between the outside
world and the database. Typical of such a transformation is the internal storage
of dates in integer or Julian form (year.day) for computational convenience, while
output of these dates is presented in dd/mon/yy form, so that the values make
sense to humans. Using letters for the month removes the ambiguity of English and
European notations.

Such a transformation may be carried out by encoding and decoding procedures
appropriate for the domain of values. These routines will reside in a database library,
and the schema can indicate which routine to use. If the transformation program
can be handled similar to a domain definition, new and composite data types can
be created and used.

The domain definitions in PASCAL are not adequate to permit
DECLARE birthdate DATE

but transformation programs can de defined which will take input as 12FEB82 and convert
it to 29 993 (days since 1JAN00) and vice versa. The input transformation can report
errors, and interval computations can be performed on the internal value.

Database Submodels and Access Privilege The schema will also identify ele-
ments as belonging to specific database submodels, if this concept is supported by
the database system and the database has been integrated. Within each submodel
there will be elements for which a user has update responsibilities and privileges,
and others which the user may only read but not modify. The schema is the obvious
repository of access privilege information, that is, the specification of the users who
have permission to access these data elements. Chapter 12 will deal with this aspect
in detail.

File Management A schema may also be the repository for file management
information. Data to control indexing, transposition, control of integrity, archiving,
and erasure cycles can be placed in the schema. We will encounter such aspects
incrementally as we proceed.

8-2 THE SCHEMA AND ITS USE

The collection of information that describes the database, when organized in a
formal manner, is called the schema. Data element descriptions are an important
part of the schema. Before discussing the definitions of the structural aspects of a
database within the schema, we will illustrate its use. When the use of a schema is
clear, it will be easier to deal with other requirements placed on the schema, since
there is still no consensus on how schemas can satisfy those requirements.

A set of documents that is used by a programming staff to generate programs is
an informal and often inconsistent form of a schema. Programmers will perform an
analysis of the tasks and consider the available data elements. Subsequently they
can code the required programs. Many statistical systems have provided directory
facilities with their data files, so that the collected observations will always be
properly identified and titled.

In the following sections we will discuss stronger, more automated approaches
to the use of the schema information. The schema will be coded so that it can be

Sec. 8-2 The Schema and Its Use 415

read by the database system and used by generalized programs to control the flow
of data to the files which contain the database. It will be stored within the system
to be accessible when needed. The formal schema description also provides a means
for the database users, database designers, and programming staff to communicate
and to define their concepts.

The definition of the database using the schema precedes use of the database.
In order to create a schema, we will need schema language services separate from
the language services which are used when the database is manipulated. Often
the processors for the schema language and the data-manipulation language are
distinct. Sometimes they even have a completely different vocabulary and syntax.

Figure 8-4 places the idea of a schema in perspective. During computation the
schema is used both to place incoming data properly into the files, and to locate
requested data at a later time. The dictionaries in the schema aid the users in
describing their requests, and perform a filtering function to improve data quality
within the database. The database users do not modify the schema during database
operations.

416 Schemas

8-2-1 An Example of a Simple Schema-Driven System

Schemas may be employed with very simple file systems. The resulting database
system will also be simple, and yet may provide a useful service. A schema for
a database which uses only a single sequential file is shown here. This example
shows operations using the TYMSHARE RETRIEVE system. The system operates
interactively on a terminal. Figure 8-5 is an example of the initial definition of a
schema. At this point no data exist in the data file.

The schema, however, has been saved on a separate file so that it can be used
by subsequent processes. The name of the schema file is obtained by suffixing the
database name with some unusual characters; here “"STR.D"” is used. The system
is now ready to receive data, and Fig. 8-6 demonstrates this phase.

The information from the schema is used to place each field properly into the
file. These data may now be manipulated using computational instructions and
selection statements. Table 8-1 lists the commands available to the user.

A complete session, which involves retrieval of the schema, addition of records,
changing of data fields, selective computation of result fields, and a final printout,
is shown in Fig. 8-7.

Table 8-1 RETRIEVE Commands

Sec. 8-2 The Schema and Its Use 417

Database manipulation commands:

APPEND
CHANGE attribute [FOR conditions]
COUNT [FOR conditions]
DELETE [FOR conditions]
LIST [FOR conditions]
PRINT (attributes) [FOR conditions]
REPLACE attribute WITH expression [FOR conditions]
REPORT [FOR conditions]
SAVE file
SORT BY key attribute [FOR conditions]
SUM expression [FOR conditions]

Clauses as [FOR conditions] are optional.

In order to explain the nature of such a database system, a possible implemen-
tation of the APPEND command is shown in Example 8-5. The following steps take
place:

1 The schema is fetched from its file

2 Storage is allocated for a data record

3 A header line is created from the schema and put on the terminal as a
prompt

4 The data file is opened

5 The data lines provided by the user are obtained

6 The values are extracted and placed into the data record

7 Each record is appended to the data file

8 A blank input line causes the data file to be closed and a message to be
placed on the terminal.

The entire schema is assumed to be small enough to fit in core. The actual code
is considerably longer, since checks are provided throughout to prevent program
failures if the schema and the data do not match.

The PL/1 function SUBSTR(string, begin [,length]), used extensively in this
model program, takes a number of characters, up to the value length, out of astring
of characters, beginning at position begin.

A system such as RETRIEVE is not adequate to support a general database.
No means exist to cross-reference multiple files, and the data elements are limited
to two simple types. The fact that the files are strictly sequential can cause long
delays on large files. On the other hand, the facilities are easy to comprehend by
the types of users the system designers envisaged, the possibilities for processing
errors are reduced, and results of processing are well identified.

The facilities shown here are similar to those for manipulating a single file or
relation of a larger system.

418 Schemas

Sec. 8-2 The Schema and Its Use 419

420 Schemas

Example 8-5 Example of Schema Usage: Implementation of APPEND

append: PROCEDURE(data file name); /* Schema driven file append */
DECLARE data file name CHAR(*), schema file name CHAR(50);
DECLARE 1 schema(50), /* No more than 50 attributes per record */

2 type CHAR(1),
2 width BINARY FIXED,
2 name CHAR(40) VARYING;

DECLARE headng CHAR(200) INITIAL(''), /* empty */
blanks CHAR(200) INITIAL((200)' '), /* full */
line CHAR(200) VARYING,
datarecord CHAR(*) CONTROLLED;

/* Fetch schema */
schema file name=data file name||'"STR.D"';
type,name=''; width=0; /* Initialize all schema lines */
OPEN FILE(schema file) INPUT TITLE(schema file name);
READ FILE(schema file) INTO(schema);
CLOSE FILE(schema file);

/* Set up data record */
tot width=SUM(width); ALLOCATE datarecord CHAR(tot width);

/* Make a heading out of the names, extend each to the width */
DO item=1 BY 1 WHILE(name(item) ¬= '');
headng=headng||SUBSTR((name(item)||blanks),1,width(item));

END; PUT SKIP EDIT(headng)(A(200));
/* Prepare to write additional records onto the data file */

OPEN FILE(data file) OUTPUT TITLE(data file name);
records=0;

/* Get a line from the user, if it’s not empty, process it as the */
more: DO records = 0 BY 1; /* schema requires */

datarecord=''; PUT SKIP;
GET EDIT(line)(A(200)); IF line=''THEN GO TO done;

extract: DO item=1 BY 1 WHILE(name(item) ¬='');
commapos=INDEX(line,','); /* locate a value */
IF commapos>0 THEN cp=commapos-1; ELSE cp=LENGTH(line);

/* Take out characters from line, adjust right or left, set width */
IF type(item) = 'N'/* and put away */
THEN datarecord=datarecord || SUBSTR(

(blanks||SUBSTR(line,1,cp)), 200-width, width);
ELSE datarecord=datarecord|| SUBSTR(

(SUBSTR(line,1,cp)||blanks), 1, width);
line=SUBSTR(line,cp+2); /* Chop processed input and */

END extract; /* Go to pick up next element */
WRITE FILE(data file) FROM(datarecord);

END more; /* Loop terminated by blank input line */
done: PUT EDIT(records,' RECORDS PROCESSED')(I(4),A(18));

CLOSE FILE(data file); RETURN;
END append; /* End of transaction, return for next command */

Sec. 8-3 Defining the Structure of a Database 421

8-3 DEFINING THE STRUCTURE OF A DATABASE

We have concentrated above on the description of data elements and then demon-
strated a schema for a database with a minimal structure. The database manage-
ment system only had to support the access of a record based on an attribute name
and argument value.

An important aspect of a database is its structure. The relationships expressed
by the structure allow the retrieval of related data elements and support the get-next
type of operation. Structure can be found at three levels: within data elements,
within records, and among records. Different database systems approach questions
of structure in very diverse ways.

8-3-1 Structure within Data Elements

Some data elements are composed of smaller, simple elements. A few computer
languages, notably COBOL and PL/1, have provisions to define such structures by
assigning level numbers. An example of such a substructure can be shown by
expanding the address shown in Example 8-3 into its component fields.

2 address, 3 street CHAR VARYING(80),
3 city CHAR VARYING(80),
3 zip DECIMAL(9);

Most database systems consider attributes only as simple elements. Any internal
structure of a data field as address is the responsibility of the programs and their
compilers. When modeling we also treat attributes only as having domains with
simple values and ignore composite values. A technique to resolve these variables
defines a domain having some transformation functions.

Several data elements may be grouped within a record, so that a single retrieval
command may retrieve multiple elements. Such a group is typically composed of
elements normally used together, perhaps belonging to one database submodel, or
elements which are assigned to the same access privilege.

The smallest unit which a database can physically manipulate, be it a single
element, a group of several data elements, or an entire record, will be called a
segment. If the concept of database submodels is supported by a database man-
agement system, a segment should never contain attributes from more than one
submodel. A read request will always obtain an entire segment.

A segment may have its own name in the schema or may be implied by refer-
encing an attribute within it. If a segment is a single attribute or an entire record
no segment name is expected. The attributes within a segment may be named in
the schema, so that application programs can refer to individual data elements. We
encountered single-attribute segments in MUMPS files. Those segments were named
using a subscript notation.

8-3-2 Connections Placed within a Record

We have described the structure among elements within a record. The schema
should state which data elements compose the ruling part and the dependent part.
If a lexicon has been combined into the file, a secondary ruling part may appear in
the record, and such information may be important to the processing programs.

422 Schemas

How a data element is related to the file and hence to the entire database is
critical but is difficult to describe in a manner which can be automatically inter-
preted by processing programs. The fact that an element is placed within a record
implies a strong relationship with other elements in this record, but an analysis of
a typical record (for example, Table 3-1) reveals a variety of relationships between
the elements. The database model contains this information.

That an attribute belongs to the ruling part is often only implied in schema
languages. An example is the specification of sequentiality and uniqueness (SEQ,U)
in the key attribute description of a Person record segment defined using IBM’s

schema language DL/1. This field and key fields of any ancestor segments make up
the ruling part.

FIELD NAME=(social security number,SEQ,U),BYTES=11, ...
Attributes in the dependent part may not be normalized in file structures. De-

normalization may have been done explicitly, to achieve certain performance goals,
or implicitly, when no normalized model was defined during the design process. We
will show some more examples from DL/1.

Segments themselves may repeat within a record in order to implement a nest
relationship within a record. The ownership connection is then implemented using
physical sequentiality. This works only for one owner per owned record and does
not support an association instance within a record. A PARENT specification in a
segment relates nested segments to their owner, so that multiple-level nests can be
described. This can make records very large indeed, at times spanning many blocks.

The DL/1 schema first specifies the relation and its file (DBD and DATASET), and
then each segment in turn. Since in this example a direct file organization (HDAM)

Example 8-6 DL/1 Record Specification

* filename
DBD NAME=Employee,ACCESS=HDAM,RMNAME=hashprogram

* device specification
DATASET DD1=empty,DEVICE=2314,BLOCK=2000,SCAN=5

* Record name, length, position, and maximum frequency
SEGM NAME=employee,BYTES=143,PARENT=0,FREQ=200

* attribute specifications
FIELD NAME=name,BYTES=30,START=1,TYPE=0
FIELD NAME=age,BYTES=4,START=31,TYPE=P
FIELD NAME=sex,BYTES=1,START=140,TYPE=C
FIELD NAME=years military,BYTES=1,START=141,TYPE=P
FIELD NAME=pregnancies,BYTES=1,START=142,TYPE=P
FIELD NAME=children,BYTES=1,START=143,TYPE=P

* nest record specification
SEGM NAME=skills,PARENT=employee,BYTES=26,FREQ=20
FIELD NAME=(type,SEQ,U),BYTES=25,START=1,TYPE=C
FIELD NAME=years experience,BYTES=1,START=26,TYPE=P

* instruct assembler to generate the tables
DBDGEN
FINISH

Sec. 8-3 Defining the Structure of a Database 423

is specified, there is no opportunity in the schema to specify the ruling part of the
employee relation. The key used is a secret of the hashprogram which provides the
key-to-address translation.

A frequency field in the schema (here FREQ) for a nest segment provides a count
parameter to aid in the estimation of storage requirements.

The TYPE specification is limited to:
0 none

C character

P packed decimal

The DL/1 language is mainly concerned about segments, and only FIELDs con-
taining keys for sorting or referencing have to be specified. The record in the
example shows in fact a large gap between age and sex containing unnamed fields.
Use of DL/1 will be investigated when the IMS database management system is de-
scribed in Sec. 9-6. Schema tables set up by DL/1 can also be used by a number of
other IBM and independent data manipulation and query systems.

8-3-3 Connections between Records

An ownership connection is best described by defining separate records for the
nest or association records and providing references from owner to owned records.
Pointer references can also implement reference and subset connections between
records of entity, referenced entity, and lexicon relations.

When symbolic references are used, the database system need not be concerned
with the relationship, since the reference attribute will contain a key value which
can be used in a fetch operation. Constraints on deletion and insertion cannot be
enforced if the relationship is not described.

When pointer references are to be used, the schema has to provide a description
of the connection. The database system has to be able to place the reference
value in the referencing attribute field. In DL/1 such specifications are explicit; an
association, for instance, is denoted by specifying a pair of owners:

SEGM NAME=supply,,PARENT((supplier,SNGL)(parts,PHYSICAL))

The fact that the first PARENT is SNGL reflects only on the fact that there are only
next and no prior pointers to the supplier owner. The indication that the other
PARENT (parts) is PHYSICAL means that this owner is in the primary hierarchy, so
that the owned record might also be found sequentially, selecting segments using
the key attribute. Many other coupling arrangements are available in DL/1.

In the CII SOCRATE database management system, the specifications for nests
and their linkages are implicit, so that the decision to use large records or mul-
tiple records for a nest implementation is independent of the schema description
provided by the user. The term SET defines a nest with the tuple attributes de-
limited by a BEGIN ... END pair. Example 8-6 shows also the specification of
the data element characteristics, with character type (WORD), domain definitions
(FROM ... TO ... or as listed), unit (IN ...), and use of a conditional structure
(IF ... THEN store one ELSE store another). The characteristic LIKE allows
a domain specification to be copied.

424 Schemas

In Example 8-7 we find a nest of skills within each record. If skills is extensive,
it becomes desirable to use a referenced entity relation which allows the tuples to
be shared. This alternative is shown in Example 8-8. The pointer reference to
this relation (here SET) remains in a nest structure, so that again multiple skills
can be entered for one employee. The years experience can in this case only be
implied from the requirements in the referenced Skills relation.

Example 8-7 SOCRATE Record Description

BEGIN
SET Employee
BEGIN
name WORD
age FROM 16 TO 66 IN Years
address WORD
eye color(Brown,Black,Blue)
hair color(Black,Brown,Blond,Red,Gray)
sex(Male,Female)
IF sex = 'Male'

THEN years military FROM 0 TO 25 IN Years
ELSE
BEGIN
pregnancies FROM 0 TO 20
children LIKE pregnancies

END
SET skills
BEGIN
type WORD
years experience FROM 0 TO 50 IN Years

END
END

END

Example 8-8 Cross-Referenced Relations

BEGIN
SET Employee
BEGIN
name WORD
...
SET skills
BEGIN

skill REFERENCE Skill description
END

END
SET Skill description

BEGIN
skill type WORD
years of school req FROM 0 TO 20 IN Years
years of experience req LIKE years of school req
...

END
END

Sec. 8-3 Defining the Structure of a Database 425

Sometimes references may be to other tuples of the same relation:
supervisor REFERENCE employee

An explicit reference may be bound by a join to be performed when the CURRENT
employee record is defined for insertion into the database.

back up person REFERENCE employee
HAVING skill = FIRST skill OF CURRENT employee

The schema implemented by SOCRATE describes a concept from a user’s view
rather than the structure of relations or files. We will discuss the subschema struc-
ture to support multiple user views in Sec. 8-4.

8-3-4 Derived Data

Processing derives new data, using source data found in the database. Processing
implies having source data and an algorithm to process the data. We have described
knowledge about the data in the model and encode this knowledge in the schema
which implements the model. The schema makes the data description available to
all users of the database.

If we have knowledge about processing which is useful to multiple users we
should also store this information with the database schema. Knowledge about
processing algorithms is encoded in the programs used to derive data. To make such
algorithms available within the framework of a schema we associate programs with
a new class of data elements: derived data. The use of derived data defined in the
schema automatically invokes the processing programs and accesses the appropriate
source data.

The effort to derive data can be such that it becomes desirable to store derived
intermediate or final data also within the database, in addition to the algorithms
or programs used to derive them. While the programs are still attached to the
databases schema, actual stored derived data will appear in the database itself. If
data are defined as derived they will not be available for conventional update.

A Warning In some instances removal of computational responsibility from the users
to the database-management system can increase the potential for serious errors. As
an example, we take the automatic calculation of an area as the product of width and
length. Some day a user will add an object to the database which is not rectangular and
assume that the system-produced value for derived area is correct. A schema with a good
descriptive capability, perhaps defining the computation in the title for the attribute, can
help avoid such errors.

The user expects that derived data are as current as the source data avail-
able to the system. We distinguish two approaches to achieve this objective when
supporting the generation of derived data:

On Entry Derived data is computed and the result stored whenever a
source value is entered into the database, updated, or changed during
processing.

On Access Derived data is computed from the current source elements
only when a retrieval request to the result element is made.

Both alternatives are presented next, and then a mixed strategy will be suggested.

426 Schemas

Results Derived on Entry With each source data element a process is identified
which is automatically invoked when the data element is updated. The execution
of the process causes the automatic updating of derived elements. Derived values
kept in the file are actual results of entered data. All results derived on entry are
always up to date relative to available source data elements.

Example 8-9 Derivation on Entry of Actual Results

A part of a database is used for budgeting expenses on a yearly basis. The element for

salary could be defined as

1 Employee;
...

2 salary, PICTURE IS 9999.99, ON MODIFY CALL pay proc.
...

pay proc is a procedure which is invoked whenever a salary is changed. This procedure

may include statements as follows:

pay proc: PROCEDURE;
raise = Employee.salary(NEW)-Employee.salary(OLD);
expense = raise*(12-current month+1)
...
Department.salaries = Department.salaries + expense;
Department.profit = Department.profit - expense;
...
END pay proc;

The summary fields in the Department relation reflect all changes introduced into the Em-
ployee.salary fields.

Use of this concept can lead to costly data entry. A chain of procedure calls
may be generated during entry of a single value. The change of salary here leads
to changes in the derived values in the Department record, and this in turn could
affect a Company record.

The statement in Example 8-9, used to recompute the Department.profit,
could also be generalized and be defined as a derived value to be invoked whenever a
departmental budget amount is modified for whatever reason. Now no explicit profit
calculation will be included in pay proc, but when the Department.salaries, De-
partment.office rent, or a similar expense or income element changes, the pro-
cedure deriving profit will be executed.

These procedures assure that the derived results are immediately available
when requested. An update to the file may, however, initiate a costly sequence of
events, and a batch of updates (for a cost-of-living increase, for instance) may lead
to a truly horrifying level of activity.

Results Derived on Access The other method of accommodating changes in
source data avoids the actual storage of derived data. Derived data to be computed
on access are also described by means of a program which allows them to be au-
tomatically computed at the time of a retrieval request. Using the same situation
shown above, the schema coding could read as shown in Example 8-10.

Sec. 8-3 Defining the Structure of a Database 427

Example 8-10 Derivation on Access of Potential Results

In the schema we find

DECLARE Department.profit ... GET FROM(sum budget elements)
DECLARE Department.salaries ... GET FROM(sum empl salary)

and the processes would include two database procedures:

sum budget elements: PROCEDURE;
result = department sales -

department salaries -
department overhead;

RETURN(result); END sum budget elements;

sum empl salary: PROCEDURE;
result = 0;
DO WHILE DEFINED(employee);
IF employee department=department

THEN result = result + Employee.salary;
END;
RETURN(result); END sum empl salary;

Here the chain of processes to be executed occurs at retrieval time. The results are
never stored; the capability to generate them, however, is maintained. The cost
of obtaining answers is high, and the same result will be computed many times if
it requested frequently. If, for instance, Product.profits are compared with the
overall Department.profit, the latter value will be recomputed from the source
data once for each product comparision.

There are instances where an attribute value should certainly be defined to be
derived on access; an age should always be derived from birthdate and today’s
date, a shipping cost is best derived from weight and shipping rate, and so
forth.

On-Entry versus On-Access Derivation of Results Both of these methods
lead to high costs when a usage pattern causes excessive recomputation. On-entry
derivations require much effort when source-data are being entered, and on-access
definitions cost when result-data are being generated. For each derived element the
relative frequencies of access have to evaluted and the cost of the alternatives com-
pared. On-entry derivation also increases storage and data transfer costs. Schema
specifications for either choice are found in Sec. 8-3-5.

Where data do not need to be of ultimate currency, the problem of excessive
cost can be resolved by not computing derived data at entry or at query time,
but rather according to some regular processing cycle, using nightly or weekend
processing resources. It is now well worthwhile to keep an additional data element
with a time-stamp “last update time”. The time-stamp is always set to the
date and time of the last update of the derived data. One time-stamp may be
used per record segment if the derivation process will update all derived elements
in a segment as one transaction. This value can be used to check that expected
derivations have indeed been recently computed.

428 Schemas

Time-Triggered Derivation A combination of the two approaches is possible.
We suggest that both dated derived data is kept as well as references to regener-
ation procedures to be used on access. A query can check if the derived data are
adequately up to date, and if they are not, the query can trigger a regeneration.

Given this choice only time-critical queries have to cause a regeneration of the
derived data element. The decision is made according to the time-stamp associ-
ated with the element and the need of this query, rather than according to some
predefined schedule. There are several benefits:

No generation is triggered by data entry.
Casual queries can avoid any regeneration.
Multiple regeneration processes associated with repetitive accesses are avoided.

At query time the first access to a data segment with derived data will trigger
a regeneration only if the acceptable time > last update time for some data

Sec. 8-3 Defining the Structure of a Database 429

segment. Since the regeneration sets the time-stamp to the current time, no segment
will be regenerated more than once during one query transaction. A default decision
can be to set the acceptable time to the time the transaction began. Now the
first reference will initiate a derivation on access, and any further refernces to the
same element will use the stored value, as if the data were derived on entry.

The general flow of such an implementation is sketched in Fig. 8-8. A technique
of this type is now employed within DEC PDP-10 programming systems: if the binary
output code derived from some source code by a compiler is dated later than the
last source code modification, a recompilation is triggered.

8-3-5 Summary: The DBTG Schemas

Figures 8-9 and 8-10 present the essentials of the specifications for a schema lan-
guage developed by Data Description Language Committees of CODASYL (Conference on
Data System Languages), an organization devoted to the development and stan-
dardization of business programming, which illustrates many of the points made
above.

There are two distinct sections to the schema, one to contain the more concep-
tual definitions, as determined during establishment of the database model, using
a Data Description Language (DDL), and the other, the storage schema, to con-
tain the results of the mapping decisions to physical storage, which define the file
structure to be eemployed, using a Data Storage Description Language (DSDL).
The purpose of the separation is to permit changes of the storage structure to be
made for efficiency reasons, without affecting the user’s programs, which are solely
derived from the database model. Any database model change has to be supported,
of course, by a corresponding storage schema change. Changes of a user’s external
database submodel alone should not affect the model schema or the storage schema.
In earlier versions of the DBTG proposals both schema sections were combined, and
in the implementation a combination of the two sections is still permitted.

The specifications shown are abstracted from the third major revision, issued
in 1978. Most existing systems are based on 1969 and 1974 specifications. Many of
them have not implemented all the clauses and have changed some of them.

The Model Schema - DDL A schema contains all the definitions for the inte-
grated database. A database may be divided into areas with distinct access and
management responsibilities. The principal unit defined in the DDL schema is the
record-type, roughly equivalent to one relation. Keys define ruling parts as needed
to represent entity relations, nests, or associations.

Each record-type has one RECORD-NAME and within the record name the data
elements can be specified. A data element is identified by a data name; Data ele-
ments may be hierarchically arranged within a record by means of the level no. An
OCCURS clause with a variable count can be given to indicate repetition of a data
element within the record. Most of the options for data elements were discussed in
Sec. 8-2.

The SOURCE and RESULT clauses specify derived attributes. Derivations are
restricted to copying of values from the owner records and summarization of values
in member records.

430 Schemas

Sec. 8-3 Defining the Structure of a Database 431

Procedures, written by the user community, to carry out actions beyond the
capability of the database system may be specified. They can be used to protect
data items, or to carry out special conversions or derivations. We encountered
such procedures as escape procedures in VSAM, Sec. 4-3-5. They will be CALLed
when the SCHEMA, or a specific AREA, RECORD or data name is accessed. These
routines can be designated to be entered BEFORE, ON ERROR, or AFTER access, and
can also be limited to specific actions as ALTER, COPY, DISPLAY, OPEN, CLOSE,
GET, MODIFY, STORE.

ACCESS CONTROL LOCKs are available at every level to force entry of a keyword
or cause some verification procedure, as shown in Fig. 12-5. The specifications for
the connections “SET NAME IS link set name” are strongly related to database
manipulation and are covered in more detail in Figs. 9-13 and 9-14.

The Storage Schema - DSDL The storage (DSDL) schema as being defined by
a CODASYL commitee has to provide the physical facilities for all the records and
connections defined in the model DDL schema. Figure 8-10 summarizes the proposal
for the DDLC storage schema.

Optionally more than one storage schema may be used to serve a model schema,
and then each storage schema has to state which model records and link sets it REP-
RESENTs. A specific record type used in the model schema can also be supported
by multiple storage record types. The mapping rules from model record names to
storage record names permit a conditional expression, so that, for instance, records
having certain values, say sales location = "France" may be selected for the
record type European sales. This record type can then be assigned a certain ac-
cess protection distinct from, say, Canadian sales. A subschema notion is hence
possible, and if the storage schemas are distinct, a distributed system can be sup-
ported. The connections can not be mapped.

To support link sets for connection either direct or indirect pointers, or in-
dexes may be used. If no physical structure to provide link sets is provided, the
connections have to be established using sequential scanning.

Several alternatives and hybrids for placing storage records into the storage
areas are available. PLACEMENT can be determined by a hashing function (CALC), so
that all members of a nest occupy the same blocks if possible (CLUSTERED VIA SET
link set), perhaps sharing the pages WITH another nest, and optionally sharing the
blocks with the owner record (NEAR OWNER) according to this ownership connection.
Placement may also be sequential according to a key attribute. Indexes to the nests
may be placed by CALC or NEAR OWNER. An area contains a specified, but extendible
number of blocks (pages).

The representation of the data elements is also defined in the storage schema in
the FORMAT clause. The format alternatives are intended to cover any representation
chosen in the schema. If no format is specified, the implementor can choose any
representation consistent with the TYPE given in the schema.

Derived data are also defined here, and an option is provided to permit storage
of data derived on access. The actual derivation procedure is given in the RESULT
clause in the main schema. Schema clauses related to processing and the statements
used to manipulate the CODASYL database are shown in Sec. 9-5. In the next section
we now will present some typical alternatives for schema implementation.

432 Schemas

Sec. 8-4 Manipulation of the Schema 433

8-4 MANIPULATION OF THE SCHEMA

The data in the schema contains the information to be used to control a database.
The information can be used to generate a database system and its processing
functions, or its use can be deferred to the execution time of the processes that
manipulate the database. This choice is related to the concept of a binding time
introduced in Sec. 1-4.

The schema, as written by the organizer of the database, has to be translated
for use by a database-management system. The binding choices are the familiar
alternative of compiling versus interpretation.

In the environment of the database, compiling is equivalent to using all the
information in the schema when the application programs are created; the schema
can then be discarded. Interpreting, on the other hand, is equivalent to the use of a
general program that, when called upon to carry out database manipulations, looks
at the schema to find data items and determine their relationships.

8-4-1 Examples of Schema Translation

In order to clarify the alternatives, will sketch some examples of schema transla-
tion and schema use. In Sec. 8-4-2 we will summarize the relative advatages and
disadvantages.

The schema in the RETRIEVE example (Fig. 8-5) used in Sec. 8-2-1 is simply stored
in the form of an array on the schema file. The translation process consisted only of
formatting the three fields of each schema entry. The schema subsequently was used
interpretively. Figure 8-11 shows a similar process for a more complete schema language.
Here, however, the source schema is analyzed and its elements are used to build tables and
dictionaries for the interpreter shown in Fig. 8-14. The dictionaries are used for recognizing
the terms which appear in the user’s commands, and the tables direct a set of interpreting
routines to the contents of the database.

434 Schemas

Sec. 8-4 Manipulation of the Schema 435

Figure 8-12 sketches the process in the Time-Oriented Database System (TOD). In
order to support extensive data analysis in a research environment, a set of functions to
manipulate the database is available in a TOD routine library. The users write programs
using these functions. The database is kept in transposed form for rapid attribute access
(see Sec. 4-1-4), but the users have a traditional tabular view.

The source schema is translated by a separate compiler into an encoded tabular
form, essentially a relation, for interpretation. The library routines, invoked by the user’s
programs, fetch at execution time the required schema tables for request interpetation and
data access.

Interpretation of the schema is avoided in the process used in many commercial data-
base systems. We show the specifics of the Honeywell IDS system in Fig. 8-13. Here a
user’s COBOL program, with special database reference statements, is combined with the
schema and processed by the IDS compiler. The result of the IDS translator is a clean
COBOL program text which contains statement sequences and declarations to carry out
the IDS functions as well as the user’s own COBOL data processing specifications. This

436 Schemas

text is compiled by a COBOL compiler to produce assembly text, which in turn, is assembled
into a binary program. Basic IDS file-manipulation routines, as well as COBOL subroutines,
are added by the loader, and execution can commence without any further reference to
the schema.

In the approach taken by the IBM IMS system, the schema and program components
which become part of the final execution package are generated at different times, stored
on separate libraries, and scheduled for execution by the scheduler component of the IMS

system. The components and their integration are sketched in Fig. 8-14. The schema
language, DL/1, concentrates on the structure of the file and leaves usage specification
largely to the users’ programs. No separate translator is provided for the schema language
DL/1; all statements are assembly language macros. The assembler generates table entries
from these macros, and these are linked by IMS to the user programs when IMS starts a
user process.

Out of the DL/1 file, description subschemas, which omit unnecessary detail, can be
extracted to be used by the programs. Some additional macro-statements in the schema
provide a cross-referencing capability so that referenced relation types can be defined. We
will discuss the use of DL/1 schemas in Sec. 9-6 when the IMS data-management system is
discussed.

Many more implementation alternatives are possible. Which alternative is
chosen will have a major effect on the structure permitted by the schema. The user
and system developer perceive the data organization through the schema presented
to them. The use of the database will depend on the concepts supported by the
schema, since these concepts are needed for the user to manipulate the database.
The debate which concepts are best will continue forever. Tabular models have
served models of reasonable size well. When the models become large a schema
which supports a hierarchical decomposition of the model space becomes desirable.
An integrated database will probably require a schema which can support more
than one hierachical view.

8-4-2 Evaluating the Alterntives for Translation of the Schema

The approach shown for IDS is typical of compilation methods, while the approach
shown for SOCRATE is typical for interpretation. We will discuss the arguments for
and against these two approaches, keeping in mind that compromises between the
two methods exist as well.

Compilation The benefits of compiling the schema information are the following:
1 High process time efficiency due to use of actual machine code. It is gener-

ally conceded that interpretation of simple arithmetic statements is anywhere from
10 to 200 times slower than the execution of compiled code, and this experience
may lead us to reject the interpretive approach.

2 Special programs can be written and compiled to deal with special sit-
uations. The entire processing repertory of the computer is available, including
multiple compiler language and their libraries.

3 No explicit space is required at process time to hold the schema.
4 Facilities exist within programming languages to support this approach.

One of these is the capability to include source modules from a schema file, and
another is the tailoring of programs provided by the use of macro expansion capa-
bilities.

Sec. 8-4 Manipulation of the Schema 437

The disadvantages of the compiled approach are the following:
1 All programs have to be regenerated when the schema changes, and new

programs have to be written when new data and relationships have been specified.
2 It is difficult to control whether all programs use the schema completely and

are not dependent on specific internal knowledge of the data organization. This can
leead to unpleasant suprises when changes to the schema are made.

3 The apparent benefit of not requiring storage for the schema at processing
time is largely illusory, since all the required information is stored somehow within
the processing programs and might well appear multiple times in independent pro-
grams.

4 Most compilers and higher level languages do not have the capability of
defining database structures as complex as we would like to be able to handle.
Conditional, composite, and iterative fields, for example, are rarely available on the
language level.

5 It can be difficult to adapt an existing compiler to generate code for some
new hardware features which are being developed to aid databases.

Interpretation The benefits of the interpretive methods are related, of course,
to the disadvantages of compiling. We can emphasize the following:

1 Data-oriented changes need to be introduced in the schema only, and do
not need programming effort.

2 Better control exists over the contents of, and access to, the database.
3 Programming can be carried out before the exact data specifications are

known.
4 Synchronization of accesses to a shared file is easier to maintain in a multi-

programmed environment because more process information is available.
5 Greater independence between processes and files exists. This feature will

protect the system from hardware changes.
6 It may be possible to implement frequently used and well-established func-

tions in hardware or in micro-coded procedures.
6 The source-language statements may require less storage space than the

machine instructions needed for file access.
Disadvantages of the interpretive method include the following:
1 The general interpreter has less flexibility when special considerations have

to be taken care of. Recompiling of programs is not costly compared with the file
reorganization effort involved when the schema is changed.

2 There is a high central processor cost to interpreting. Although, in terms
of the total time to complete a job, this cost may be minimal because of the lengthy
file accesses, less CPU time will be available to other processes.

3 Good general programs are difficult to construct and debug.
4 The single generalized interpreting program may occupy more space than

the separate processing programs which are brought in on demand only. In a pag-
ing system, the demands on primary memory space for either approach may be
substantially equal.

438 Schemas

Compromises include compiled references to programs which can adapt to
changes in the database schema. The actual choice of approach will be determined
largely by available facilities and expertise, although the wrong choice can be costly.

8-4-3 Internal Representation of a Schema

The internal representation of a complex schema may itself require a linked structure
to describe the structural dependencies of the data elements. In SOCRATE this is
achieved through a number of interlinked tables as shown in Fig. 8-15, which is
based on the schema in Example 8-6.

The dictionary table includes both attribute names and the data values per-
mitted in domain controlled by lists of choices. The next-pointers provide rings
within a nest and the detail-pointers provide access to nests when required.

Sec. 8-5 Subschemas 439

8-5 SUBSCHEMAS

In a large database, the schema itself may be of massive proportions. Since not all
the information in the schema is required by every user or program, the data in the
schema may be categorized and selected according to several dimensions. These
dimensions include:

Functional level of the schema user
Responsibility and ownership of data
Processing function
Host-language adaptations
Location of stored database fragments

All these dimensions can be used to divide schemas into subschemas which restrict
the user or the database to a subset of data and function, depending on responsi-
bility, need-to-know, and location.

The diversity and complexities of schemas are in part caused by the differences
in objectives seen by schema designers.

8-5-1 Subschemas Based on View and Function

As a part of preparations for a possible standardization effort, a committee of
the American National Standards Institute (ANSI), X3-SPARC, defined in detail the
schema function–user function correspondences and some of the many interfaces
among people and system modules to be considered. The terminolgy used here
and the interfaces shown in Fig. 8-16 are based on this work. The ANSI-SPARC

descriptions are based on a three-part schema: the conceptual schema implements
the database model, the internal schema implements the storage definitions, and
external schemas implement the concept of a database submodel.

440 Schemas

External Schema A user who is interested in obtaining information from the
database may need only an external description of the content of the database. The
user can obtain a list of the entities, their attributes, and the type characteristics
of these attributes from the system. The user can request the data in interesting
combinations and specify data reduction processes.

The external schema for a user of the database may be closely related to the
view model which was used to construct this portion of the database model. Many
external schemas are composed of subsets of the database relations and subsets
of the attributes of the selected relations. Where the database submodel differs
structurally from the implemented database, substantial transformations may be
required, including joins and sorts. Simple transformations include the specification
of record segments. Substantial delays may be encountered if the transformations
are major. A user who uses the database frequently will, of course, form concepts
about the system by learning what the system does poorly and what it does well
and willadapt to the database, ignoring the original view. External schemas may
be changed to adapt to the needs of the user without impacting other schemas.

An example of simple subschema definition is shown in Example 8-11. A VIEW
on the relations or TABLEs in IBM SQL/DS permits projection and rearranging of
attribute columns, selection of rows, and specification of derived variables. The
VIEWs in SQL/DS never create relations; all mapping is performed at the time when
the view is used. The SQL language is summarized in Sec. 9-2.

Example 8-11 An SQL External Subschema Definition

Given a relation Children with data in traditional measurements:
Children: RELATION
child id, guardian, class, rank, age, height, weight, year 1;

we define a view for the modern metric-thinking school nurse
CREATE VIEW School nurse

(child, age, height cm, weight kg)
AS SELECT child id, age, height * 2.54, weight * 0.4536

FROM Children;

A database will be accessed via multiple external schemas. One external schema
contains the entries required for the data processing of one area of interest. Exter-
nal schemas may overlap to reflect overlapping data models. The use of multiple
schemas also aids in the maintenance of the integrity of the database, since fewer
of the relations are exposed to processes which may contain errors.

This concept of an external schema to constrain access provides control at
little additional cost. If access programs are not constrained, a database system, in
order to protect data from unauthorizee access, will have to verify of every record
and field address submitted as being appropriate for the user. In SQL the original
database TABLE creator can define VIEWS and assign them to specific users with
certain privileges to provide access control.

Multiple active processes may use the same external schema. Distinct external
schemas may overlap. If any overlapping schemas are used at the same time, it is
desirable that the processes share the schema entries at some level. This provides
a linkage which the system can use to avoid problems of access interference. Only

Sec. 8-5 Subschemas 441

privilege information, tied to the users rather than to the database elements, must
remain separate.

Conceptual Schema The external view is derived from the overall conceptual
schema which represents the entire database model. Here all relationships are de-
scribed. The conceptual model covers the information-processing needs of an enter-
prise or a large portion of the enterprise. As the real world changes, the conceptual
schema will have to be adjusted. It is desirable that derived external schemas using
conceptual elements which are changed can be restated to provide a relatively con-
stant user interface. Only the external schema which required a conceptual change
due to a related change in its view model will require modification.

If all users access the database through external schemas, the conceptual model
may not be physically present during database processing; its main function is design
and schema generation.

Internal Schema The operational management of the stored files requires fur-
ther information to be placed in an internal schema. The internal schema defines
where the database attribute values are placed and how they are accessed. The
decisions encoded in the internal schema present the aggregate requirements of all
the users. Here the notion of a database administrator appears. The load esti-
mates or measurements, as defined in Sec. 5-4, are applied here and are balanced
with response-time requirements for specific transactions. Figure 8-10 provided ex-
amples of the tools available to tune the performance of a database. The principal
concept is always the addition of redundant access structures and the maintenance
of locality. Control over actual and potential data derivations is part of the internal
schema.

To provide input to performance control functions, the internal schema may
also contain descriptive statistical data elements which are updated during oper-
ation. The TOD system, for instance, collects in its schema the access counts to
attributes, to be used for periodic restructuring by the data administrator. If the
database is distributed over multiple physical locations, corresponding multiple in-
ternal schemas can be used to implement the single conceptual schema.

8-5-2 Physical Organization of Schema Characteristics

A database schema may be organized by attribute or by characteristic: names,
domains, titles, control of access to data, etc.

Certain database processes will not need all the characteristics that we have
associated with each data element. Processing programs specifically may only need
access to the type and length characteristics of the data elements. If data are only
to be moved, only the length and count are needed. The descriptive information
which contains titles, unit specifications, etc., can remain inaccessible. This physical
organization reduces memory and paging requirements.

The TOD schema table, for instance, is transposed during translation to pro-
vide the schema tables in a compact form to the interpreter. This means that,
for instance, all TITLE information is available as a single array to the output pro-
cessor, and all TYPE information is placed into another array to be used by the
computational processes.

442 Schemas

8-5-3 Adaptation to a Host Language

Yet another aspect of a subschema is considered by CODASYL and SQL. The intention
is that the schema and the schema description language can be utilized by programs
written in a number of different computer languages. Variations of the subschema
language are designed to fit the syntax, semantics, and power of the host language.
Languages to be supported include COBOL, FORTRAN, and PL/1. Languages with
flexible data structures, like LISP, are not easily supported by traditional schemas
and have either used intermediate modules as interfaces, or treated databases as
large virtual memory segments.

Even in procedural languages there are problems to be resolved due to represen-
tation and structure differences. An instance is the COBOL language capability to
have a structure containing element types which OCCUR a variable number of times,
as shown in Fig. 8-9, a notion not included in FORTRAN. In PL/1 a feature affecting
schema power is the capability to handle variable-length character strings.

The problem is aggravated in a distributed system with heterogeneous proces-
sors, where, for instance, real values may have different representations. In a mixed
language or computer environments users will have to agree to avoid incompatible
data types.

8-5-4 Data Ownership

The database administrator has the responsibility for the successful operation of the
database system. While the structural integrity and the adequacy of the interfaces
between external, conceptual, and internal schemas require a central view, it may
be necessary to delegate data content responsibility to those most closely associated
with a particular database submodel. Other aspects of this function are discussed
in Sec. 8-6-2.

The use of multiple external database schemas is related to the assignment of
responsibilty for the maintenance of the stored data. Certain data elements may
be collected and controlled for quality by one group. This group then may use
an external schema to manage its data and assign permission for its use. A new
concept pertaining to data emerges here, namely, data ownership. This is another
candidate for an attribute to be specified in the schema language, or it may be a part
of the access privilege specification. When attributes or relations are to be added,
the maintenance responsibility over these data should be established. Private and
public data may be distinguished, as well as source and derived data elements.

Feedback may be necessary to inform owners of the outside uses of the data,
since not all functions of data elements and data relationships can be perceived from
one external schema. The DBTG AREA specification allows the partitioning of the
database into a number of areas. Areas can be individually protected. In several
implementations this also means that the data can reside on physically distinct
devices.

Derived data Ownership and data responsibility also extends to derived data.
When on-entry and on-access database procedures are used, control can be well
defined, but most derived data is placed into databases by explicit programming.

Sec. 8-6 Structure, Schema, and Usage 443

These derived data, when stored within the database, become indistinguishable from
data which entered the database from the outside. The responsibility for the validity
of results derived by processing source input is assigned to the group which controls
the processing programs. Errors in the source data may be the responsibility of
another group. The chain of derived results can go through various levels and may
have involved recursion, making checking and restoration difficult.

Protection by Database Procedures There may, for instance, be an AREA for medical
data of employees which can only be updated and written by authorized staff, defined by
a keyword variable check MD.number. To disable access by nonauthorized staff to certain
disease data, the database administrator can also specify a database procedure hush which
disables retrieval of data based on values in the access path as shown in Example 8-12.
Monitoring of access to data also may be necessary for confidential data items. The hush

routine could achieve this by also reporting every approved use to a logging device.

Example 8-12 Subschema Protection

AREA NAME IS medical.
RECORD NAME IS diseases WITHIN medical.
ON GET CALL hush USING diseases;
PRIVACY LOCK FOR STORE IS check MD number.
1 patient name PICTURE 20(X); OCCURS 1 TIMES; CHECK IS NULL.
1 social sec PICTURE 9(9); OCCURS 1 TIMES; CHECK IS NULL.
1 sick call no PICTURE 99.
1 sick call OCCURS sick call no TIMES.
2 disease PICTURE 50(X).
2 ICDA code PICTURE 9999V9.
2 days PICTURE 999.

Once a database is operational any changes to the schema can cause many
programs to fail. The use of a database may not have been controlled so that all
users who are potentially affected by a contemplated change can be identified and
warned. A check program attached to the record type to be changed or to an entire
AREA can be used to report on usage which may conflict with contemplated changes.

8-6 STRUCTURE, SCHEMA, AND USAGE

The approaches associated with the different structures and schema formulations
also imply differences in the approaches to the envisaged use of the database. These
differences will be accentuated in the implementation of database systems as de-
scribed in Chap. 9. A categorization into three conceptual approaches follows:

1 A schema which concentrates on the naming and the semantics of source
attributes and domains will be associated with a relational approach to database
systems. The entire database is a potential resource, where linkages, derivations,
and associations are established when needed. Potential relationships are found
through matching domains in the schema.

2 A schema which organizes the data elements and segments into record-like
structures is associated most strongly with traditional data-processing technology.

444 Schemas

Reports, tables, and the like will be easy to generate and to process. Structural
binding between files increases the efficiency of the common processes. Potential
relationships are specified in the schema; corresponding attribute values in the
database relate actual tuples.

3 If the relationships among data elements are irregular and complex, and
the data records are also irregular, it may not be possible to place relationship
information into a schema. Now data segments found along network paths which
are dynamically selected by the user’s programs and interaction. Examples of such
approaches are found in some artificial intelligence systems. Such a system will
support the retrieval of information in an intellectually complex mode. The volume
of data is typically relatively small. The potential diversity of data and structure
encountered may make traditional data processing difficult.

In practice the three categories are rarely pure. The DBTG approach, for in-
stance, falls between 2 and 3, and many statistics support systems are between
categories 1 and 2.

Important objectives of the use of databases are data independence and control
over the database. The final sections of this chapter will comment on these issues.

8-6-1 Data Independence

An early impetus toward the use of schemas to describe content and structure of
databases was the desire to move databases from one computer to another in order
to support growth or to obtain the use of newer, more economical systems. The
user of a large database is currently tied to the hardware that supports the files and
programs for that database. Some of these anchors are due to low level constructs
that are used in high-level programming. For instance, if pointer references have
been used in one database system, it becomes very difficult to translate these ref-
erences to another system directly, since we cannot expect that the new database
structure will be mapped into the same relative positions on the files. More serious
difficulties are caused when in one system, data is accessed via indexes and reside
on sequential or random files, and on the other system the data is accessed through
links as in a multiring structure.

The desired independence of applications from hardware and software systems
has been called data independence. We can, however, distinguish three dependencies
which have to be resolved:

Data Dependence Program instructions depend on the encoding of data el-
ements. Issues are the size of elemental fields (i.e., 32- versus 36- or 60-bit words,
and 6-, 7-, or 8-bit characters), floating-point representations, and pointer values.

Structure Dependence Program logic depends on facilities to segment records,
manage nests, and provide and follow interfile linkages. Whether an employee’s
department is found by tracing through a ring, using a direct pointer, reading the
file backward to obtain a master record, or reentering the file with a fetch argument
can bind the employee-department relationship in specific ways, not foreseen in the
original conceptual database model.

Program Dependence The dependency on assumptions made in the programs
in regard to usage and data structure that are not reflected in the schemas. Aspects

Sec. 8-6 Structure, Schema, and Usage 445

of data that are not essential to the information-storage and -manipulation problems
but provide convenience and programming efficiency can bind data structures in
unexpected ways. A programmer may know that an employee’s personal data are
in a record position which corresponds to the record position in the payroll file and
make use of this knowledge, even though no direct relationship is defined.

A tool which helps to achieve data independence is the schema. In order to
achieve structure independence the structure of the data has to be described in a
standardized form. Programming independence will be achieved only if programs
make full use of the capability for data and structural independence. It is not yet
clear how much independence can be achieved while retaining maximal efficiency in
large databases.

Database Translation The development of automatic or semiautomatic tools to
move a database with its programs from one system to another has demonstrated
the need for the schematic description of the database. Database translation, if
successful, provides an alternative to complete data and structure independence,
since it should allow the translation of the database from an efficient version on
one system into an efficient version in another situation. In general, the process is
carried out in two stages. An intermediate stage is the formal representation of the
database, which is not concerned with efficiency but rather with generality. The
description of the intermediate stage is related to the conceptual schema obtained
from a database-model construction. Previously existing constraints add detail
and complications to the data translation process. We will not discuss the subject
of database translation further, but it should be clear that many of the rigorous
approaches to database management are closely related to the problem of database
translation.

8-6-2 Database Control

In an organization where many users and programmers share the database and
use the facilities of the schema, or of subschemas, some joint control of the data
organization will be required. This may be implemented through an automatic
protection system, which prevents schema changes that could cause problems to
others. In general, a human arbiter will be called upon to resolve conflicts. Typical
conflicts occur when an overall system improvement causes severe inconveniences
for a few users, or when new requirements by some users affect many others to a
slight extent. We will refer to this set of control decisions as database management,
and we consider both automatic and manual actions under this heading.

In order to carry out the database management functions, additional informa-
tion may be appended to the schema. Required are parameters that control system
performance and the assignment of access privileges as mentioned previously. Main-
taining additional copies of data, linkages, indexes, maintenance of actual results,
and so forth, improves the retrieval performance of systems but leads to redun-
dancy in stored data. In order to evaluate how much redundancy is cost-effective,
the database manager will continuously monitor the operation of the database sys-
tem at various levels.

446 Schemas

The person who has the responsibility for the database, the database adminis-
trator, has extraordinary privileges. Because of these privileges, the individual
should have insights which are beyond the scope of most users and programmers.
This role as seen in one system is indicated in Fig. 8-13. Database systems inten-
tionally screen unnecessary information between the levels and compartments of the
database. The benefits of controlled communication between levels were discussed
in Chap. 1. The user works with a simplified model of the system and is not able
to improve or defeat the system. Because of this lack of knowledge, the procedures
that have been developed can continue to work effectively as the database changes.

The database administrator, on the other hand, does have knowledge of the
current internal structure. To safeguard the concept of a well-structured commu-
nication between levels, a database administrator may be denied the privilege to
write data-manipulating programs.

As databases become bigger and more complex, the concept of centralized
control by a single database administrator for the entire database may no longer be
acceptable. The knowledge required to carry out the function, and the cost of failure
to properly control a very large database may make the position untenable. Whether
a committee can manage better is also questionable. An associated problem is the
understandable reluctance of managers of enterprises to cede much of their power.
These considerations may put a limit on the growth of databases and encourage
distribution of database functions. Issues associated with very large databases will
appear in Chap. 9, and their security problems will be touched on in Chaps. 11, 12,
and 13. The role of the database adminstrator is further analyzed in Chap. 15.

BACKGROUND AND REFERENCES

The concepts which combined and evolved into the idea of a schema, as presented here,
have had their origins from many relatively independent efforts. The users of statistical
databases felt the need for tabular definition of the data elements they were using at a
very early time, and many statistical systems support data dictionaries (Kidd69, Ellis72).
An outstanding example of such a system is OSIRIS (Rattenbury74).

Techniques to capture the required information are surveyed by Taggart77; a method
is described by Teichroew77. Data dictionaries and their use are described by Uhrowczik73

and Curtice81. Several systems available as independent software products are listed in
Appendix B. The importance of data dictionaries to organize data, even if no DBMS is
being used, has caused the National Bureau of Standards to issue proposals for standard-
ization (NBS80).

COBOL and some of its predecessor commercial languages separate file-definition state-
ments from procedural specifications (McGee59). An early database system using data
descriptions to provide generalized retrieval capabilities was TDMS (Franks66). The term
“schema” appeared about 1969. The SOCRATE system of CII has one of the nicest schema
languages available.

Work by the CODASYL Development Committee produced a document on an infor-
mation algebra (Bosak62) which considered a separation of the data and their description.
CODASYL’s System Committee began to look at database concepts in 1966, influenced by
IDS (Bachman66,73) and the ”Associative Programming Language” (Dodd66). This effort

Chap. 8 Background and References 447

generated two analyses of existing database systems (CODASYL
69S,71A, Olle71), and the

CODASYL Data Base Task Group produced proposals for a schema-oriented system facility
(CODASYL

69R,71R and CODASYL
74). The proposals for the COBOL augmentation are now

part of the COBOL specifications (CODASYL
73,75,78). A number of CODASYL committees

are active in the database area: DDLC and DSDL on the aggregate schema CODASYL
78L,

DBLTG on the COBOL subschema, FDMLC on the FORTRAN subschema, and others on sub-
jects as database translation, end-user interfaces, and database distribution (CODASYL

78D).
Palmer75 gives a historical overview. A reference for CODASYL approaches is Olle78.

The publication of the CODASYL proposal led to an evaluation of database require-
ments and standards. The SHARE-GUIDE group of IBM system users developed a set of
database-system requirements, using mainly original terminology, which reflect on the
need for a schema and the information it should contain and exclude. This work was
reviewed by Everest in Codd71.

These requirements motivated the ANSI-SPARC report detailing three schemas levels
(Steel75) which greatly influenced recent proposals. Papers in Jardine77 review that work.
Kent80 proposes a further split of the conceptual schema. Issues of distribution have also
been addressed (CODASYL

78D). A method for representation of the external user view is
considered by Navathe78; how to update the database through views is the concern of
Dayal78 and Keller82.

A standardization effort for relational systems is underway (Brodie81) and was ac-
companied by a survey of many current systems. External schemas for relational system
have tended to be simple since no connections are specified. The availability of IBM’s SQL

system (see Sec. 9-2) is bound to influence this area.

Most database systems developed commercially or in academia do contain schemas of
various flavors, i.e., Karpinski71, Weyl75 or Wiederhold75, Chamberlin76. Others are listed
in Appendix B. Data-domain definition is handled well in PASCAL (Wirth72). Claybrook
in Rustin74 and Nance75 presents facilities to specify the file organization.

Katz79 proposes query compilation for schemas while the cost of interpretation is
evaluated by Baroody82. Compilation while retaining flexibility is achieved in SYSTEM R

(Chamberlin81A).

External schemas and derived data are unified by Adiba81 and management of derived
data is considered by Cammarata81.

The subject of database independence and translation has been an area of interest for
many years, some contributions are Sibley73, McGee in Klimbie75, Shu75, Navathe76, and
Shneiderman82. The SIGFIDET Proceedings contain many papers devoted to this topic.

Periodicals The activity in the database area has led to the publication of several
journals devoted to database subjects. The rapid development in this field makes bib-
liographies and descriptive books rapidly obsolete. We will use this space to indicate
sources for current material to complement the background sections of this and the earlier
chapters.

Major journals in the database area are Informations Systems (Pergamon Press, since
1974) and Transactions on Database Systems (ACM TODS, since 1975). Other database-
oriented publications include the Database Journal (A. P. Publications Ltd., 322 St.John
Street, London UK, since 1975) and Management Datamatics, published by the IFIP
Administrative Data Processing Group (Nordhoff Pub., Leyden Netherlands, since 1971).

Newsletters in the area are Database Engineering, produced since 1977 by the IEEE

Computer Society technical committee of that name and the ACM-SIGMOD Record of the
ACM Special Interest Group (SIG) on Management of Data. From 1968 to 1976 it was named

448 Schemas

FDT, for File Definition and Translation. The annual conferences (ACM-SIGFIDET 1969 to
1974 and ACM-SIGMOD since 1975) sponsored by this interest group contain many important
papers (i.e., Codd71, Dean72, Rustin74, King75, Rothnie76, Lowenthal78, Bernstein79,
Chen80).

A series of conferences on Very Large Data Bases (VLDB) cover all database topics.
The first, in 1975 (Kerr75, ed.), was published by the ACM. VLDB 2, in 1976, Lockemann77

and Neuhold(eds.), was published by North-Holland in 1977. VLDB 3, Merten77(ed.),
VLDB 4, Bubenko78 and Yao(eds.), VLDB 5, Furtado79 and Morgan(eds.), VLDB 6, Lo-
chovsky80 and Taylor(eds.), and VLDB 7, Zaniolo81 and Delobel(eds.) were published by
the IEEE Computer Society. The Proceedings of VLDB 8, McLeod82 and Villasenor(eds.),
are published by the VLDB Endowment, Saratoga CA.

In Chap. 11 we present some journals which are not specific to databases, but carry
much relevant material as well.

EXERCISES

1 Discuss, based on statements given in Secs. 1-3 to 1-6, how a schema solves
or fails to solve some of the requirements for large database systems.

2 Use a schema language to describe the file examples given in Sec. 3-0.
3 Use a schema language to describe the MUMPS example from Sec. 4-5.
4 Computer languages have rules for data-value transformations when more

than one data type appears in an expression. Find such a specification and discuss
its advantages and disadvantages. Relate to databases.

5 How could one specify transformations between programmer-defined data
types?

6 Provide domain names and domain sizes for the example in Sec. 4-5.
7 Which units in Sec. 8-1-3 can be automatically converted to each other?

(Not a real database question, but a valid database problem.)
8 Categorize SOCRATE according to the definitions given in Sec. 8-6. Explain

your choice.
9 Write a schema suitable for description of the schema file itself.

