

 THE STRUCTURAL MODEL FOR DATABASE DESIGN

 Gio Wiederhold and Ramez El-Masri

 Computer Science Department

 Stanford University

Appeared in Chen (ed.): Entity-Relationships Approach to Systems Analysis and Design, North-Holland, 1980, pages 237-257. Restored from SUMEX archives August 2002 by Thomas Rindfleich. Figures still have to be inserted, some can be found in the restored MS for Wiederhold:

 Database Design, 2nd edition, 1983.

ABSTRACT:

The structural database model is summarized and its use for database design is demonstrated. The model is an extension of the relational model, but captures also relationship information so that the relations can be connected to each other. Entities and relationships between entities are represented as relations and connections. Five types of relations and three types of connections are defined. Constraints implied by the relationship between the types of relations are specified by the connections between relations. The rules for the maintenance of the structural integrity of the model under insertion and deletion of tuples are given and used to aid in database implementation.

This model can be used to represent the structural features of several database model types and of databases implemented according to their rules. Specific examples are given to show how the model may be used to represent relational, hierarchical, and network structures. The structural model is a candidate for representing the data relationships within the conceptual schema of the ANSI-SPARC DBMS model. We then present our view of the database design and implementation process. The architecture of ANSI/SPARC is related to this discussion.

Key Words and Phrases:

Database models, relational model, network model, hierarchical model, CODASYL, database integrity, data independence, database structure, logical data model, ANSI-SPARC DBMS model.

1. INTRODUCTION

Systems of the complexity seen in large databases require the use of powerful abstract tools for their design and management. While large database implementations have preceded the development of suitable tools it was nearly impossible to communicate to the general computer science community the issues, the problems, and the solutions represented by these systems. Database models are the tool to document the essentials of databases, and the various models attack issues of particular interest to some community. Our interest centers on problems that occur in the implementation of large, multi-user systems. In those systems it can become difficult to achieve an acceptable system performance. Good performance requires that the data structures presented by the system matches users' concepts and that the system provides a high rate of interaction. The organization or structure of the database are of prime importance here so that we call our model, intended to address these issues, the structural model.

The two most widely accepted types of models used to describe the structure of databases are [FS76]:

· the relational model [Co70], and

· the network model, derived from the CODASYL database system specification [CO73].

Many database systems are based upon one of the above models. Numerous systems have also been implemented based on a hierarchical model [TL76].

A relational model brings together into tuples data attributes that are

functionally dependent. It describes sets of tuples using the mathematical theory of relations. The mathematical basis of the relational model, the uniform representation of all structures as relations, and the lack of complexity provide important advantages for model and query analysis. A drawback of the basic relational model is that known relationships among entities of the logical, or real-world, model are not explicitly represented.

The network model provides a representation of entities and their relationships. A drawback of the network model is that only represented relationships can be exploited, and that, due to perceived implementation constraints, certain relationships are difficult to express. An example of the latter are recursive sets which are relationships between entity instances of the same entity class. We consider here that the hierarchical model is a special case of the network model.

The extended relational model we present here explicitly represents the relationships which we believe to be important to the design of database structures, while maintaining the generality of the relational model.

2. PURPOSE OF THE MODEL

The limitations of the relational and network models have led to active research in database models. Chang has developed an approach with a "database skeleton" which includes semantic information about the relationships between database states [Cha76]. The semantic information is used by the system in query translation. The LADDER system also keeps some information about the database structure so that its query language, IDA, can understand and process retrieval requests effectively [Sa77]. Manacher differentiates relationships into several semantic categories [Ma75]. Abrial goes further by distinguishing every relationship according to its particular semantic type, but states that his model would be too complicated for database construction [Ab74]. Chen has developed a model based on the relational model which clearly distinguishes entities and relationships [Che76]. More complex models, which represent additional semantic concepts, such as subclasses and events, have also been developed [SS76, NS78, HM78].

All these models have been proposed as tools for the definition of the logical database model. The structural model serves two purposes:

(1) To represent the database structure, including some basic semantic concepts, with a limited set of basic constructs.

(2) To be used for guidance of the database implementation.

We describe a model which can be used to represent the elements relevant to the implementation of an efficient database system rather than a model which may be used to represent all possible real-world semantics. The use of the structural model in logical database design, and for the integration of data models that represent user views into a global database model is discussed in [WE79] and [EW79]. In this paper, we discuss the use of the structural model in database design and implementation.

For the design of databases, it is desirable to categorize the relationships

that exist between entity classes into a small set of connection types, and then to develop rules for their maintenance. The model we present here does this by defining five types of relations, and three possible connection types that can exist between them. Rules for maintaining structural integrity while the database is updated are given. We then discuss how this model is used in the choice of an implementation system, and how structural model constructs can be implemented using a relational or network database system.

A complete categorization of relationships between entity classes is being presented in [EWsu], where we also show how this structural model can be used to represent relational and network structures.

We propose that the structural model satisfies the criteria [Ke77] for representing the data relationships within the conceptual schema of the ANSI-SPARC DBMS architecture [St75].

3. THE STRUCTURAL MODEL

3.1 Real-World Structures

A database system is used to organize data about some aspect of the real

world. People approach real-world data in several phases [TL77]. Our idealized perception includes the following phases:

· First, they observe the situation and collect data that describe the situation.

· Then, when they have made a sufficient number of observations, they classify the data into abstractions.

· Next, they assess the value of their abstractions in terms of how much it helps them manage the world with a minimum of exceptions.

· Finally, if they have to implement a system, they describe the real-world situation by a data model.

Such a model may be stored on some physical medium (computer or paper files),

and used as a guide for data processing.

The main building blocks of the data model are classes of entities , such as PEOPLE, CARS, HOUSES,...etc. Objects of similar structure are placed within the same entity class. Informally an entity class consists of objects whose existence is independent of abstract manipulations. This excludes abstractions, generalizations and relationships as JOB_CLASSIFICATION, DRUG_TYPE, or OWNERSHIP.

An entity class is described by the primitive components that are used to describe each of its members, the attributes . For example, the entity class CARS can have the attributes {LICENSE_NUMBER, COLOR, MODEL, YEAR}. The attributes that identify a specific entity within the entity class, in this case the single attribute {LICENSE_NUMBER}, are called the ruling (or key) attributes. The attributes that describe characteristics of an entity, in this case {COLOR, MODEL, YEAR}, are called the dependent attributes.

Associated with each attribute is a domain, the set of values the attribute

can take. The recognition of shared domains and their definition is a critical aspect of database design which we do not address in this paper. We formally define attributes in section 3.2 below.

We also have to model the relationships that exist between entity classes. A relationship is a mapping among classes. Thus, a relationship defines a rule associating an entity of one class with entities of other (not necessarily different) classes. Most relationships we encounter are between two entity classes. An example of such a relationship is CAR:OWNER between the entity classes CARS and PEOPLE. Such relationships may be 1:1 (for example COUNTRY:PRESIDENT), 1:N (for example MANAGER:EMPLOYEE), or M:N (for example STUDENT:CLASS). Other relationships may be among more than two classes. For example, the relationship SUPPLIER:PART:PROJECT is among three entity classes SUPPLIERS, PARTS, and PROJECTS. Finally, some classes of entities may be sub-classes of other entity classes. For example, the entity class EMPLOYEES is a sub-class of the entity class PEOPLE, so that all employees are also people.

The data model should reflect the real-world structure as closely as possible. This makes it easier for the users to understand the model, and allows useful semantic information from the real world to be included in the data model.

In the structural model, relations are used to represent entity classes. Simple (1:1 or 1:N) relationships between entity classes are represented by connections between relations. Relationships that are M:N are represented by a relation and two connections.

Relations are categorized into five types, according to the structure they represent in a data model. Connections between relations are classified into three types. The rules which determine the permissible connections between relation types are also a part of the model.

3.2 Relations

Relational concepts are well known, but for completeness we now define concisely relations and relation schemas as we use them in the structural model. In the next section, we formally define the concept of connections between relations.

In order to define a relation, we first define attributes, tuples of attributes, and relation schemas. Relation schemas specify the attributes of a relation. Attributes define the domains from which data elements that form the tuples of the relation can take values.

We will use B , C , D , to denote single attributes;

 X , Y , Z , to denote sets of attributes;

 b , c , d , to denote values of single attributes; and,

 x , y , z , to denote tuples of sets of attributes.

For simplicity, we assume that all sets of attributes are ordered.

Definition 1. An attribute B is a name associated with a set of values, DOM(B). Hence, a value b of attribute B is an element of DOM(B).

For an (ordered) set of attributes Y = <B1, ... ,Bm>, we will write DOM(Y) to denote DOM(B1) X ... X DOM(Bm), where X is the cross product operation. Hence, DOM(Y) is the set { <B1, ... ,Bm> | Bi in DOM(Bi) for i=1, ... ,m }.

Definition 2. A tuple y of a set of attributes Y = <B1, ... ,Bm>, is an element of DOM(Y).

Definition 3. A relation schema , Rs, of order m, m > 0, is a set of

 attributes Y = <B1, ... ,Bm>. The relation , R, is an instance (or current value) of the relation schema Rs, and is a subset of DOM(Y).

Each attribute in the set Y is required to have a unique name.

The set Y is partitioned into two subsets, K and G. The ruling part , K, of relation schema Rs is a set of attributes K = <B1, ... , Bk>, k <= m , such that every tuple y in R has a unique value for the tuple corresponding to the attribute set K. For simplicity, we assume the set K is the first k attributes of Y. The dependent part , G, of relation schema Rs, (= Y), is the set of attributes G = Y - K, where - is the set difference operator.

All relations are in Boyce-Codd normal form. (For definitions of functional dependency and Boyce-Codd normal form, see [Co72, Co74].)

We will write R[Y] or R[B1, ... , Bm] to denote that relation R is defined by the relation schema Y = <B1, ... , Bm>.

Also, K(Y) will denote the ruling part of relation schema Y, and G(Y) will denote the dependent part. Similarly, for a tuple y in relation R, defined by the relation schema Y, k(y) will denote the tuple of values that correspond to the attributes K(Y) in y, and g(y) will denote the tuple of values that correspond to G(Y) in y.

A relation R[Y] may have several attribute subsets Z that satisfy the uniqueness requirement for ruling part. In the structural model, the ruling part of a relation schema is defined according to the type of the relation (see section 3.4).

3.3 Connections

We now define the concept of a connection between two relations, then define

the types of connections that are used in the structural model. A connection

is defined between two relation schemas. An instance of the connection exists

between two tuples, one from each of the relations defined by the schemas.

Definition 4. A connection between relation schemas X1 and X2 is established by two sets of connecting attributes Y1 and Y2 such that:

a. Y1 X1.

b. Y2 X2.

c. DOM(Y1) = DOM(Y2).

 We then say that X1 is connected to X2 through (Y1, Y2).

 Two tuples, one from each relation, are connected when the values for the connecting attributes are the same in both tuples.

The definition of connection is symmetric with respect to X1 and X2, and thus it is an unordered pair.

Connections may be more complex. For example, if we desire a connection between two sets of attributes with dissimilar, but related, domains, condition (c) above may by changed to DOM(Y1) = f(DOM(Y2)). The function f will relate values of data elements from the two domains. The equality condition of case (c) in definition 4 is the simplest case.

The structural model uses three types of connections, which we now define. Associated with each of the connection types are a set of integrity constraints that define the existence dependency of tuples in the two connected relations. These constraints define the conditions for the maintenance of the structural integrity of the model. We will define structural integrity, and discuss these constraints in section 3.5.

Definition 5. A reference connection from relation schema X1 to relation schema X2 through (Y1, Y2) is a connection between X1 and X2 through (Y1, Y2) such that Y2 = K(X2).

Definition 5a. A reference is an identity reference if Y1 = K(X1).

Definition 5b. A reference is a direct reference if it is not an identity reference.

Reference and direct reference are not defined symmetrically with respect to X1 and X2, and thus are ordereded pairs <X1, X2> when the reference is from X1 to X2. The identity reference is defined symmetrically, but we still consider it to be ordered. This is because identity references are used to represent a subrelation of a relation (see [WE79] for definition), and we consider the reference to be directed from the subrelation to the relation.

Definition 6. An ownership connection from relation schema X1 to relation schema X2 through (Y1, Y2) is a connection between X1 and X2 through (Y1, Y2) such that:

a. Y1 = K(X1).

b. Y2 K(X2).

The ownership connection is also non-symmetric with respect to X1 and X2, and is an ordered pair <X1, X2> when the ownership connection is from X1 to X2.

The connections defined above may be represented graphically as in Figure 1. They are represented by directed arcs, with the * representing the to end of an ownership connection, and a representing the to end of a reference connection. The ruling part attributes in each relation are marked K , and separated from the dependent part attributes by double lines (||) .

K(X1)

X1

Y1

Y2

X2

K(X2)

(a) Direct reference connection <X1, X2>

K(X1)

X1

Y1

Y2

X2

K(X2)

(b) Identity reference connection <X1, X2>

K(X1)

X1

Y1

Y2

X2

K(X2)

(c) Ownership connection <X1, X2>

 Figure 1 Types of connections

3.4 Types of relations and their connections

Since the structural model attempts to deal with the database both from the side of the users' real-world perception, and the database implementation, the relation types can be described from both points of view. Relations can be classified semantically according to the concept they represent from the real-world situation. For implementation purposes, the relations in the structural model are classified into structural types, which define their interaction with other relations in the data model.

We have the following relation types:

1. Primary entity relations.

2. Nest relations.

3. Referenced entity relations.

4. Lexicons.

5. Associations.

In this section, we informally present the rationale behind the choice of the different relation types. Some structural implications are then derived, which will be further exploited in section 4 of this paper. Formal definitions for these relation types are given in [WE79].

Primary entity relations:

A relation which defines a set of tuples the database model that closely corresponds to a class of entities of the real-world model is termed a primary entity relation. The choice of entity types is a fundamental aspect of the database model design process. The goal is to match entity relations as closely as possible to real-world entities, and these entities should be well within the sphere of interest covered by the database.

Primary entity relations should be chosen to be update-independent of other relations in the database model. A change in some different relation should not require a change to an entity relation, but a change to a primary entity relation may require changes to other relations connected with it. This means that primary entity relations may not be owned or referenced by other relations, but like all relations they may be the source of ownership and reference connections. Precise rules to describe update-dependencies and their scope of application are also given in [WE79].

An example of a primary entity relation is the relation EMPLOYEES in a model describing a company. Updates to tuples in the EMPLOYEES relation occur only from outside the database. An employee tuple is inserted whenever a new employee is hired by the company, and deleted whenever an employee leaves. This potentially affects several other relations in the database such as CHILDREN, DEPARTMENT_EMPLOYEES, ..., etc. Thus deleting an employee tuple will involve the deletion of tuples for his children from the CHILDREN relation, as well as tuples associating him with the departments he worked in from the DEPARTMENT_EMPLOYEES relation. Updates to attributes in the EMPLOYEES relation also occur only from the outside, such as a salary change.

Nest relations:

Frequently, real-world entities classes have repeating attributes, the number of repetitions being variable from one entity to another. An example is the entity class EMPLOYEES in a company. The company would like to keep information about the employees' children, but an employee can have zero or more children. The relational model forbids repeating attributes. The nest relation is used to resolve such cases. A nest relation is thus always dependent upon another relation, which is termed the owner relation of the nest relation. This dependency is represented via the ownership connection to the nest relation.

Codd's original paper [Co70] describes the creation of relations similar to nests through the normalization process.

A nest is the collection of tuples in the nest relation that have the same owner tuple. The deletion of a tuple from the owner relation requires the deletion of the owned nest of tuples in the nest relation if any exist. Similarily, insertion of tuples in the owner relation will require the creation and insertion of the corresponding nest of tuples in the owned nest relation.

Tuples of a nest relation have a ruling part which is the composition of the ruling part of the owner relation and an attribute set having unique values within each nest. For example, the nest relation CHILDREN mentioned above could have the ruling part of the relation EMPLOYEES catenated with the attribute {CHILDNAME}.

Referenced entity relations:

When representing a real-world situation, one often encounters real-world entities that need to be represented in the model. The maintenance of these entities is justified by the fact that they are referenced by other entities in the model. This relation will be the destination of one or more reference connections, and is represented in the database model by a referenced entity relation.

An example of this type of relation is now presented with respect to a company database. Suppose the company wishes to keep track of current and possible suppliers for inventory items. The SUPPLIERS relation, with the attributes {SUPPLIER_NAME, SUP_ADDRESS}, is a referenced entity relation. The existence of supplier tuples is determined externally. However, a supplier tuple may not be deleted while it is referenced from the inventory relation within the database. Thus, the deletion of referenced entity relations requires checking the contents of other relations in the database. Inserting tuples into a referencing relation implies that values for the referenced attributes exist in the referenced entity relation: a new inventory item should have in the supplier attribute field a supplier name which exists in the suppliers relation.

Note that supplier tuples may exist which are not currently referenced from other tuples in the database, but one cannot delete a supplier tuple without checking tuples in relations that have reference connections to the SUPPLIERS relation.

In the basic relational model redundant dependent attributes as {SUP_ADDRESS} are removed during the process of normalization [Co72], and become a basis for referenced entity relations.

Lexicons:

A lexicon defines a one-to-one correspondence between two attributes. This is a frequently occuring phenomenon, and isolation of lexicons simplifies the model by removing attributes that are mutually functionally dependent from a relation into a lexicon. Only one of the attributes remains in the relation.

One attribute can represent all instances of either attribute outside of the lexicon itself. Which attribute remains in the core of the database model is left to the judgement of the database model designer. An example of such a one-to-one correspondence are the attributes {DEPARTMENT_NUMBER, DEPARTMENT_NAME}. One of the attributes is retained in all the relations which contain either of the attributes, and a lexicon is created to represent the one-to-one correspondence. Lexicons can hence be treated conceptually as a single attribute in intermediate processes which lead to the database model. This approach can greatly reduce the number of possible alternatives for the database model, simplifying the design process. In particular, the problem of multiple candidate keys is avoided.

Lexicons are referable, but will not be depicted in the core of the structural models. Their existence is recorded in the attribute and domain specifications.

Association relations:

Finally, we consider relations which contain data relevant to the interaction or association of entity relations. These types of relations will be termed association relations. They correspond to relationships between entity classes in the real-world situation.

The ruling part of an association relation is composed of the ruling parts of two or more relations. These relations are termed the owner relations of the association, and each has an ownership connection to the association relation. A tuple of the association is owned by one tuple from each of the owner relations. For each tuple in an owner relation, there may exist zero, one, or many owned tuples in the association. The maximum number of tuples in an association is the size of the cross-product of the owner relations.

The existence of a tuple in an association requires the existence of all the owner tuples in the database. Deletion of an owner tuple requires the deletion of the corresponding owned tuples in the association.

It is possible for associations to have no dependent attributes. In this

case the association is only used for relating tuples from the owner relations. The association is hence a means of representing an M:N relationship.

Representation of M:N relationships:

An M:N relationship A:B can be represented in the structural model by

1. an association of owners A, B;

2. a relation which references two referenced entity relations A and B;

3. a nest owned by a relation A, which references a referenced entity relation B.

4. a nest owned by a relation B, which references a referenced entity relation A.

These choices all imply different update constraints on the data model. The constraints are derived from the specification of the connections. The relations that are used to represent M:N relationships are not created simply by performing a cross product of the ruling parts of the relations A and B. They may carry specific information in their ruling parts and their dependent parts. Ruling part information of an association defines the relationship, and is of the type: supplier S produces item I. Dependent part information may give the quantity in stock and the stock bin location.

Primary entity relation

i ownership j reference (i>=0)

connections connections (j>=0)

1 ownership

connection

Nest relation

i ownership j reference

connections connections

k reference

connections (k>0)

Referenced entity relation

i ownership j reference

connections connections

n ownership

connections (n>1)

Association relation

i ownership j reference

connections connections

primary attribute references

Lexicon relation

i ownership j reference

connections connections

Figure 2. Relation types

Figure 2 gives a graphical representation for each of the five types of relations presented above. The rules for the maintenance of structural integrity are implied by the description of the connections.

3.5 The structural integrity of the database

Structural integrity exists in our model when the contents of the

relations in the database do not violate the constraints specified by the connections between the relations. We do not specify in the model when or how the integrity constraints are to be maintained. The purpose of the model is that integrity constraints can be recognized, and that implementors can refer for guidance to the model. In practical implementations, there may be intervals where the structural integrity rules do not hold. It should be known however which connections have not been updated. Some techniques to deal with temporary integrity violations using artificial reference tuples are indicated in [Wi77].

Our model may appear less powerful than the original relational model, since updates cannot be freely performed. In the relational model, inter-relation connections are not described, and left to be discovered at query time. The lack of recognition of semantic relationships in a database will simplify technical problems, but does not eliminate semantic inconsistencies relative to knowledge models of the database administrator or the user. We do restrict ourselves however to semantics that will be relevant to database implementation.

 More comprehensive semantics are left to be dealt with at a higher level than the structural model. We will deal for instance with the case of unknown suppliers (see section 3.4), but not with the case of managers that earn less than their employees [St74].

We now specify concisely the connections that are applicable to the relation types. These in turn control the integrity of the model.

1. Any relation can have reference connections to a referenced
entity relation.

2. Any relation can have ownership connections leading to a nest or
to an association relation.

3. A nest relation must have exactly one ownership connection to it.

4. A referenced entity relation can have multiple reference connections to it.

5. An association must have at least two ownership connections to it.

Update, deletion, and cardinality constraints are prescribed by the

connections.

A reference connection from relation A to relation B prescribes the following constraints.

1. Insertion of a tuple into A requires existence of the referenced tuple in B.

2. Deletion of a tuple from B is prohibited as long as the tuple
is referenced from A.

The cardinality of the connection A:B is M:1. M may be further constrained to specific range of values.

An ownership connection from relation A to relation B prescribes the following constraints.

1. Insertion of a tuple into B requires existence of the owner tuple in A.

2. Deletion of a tuple from A requires deletion of the tuples owned by this tuple in B. .

3. The cardinality of the connection A:B is 1:N. N may be further constrained to specific range of values.

It should be restated that one relation may have more than one connection with other relations. A nest relation may for instance itself reference tuples of a referenced entity relation. In these cases all connections impose constraints on the database.

4. THE DATABASE DESIGN PROCESS

This section describes the process of designing the database model, and provides a brief discussion of model implementation. We will relate the discussion at times to the database architecture proposed by ANSI-SPARC [St75].

In our experience, a database model is best constructed through the analysis and combination of the data collections which are considered to become part of the database. For a large, integrated database, there exists in general many potential users, all having their own view of the data they would like represented in the database model. A user may be an individual, but is more often a cohesive group, for instance the purchase department or the warehouse section of a company. From each such collection of data, as defined by the scope of interest of a potential database user, we define one data model. Since a database typically serves many diverse, but potentially related, interests, many such data models may be established. The database designer then undertakes to combine these data models into an integrated database model.

Eventually an implementor will take the integrated database model and attempt

to create a working database using either an available DBMS or a suitable file system. In section 4.1 we will provide an overview over this process, and in a subsequent section expand on some of the steps which are central to the use of the structural model.

4.1 Overview of the Design Process

The database design process will be carried out in three divisions.

1. Users: Establishment of a data model defines the database requirements from the viewpoint of one database user.

2. Designers: All candidate data models will be integrated into one database model.

3. Implementors: The database model provides the specification for the database implementation.

Within these divisions a number of distinct steps will have to be carried out. These steps can overlap in time as shown in Figure 3. The overlap occurs among the tasks in the establishment of the distinct data models, and between the three divisions.

USER GROUPS DESIGNERS
IMPLEMENTORS

1: Selection

2: Description

3: Integration

4: System Alternatives

5: Submodel Definition

6: Quantification

7: Load Mapping

8: Access Path Definition

9: Performance Prediction

10: Review

11: Adjustment

12: Performance Verification

 Figure 3
Overview of the database design process

The steps are defined as follows:

1. Selection of the user application areas that are or will be using the database. Our definition of a database restricts the database to relatable data, i.e., to entity classes that are related and hence for which connections are feasible.

2. Description of the logical data requirements in each user area. The requirements include domain definitions. Eventually the users' data models are to be put into the terminology of the structural model. Section 4.2 will elaborate on this topic.

3. The database designers can now integrate the logical requirements presented by the data models into a database model. The use of the structural model for this step has been described in [EW79]. In the process of combining

the data models, conflicts may arise which have to be resolved by changing some of the data models. There may be data models which turn out to be unrelated, or weakly related, to the core of the data models so that they will not be included in the database model.

4. The implementors can now begin with an analysis of the integrated database model to determine suitable system alternatives for implementation. Some discussion of this topic is given in Section 4.3.

5. Now the users can define their database submodels. These should be identical to the original data model, except where the database model integration, step 3, found conflicts. In practice the design process often leads to new insights and new ideas, so that database submodels may differ substantially from the original data models.

6. In the meantime the user groups can also proceed with a quantification of their needs. Primary among these are the volume and the update and retrieval path frequencies of the relations. Some of those load values may be measured from existing data processing, others will have to be estimated. These findings will be attached to the relations and connections established in the database submodels.

7. These distinct needs will now be mapped onto the integrated database. The record of the transformations carried out during the database integration process provides the guidelines for this mapping [EWip].

8. The implementor can now select access paths in the candidate system or systems. The system choices will be better defined. We will discuss this aspect in section 4.4.

9. For each indicated implementation a performance prediction can be made. Analytical tools for this task are presented in [Wi77]. Sometimes pilot implementations may be desirable.

10. The database model may be reviewed at this time, especially if major performance problems exist.

11. Any changes indicated in the database model must be first reflected in the relevant database submodels. Adjustment of the submodels could lead to a new design iteration.

12. The performance of the implementation has also to be verified at the database submodel level. Adequate overall performance unfortunately does not guarantee satisfaction of individual query response times.

The overall database design process may show more iterations and additional information flow. In a database system where certain queries are particularily critical one would not want to wait until step 12 to assure that this requirement is satisfied. Some general impression of the expected update and retrieval rates may be used to narrow the number of system alternatives in step 4.

4.2 Data Model Definition

The structural model can be used directly in the definition of the users' data requirements. In practice the graphical aspects of the model - connected boxes - are helpful in the visualization of data relationships which are either new or have been taken for granted. The model has been used as the initial point for data model definition for databases in medicine, where the users had experience with data, but not with computer science concepts [Wi76]. Often users have had already experience with other approaches of database implementation. The data model definition may also be developed using one of the other accepted database modeling techniques.

Relational data models:

The generality of the inquiry capability provided by the full relational model - its structure and its operators - make it an attractive candidiate for model definition. While update constraints are not fully captured by a normalized model, they can be determined during the normalization process, and later be expressed by appropriate connections. Other constraints may be developed separately. The existence of constraints does not alter the query behaviour of relational languages. Updates and deletions will be constrained as indicated. Implemented connections and constraints may eventually be exploited by relational query-processors to reduce the search space and speed up database interactions.

Hierarchical datamodels:

Frequently a specific user or user group will be very comfortable with a hierarchical model. If a user group chooses this model then the principal structures will be nests and nests of nests. Often there are multiple hierarchies amd then there exists the possibility of connections between them, although they may be only weakly perceived by the particular user group. The integration of hierarchical data models frequently creates associations in the database model. This is of course a reflection of the basic objective of the database approach: the use of data as a multi-purpose resource.

Users who are familiar with the IMS database management system are aware that multiple logical hierarchical data models can be connected into very complex patterns. The integrated database model can provide the required insights prior to database implementation, a task which otherwise requires much experience and effort.

Network datamodels:

A network database is generally already the result of a previous database building effort, with an earlier pass at data model integration. The model will however have been constrained by an initial awareness of implementation limitations. There may for instance be many connections which were considered too weak for implementation, and are hence not documented in the existing model.

Many network based systems limit their query capability to implemented access

paths. This makes it necessary to implement connections in these systems to serve infrequent, but important queries. The existence of an access path does not mean that the connection is important for implementation. In a more general approach this path may be more costly to implement than warranted.

CODASYL link-sets are represented in the structural model as ownership connections, database keys may have been used to implement reference connection.

4.3 Selection of system alternatives

As soon as the database model becomes defined some early decisions about system choices for implementation can be made. The long lead times for system acquisition and training make an early narrowing of system alternatives desirable.

The integrated database model provides the logical guidance for system selection, but since there are nearly always performance trade-offs to be considered some quantitative estimates are useful at this point. The volume estimates, describing the number and the size of the tuples, are kept with the relation information. The access path frequencies are attached to the connections. The logical structure of the database is largely determined by the connection pattern.

Reference connections are predominantly used randomly, often with high read access frequencies. Ownership connections often define subsets, whose tuples are read together but updated individually. Identity connections can have very high frequencies, but can often be implemented by physical adjacency - that is by combining the matching tuples into longer records, so that these connections play a particular role in database system selection. These records will have incomplete fields, so that variable length record management becomes important. These connections then have less of a role in the logical structuring capabilities of the database systems to be considered.

Some general remarks can also be made about the function of the relation types. Both types of entity relations and lexicons are often accessed from outside of the database, since entities may be selected by key, property, or name. Nests and associations see relatively most of their use from inside the database. Lexicons are heavily used in output preparation since they often provide the names of entities for identifying codes used internally.

We can now relate the database model structure to available database system implementations. This is not the place to describe database implementations in detail, but we note that the structural model does provide a tool to express their general organizational capabilities. We will hence here only summarize the database model structure in terms of database implementation model types.

A relational implementation is indicated if the database model presents many diffuse connections. If access path usage is complex and evenly distributed, or if update access seems to dominate then the weaker bindings between relations that are implied by direct implementations of the relational model are appropriate.

A hierarchical database system is appropriate when the structure shows nests and nests of nests. Most hierarchical query languages do not operate over multiple hierarchies. When multiple hierarchies are obvious the connections among them are implemented by programs. Reference connections to hierarchies of only one or two levels are common, since referenced entities have their own structure, but are rarely fully elaborated.

CODASYL-like network implementations, as well as many 'Bill-of-Materials' processors provide strong support for associations. Nests are simple to implement. Referenced entities and lexicons can be integrated into a single CODASYL schema, but reference connections may require programmed support since the query processors have to navigate to such relations. The programs may either do searches in these relations or use the infamous database-keys provided by early CODASYL specifications.

4.4 Implementation of the structural model

We now address the problem of implementing a database according to the structural model. The database model is the result of integration of the different user data models, and should correctly support the user data submodels. The database model will include the integrated user requirements expressed as expected usage for retrieval and update. These requirements will guide the implementation process.

The implementation can use an already existing database system, such as a relational, hierarchical, or CODASYL database system. Some databases may be implemented using available file management systems. For demonstration, we will consider how the structural model constructs can map into relational or CODASYL systems. We assume that a relational system, such as system-R [As76] or INGRES [HSW75], or a network system based on the CODASYL specifications [CO73] exists. We choose a subset of the common file organizations of these systems to keep our discussion within bounds. A detailed analysis of the retrieval and update properties of different file organizations is given in [Wi77]. We assume the reader is familiar with the general properties of these organizations.

For a relational system, we assume the existence of the following file organizations, all of which support fixed size records of similar structure.

1. Unordered files.

2. Sequential files.

3. Indexed-sequential (or clustered) files.

4. Files with multiple or secondary indexes.

5. Hashed access on keys.

For a CODASYL system, we again assume the existence of files of similar structured records. Two types of direct access to records are commonly provided.

1. Hashed on keys (calc-keys).

2. Ordered on a data-item value (sequential).

Several choices exist for implementing indirect access to records from other (owner) records via link-sets.

1. Physical contiguity of the owned records following the owner record.

2. Linking the owned records into a ring via pointers.

3. A link array of pointers.

We now examine each of the structural model constructs, and briefly discuss some alternative implementations based on expected usage. We only give brief examples to illustrate the criteria used for choice between different implementations. A more complete and quantitative approach is in preparation [EWip].

Implementing a nest relation:

Consider a nest relation N owned by a relation R (figure 4). In a relational system, we can implement R and N as two separate files. Consider the following choices for implementing N. The expected use that fits each implementation is given.

a. Unordered file: Very few retrievals, slow response to retrieval is satisfactory, allows frequent and rapid insertion.

b. Sequential on (A1,A2): Sequential processing by K(R), and by A2 within K(R). Random retrievals and insertions are expensive, so few insertions and random retrievals are expected.

c. Indexed sequential (clustered) on A1: Few updates, retrieval based on values of K(R) (=A1) for group processing of nests.

d. Hashed access on K(N): Fast random access to individual tuples, few updates, no sequential processing.

We now consider implementing the logical update constraints specified by the ownership connection. The first constraint (insert of a tuple in N requires the existence of the owner tuple in R) needs fast random access on K(R) to check whether a value exists or not. This can be achieved by direct hash access or by an index on K(R). The second constraint (deletion of an owner tuple from R requires deletion of the owned tuples in N) suggests quick access to the nest of tuples in N which have the same owner value of A1(=K(R)). This suggests a clustered index on A1 for N.

Now consider a network implementation. An automatic link-set directly implements the ownership connection, with owner record type R and owned record type N. For frequent access to groups of tuples in N by owner tuple value, the link-set can be implemented by physical contiguity of owned records to owner record. For fast random access to tuples in N, inclusion of A1 as explicit data items in N and definition of a direct hash access (calc) on K(N) can be implemented. For frequent insertions and deletions, the link-set can be implemented by pointers.

R R

K(R) K(R) A

A1 A2 B

N S

K(N) K(S)

Figure 4 A nest Figure 5 A reference

Implementing a reference connection:

Consider the reference connection given in Figure 5. The attributes A (in R) and B (in S) define the connection, and have the same domain. The cardinality of the connection R:S in N:1. For a relational system, we again have numerous choices. We examine a few of the choices below.

1. Clustered index for R on attribute A: Frequent access to groups of tuples in R with same value of A.

2. Random access of tuples in R on K(R) and retrieval of corresponding values from S: Implement a link (if available) from A to B rather than executing an explicit join. Direct hash access on K(R).

To implement the logical update constraints specified by the reference, a direct hash access on B for file S allows rapid verification of the existence of a referenced tuple in S upon insertion of a tuple in R. For deletion, maintenance of a count field in records of S which maintains the number of references to that record allows rapid verification of references to a record. If the count is zero, the record may be deleted.

For a network implementation, random access to information from S via K(R) can be rapid by implementing a direct hash (calc) on K(R), and a link-set with back-pointers with owner record type S and owned record type R. The logical update constraints of the reference connection have to be explicitly specified for a network implementation.

Implementing a lexicon:

Lexicons can always be implemented by including the lexicon attributes with the main file. On most lexicons with name attributes, a direct hash access will be maintained.

R S

K(R) K(S)

K(T)

T

Figure 6 An association relation T

Implementing associations and M:N relationships:

In relational systems, three files will be created and the logical update constraints maintained by explicit integrity assertions. Consider figure 6. For frequent access of groups of tuples in S that are related to a known tuple in R, the relation T can be implemented as a file with clustered index on attribute A, and with a link (if available) from T to S.

For network implementations, two link-sets and a link record type are created. The automatic link-sets directly implement the logical update constraints of the association. A nest of references M:N relationship will require explicit implementation of the logical integrity constraints.

4.5 The derivative versus the constructive approach to database design

The approach outlined above constructs the database model out of detailed specifications from individual candidate database users. This method is in contrast with the view which holds that there is an enterprise administrator who can provide a database model, out of which all necessary database submodels can be derived [DJ77 and others]. In the authors' experience, the comprehensive knowledge required for this task does not exist at high levels of enterprise administration unless the enterprise is quite small. We find that high level management uses simple models of their enterprise, since they also have to cope with the environment in which the enterprise operates. This does not mean that the constructive approach can be carried out without central involvement.

In the constructive scheme the database administrator becomes a process organizer. The existence of data models and a database model provides documentation for the design decisions that are being made. In practice the design effort provides an excellent training opportunity for the administrator and his staff, and should not be left to consultants outside of the enterprise, who will take the gained expertise with them when the design portion of the database creation effort is completed.

5. THE ANSI-SPARC ARCHITECTURE AND THE STRUCTURAL MODEL

The database model presented corresponds to important aspects of the conceptual schema in terms of the ANSI-SPARC architecture [St75]. In the ANSI report the database model is seen implemented as the conceptual schema. Once the conceptual schema is established, the users may refer to the parts of it that interest them, and that they are authorized to use. Each user may then establish a user view which is not in conflict with the conceptual schema. The user view is described in an external schema. External schemas need not just be a subset of the conceptual schema for the database. They may use a different type of model: e.g. network, pure relational, hierarchical. The database submodel may correspond to an external schema in implementation of the ANSI-SPARC architecture. We do wish to permit the description of alternate implementations, including systems where queries or updates not interpreted through an external schema into the internal schema prior to data access.

From the quantitative parts of the design process have emerged connections in the database model which are expected to be stable and frequently used. Such connections will eventually be selected for explicit representation in the database implementation. This structure in ANSI is described by the internal schema. The structural model has no facilities for implementation descriptions, although an implementation based on this model would certainly need to keep such information. Figure 7 shows the interpreted organization of a database system according to the ANSI architecture. No binding decisions are explicitly implemented. All access has to pass through three levels of interface processing.

The information stored in the database model and database submodels, which are so similar to the ANSI conceptual and external schemas, can also be used to generate programs that access the storage structure without interpreting a stored schema. This is certainly permitted within the scope of the ANSI document, but the architecture is not always obvious. Figure 8 shows a compiled database interface in which binding decisions are explicitly represented. It is important to note that programmed access to the database does not imply that the implemented structure is expected to be stable forever, and that thus the database implementation cannot be changed. Provisions should be made for restructuring nominally stable structures, either by partial interpretation or by recompilation. However, whenever such changes are expected to be infrequent and limited, early binding of frequently used and stable relationships into an implementation structure is desirable to obtain specified levels of performance at low cost. The ability given by the structural model to select which connections need early binding out of the set of connections described in the database model provides a formal basis for the implementation level of decision making.

The only difference between the interpreted and compiled forms is that whenever the conceptual, internal, or the user external schema is changed, the interface module has to be recompiled, while in the interpreted form no additional action is required.

Changes in the internal model go also hand-in-hand with the process of restructuring the database, a major effort in many instances. One should combine the two approaches by having frequently used and stable schemas in compiled form, and frequently changed schemas which have not yet stabilized in interpreted form.

6. CONCLUSIONS

We have outlined the use of the structural model in database design. The structural model is constructed from relations, so that the uniformity and simplicity of the relational model are maintained. Query techniques devised for relational models can be easily incorporated into the structural model. On the other hand, important structural information about relationships is incorporated in the model, and represented by the connections between relations. This information includes update constraints that maintain the structural integrity of the database upon update, as well as semantic information about entity classes and the relationships between them. These connections are doubly important for potential database users and for system implementors.

We discussed how the integrated database structural model, augmented with expected usage patterns, can be used to select a database system for implementing the model, and briefly outlined the choice between different file implementations for the structural model constructs. We then related our work to the ANSI-SPARC architecture.

Our point of view of the implementation process is that binding decisions have to be carefully considered so that a reasonable level of performance is achieved while at the same time not having the database restructuring processes impose an unnecessary drain of system resources. The intelligent execution of such decision is best supported by inclusion of the relationships which are candidates for binding in the database model.

REFERENCES

[Ab74] Abrial,J.R., "Data Semantics"; in J.W.Klimbie and K.L.Koffeman (eds.), "Data Base Management" (Proc. IFIP Conf. on Data Base Management), North-Holland, 1974, pp.1-60

[As76] Astraham,M.M., et al: "System R: A Relational Approach to Database Systems"; ACM Trans. on Database Systems, Vol.1, No.2, July 1976, pp.57-137

[Cha76] Chang,Shi-Kuo and J.S.Ke, "Database Skeleton and its Application to Fuzzy Query Translation"; IEEE Trans. on Software Engineering, Vol.5E-4, No.1, January 1978, pp. 30-44

[Che76] Chen,P.P.S., "The Entity-Relationship Model - Towards a Unified View of Data"; ACM Trans. on Database Systems, Vol.1, No.1, March 1976, pp.9-36

[Co70] Codd,E.F., "A Relational Model for Large Shared Data Banks"; Comm. ACM, Vol.13, No.6, June 1970, pp.377-387

[Co72] Codd,E.F., "Further Normalization of the Data Base Relational Model"; in R.Rustin (ed.), "Data Base Systems"; Courant Comp. Sci. Symp., Volume 6, Prentice-Hall, 1972, pp.33-64

[CO73] CODASYL Data Description Language, Journal of Development (June 1973), National Bureau of Standards Handbook 113, Gov. Printing Office, Wash.D.C., January 1974, 155 pp

[Co74] Codd,E.F., "Recent Investigations in Relational Data Base Systems", Information Processing 74, North-Holland, Amsterdam, 1974

[DJ77] DeBlasis,J.P., and T.H.Johnson, "Data Base Administration - Classical Pattern, Some Experiences and Trends"; Proc. NCC, AFIPS, Vol.46, 1977, pp.1-7

[EW79] ElMasri,R., and G.Wiederhold, "Data Model Integration Using the Structural Model"; in P.A.Bernstein (ed.), ACM SIGMOD Intl. Conf. on Management of Data, Boston, Mass., 1979, pp.191-202

[EWip] El-Masri,R., and G.Wiederhold, "Use of Quantitative Information in Database Design"; Stanford CS Report, in preparation

[EWsu] El-Masri,R., and G.Wiederhold, "Properties of Relationships and Their Representation"; submitted for publication

[FS76] Fry,J.P., and E.H.Sibley, "Evolution of Data-Base Management Systems"; ACM Comp. Surveys, Vol.8, No.1, March 1976, pp.7-42

[HM78] Hammer,M., and D.McLeod, "The Semantic Data Model: A Modelling Mechanism for Data Base Applications"; in E.Lowenthal and N.B.Dale (eds.), ACM SIGMOD Intl. Conf. on Management of Data, Austin, Texas, 1978, pp.26-36

[HSW75] Held,G.D., M.R.Stonebraker, and E.Wong, "INGRES - A Relational Data Base System"; Proc. NCC, AFIPS, Vol. 44, 1975, pp.409-416

[Ke77] Kent,W., "New Criteria for the Conceptual Model"; in P.C.Lockemann and E.J.Neuhold (eds.), "Systems for Large Data Bases" (Proc. 2nd Intl. Conf. on VLDB), North-Holland, 1977, pp.1-12

[Ma75] Manacher,G., "On the Feasibility of Implementing a Large Relational Data Base with Optimal Performance on a Minicomputer"; in D.S. Kerr (ed.) "Very Large Data Bases" (Proc. Intl. Conf. on VLDB), ACM, 1975, pp.175-201

[NS78] Navathe,S., and M.Schkolnick, "View Representation in Logical Database Design"; in E.Lowenthal and N.B.Dale (eds.), ACM SIGMOD Intl. Conf. on Management of Data, Austin, Texas, 1978, pp.144-156

[Sa77] Sagalowicz,D., "IDA: An intelligent Data Access Program"; in "Very Large Data Bases" (Proc. Third Intl. Conf. on VLDB), IEEE, Tokyo, Japan, 1977, pp.293-302

[SS77] Smith,J.M., and D.C.P.Smith, "Database Abstractions: Aggregation and Generalization"; ACM Trans. on Database Systems, Vol.2, No.2, June 1977, pp.105-133

[St74] Stonebraker,M., "High-Level Integrity Assurance in a Relational Data Base Management Systems"; TR ERL-M473, Univ. of Calif., Berkeley, May 1974

[St75] Steel,T.B.,Jr. (Chairman): ANSI/X3/SPARC Study Group on Data Base Management Systems Interim Report; ACM SIGMOD FDT, Vol. 7, No. 2, 1975

[Ts76] Tsichritizis,D.C., and F.H.Lochovsky, "Hierarchical Data-Base Management"; ACM Comp. Surveys, Vol.8, No.1, March 1976, pp.105-124

[Ts77] Tsichritzis,D., and F.Lochovsky, "Views on Data"; in D.Jardine (ed.), The ANSI/SPARC DBMS Model, North-Holland, 1977, pp.51-65

[WE79] Wiederhold,G., and R.El-Masri, "A Structural Model for Database Systems"; TR CS-79-722, Computer Science Dept., Stanford University, February 1979

[Wi76] Wiederhold,G., "Methods for the Design of Medical Data Base Systems"; TR No.24, Medical Information Systems, Univ. of Calif., San Fransisco, September 1976

[Wi77] Wiederhold,G., "Database Design"; McGraw-Hill, 1977, Chapter 7, pp.329-367

---------------------------- o ---------------------- o ----------------------

